WorldWideScience

Sample records for surface positively charged

  1. Adsorption of cations onto positively charged surface mesopores.

    Science.gov (United States)

    Neue, Uwe; Iraneta, Pamela; Gritti, Fabrice; Guiochon, Georges

    2013-11-29

    Uwe Neue developed a theoretical treatment to account for the adsorption of ions on mesopores of packing materials the walls of which are bonded to ionic ligands but left this work unfinished. We elaborated upon this treatment and refined it, based on the equivalence that he suggested between charged surface particles and a membrane that separates two ionic solutions but is impermeable to one specification. He had written that the electro-chemical potentials in both ionic solutions are equal (Donnan equilibrium). The equilibrium between the surface and the pore concentrations is accounted for by an homogeneous electrostatically modified Langmuir (EML) isotherm model. The theoretical results are presented for four different charge surface concentrations σ0=0, 0.001, 0.002, and 0.003C/m(2), using a phosphate buffer (W(S)pH=2.65) of ionic strength I=10mM. The average pore size, the specific surface area, and the specific pore volume of the stationary phase were Dp=140Å, Sp=182m(2)/g, and Vp=0.70cm(3)/g, respectively. The theoretical results provide the quantitative difference between the ionic strength, the pH, and the concentrations of all the ions in the pores and in the bulk eluent. The theory predicts (1) that the retention times of cations under linear conditions is lower and (2) that their band widths under overloaded conditions for a given retention factor shrinks when the surface charge density σ0 is increased. These theoretical results are in good agreement with experimental results published previously and explain them. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces

    Science.gov (United States)

    Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David

    2012-02-01

    This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.

  3. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  6. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  7. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor.

    Science.gov (United States)

    Masuda, Tetsuya; Kigo, Satomi; Mitsumoto, Mayuko; Ohta, Keisuke; Suzuki, Mamoru; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2018-01-01

    Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  8. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor

    Directory of Open Access Journals (Sweden)

    Tetsuya Masuda

    2018-02-01

    Full Text Available Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137, which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20–40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.

  9. Cellobiose Dehydrogenase Aryl Diazonium Modified Single Walled Carbon Nanotubes: Enhanced Direct Electron Transfer through a Positively Charged Surface

    Science.gov (United States)

    2011-01-01

    One of the challenges in the field of biosensors and biofuel cells is to establish a highly efficient electron transfer rate between the active site of redox enzymes and electrodes to fully access the catalytic potential of the biocatalyst and achieve high current densities. We report on very efficient direct electron transfer (DET) between cellobiose dehydrogenase (CDH) from Phanerochaete sordida (PsCDH) and surface modified single walled carbon nanotubes (SWCNT). Sonicated SWCNTs were adsorbed on the top of glassy carbon electrodes and modified with aryl diazonium salts generated in situ from p-aminobenzoic acid and p-phenylenediamine, thus featuring at acidic pH (3.5 and 4.5) negative or positive surface charges. After adsorption of PsCDH, both electrode types showed excellent long-term stability and very efficient DET. The modified electrode presenting p-aminophenyl groups produced a DET current density of 500 μA cm−2 at 200 mV vs normal hydrogen reference electrode (NHE) in a 5 mM lactose solution buffered at pH 3.5. This is the highest reported DET value so far using a CDH modified electrode and comes close to electrodes using mediated electron transfer. Moreover, the onset of the electrocatalytic current for lactose oxidation started at 70 mV vs NHE, a potential which is 50 mV lower compared to when unmodified SWCNTs were used. This effect potentially reduces the interference by oxidizable matrix components in biosensors and increases the open circuit potential in biofuel cells. The stability of the electrode was greatly increased compared with unmodified but cross-linked SWCNTs electrodes and lost only 15% of the initial current after 50 h of constant potential scanning. PMID:21417322

  10. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Charging of Large Spwc Structure• . in Polut Otbil.’" Prweedings of thre Air For’e Grespykirs fitrano, W4r4 nop em Natural Charging of large Space Stru, ures...3, p. 1433- 1440, 1991. Bowman, C., Bogorad, A., Brucker, G., Seehra, S., and Lloyd, T., "ITO-Coated RF Transparent Materials for Antenna Sunscreen

  11. Doubly versus singly positively charged oxygen ions back-scattered from a silicon surface under dynamic O2+ bombardment

    International Nuclear Information System (INIS)

    Franzreb, Klaus; Williams, Peter; Loerincik, Jan; Sroubek, Zdenek

    2003-01-01

    Mass-resolved (and emission-charge-state-resolved) low-energy ion back-scattering during dynamic O 2 + bombardment of a silicon surface was applied in a Cameca IMS-3f secondary ion mass spectrometry (SIMS) instrument to determine the bombarding energy dependence of the ratio of back-scattered O 2+ versus O + . While the ratio of O 2+ versus O + drops significantly at reduced bombarding energies, O 2+ back-scattered from silicon was still detectable at an impact energy (in the lab frame) as low as about 1.6 keV per oxygen atom. Assuming neutralization prior to impact, O 2+ ion formation in an asymmetric 16 O→ 28 Si collision is expected to take place via 'collisional double ionization' (i.e. by promotion of two outer O 2p electrons) rather than by the production of an inner-shell (O 2s or O 1s) core hole followed by Auger-type de-excitation during or after ejection. A molecular orbital (MO) correlation diagram calculated for a binary 'head-on' O-Si collision supports this interpretation

  12. Doubly versus Singly Positively Charged Oxygen Ions Back-Scattering from a Silicon Surface under Dynamic O2+ Bombardment

    Czech Academy of Sciences Publication Activity Database

    Franzreb, K.; Williams, P.; Lörinčík, Jan; Šroubek, Zdeněk

    203-204, 1/4 (2003), s. 39-42 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z2067918; CEZ:AV0Z4040901 Keywords : low-energy ion scattering * doubly charged ions * molecular orbital Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.284, year: 2003

  13. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

    Science.gov (United States)

    Curtis, Colin K; Marek, Antonin; Smirnov, Alex I

    2017-01-01

    This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces. PMID:29046852

  14. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

    Directory of Open Access Journals (Sweden)

    Colin K. Curtis

    2017-09-01

    Full Text Available This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated or negatively (carboxylated charged nanodiamonds (ND. Immersion in −ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM, atomic force microscopy (AFM and scanning electron microscopy (SEM measurements were employed to assess nanoparticle uptake, surface polishing, and resistance to solid–liquid interfacial shear motion. The QCM studies revealed abrupt changes to the surfaces of both alumina and stainless steel upon injection of –ND into the surrounding water environment that are consistent with strong attachment of NDs and/or chemical changes to the surfaces. AFM images of the surfaces indicated slight increases in the surface roughness upon an exposure to both +ND and −ND suspensions. A suggested mechanism for these observations is that carboxylated −NDs from aqueous suspensions are forming robust lubricious deposits on stainless and alumina surfaces that enable gliding of the surfaces through the −ND suspensions with relatively low resistance to shear. In contrast, +ND suspensions are failing to improve tribological performance for either of the surfaces and may have abraded existing protective boundary layers in the case of stainless steel contacts. This study therefore reveals atomic scale details associated with systems that exhibit starkly different macroscale tribological properties, enabling future efforts to predict and design complex lubricant interfaces.

  15. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  16. Adhesion, growth and osteogenic differentiation of human bone marrow mesenchymal stem cells on positively and negatively charged and uncharged ferroelectric crystal surfaces\

    Czech Academy of Sciences Publication Activity Database

    Vandrovcová, Marta; Bačáková, Lucie; Vaněk, Přemysl; Petzelt, Jan

    2016-01-01

    Roč. 19, č. 135 (2016), s. 2-7 ISSN 1429-7248 R&D Projects: GA ČR(CZ) GA15-01558S Institutional support: RVO:67985823 ; RVO:68378271 Keywords : electroactive ceramics * surface charge * cell number * bone matrix mineralization Subject RIV: EI - Biotechnology ; Bionics; BO - Biophysics (FZU-D)

  17. Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study.

    Directory of Open Access Journals (Sweden)

    Zheng Zachory Wei

    Full Text Available Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP, linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST, identified by surface electrostatics analyses in polyP kinases (PPKs and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.

  18. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  19. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  20. Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    CERN Document Server

    Versloot, TW; Akiba, K; Artuso, M; Van Beuzekom, M; Borel, J; Bowcock, TJV; Buytaert, J; Collins, P; Dumps, R; Dwyer, L; Eckstein, D; Eklund, L; Ferro-Luzzi, M; Frei, R; Gersabek M; Haefeli, G; Hennessy, K; Huse, T; Jans, E; John, M; Ketel, TJ; Keune, A; Lastoviicka, T; Mountain, R; Neufeld, N; Parkes, C; Stone, S; Szumlak, T; Tobin, M; Van Lysebetten, A; Viret, S; De Vries, H; Wang, J

    2007-01-01

    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools.

  1. Neutralization kinetics of charged polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2008-04-15

    In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are normally distorted due to differential charging. Recently, we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Using this technique and the associated data analysis scheme with an effective charging model, quantitative information from the apparently distorted photoemission data from PTFE surfaces were extracted. The surface charging was controlled by tuning the electron flood current as well as the X-ray intensity. The effective model was found to describe the charging consistently for both the cases. It was shown that the non-linear neutralization response of differential charging around a critical neutralizing electron flux or a critical X-ray emission current was due to percolation of equipotential surface domains. The obtained value of the critical percolation exponent {gamma} close to unity indicates a percolation similar to that of avalanche breakdown or chain reaction.

  2. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  3. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  4. DETERMINATION OF SURFACE CHARGE DENSITY OF α ...

    African Journals Online (AJOL)

    a

    The whole set up was interfaced with a computer for easy data acquisition. It was observed that ... parameters. KEY WORDS: Alumina, Surface charge density, Acid-base titration, Point of zero charge ... For instance, Al2(SO4)3 is used in water ...

  5. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  6. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  7. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  8. Surface charge measurement using an electrostatic probe

    DEFF Research Database (Denmark)

    Crichton, George C; McAllister, Iain Wilson

    1998-01-01

    During the 1960s, the first measurements of charge on dielectric surfaces using simple electrostatic probes were reported. However it is only within the last 10 years that a proper understanding of the probe response has been developed. This situation arose as a consequence of the earlier studies...

  9. Experimental and Theoretical Investigations of Glass Surface Charging Phenomena

    Science.gov (United States)

    Agnello, Gabriel

    a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.

  10. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  11. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  12. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  13. Small interfering RNA delivery through positively charged polymer nanoparticles

    International Nuclear Information System (INIS)

    Dragoni, Luca; Cesana, Alberto; Moscatelli, Davide; Ferrari, Raffaele; Morbidelli, Massimo; Lupi, Monica; Falcetta, Francesca; Ubezio, Paolo; D’Incalci, Maurizio

    2016-01-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells. (paper)

  14. Positively charged phosphorus as a hydrogen bond acceptor

    DEFF Research Database (Denmark)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik Grum

    2014-01-01

    Phosphorus (P) is an element that is essential to the life of all organisms, and the atmospheric detection of phosphine suggests the existence of a volatile biogeochemical P cycle. Here, we investigate the ability of P to participate in the formation of OH···P hydrogen bonds. Three bimolecular......-stretching frequency red shifts and quantum chemical calculations, we find that P is an acceptor atom similar in strength to O and S and that all three P, O, and S atoms are weaker acceptors than N. The quantum chemical calculations show that both H and P in the OH···P hydrogen bond have partial positive charges......, as expected from their electronegativities. However, the electrostatic potentials show a negative potential area on the electron density surface around P that facilitates formation of hydrogen bonds....

  15. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  16. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  17. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  18. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.

    Science.gov (United States)

    Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan

    2018-05-07

    Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.

  19. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.

    1994-01-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  20. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav; Mantega, Mauro; Rungger, Ivan; Sanvito, Stefano; Boland, John J.

    2011-01-01

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  1. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  2. Radiation from Accelerating Electric Charges: The Third Derivative of Position

    Science.gov (United States)

    Butterworth, Edward

    2010-03-01

    While some textbooks appear to suggest that acceleration of an electric charge is both a necessary and sufficient cause for the generation of electromagnetic radiation, the question has in fact had an intricate and involved history. In particular, the acceleration of a charge in hyperbolic motion, the behavior of a charge supported against a gravitational force (and its implications for the Equivalence Principle), and a charge accelerated by a workless constraint have been the subject of repeated investigation. The present paper examines specifically the manner in which the third derivative of position enters into the equations of motion, and the implications this has for the emission of radiation. Plass opens his review article with the statement that ``A fundamental property of all charged particles is that electromagnetic energy is radiated whenever they are accelerated'' (Plass 1961; emphasis mine). His treatment of the equations of motion, however, emphasizes the importance of the occurrence of the third derivative of position therein, present in linear motion only when the rate of acceleration is increasing or decreasing. There appears to be general agreement that the presence of a nonzero third derivative indicates that this charge is radiating; but does its absence preclude radiation? This question leads back to the issues of charges accelerated by a uniform gravitational field. We will examine the equations of motion as presented in Fulton & Rohrlich (1960), Plass (1961), Barut (1964), Teitelboim (1970) and Mo & Papas (1971) in the light of more recent literature in an attempt to clarify this question.

  3. Positive, Neutral, and Negative Mass-Charges in General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2006-07-01

    Full Text Available As shown, any four-dimensional proper vector has two observable projections onto time line, attributed to our world and the mirror world (for a mass-bearing particle, the projections posses are attributed to positive and negative mass-charges. As predicted, there should be a class of neutrally mass-charged particles that inhabit neither our world nor the mirror world. Inside the space-time area (membrane the space rotates at the light speed, and all particles move at as well the light speed. So, the predicted particles of the neutrally mass-charged class should seem as light-like vortices.

  4. Method and apparatus for positioning a beam of charged particles

    International Nuclear Information System (INIS)

    Michail, M.S.; Woodard, O.C.; Yourke, H.S.

    1975-01-01

    A beam of charged particles is stepped from one predetermined position to another to form a desired pattern on a semiconductor wafer. There is a dynamic correction for the deviation of the actual position of the beam from its predetermined position, so that the beam is applied to the deviated position rather than the predetermined position. Through the location of four registration marks, the writing field is precisely defined. Writing fields may be interconnected by the sharing of registration marks, enabling the construction of chips which are larger than a single writing field. (auth)

  5. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  6. Metastable states of plasma particles close to a charged surface

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A. V., E-mail: shavlov@ikz.ru [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation); Tyumen State Oil and Gas University, 38, Volodarskogo St., 625000, Tyumen (Russian Federation); Dzhumandzhi, V. A. [The Institute of the Earth Cryosphere, RAS Siberian branch, 625000, P.O. 1230, Tyumen (Russian Federation)

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  7. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  8. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  9. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang; Mccrate, Joseph M; Li Hao [Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211 (United States); Lee, James C-M, E-mail: liha@missouri.edu [Department of Biological Engineering, University of Missouri, Columbia, MO 65211 (United States)

    2011-03-11

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular

  10. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    International Nuclear Information System (INIS)

    Chen Liang; Mccrate, Joseph M; Li Hao; Lee, James C-M

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of

  11. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  12. Geometry, charge distribution, and surface speciation of phosphate on goethite.

    NARCIS (Netherlands)

    Rahnemaie, R.; Hiemstra, T.; Riemsdijk, van W.H.

    2007-01-01

    The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in

  13. Charging and heat collection by a positively charged dust grain in a plasma.

    Science.gov (United States)

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  14. Understanding colloidal charge renormilization from surface chemistry : experiment and theory

    OpenAIRE

    Gisler, Thomas; Schulz, S. F.; Borkovec, Michal; Sticher, Hans; Schurtenberger, Peter; D'Aguanno, Bruno; Klein, Rudolf

    1994-01-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stem capacitance) are determined from tits of a Stem ...

  15. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  16. Hydration of excess electrons trapped in charge pockets on molecular surfaces

    Science.gov (United States)

    Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik

    2007-01-01

    In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).

  17. Screening model for nanowire surface-charge sensors in liquid

    DEFF Research Database (Denmark)

    Sørensen, Martin Hedegård; Mortensen, Asger; Brandbyge, Mads

    2007-01-01

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers....

  18. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kralj, Slavko, E-mail: slavko.kralj@ijs.si [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia); Rojnik, Matija [University of Ljubljana, Faculty of Pharmacy (Slovenia); Romih, Rok [University of Ljubljana, Faculty of Medicine, Institute of Cell Biology (Slovenia); Jagodic, Marko [Institute of Mathematics, Physics and Mechanics (Slovenia); Kos, Janko [University of Ljubljana, Faculty of Pharmacy (Slovenia); Makovec, Darko [Jozef Stefan Institute, Department for Materials Synthesis (Slovenia)

    2012-10-15

    We report on the nanoparticle uptake into MCF10A neoT and PC-3 cells using flow cytometry, confocal microscopy, SQUID magnetometry, and transmission electron microscopy. The aim was to evaluate the influence of the nanoparticles' surface charge on the uptake efficiency. The surface of the superparamagnetic, silica-coated, maghemite nanoparticles was modified using amino functionalization for the positive surface charge (CNPs), and carboxyl functionalization for the negative surface charge (ANPs). The CNPs and ANPs exhibited no significant cytotoxicity in concentrations up to 500 {mu}g/cm{sup 3} in 24 h. The CNPs, bound to a plasma membrane, were intensely phagocytosed, while the ANPs entered cells through fluid-phase endocytosis in a lower internalization degree. The ANPs and CNPs were shown to be co-localized with a specific lysosomal marker, thus confirming their presence in lysosomes. We showed that tailoring the surface charge of the nanoparticles has a great impact on their internalization.

  19. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Science.gov (United States)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  20. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, A; Torralba, G; Hausmann, M; Lindenstruth, V [Kirchhoff Institute of Physics, In Neuenheimer Feld 227, Heidelberg (Germany); Loeffler, F; Cheng, Yun-Chien; Koenig, K; Stadler, V; Bischoff, F R [German Cancer Research Centre, In Neuenheimer Feld 280, Heidelberg (Germany); Breitling, F, E-mail: Frank.Breitling@KIT.ed, E-mail: alexander.nesterov-mueller@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology, Herrmann von Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-04-28

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  1. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  2. Chemical sensors based on surface charge transfer

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  3. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  4. Positively charged microporous ceramic membrane for the removal of Titan Yellow through electrostatic adsorption.

    Science.gov (United States)

    Cheng, Xiuting; Li, Na; Zhu, Mengfu; Zhang, Lili; Deng, Yu; Deng, Cheng

    2016-06-01

    To develop a depth filter based on the electrostatic adsorption principle, positively charged microporous ceramic membrane was prepared from a diatomaceous earth ceramic membrane. The internal surface of the highly porous ceramic membrane was coated with uniformly distributed electropositive nano-Y2O3 coating. The dye removal performance was evaluated through pressurized filtration tests using Titan Yellow aqueous solution. It showed that positively charged microporous ceramic membrane exhibited a flow rate of 421L/(m(2)·hr) under the trans-membrane pressure of 0.03bar. Moreover it could effectively remove Titan Yellow with feed concentration of 10mg/L between pH3 to 8. The removal rate increased with the enhancement of the surface charge properties with a maximum rejection of 99.6%. This study provides a new and feasible method of removing organic dyes in wastewater. It is convinced that there will be a broad market for the application of charged ceramic membrane in the field of dye removal or recovery from industry wastewater. Copyright © 2016. Published by Elsevier B.V.

  5. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  6. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  7. Surface charge algebra in gauge theories and thermodynamic integrability

    International Nuclear Information System (INIS)

    Barnich, Glenn; Compere, Geoffrey

    2008-01-01

    Surface charges and their algebra in interacting Lagrangian gauge field theories are constructed out of the underlying linearized theory using techniques from the variational calculus. In the case of exact solutions and symmetries, the surface charges are interpreted as a Pfaff system. Integrability is governed by Frobenius' theorem and the charges associated with the derived symmetry algebra are shown to vanish. In the asymptotic context, we provide a generalized covariant derivation of the result that the representation of the asymptotic symmetry algebra through charges may be centrally extended. Comparison with Hamiltonian and covariant phase space methods is made. All approaches are shown to agree for exact solutions and symmetries while there are differences in the asymptotic context

  8. On the theoretical description of weakly charged surfaces.

    Science.gov (United States)

    Wang, Rui; Wang, Zhen-Gang

    2015-03-14

    It is widely accepted that the Poisson-Boltzmann (PB) theory provides a valid description for charged surfaces in the so-called weak coupling limit. Here, we show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. In the presence of dielectric discontinuity, there is no limiting condition for which the PB theory is valid.

  9. Charged particle discrimination with silicon surface barrier detectors

    International Nuclear Information System (INIS)

    Coote, G.E.; Pithie, J.; Vickridge, I.C.

    1996-01-01

    The application for materials analysis of nuclear reactions that give rise to charged particles is a powerful surface analytical and concentration depth profiling technique. Spectra of charged particles, with energies in the range 0.1 to 15 MeV, emitted from materials irradiated with beams of light nuclei such as deuterons are measured with silicon surface barrier detectors. The spectra from multi-elemental materials typically encountered in materials research are usually composed of an overlapping superposition of proton, alpha, and other charged particle spectra. Interpretation of such complex spectra would be simplified if a means were available to electronically discriminate between the detector response to the different kinds of charged particle. We have investigated two methods of discriminating between different types of charged particles. The fast charge pulses from a surface barrier detector have different shapes, depending on the spatial distribution of energy deposition of the incident particle. Fast digitisation of the pulses, followed by digital signal processing provides one avenue for discrimination. A second approach is to use a thin transmission detector in front of a thick detector as a detector telescope. For a given incident energy, different types of charged particles will lose different amounts of energy in the thin detector, providing an alternative means of discrimination. We show that both approaches can provide significant simplification in the interpretation of charged particle spectra in practical situations, and suggest that silicon surface barrier detectors having graded electronic properties could provide improved discrimination compared to the current generation of detectors having homogeneous electronic properties. (author).12 refs., 2 tabs., 28 figs

  10. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  11. Cellulose nanocrystals with tunable surface charge for nanomedicine

    Science.gov (United States)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  12. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    Science.gov (United States)

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  13. Static phenomena at the charged surface of liquid hydrogen

    International Nuclear Information System (INIS)

    Levchenko, A.A.; Kolmakov, G.V.; Mezhov-Deglin, L.P.; Mikhjlov, M.G.; Trusov, A.B.

    1999-01-01

    The shape evolution of the equipotentially charged surface of liquid hydrogen layer covering the lower plate of a horizontally arranged diode in external electric fields has been studied experimentally for the first time. A reconstruction phenomenon (the formation of a stationary hump) at the flat charged surface at voltages higher than a certain critical U c1 was observed under the conditions of total compensation of the electric field in the bulk liquid by a surface charge. It is shown that the transition of the flat charged surface into the reconstructed state is a phase transition closed to the second order phase transition. The height of the hump increased with increasing the voltage and at U c2 > 1,2 U c1 the reconstructed surface lost the stability, and a stream discharge pulse was observed. The shape evolution of a changed droplet of constant volume suspended at the upper plate of the diode when the stretching electric field and gravity forces act in the same direction was studied as the voltage was increased up to the discharge

  14. Charge dividing mechanism in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-01-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistances and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C)/sup 1/2), where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  15. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    Science.gov (United States)

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  16. Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles.

    Science.gov (United States)

    Skoglund, Sara; Lowe, Troy A; Hedberg, Jonas; Blomberg, Eva; Wallinder, Inger Odnevall; Wold, Susanna; Lundin, Maria

    2013-07-16

    The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.

  17. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  18. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  19. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  20. Trajectory effects in multiply charged ion-surface interactions

    International Nuclear Information System (INIS)

    Lebius, H.; Huang, W.; Schuch, R.

    1999-01-01

    Ar ions of 4.3 keV q in were scattered at large angles (θ=75 degree sign ) from a clean oriented surface. By selecting Ar projectiles having a large ionization potential and by using a large scattering angle only ions scattered at the first atomic layer of the surface were detected. Scattered ion energy spectra show peaks of single scattering and double scattering of the Ar projectile ions from one or two surface Au atoms, and the distribution attributed to double collisions splits into two peaks when the scattering plane coincides with a crystallographic plane. Simulations with a MARLOWE code allowed for interpretation of the structure in the double collision peak by in-plane and zig-zag double collisions. Differences in the relative peak heights between the experiment and a MARLOWE simulation were partly explained by different neutralization probabilities with varying trajectories. Yield changes with increasing charge states show interesting possibilities for future experiments with highly charged ions

  1. Work functions and surface charges at metallic facet edges

    International Nuclear Information System (INIS)

    Fall, C.J.; Binggeli, N.; Baldereschi, A.

    2002-04-01

    The electronic charge densities and work functions at sharp metallic facet edges are determined from ab initio calculations, combined with macroscopic averaging techniques. In particular, we examine how two different work functions coexist at close range near edges between inequivalent facets. The surface ionic relaxation at facet edges is shown to influence appreciably the local electrostatic potential in the vacuum. Various edges between Al(100) and Al(111) facets are studied, as well as between Na(110) facets. We also develop a model of electronic surface dipoles, which accounts for the surface charge transfer between inequivalent facets, and which allows us to predict the influence of the shape and size of a macroscopic crystal on its work functions. (author)

  2. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    International Nuclear Information System (INIS)

    Wirtz, L.

    2001-10-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the attraction due to the self-image potential. In a simulation that treats electronic and nuclear dynamics simultaneously, we show that the image attraction dominates over the repulsive force. Backscattering of very slow multiply charged projectiles high above the surface without touching it ('trampoline effect') does not take place. Instead, the projectile ion penetrates into the surface or is reflected due to close binary collision with surface ions. The case of a singly charged ion in front of an LiF surface is within the reach of ab-initio calculations. We use a multi-configuration self consistent field (MCSCF) and a multi-reference configuration interaction (MR-CI) method to calculate adiabatic potential energy curves for a system consisting of the projectile ion and an embedded cluster of surface ions. With increasing cluster size, the energy levels of the embedded cluster converge towards the band structure of the infinitely extended solid. Due to

  3. The pH dependent surface charging and points of zero charge. VII. Update.

    Science.gov (United States)

    Kosmulski, Marek

    2018-01-01

    The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd 2 O 3 , NaTaO 3 , and SrTiO 3 have been reported in the recent literature. Their IEP were not reported in older studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Adsorption of charged albumin subdomains on a graphite surface.

    Science.gov (United States)

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2006-03-01

    We report some new molecular dynamics simulation results about the adsorption on a hydrophobic graphite surface of two albumin subdomains, each formed by three different alpha-helices, considering the correctly charged side groups at pH = 7 instead of the neutral ones as done in our previous exploratory paper (Raffaini and Ganazzoli, Langmuir 2003;19:3403-3412). We find that the presence of charges affects somewhat the initial adsorption stage on the electrostatically neutral surface, but not the final one. Thus, we recover the result that a monolayer of aminoacids is eventually formed, with a rough parallelism of distant strands to optimize both the intramolecular and the surface interactions. This feature is consistent with the adsorption on the hydrophobic surface being driven by dispersion forces only, and with the "soft" nature of albumin. Additional optimizations of the final monolayer carried out at pH = 3 and 11 do not modify appreciably this picture, suggesting that adsorption on graphite is basically independent of pH. The enhanced hydration of the final adsorption state due to the (delocalized) charges of the side groups is also discussed in comparison with similar results of the neutralized subdomains. (c) 2005 Wiley Periodicals, Inc.

  5. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  6. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  7. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  8. Surface characterization of polymethylmetacrylate bombarded by charged water droplets

    International Nuclear Information System (INIS)

    Hiraoka, Kenzo; Takaishi, Riou; Asakawa, Daiki; Sakai, Yuji; Iijima, Yoshitoki

    2009-01-01

    The electrospray droplet impact (EDI), in which the charged electrospray water droplets are introduced in vacuum, accelerated, and allowed to impact the sample, is applied to polymethylmetacrylate (PMMA). The secondary ions generated were measured by an orthogonal time-of-flight mass spectrometer. In EDI mass spectra for PMMA, fragment ions originating from PMMA could not be detected. This is due to the fact that the proton affinities of fragments formed from PMMA are smaller than those from acetic acid contained in the charged droplet. The x-ray photoelectron spectroscopy spectra of PMMA irradiated by water droplets did not change with prolonged cluster irradiation, i.e., EDI is capable of shallow surface etching for PMMA with a little damage of the sample underneath the surface.

  9. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    Science.gov (United States)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  10. Study of correlations of positive and negative charged particles

    International Nuclear Information System (INIS)

    Takahashi, Y.; Chan, C.H.; Dong, B.L.; Duthie, J.G.; Gregory, J.C.; Hayashi, T.; Yokomi, H.; Christl, M.J.; Derrickson, J.H.; Eby, P.B.; Fountain, W.F.; Parnell, T.A.; Roberts, F.E.; Nagamiya, S.; Dake, S.; Tominaga, T.; Fuki, M.; Iyono, A.; Ogata, T.; Miyamura, O.

    1991-01-01

    Particle correlations of the central collision events of 32 S + Pb at 200 GeV/AMU have been studied by utilizing a Magnetic-Interferomagnetic-Emulsion-Chamber (MAGIC) detector. Particle angles, momentum, and charge-signs are measured for all produced charged tracks for each event. Two-particle correlation functions, C 2 = dN (vertical strokep 1 - p 2 vertical stroke = q)/dp 1 dp 2 , for (++), (--) and (+-) particles are examined. A source radius around 4 - 6 fm is observed for overall identical particle correlations, while unexpected short-range correlations of unlike-sign pairs are observed in the high rapidity region. An analysis of unlike-sign pairs in terms of resonance decays indicated that a large amount (40% relative to pions) of η or ω mesons (decaying into 3 π), or of scalar iso-scalar σ mesons (decaying into 2 π) would be required to explain some of the data. Multi-particle charge-sign clusters are recognized; however, their 'run-test' and 'conjugate-test' show small deviations from statistical fluctuations. (orig.)

  11. Explanation of the surface peak in charge integrated LEIS spectra

    CERN Document Server

    Draxler, M; Taglauer, E; Schmid, K; Gruber, R; Ermolov, S N; Bauer, P

    2003-01-01

    Low energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, also neutral and charge integrated spectra (ions plus neutrals) can be obtained, which yield information about deeper layers. In the literature, the observation of a more or less pronounced surface peak was reported for charge integrated spectra, the intensity of the surface peak being higher at low energies and for heavy projectiles. Aiming at a more profound physical understanding of this surface peak, we performed TOF-experiments and computer simulations for He projectiles and a copper target. Experiments were done in the range 1-9 keV for a scattering angle of 129 deg. . The simulation was performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. At low energies, a pronounced surface peak was observed, which fades away at higher energies. This peak is quantitatively reproduced by the simulation, and corresponds to scattering from approx 2 atomic...

  12. Solvation of excess electrons trapped in charge pockets on molecular surfaces

    Science.gov (United States)

    Jalbout, Abraham F.

    This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).

  13. Study of position resolution for cathode readout MWPC with measurement of induced charge distribution

    International Nuclear Information System (INIS)

    Chiba, J.; Iwasaki, H.; Kageyama, T.; Kuribayashi, S.; Nakamura, K.; Sumiyoshi, T.; Takeda, T.

    1983-01-01

    A readout technqiue of multiwire proportional chambers by measurement of charges induced on cathode strips, orthogonal to anode wires, requires an algorithm to relate the measured charge distribution to the avalanche position. With given chamber parameters and under the influence of noise, resolution limits depend on the chosen algorithm. We have studied the position resolution obtained by the centroid method and by the charge-ratio method, both using three consecutive cathode strips. While the centroid method uses a single number, the center of gravity of the measured charges, the charge-ratio method uses the ratios of the charges Qsub(i-1)/Qsub(i) and Qsub(i+1)/Qsub(i) where Qsub(i) is the largest. To obtain a given resolution, the charge-ratio method generally allows wider cathode strips and therefore a smaller number of readout channels than the centroid method. (orig.)

  14. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  15. Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2018-04-01

    This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.

  16. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    International Nuclear Information System (INIS)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J

    2011-01-01

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  17. Factors influencing the cytotoxicity of zinc oxide nanoparticles: particle size and surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Baek, M; Kim, M K; Cho, H J; Lee, J A; Yu, J; Chung, H E; Choi, S J, E-mail: sjchoi@swu.ac.kr [Department of Food Science and Technology, Seoul Women' s University, 126 Gongneung 2-dong, Nowon-gu, Seoul 139-774 (Korea, Republic of)

    2011-07-06

    Zinc oxide (ZnO) nanoparticle is one of the most important materials in diverse applications, since it has UV light absorption, antimicrobial, catalytic, semi-conducting, and magnetic properties. However, there is little information about the toxicological effects of ZnO nanoparticles with respect to physicochemical properties. The aim of this study was, therefore, to evaluate the relationships between cytotoxicity and physicochemical properties of ZnO nanoparticle such as particle size and surface charge in human lung cells. Two different sizes of ZnO nanoparticles (20 and 70 nm) were prepared with positive (+) or negative (-) charge, and then, cytotoxicity of different ZnO nanoparticles was evaluated by measuring cell proliferation in short-term and long-term, membrane integrity, and generation of reactive oxygen species (ROS). The results demonstrated that smaller particles exhibited high cytotoxic effects compared to larger particles in terms of inhibition of cell proliferation, membrane damage, and ROS generation. In addition, positively charged ZnO showed greater ROS production than ZnO with negative charge. These findings suggest that the cytoxicity of ZnO nanoparticles are strongly affected by their particle size and surface charge, highlighting the role of the physicochemical properties of nanoparticles to understand and predict their potential adverse effects on human.

  18. Experimental surface charge density of the Si (100)-2x1H surface

    DEFF Research Database (Denmark)

    Ciston, J.; Marks, L.D.; Feidenhans'l, R.

    2006-01-01

    We report a three-dimensional charge density refinement from x-ray diffraction intensities of the Si (100) 2x1H surface. By paying careful attention to parameterizing the bulk Si bonding, we are able to locate the hydrogen atoms at the surface, which could not be done previously. In addition, we...

  19. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  20. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Science.gov (United States)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  1. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    International Nuclear Information System (INIS)

    Bhattacharjee, Sourav; Opstal, Edward J. van; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-01-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size ∼45 nm) and polystyrene nanoparticles (PSNPs/size ∼50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  2. Electrical manipulation of oligonucleotides grafted to charged surfaces.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc

    2006-09-21

    The electrical manipulation of short DNA molecules on surfaces offers novel functionalities with fascinating possibilities in the field of bio-interfaces. Here we present systematic investigations of the electrical interactions which govern the structure of oligonucleotides on charged gold surfaces. Successively, we address influences of the applied field strength, the role of DC electrode potentials, in particular for polycrystalline surfaces, as well as screening effects of the surrounding electrolyte solution. Data obtained for single and double stranded DNA exhibit differences which can be attributed to the dissimilar flexibility of the different molecular conformations. A comparison of the experimental results with a basic model shows how the alignment of the molecules adjusts according to a balance between electrically induced ordering and stochastic thermal motions. The presented conclusions are expected to be of general relevance for the behaviour of polyelectrolytes exposed to localized electric fields at interfaces.

  3. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  4. Adhesion of Mycobacterium smegmatis to Charged Surfaces and Diagnostics Implications

    Science.gov (United States)

    Gorse, Diane; Dhinojwala, Ali; Moore, Francisco

    Pulmonary tuberculosis (PTB) causes more than 1 million deaths annually. Smear microscopy is a primary rapid detection tool in areas where 95 % of PTB cases occur. This technique, in which the sputum of a symptomatic patient is stained and examined using a light microscope for Mycobacterium tuberculosis (MTB) shows sensitivity between 20 and 60 %. Insufficient bacterial isolation during sample preparation may be a reason for low sensitivity. We are optimizing a system to capture bacteria on the basis of electrostatic interactions to more thoroughly isolate bacteria from suspension and facilitate more accurate detection. Silica supports coated with positively-charged polyelectrolyte, poly(diallyldimethylammonium chloride), captured approximately 4.1 times more Mycobacterium smegmatis, a model organism for MTB, than was captured on negatively-charged silica substrates. Future experimentation will employ branched polymer systems and seek to justify the use of colloidal stability theories to describe initial capture. Supported by University of Akron, Department of Polymer Science, Department of Biology; LORD Corporation.

  5. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  6. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    Science.gov (United States)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  7. Renormalization in charged colloids: non-monotonic behaviour with the surface charge

    International Nuclear Information System (INIS)

    Haro-Perez, C; Quesada-Perez, M; Callejas-Fernandez, J; Schurtenberger, P; Hidalgo-Alvarez, R

    2006-01-01

    The static structure factor S(q) is measured for a set of deionized latex dispersions with different numbers of ionizable surface groups per particle and similar diameters. For a given volume fraction, the height of the main peak of S(q), which is a direct measure of the spatial ordering of latex particles, does not increase monotonically with the number of ionizable groups. This behaviour cannot be described using the classical renormalization scheme based on the cell model. We analyse our experimental data using a renormalization model based on the jellium approximation, which predicts the weakening of the spatial order for moderate and large particle charges. (letter to the editor)

  8. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  9. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  10. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  11. Surface-confined electroactive molecules for multistate charge storage information.

    Science.gov (United States)

    Mas-Torrent, M; Rovira, C; Veciana, J

    2013-01-18

    Bi-stable molecular systems with potential for applications in binary memory devices are raising great interest for device miniaturization. Particular appealing are those systems that operate with electrical inputs since they are compatible with existing electronic technologies. The processing of higher memory densities in these devices could be accomplished by increasing the number of memory states in each cell, although this strategy has not been much explored yet. Here we highlight the recent advances devoted to the fabrication of charge-storage molecular surface-confined devices exhibiting multiple states. Mainly, this goal has been realized immobilizing a variety (or a combination) of electroactive molecules on a surface, although alternative approaches employing non-electroactive systems have also been described. Undoubtedly, the use of molecules with chemically tunable properties and nanoscale dimensions are raising great hopes for the devices of the future in which molecules can bring new perspectives such as multistability.

  12. Studies of the pulse charge of lead-acid batteries for PV applications. Part I. Factors influencing the mechanism of the pulse charge of the positive plate

    Energy Technology Data Exchange (ETDEWEB)

    Kirchev, A.; Perrin, M.; Lemaire, E.; Karoui, F.; Mattera, F. [Commissariat de l' Energie Atomique, Institut National de l' Energie Solaire, INES-RDI, Parc Technologique de Savoie Technolac, 50 Avenue du Lac Leman, 73377 Le Bourget du Lac Cedex (France)

    2008-02-15

    The mechanism of the positive plate charge in pulse regime was studied in model lead-acid cells with one positive and two negative plates (8 Ah each) and Ag/Ag{sub 2}SO{sub 4} reference electrodes. The results showed that the evolution of the electrode potential is much slower on the positive plate than on the negative plate. Regardless of this fact, the calculated capacitive current of charge and self-discharge of the electrochemical double layer (EDL) during the 'ON' and 'OFF' half-periods of the pulse current square waves is comparable with the charge current amplitude. The result is due to the high values of the EDL on the surface of the lead dioxide active material. The influence of different factors like state of charge, state of health, pulse frequency, current amplitude and open circuit stay before the polarization was discussed. The previously determined optimal frequency of 1 Hz was associated with a maximum in the average double layer current on frequency dependence. The average double layer current is also maximal at SOC between 75 and 100%. The exchange of the constant current polarization with pulse polarization does not change substantially the mechanism and the overvoltage of the oxygen evolution reaction on the positive plate. The mechanism of the self-discharge of the EDL was also estimated analyzing long-time PPP transients (up to 2 h). It was found that when the PPP is lower than 1.2 V the preferred mechanism of EDL self-discharge is by coupling with the lead sulphate oxidation reaction. At higher values of PPP the EDL self-discharge happens via oxygen evolution. The high faradic efficiency of the pulse charge is due to the chemical oxidation of the Pb(II) ions by the O atoms and OH radicals formed at the oxygen evolution both during the 'ON' and 'OFF' periods. (author)

  13. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Kyeong-Ok Choi

    2016-05-01

    Full Text Available The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  14. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs.

    Science.gov (United States)

    Choi, Kyeong-Ok; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2016-05-20

    The objective of this study is to develop suitable formulations to improve the dissolution rate of poorly water soluble drugs. We selected lipid-based formulation as a drug carrier and modified the surface using positively charged chitosan derivative (HTCC) to increase its water solubility and bioavailability. Chitosan and HTCC-coated lipid particles had higher zeta-potential values than uncoated one over the whole pH ranges and improved encapsulation efficiency. In vitro drug release showed that all NLC formulations showed higher in vitro release efficiency than drug particle at pH 7.4. Furthermore, NLC formulation prepared with chitosan or HTCC represented good sustained release property. The results indicate that chitosan and HTCC can be excellent formulating excipients of lipid-based delivery carrier for improving poorly water soluble drug delivery.

  15. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  16. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    Science.gov (United States)

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  17. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  18. Two-dimensional position sensitive silicon photodiode as a charged particle detector

    International Nuclear Information System (INIS)

    Kovacevic, K.; Zadro, M.

    1999-01-01

    A two-dimensional position sensitive silicon photodiode has been tested for measurement of position and energy of charged particles. Position nonlinearity and resolution, as well as energy resolution and ballistic deficit were measured for 5.486 MeV α-particles. The results obtained for different pulse shaping time constants are presented

  19. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  20. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  1. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  2. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  3. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  4. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  5. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  6. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    Science.gov (United States)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  7. Effect of temperature and electrolyte concentration on the surface charge properties of fe(oh)3

    International Nuclear Information System (INIS)

    Irshad, M.

    2014-01-01

    Amorphous iron hydroxide was fabricated in the laboratory by precipitation technique. Salt addition and fast titration methods were employed for the determination of zero point charge. The present study is mainly focused on the surface charge, PZC determination from the potentiometric titration data in the temperature range 293 - 323 K and to calculate the thermodynamic parameters during the exchange of surface H+/OH- ions. The PZC of the solid was decreased with increasing the temperature of electrolytic solution. The Standard thermodynamic parameters such as delta H and delta S were also determined from Berube and DeBruyn equation, which showed the endothermic nature of potential determining ion H+/OH- ions. Further, their freedom in the double layer has lost on account of the electrostatic force of interaction. The positive delta G degree values are suggesting the nonspontaneous transferring reactions of H+ and OH- from the bulk solution to the interfacial region. (author)

  8. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  9. Long charged macromolecule in an entropic trap with rough surfaces.

    Science.gov (United States)

    Mamasakhlisov, Yevgeni Sh; Hayryan, Shura; Hu, Chin-Kun

    2012-11-01

    The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and shallow slits known as an "entropic trap" is used to represent the environment. The flux is supported by the external electrostatic field. The "wormlike chain" model is used for the macromolecule (dsDNA in the present study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface roughness. The scope of the accuracy of the proposed model is discussed.

  10. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    Science.gov (United States)

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  11. Surface charge method for molecular surfaces with curved areal elements I. Spherical triangles

    Science.gov (United States)

    Yu, Yi-Kuo

    2018-03-01

    Parametrizing a curved surface with flat triangles in electrostatics problems creates a diverging electric field. One way to avoid this is to have curved areal elements. However, charge density integration over curved patches appears difficult. This paper, dealing with spherical triangles, is the first in a series aiming to solve this problem. Here, we lay the ground work for employing curved patches for applying the surface charge method to electrostatics. We show analytically how one may control the accuracy by expanding in powers of the the arc length (multiplied by the curvature). To accommodate not extremely small curved areal elements, we have provided enough details to include higher order corrections that are needed for better accuracy when slightly larger surface elements are used.

  12. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  13. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles

    Directory of Open Access Journals (Sweden)

    Fröhlich E

    2012-11-01

    Full Text Available Eleonore FröhlichCenter for Medical Research, Medical University of Graz, Graz, AustriaAbstract: Many types of nanoparticles (NPs are tested for use in medical products, particularly in imaging and gene and drug delivery. For these applications, cellular uptake is usually a prerequisite and is governed in addition to size by surface characteristics such as hydrophobicity and charge. Although positive charge appears to improve the efficacy of imaging, gene transfer, and drug delivery, a higher cytotoxicity of such constructs has been reported. This review summarizes findings on the role of surface charge on cytotoxicity in general, action on specific cellular targets, modes of toxic action, cellular uptake, and intracellular localization of NPs. Effects of serum and intercell type differences are addressed. Cationic NPs cause more pronounced disruption of plasma-membrane integrity, stronger mitochondrial and lysosomal damage, and a higher number of autophagosomes than anionic NPs. In general, nonphagocytic cells ingest cationic NPs to a higher extent, but charge density and hydrophobicity are equally important; phagocytic cells preferentially take up anionic NPs. Cells do not use different uptake routes for cationic and anionic NPs, but high uptake rates are usually linked to greater biological effects. The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs may influence the efficacy and selectivity of NPs for drug delivery and imaging.Keywords: endocytosis, plasma membrane, lysosomes, polystyrene particles, quantum dots, dendrimers

  14. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena; Heitzinger, Clemens

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding

  15. Influence of Surface Charge/Potential of a Gold Electrode on the Adsorptive/Desorptive Behaviour of Fibrinogen

    International Nuclear Information System (INIS)

    Dargahi, Mahdi; Konkov, Evgeny; Omanovic, Sasha

    2015-01-01

    Highlights: • Adsorptive/desorptive behavior of fibrinogen (FG) on an electrochemically-polarized gold substrate is reported. • The adsorption affinity of FG (afFG) is constant on a negatively-charged substrate surface. • The afFG increases linearly with an increase in positive substrate surface charge. • The FG adsorption kinetics is strongly dependant on substrate surface charge. • The adsorbed FG layer can be desorbed by electrochemical evolution of hydrogen and oxygen. - Abstract: The effect of gold substrate surface charge (potential) on adsorptive/desorptive behaviour of fibrinogen (FG) was studied by employing differential capacitance (DC) and polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), in terms of FG adsorption thermodynamics, kinetics, and desorption kinetics. The gold substrate surface charge was modulated in-situ within the electrochemical double-layer region by means of electrochemical potentiostatic polarization in a FG-containing electrolyte, thus avoiding the interference of other physico-chemical properties of the gold surface on FG’s interfacial behaviour. The FG adsorption equilibrium was modeled using the Langmuir isotherm. Highly negative values of apparent Gibbs free energy of adsorption (ranging from from −52.1 ± 0.4 to −55.8 ± 0.8 kJ mol −1 , depending on the FG adsorption potential) indicated a highly spontaneous and strong adsorption of FG onto the gold surface. The apparent Gibbs free energy of adsorption was found to be independent of surface charge when the surface was negatively charged. However, when the gold surface was positively charged, the apparent Gibbs free energy of adsorption exhibited a pronounced linear relationship with the surface charge, shifting to more negative values with an increase in positive electrode potential. The adsorption kinetics of FG was also found to be dependent on gold surface charge in a similar manner to the apparent Gibbs free energy of adsorption

  16. Osteoblasts with impaired spreading capacity benefit from the positive charges of plasma polymerised allylamine

    Directory of Open Access Journals (Sweden)

    F Kunz

    2015-03-01

    Full Text Available Bone diseases such as osteoporosis, osteoarthritis and rheumatoid arthritis, impinge on the performance of orthopaedic implants by impairing bone regeneration. For this reason, the development of effective surface modifications supporting the ingrowth of implants in morbid bone tissue is essential. Our study is designed to elucidate if cells with restricted cell-function limiting adhesion processes benefit from plasma polymer deposition on titanium. We used the actin filament disrupting agent cytochalasin D (CD as an experimental model for cells with impaired actin cytoskeleton. Indeed, the cell’s capacity to adhere and spread was drastically reduced due to shortened actin filaments and vinculin contacts that were smaller. The coating of titanium with a positively charged nanolayer of plasma polymerised allylamine (PPAAm abrogated these disadvantages in cell adhesion and the CD-treated osteoblasts were able to spread significantly. Interestingly, PPAAm increased spreading by causing enhanced vinculin number and contact length, but without significantly reorganising actin filaments. PPAAm with the monomer allylamine was deposited in a microwave-excited low-pressure plasma-processing reactor. Cell physiology was monitored by flow cytometry and confocal laser scanning microscopy, and the length and number of actin filaments was quantified by mathematical image processing. We showed that biomaterial surface modification with PPAAm could be beneficial even for osteoblasts with impaired cytoskeleton components. These insights into in vitro conditions may be used for the evaluation of future strategies to design implants for morbid bone tissue.

  17. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  18. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    Science.gov (United States)

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  19. Wafer Surface Charge Reversal as a Method of Simplifying Nanosphere Lithography for Reactive Ion Etch Texturing of Solar Cells

    Directory of Open Access Journals (Sweden)

    Daniel Inns

    2007-01-01

    Full Text Available A simplified nanosphere lithography process has been developed which allows fast and low-waste maskings of Si surfaces for subsequent reactive ion etching (RIE texturing. Initially, a positive surface charge is applied to a wafer surface by dipping in a solution of aluminum nitrate. Dipping the positive-coated wafer into a solution of negatively charged silica beads (nanospheres results in the spheres becoming electrostatically attracted to the wafer surface. These nanospheres form an etch mask for RIE. After RIE texturing, the reflection of the surface is reduced as effectively as any other nanosphere lithography method, while this batch process used for masking is much faster, making it more industrially relevant.

  20. Counterion release from a discretely charged surface in an electrolyte: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Hernández-Contreras, M

    2015-01-01

    Monte Carlo simulations allowed us to determine the amount of released electric charges from a discretely charged surface in 1:1 aqueous electrolyte solution as a function of surface charge density. Within the restricted primitive model and for a fixed concentration of 0.1 M bulk electrolyte in solution, there is an increase in the number of released counterions per unit surface area as the strength of the surface charge is enhanced. A similar behaviour of the number of released counterions was also found through the use of mean field and liquid theory methods

  1. On the molecular mechanism of surface charge amplification and related phenomena at aqueous polyelectrolyte-graphene interfaces

    Directory of Open Access Journals (Sweden)

    J.M. Simonson

    2011-09-01

    Full Text Available In this communication we illustrate the occurrence of a recently reported new phenomenon of surface-charge amplification, SCA, (originally dubbed overcharging, OC, [Jimenez-Angeles F. and Lozada-Cassou M., J. Phys. Chem. B, 2004, 108, 7286] by means of molecular dynamics simulation of aqueous electrolytes solutions involving multivalent cations in contact with charged graphene walls and the presence of short-chain lithium polystyrene sulfonates where the solvent water is described explicitly with a realistic molecular model. We show that the occurrence of SCA in these systems, in contrast to that observed in primitive models, involves neither contact co-adsorption of the negatively charged macroions nor divalent cations with a large size and charge asymmetry as required in the case of implicit solvents. In fact the SCA phenomenon hinges around the preferential adsorption of water (over the hydrated ions with an average dipolar orientation such that the charges of the water's hydrogen and oxygen sites induce magnification rather than screening of the positive-charged graphene surface, within a limited range of surface-charge density.

  2. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  3. The relation of electrode voltages to charge position in SLC arc and final focus beam position monitors

    International Nuclear Information System (INIS)

    Fordham, C.

    1989-01-01

    The position of a charged particle beam can be measured with a Beam Position Monitor (BPM) by converting the voltages induced on its array of electrodes into a position offset from the array's center. Most of the BPMs in the Arcs and Final Focus of the SLC use four stripline electrodes arranged symmetrically around the beam; normalized voltage differences are calculated as the difference divided by the sum of voltages on opposite electrode pairs. The resulting number is multiplied by a conversion factor, denoted in this paper as S b , to give the offset (in millimeters) of the charge from the center of the BPM. Prior to installation in the beam line, the BPMs were calibrated with a charge pulse on a rod. Owing to geometric effects which will be discussed later, a different conversion factor had to be used for calibration. It will be denoted here by S r . This paper gives the results of calculations and measurements of S r and S b for Arc and Final Focus BPMs. This paper also describes the relevant physical properties of the several types of BPMs and calculations of the expected scale factors, the measurement methods used, and gives the results of measurements, which are compared with the theoretical expectations. 2 refs., 18 figs., 7 tabs

  4. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  5. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  6. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Zhou Jun; Xie Li

    2011-01-01

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  7. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Xie Li

    2011-01-20

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  8. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    Science.gov (United States)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  9. Surface charge accumulation of particles containing radionuclides in open air.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  11. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  12. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    Science.gov (United States)

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  15. Colloids from oppositely charged polymers: reversibility and surface activity

    NARCIS (Netherlands)

    Hofs, P.S.

    2009-01-01

    The research described in this thesis concerns the formation, solution properties, and adsorption of polyelectrolyte complexes composed of at least one diblock copolymer with a neutral and a charged block and either an oppositely charged homopolyelectrolyte or a diblock copolymer, with a neutral

  16. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Mixed-mode reversed phase/positively charged repulsion chromatography for intact protein separation.

    Science.gov (United States)

    Ding, Ling; Guo, Zhimou; Hu, Zhuo; Liang, Xinmiao

    2017-05-10

    A mixed-mode reversed phase/positively charged repulsion stationary phase C8PN composed of octyl and amino group has been developed for separation of intact protein. Before the separation of proteins, a set of probe compounds were employed to evaluate the chromatographic properties of C8PN, demonstrating typical reversed phase/positively charged repulsion interaction on this stationary phase as estimated. Then the new C8PN stationary phase was used to separate a standard protein mixture on the reversed phase mode. Compared with a commercial C4 stationary phase, it showed different selectivity for some proteins. In order to better understand the properties of C8PN, the effect of acetonitrile content was investigated based on retention equation. Higher values of the equation parameters on C8PN demonstrated that the protein retentions were more sensitive to the change of acetonitrile content. Besides, the influences of buffer salt additives on the protein retentions were also studied. The retention factors of the proteins got larger with the increase of buffer salt concentration, which confirmed the positively charged repulsion interaction on the column. Finally, the C8PN was further applied to separate oxidized- and reduced- forms of Recombinant Human Growth Hormone. Our study indicated the advantages and application potential of mixed-mode reversed phase/positively charged repulsion stationary phase for intact protein separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    Science.gov (United States)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at Dsurface charge asymmetry (sigma(+) not equal to |sigma(-)|).

  19. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  20. STUDY OF STATIC ELECTRICITY CHARGE ACCUMULATION ON SURFACE OF FLUOROPOLYMER-4 PRODUCTS USING VIBRATING CAPACITOR METHOD

    Directory of Open Access Journals (Sweden)

    H. А. Vershina

    2012-01-01

    Full Text Available The paper presents investigations of processes pertaining to surface charge accumulation and running of fluoropolymer-4 products using vibrating capacitor method. Modification of a measurement technique allowing to register distribution of dielectric surface potential without disturbance of the surface charged state has been described in the paper. The paper contains graphics of spatial distribution of surface potential of fluoropolymer-4 products after various treatments. The paper reveals that thermal treatment (tempering reduces static characteristics of fluoropolymer-4.

  1. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    OpenAIRE

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  2. Highly charged ions impinging on a stepped metal surface under grazing incidence

    NARCIS (Netherlands)

    Robin, A; Niemann, D; Stolterfoht, N; Heiland, W

    We report on energy loss measurements and charge state distributions for 60 keV N6+ and 75 keV N5+ ions scattered off a Pt(110)(1x2) single crystal surface. In particular, the influence of surface steps on the energy loss and the outgoing charge states is discussed. The scattering angle and the

  3. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Kuijpers, C.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We studied the deformation of thin liquid films induced by surface charge patterns at the solid–liquid interface quantitatively by experiments and numerical simulations. We deposited a surface charge distribution on dielectric substrates by applying potential differences between a conductive liquid

  4. The quantic distribution of mobile carriers in a surface charge coupled device

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    The quantic distribution of the electrons in a surface charge coupled device (CCD), for a MIS structure with a real insulator (finite difference energy between the conduction bands of the insulator and of the semiconductor) is presented. A fundamental limitation of the charge transfer in a surface CCD is obtained. (author)

  5. The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates

    Science.gov (United States)

    Memos, George; Lidorikis, Elefterios; Kokkoris, George

    2018-02-01

    The surface roughness developed during plasma etching of polymeric substrates is critical for a variety of applications related to the wetting behavior and the interaction of surfaces with cells. Toward the understanding and, ultimately, the manipulation of plasma induced surface roughness, the interplay between surface charging and microscale roughness of polymeric substrates is investigated by a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module. The evolution of initially rough profiles during plasma etching is calculated by taking into account as well as by neglecting charging. It is revealed, on the one hand, that the surface charging contributes to the suppression of root mean square roughness and, on the other hand, that the decrease of the surface roughness induces a decrease of the charging potential. The effect of charging on roughness is intense when the etching yield depends solely on the ion energy, and it is mitigated when the etching yield additionally depends on the angle of ion incidence. The charging time, i.e., the time required for reaching a steady state charging potential, is found to depend on the thickness of the polymeric substrate, and it is calculated in the order of milliseconds.

  6. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  7. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    The efficiency of the quasi-solid-state dye-sensitized solar cell developed by Junghaenel and Tributsch, the so-called Nano Surface Conductivity Solar Cell (NSCSC), was improved from 2% to 3.5% introducing a compact TiO{sub 2} underlayer, modifying the surface of the mesoporous TiO{sub 2} electrode, optimizing the deposition process of the electrolyte film, and replacing the platinum counter electrode by a carbon layer. Space-resolved photocurrent images revealed the importance of a homogeneous distribution of the electrolyte film. An uneven dispersion led to localized areas of high and low photocurrents, whereas the latter were attributed to an insufficient concentration of the redox couple. Impedance spectroscopy was performed on cells containing different concentrations of the redox couple. By modeling the spectra using an equivalent circuit with a transmission line of resistive and capacitive elements, the characteristic parameters of electron transport in the TiO{sub 2}, such as diffusion length and electron lifetime were obtained. The measurements indicated that the transport of the positive charge to the counter electrode is the main process limiting the efficiency of the cells. Excess charge carrier decay in functioning devices was analyzed by contactless transient photoconductance measurements in the microwave frequency range (TRMC). The lifetime of the photogenerated charge carriers was observed to decrease with increasing applied potential, reaching its maximum close to the opencircuit potential of the cell, where the photocurrent density was minimal, i.e. the potential dependent decay observed was limited by the injection of electrons into the front contact. The functioning of this NSCSC indicated that the transport of the positive charge occurs by solid-state diffusion at the surface of the TiO{sub 2} particles. TRMC measurements on subset devices in the form of sensitized TiO{sub 2} layers revealed charge carrier kinetics strongly dependent on the

  8. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  9. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential limited by O 2 evolution. Cycling up to 1.2 V (vs Ag/AgCl (aq)) causes partial (35) capacitance fading to a plateau value within the initial cycles, accompanied by morphological reconstruction, reduction of surface Mn ions and oxygen evolution. The surface Mn-ion reduction has been attributed to a two-step oxidation-reduction mechanism involving OH oxidation in electrolyte, based on electrochemical analysis. When cycling potential extends to 1.4 V, extensive oxygen evolution takes place. The combination of surface passivation of current collector and extensive gas bubbling, which deteriorates electrical contact among the constituent particles within the electrode, results in further monotonic capacitance reduction. © 2011 The Electrochemical Society.

  10. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  11. Implications of surface charge and curvature for the binding orientation of Thermomyces lanuginosus lipase on negatively charged or zwitterionic phospholipid vesicles as studied by ESR spectroscopy

    DEFF Research Database (Denmark)

    Hedin, E.M.K.; Høyrup, Lise Pernille Kristine; Patkar, S.A.

    2005-01-01

    fluorescence quenching efficiency between each spin-label positioned on TLL, and the lipid membrane. ESR exposure and fluorescence quenching data show that TILL associates closer to the negatively charged PG surface than the zwitterionic PC surface, and binds to both POPG LUV and POPC SUV predominantly through......The triglyceride lipase (EC 3.1.1.3) Thermomyces lanuginosus lipase (TLL) binds with high affinity to unilamellar phospholipid vesicles that serve as a diluent interface for both lipase and substrate, but it displays interfacial activation on only small and negatively charged such vesicles [Cajal......) spectroscopy in combination with site-directed spin-labeling [Hedin, E. M. K., et al. (2002) Biochemistry 41, 1418514196]. In our investigation, we have studied the interfacial orientation of TLL when bound to large unilamellar vesicles (LUV) consisting of POPG, and bound to SUV consisting of 1-palmitoyl-2...

  12. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    Science.gov (United States)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  13. Identification of the Heat Transfer Coefficient at the Charge Surface Heated on the Chamber Furnace

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2017-06-01

    Full Text Available The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.

  14. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    International Nuclear Information System (INIS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdoerfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface ('trampoline effect'). For Ne 10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions

  15. Elaboration of Stable and Antibody Functionalized Positively Charged Colloids by Polyelectrolyte Complexation between Chitosan and Hyaluronic Acid

    Directory of Open Access Journals (Sweden)

    Ramona C. Polexe

    2013-07-01

    Full Text Available In this study, we describe the elaboration of multifunctional positively charged polyelectrolyte complex (PEC nanoparticles, designed to be stable at physiological salt concentration and pH, for effective targeted delivery. These nanoparticles were obtained by charge neutralization between chitosan (CS as polycation and hyaluronic acid (HA as polyanion. We showed that the course of the complexation process and the physico-chemical properties of the resulting colloids were impacted by (i internal parameters such as the Degree of Acetylation (DA, i.e., the molar ration of acetyl glucosamine residues and molar mass of CS, the HA molar mass and (ii external parameters like the charge mixing ratio and the polymer concentrations. As a result, nonstoichiometric colloidal PECs were obtained in water or PBS (pH 7.4 and remained stable over one month. The polymer interactions were characterized by thermal analysis (DSC and TGA and the morphology was studied by scanning electron microscopy. A model antibody, anti-ovalbumine (OVA immunoglobulin A (IgA was sorbed on the particle surface in water and PBS quantitatively in 4 h. The CS-HA/IgA nanoparticles average size was between 425–665 nm with a positive zeta potential. These results pointed out that CS-HA can be effective carriers for use in targeted drug delivery.

  16. Surface charges for gravity and electromagnetism in the first order formalism

    Science.gov (United States)

    Frodden, Ernesto; Hidalgo, Diego

    2018-02-01

    A new derivation of surface charges for 3  +  1 gravity coupled to electromagnetism is obtained. Gravity theory is written in the tetrad-connection variables. The general derivation starts from the Lagrangian, and uses the covariant symplectic formalism in the language of forms. For gauge theories, surface charges disentangle physical from gauge symmetries through the use of Noether identities and the exactness symmetry condition. The surface charges are quasilocal, explicitly coordinate independent, gauge invariant and background independent. For a black hole family solution, the surface charge conservation implies the first law of black hole mechanics. As a check, we show the first law for an electrically charged, rotating black hole with an asymptotically constant curvature (the Kerr–Newman (anti-)de Sitter family). The charges, including the would-be mass term appearing in the first law, are quasilocal. No reference to the asymptotic structure of the spacetime nor the boundary conditions is required and therefore topological terms do not play a rôle. Finally, surface charge formulae for Lovelock gravity coupled to electromagnetism are exhibited, generalizing the one derived in a recent work by Barnich et al Proc. Workshop ‘ About Various Kinds of Interactions’ in honour of Philippe Spindel (4–5 June 2015, Mons, Belgium) C15-06-04 (2016 (arXiv:1611.01777 [gr-qc])). The two different symplectic methods to define surface charges are compared and shown equivalent.

  17. Charge-state distribution of MeV He ions scattered from the surface atoms

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko

    1993-01-01

    The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)

  18. Separation analysis of macrolide antibiotics with good performance on a positively charged C18HCE column.

    Science.gov (United States)

    Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-03-01

    The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the physics of both surface overcharging and charge reversal at heterophase interfaces.

    Science.gov (United States)

    Wang, Zhi-Yong; Zhang, Pengli; Ma, Zengwei

    2018-02-07

    The conventional paradigm for characterizing surface overcharging and charge reversal is based on the so-called Stern layer, in which surface dissociation reaction and specific chemical adsorption are assumed to take place. In this article, a series of Monte Carlo simulations have been applied to obtain useful insights into the underlying physics responsible for these two kinds of anomalous phenomena at the interface of two dielectrics, with special emphasis on the case of divalent counterions that are more relevant in natural and biological environments. At a weakly charged surface, it is found that independent of the type of surface charge distribution and the dielectric response of the solution, the overcharging event is universally driven by the ion size-asymmetric effect. Exceptionally, the overcharging still persists when the surface is highly charged but is only restricted to the case of discrete surface charge in a relatively low dielectric medium. As compared to the adsorption onto the homogeneously smeared charge surface that has the same average affinity for counterions, on the other hand, charge reversal under the action of a dielectric response can be substantially enhanced in the discrete surface charge representation due to strong association of counterions with interfacial groups, and the degree of enhancement depends in a nontrivial way on the reduction of the medium dielectric constant and the steric effects of finite ion size. Rather interestingly, the charge reversal is of high relevance to the overcharging of interfaces because the overwhelming interfacial association forces the coions closer to the surface due to their smaller size than the counterions. Upon the addition of a monovalent salt to the solution, the interfacial association with divalent counterions makes surface overcharging and charge reversal widely unaffected, in contrast to the prevailing notion that screening of surface charge of a homogeneous nature is determined by the

  20. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  1. Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator.

    Science.gov (United States)

    Chung, In-Young; Jang, Hyeri; Lee, Jieun; Moon, Hyunggeun; Seo, Sung Min; Kim, Dae Hwan

    2012-02-17

    We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution.

  2. Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator

    International Nuclear Information System (INIS)

    Chung, In-Young; Moon, Hyunggeun; Jang, Hyeri; Lee, Jieun; Kim, Dae Hwan; Seo, Sung Min

    2012-01-01

    We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution. (paper)

  3. Dynamics of transportan in bicelles is surface charge dependent

    Energy Technology Data Exchange (ETDEWEB)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena [Stockholm University, Department of Biochemistry and Biophysics, Arrhenius Laboratories (Sweden)], E-mail: lena.maler@dbb.su.se

    2006-06-15

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide {sup 15}N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S{sup 2} is on average 0.11 {+-} 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of {sup 1}H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected.

  4. Dynamics of transportan in bicelles is surface charge dependent

    International Nuclear Information System (INIS)

    Barany-Wallje, Elsa; Andersson, August; Graeslund, Astrid; Maeler, Lena

    2006-01-01

    In this study we investigated the dynamic behavior of the chimeric cell-penetrating peptide transportan in membrane-like environments using NMR. Backbone amide 15 N spin relaxation was used to investigate the dynamics in two bicelles: neutral DMPC bicelles and partly negatively charged DMPG-containing bicelles. The structure of the peptide as judged from CD and chemical shifts is similar in the two cases. Both the overall motion as well as the local dynamics is, however, different in the two types of bicelles. The overall dynamics of the peptide is significantly slower in the partly negatively charged bicelle environment, as evidenced by longer global correlation times for all measured sites. The local motion, as judged from generalized order parameters, is for all sites in the peptide more restricted when bound to negatively charged bicelles than when bound to neutral bicelles (increase in S 2 is on average 0.11 ± 0.07). The slower dynamics of transportan in charged membrane model systems cause significant line broadening in the proton NMR spectrum, which in certain cases limits the observation of 1 H signals for transportan when bound to the membrane. The effect of transportan on DMPC and DHPC motion in zwitterionic bicelles was also investigated, and the motion of both components in the bicelle was found to be affected

  5. Position readout by charge division in large two-dimensional detectors

    International Nuclear Information System (INIS)

    Alberi, J.L.

    1976-10-01

    The improvement in readout spatial resolution for charge division systems with subdivided readout electrodes has been analyzed. This readout forms the position and sum signals by a linear, unambiguous analogue summation technique. It is shown that the readout resolution is a function of only electrode capacitance and shaping parameters. The line width improves as 1/N/sup 1 / 2 /, where N is the number of electrode subdivisions

  6. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  7. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules.

    Science.gov (United States)

    Park, Suehyun; Joo, Heesun; Kim, Jun Soo

    2018-01-31

    Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.

  8. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto; Elimelech, Menachem

    2012-01-01

    groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact

  9. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  10. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  11. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  12. Positively charged polymers modulate the fate of human mesenchymal stromal cells via ephrinB2/EphB4 signaling

    Directory of Open Access Journals (Sweden)

    Ilenia De Luca

    2016-09-01

    Full Text Available Understanding the mechanisms by which mesenchymal stromal cells (MSCs interact with the physical properties (e.g. topography, charge, ζ-potential, and contact angle of polymeric surfaces is essential to design new biomaterials capable of regulating stem cell behavior. The present study investigated the ability of two polymers (pHM1 and pHM3 with different positive surface charge densities to modulate the differentiation of MSCs into osteoblast-like phenotype via cell-cell ephrinB2/EphB4 signaling. Although pHM1 promoted the phosphorylation of EphB4, leading to cell differentiation, pHM3, characterized by a high positive surface charge density, had no significant effect on EphB4 activation or MSCs differentiation. When the MSCs were cultured on pHM1 in the presence of a forward signaling blocking peptide, the osteoblast differentiation was compromised. Our results demonstrated that the ephrinB2/EphB4 interaction was required for MSCs differentiation into an osteoblast-like phenotype and that the presence of a high positive surface charge density altered this interaction.

  13. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  14. Positive column of a glow discharge in neon with charged dust grains (a review)

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2017-03-15

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  15. Positive column of a glow discharge in neon with charged dust grains (a review)

    International Nuclear Information System (INIS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.

    2017-01-01

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in a discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.

  16. Cryogenic germanium detectors for dark matter search: Surface events rejection by charge measurements

    International Nuclear Information System (INIS)

    Broniatowski, A.; Censier, B.; Juillard, A.; Berge, L.

    2006-01-01

    Test experiments have been performed on a Ge detector of the Edelweiss collaboration, combining time-resolved acquisition of the ionization signals with heat measurements. Pulse-shape analysis of the charge signals demonstrates the capability to reject surface events of poor charge collection with energies larger than 50 keV in ionization

  17. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite

    International Nuclear Information System (INIS)

    Zhao, Shou; Feng, Chenghong; Huang, Xiangning; Li, Baohua; Niu, Junfeng; Shen, Zhenyao

    2012-01-01

    Highlights: ► Al 13 modification changes As(V) sorption mechanism of montmorillonites. ► Intercalated ion charges mainly affects As(V) adsorption kinetics. ► Uniform pore structure exhibit more excellent As(V) adsorption performance. - Abstract: Four modified montmorillonite adsorbents with varied Al 13 contents (i.e., Na-Mont, AC-Mont, PAC 20 -Mont, and Al 13 -Mont) were synthesized and characterized by N 2 adsorption/desorption, X-ray diffraction, and Fourier-transform infrared analyses. The arsenate adsorption performance of the four adsorbents were also investigated to determine the role of intercalated Al 13 , especially its high purity, high positive charge (+7), and special Keggin structure. With increased Al 13 content, the physicochemical properties (e.g., surface area, structural uniformity, basal spacing, and pore volume) and adsorption performance of the modified montmorillonites were significantly but disproportionately improved. The adsorption data well fitted the Freundlich and Redlich–Peterson isotherm model, whereas the kinetic data better correlated with the pseudo-second-order kinetic model. The arsenate sorption mechanism of the montmorillonites changed from physical to chemisorption after intercalation with Al 13 . Increasing charges of the intercalated ions enhanced the arsenate adsorption kinetics, but had minimal effect on the structural changes of the montmorillonites. The uniform pore structure formed by intercalation with high-purity Al 13 greatly enhanced the pore diffusion and adsorption rate of arsenate, resulting in the high adsorption performance of Al 13 -Mont.

  18. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  19. Negative and positive magnetoresistance in bilayer graphene: Effects of weak localization and charge inhomogeneity

    International Nuclear Information System (INIS)

    Chen Yungfu; Bae, Myung-Ho; Chialvo, Cesar; Dirks, Travis; Bezryadin, Alexey; Mason, Nadya

    2011-01-01

    We report measurements of magnetoresistance in bilayer graphene as a function of gate voltage (carrier density) and temperature. We examine multiple contributions to the magnetoresistance, including those of weak localization (WL), universal conductance fluctuations (UCF), and inhomogeneous charge transport. A clear WL signal is evident at all measured gate voltages (in the hole doped regime) and temperature ranges (from 0.25 to 4.3 K), and the phase coherence length extracted from the WL data does not saturate at low temperatures. The WL data is fit to demonstrate that the electron-electron Nyquist scattering is the major source of phase decoherence. A decrease in UCF amplitude with increase in gate voltage and temperature is shown to be consistent with a corresponding decrease in the phase coherence length. In addition, a weak positive magnetoresistance at higher magnetic fields is observed, and attributed to inhomogeneous charge transport. -- Research highlights: → Weak localization theory describes low-field magnetoresistance in bilayer graphene. → Electron-electron Nyquist scattering limits phase coherence in bilayer graphene. → Positive magnetoresistance reveals charge inhomogeneity in bilayer graphene.

  20. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    International Nuclear Information System (INIS)

    Illias, Hazlee A; Chen, George; Lewin, Paul L

    2011-01-01

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  1. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  2. Influence of nanopore surface charge and magnesium ion on polyadenosine translocation

    International Nuclear Information System (INIS)

    Lepoitevin, Mathilde; Bechelany, Mikhael; Janot, Jean-Marc; Balme, Sebastien; Coulon, Pierre Eugène; Cambedouzou, Julien

    2015-01-01

    We investigate the influence of a nanopore surface state and the addition of Mg 2+ on poly-adenosine translocation. To do so, two kinds of nanopores with a low aspect ratio (diameter ∼3–5 nm, length 30 nm) were tailored: the first one with a negative charge surface and the second one uncharged. It was shown that the velocity and the energy barrier strongly depend on the nanopore surface. Typically if the nanopore and polyA exhibit a similar charge, the macromolecule velocity increases and its global energy barrier of entrance in the nanopore decreases, as opposed to the non-charged nanopore. Moreover, the addition of a divalent chelating cation induces an increase of energy barrier of entrance, as expected. However, for a negative nanopore, this effect is counterbalanced by the inversion of the surface charge induced by the adsorption of divalent cations. (paper)

  3. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    NARCIS (Netherlands)

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  4. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    OpenAIRE

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt conc...

  5. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    Verma, Devendra; Desai, Malav S.; Kulkarni, Namrata; Langrana, Noshir

    2011-01-01

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m 2 and - 0.32 mC/m 2 , respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  6. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  7. Surface charge sensing by altering the phase transition in VO2

    Science.gov (United States)

    Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.

    2014-08-01

    Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.

  8. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    International Nuclear Information System (INIS)

    Kwon, Soon-Bark; Sakurai, Hiromu; Seto, Takafumi

    2007-01-01

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers

  9. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  10. Simulation of the interaction of positively charged beams and electron clouds

    International Nuclear Information System (INIS)

    Markovik, Aleksandar

    2013-01-01

    The incoherent (head-tail) effect on the bunch due to the interaction with electron clouds (e-clouds) leads to a blow up of the transverse beam size in storage rings operating with positively charged beams. Even more the e-cloud effects are considered to be the main limiting factor for high current, high-brightness or high-luminosity operation of future machines. Therefore the simulation of e-cloud phenomena is a highly active field of research. The main focus in this work was set to a development of a tool for simulation of the interaction of relativistic bunches with non-relativistic parasitic charged particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking which can track a 3D bunch under the influence of its own and external electromagnetic fields but first and foremost it simulates the interaction of relativistic positively charged bunches and initially static electrons. In MOEVE PIC Tracking the conducting beam pipe can be modeled with an arbitrary elliptical cross-section to achieve more accurate space charge field computations for both the bunch and the e-cloud. The simulation of the interaction between positron bunches and electron clouds in this work gave a detailed insight of the behavior of both particle species during and after the interaction. Further and ultimate goal of this work was a fast estimation of the beam stability under the influence of e-clouds in the storage ring. The standard approach to simulate the stability of a single bunch is to track the bunch particles through the linear optics of the machine by multiplying the 6D vector of each particle with the transformation matrices describing the lattice. Thereby the action of the e-cloud on the bunch is approximated by a pre-computed wake kick which is applied on one or more points in the lattice. Following the idea of K.Ohmi the wake kick was pre-computed as a two variable function of the bunch part exiting the e-cloud and the subsequent parts of a bunch which receive a

  11. Systematic investigation of the barrier discharge operation in helium, nitrogen, and mixtures: discharge development, formation and decay of surface charges

    Science.gov (United States)

    Tschiersch, R.; Bogaczyk, M.; Wagner, H.-E.

    2014-09-01

    As a logical extension to previous investigations of the barrier discharge (BD) in helium and nitrogen, the present work reports on the operation in any mixtures of both pure gases. Using a well-established plane-parallel discharge cell configuration allows to study the influence of the He/N2 mixing ratio on the formation of different discharge modes. Their characterization was made by measuring the discharge emission development together with the formation and decay of surface charges on a bismuth silicon oxide (Bi12SiO20, BSO) crystal. This was realized by the simultaneous application of the spatio-temporally resolved optical emission spectroscopy, and the electro-optic Pockels effect in combination with a CCD high speed camera. The existence diagram for diffuse and filamentary BDs was determined by varying the amplitude and shape of the applied voltage. Over the entire range of the He/N2 ratio, the diffuse mode can be operated at moderate voltage amplitudes whereas filamentation occurs at significant overvoltage and is favoured by a high voltage slew rate. Irrespective of the discharge mode, the overall charge transfer during a discharge breakdown is found to be in excellent agreement with the amount of accumulated surface charges. An exponential decay of the surface charge deposited on the BSO crystal is induced by LED illumination beyond a typical discharge cycle. During the decay process, a broadening of the radial profiles of positive as well as negative surface charge spots originating from previous microdischarges is observed. The investigations contribute to a better understanding of the charge accumulation at a dielectric.

  12. Anomalously high yield of doubly charged Si ions sputtered from cleaned Si surface by keV neutral Ar impact

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.; Morita, K. E-mail: k-morita@mail.nucl.nagoya-u.ac.jp; Dhole, S.D.; Ishikawa, D

    2001-08-01

    The energy spectra of positively charged and neutral species ejected from the Si(1 1 1) surfaces by keV Ar impact have been measured by means of a combined technique of the time-of-flight (TOF) analysis with the multi-photon resonance ionization spectroscopy (MPRIS). It is shown that positively charged species of Si{sup +}, Si{sup 2+} and SiO{sup +} are ejected from the as-cleaned 7x7 surface by 11 keV Ar impact. It is also shown that Ar sputter cleaning of the as-cleaned 7x7 surface for 14 min at the flux of 2x10{sup 13}/cm{sup 2}s removes completely the oxygen impurity and the yields of Si{sup 2+} is comparable to that of Si{sup +}. Moreover, the ionization probability of Si atoms sputtered is shown to be expressed as an exponential function of the inverse of their velocity. The production mechanism for the doubly charged Si ion is discussed based on the L-shell ionization of Si atoms due to quasi-molecule formation in the collisions of the surface atoms with energetic recoils and subsequent Auger decay of the L-shell vacancy to doubly ionized Si ions.

  13. Electrokinetics of nanochannels and porous membranes with dynamic surface charges

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo

    . Notably, we find that the conductance minimum is mainly caused by hydronium ions, and in our case almost exclusively due to carbonic acid generated from the dissolution of CO2 from the atmosphere. We carry out delicate experiments and measure the conductance of silica nanochannels as a function...... and consider strong out-of-equilibrium transport across the membrane. Our model predicts large pH variations in the electrodialysis system that in turn lowers the ion-selectivity of the membrane by protonation reactions. This opens up for significant over-limiting current. We use our model to investigate...... procedure that requires much attention to the comparability between the conditions in the model and in the experiment. Finally, we make a small digression and study induced-charge electro-osmosis (ICEO) and the validity of common EO slip formulae as a function of a finite Debye screening length...

  14. Surface charge density determines the efficiency of cationic gemini surfactant based lipofection.

    Science.gov (United States)

    Ryhänen, Samppa J; Säily, Matti J; Paukku, Tommi; Borocci, Stefano; Mancini, Giovanna; Holopainen, Juha M; Kinnunen, Paavo K J

    2003-01-01

    The efficiencies of the binary liposomes composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and cationic gemini surfactant, (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide as transfection vectors, were measured using the enhanced green fluorescent protein coding plasmid and COS-1 cells. Strong correlation between the transfection efficiency and lipid stoichiometry was observed. Accordingly, liposomes with X(SR-1) > or = 0.50 conveyed the enhanced green fluorescent protein coding plasmid effectively into cells. The condensation of DNA by liposomes with X(SR-1) > 0.50 was indicated by static light scattering and ethidium bromide intercalation assay, whereas differential scanning calorimetry and fluorescence anisotropy of diphenylhexatriene revealed stoichiometry dependent reorganization in the headgroup region of the liposome bilayer, in alignment with our previous Langmuir-balance study. Surface charge density and the organization of positive charges appear to determine the mode of interaction of DNA with (2S,3R)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide/1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes, only resulting in DNA condensation when X(SR-1) > 0.50. Condensation of DNA in turn seems to be required for efficient transfection.

  15. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    Science.gov (United States)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  16. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml"−"1, compared with the free Ce6 value of 29.85 μg ml"−"1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  17. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  18. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    Science.gov (United States)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  19. Experimental and statistical analysis of surface charge, aggregation and adsorption behaviors of surface-functionalized titanium dioxide nanoparticles in aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Xiang Chengcheng [West Virginia University, Department of Mechanical and Aerospace Engineering, WVNano Initiative (United States); Yang Feng, E-mail: feng.yang@mail.wvu.edu [West Virginia University, Department of Industrial and Management Systems Engineering (United States); Li Ming [West Virginia University, Department of Mechanical and Aerospace Engineering, WVNano Initiative (United States); Jaridi, Majid [West Virginia University, Department of Industrial and Management Systems Engineering (United States); Wu Nianqiang, E-mail: nick.wu@mail.wvu.edu [West Virginia University, Department of Mechanical and Aerospace Engineering, WVNano Initiative (United States)

    2013-01-15

    One hundred and fifty nanometers sized anatase titanium dioxide nanoparticles (TiO{sub 2} NPs) have been functionalized with the -CH{sub 3}, -NH{sub 2}, -SH, -OH, -COOH, and -SO{sub 3}H terminal groups. Surface charge, aggregation, and adsorption behaviors of the functionalized NPs in aquatic phase have been investigated by a set of experiments following the full factorial design. The dependence of surface charge, suspension size, and surface adsorption upon the various factors (including surface chemistry of NPs, the pH value, and ionic strength of an aqueous solution) has been studied with the statistical methods such as multiple linear regressions and multiple comparison tests. The surface functional group on the TiO{sub 2} NPs affects the characteristics in the simulated aquatic environment. The correlations among the characteristics of NPs have also been investigated by obtaining Pearson's correlation coefficient. The hydrodynamic size is negatively correlated with the absolute value of zeta potential, and positively correlated with the ionic strength. In the NaCl solution, the charge screening effect is responsible for the aggregation. In the CaCl{sub 2} solution, the charge screening effect is dominant mechanism for aggregation at a low salt concentration. In contrast, the interaction between Ca{sup 2+} ions and the specific functional group plays a significant role at a high salt concentration. The adsorption efficiency of humic acid decreases with an increase in the pH value, whereas increases with an increase in the ionic strength. The adsorption efficiency is positively correlated with the zeta potential. The statistical analysis methods and the results have implications in assessment of potential environmental risks posed by engineered nanoparticles.

  20. In situ measurement of fixed charge evolution at silicon surfaces during atomic layer deposition

    International Nuclear Information System (INIS)

    Ju, Ling; Watt, Morgan R.; Strandwitz, Nicholas C.

    2015-01-01

    Interfacial fixed charge or interfacial dipoles are present at many semiconductor-dielectric interfaces and have important effects upon device behavior, yet the chemical origins of these electrostatic phenomena are not fully understood. We report the measurement of changes in Si channel conduction in situ during atomic layer deposition (ALD) of aluminum oxide using trimethylaluminum and water to probe changes in surface electrostatics. Current-voltage data were acquired continually before, during, and after the self-limiting chemical reactions that result in film growth. Our measurements indicated an increase in conductance on p-type samples with p + ohmic contacts and a decrease in conductance on analogous n-type samples. Further, p + contacted samples with n-type channels exhibited an increase in measured current and n + contacted p-type samples exhibited a decrease in current under applied voltage. Device physics simulations, where a fixed surface charge was parameterized on the channel surface, connect the surface charge to changes in current-voltage behavior. The simulations and analogous analytical relationships for near-surface conductance were used to explain the experimental results. Specifically, the changes in current-voltage behavior can be attributed to the formation of a fixed negative charge or the modification of a surface dipole upon chemisorption of trimethylaluminum. These measurements allow for the observation of fixed charge or dipole formation during ALD and provide further insight into the electrostatic behavior at semiconductor-dielectric interfaces during film nucleation

  1. Charge pumping in InAs nanowires by surface acoustic waves

    NARCIS (Netherlands)

    Roddaro, Stefano; Strambini, Elia; Romeo, Lorenzo; Piazza, Vincenzo; Nilsson, Kristian; Samuelson, Lars; Beltram, Fabio

    2010-01-01

    We investigate the interaction between surface acoustic waves on a piezoelectric LiNbO3 substrate and charge carriers in InAs nanowire transistors. Interdigital transducers are used to excite electromechanical waves on the chip surface and their influence on the transport in the nanowire devices is

  2. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge

    NARCIS (Netherlands)

    van Wachem, P.B.; Hogt, A.H.; Beugeling, T.; Feijen, Jan; Bantjes, A.; Detmers, J.P.; van Aken, W.G.

    1987-01-01

    The adhesion of human endothelial cells (HEC) onto a series of well-characterized methacrylate polymer surfaces with varying wettabilities and surface charges was studied either in serum-containing (CMS) or in serum-free (CM) culture medium. HEC adhesion in CMS onto (co)polymers * of hydroxyethyl

  3. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Science.gov (United States)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  4. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  5. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    Science.gov (United States)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  6. Growth and decay of surface charges in grafts of Teflon in electrets states

    International Nuclear Information System (INIS)

    Spinelli, I.M.M.

    1971-01-01

    The greatest problem founded in a cardiovascular implant is the thrombus formation. Teflon grafts were used in electret state for prothesis in vena cava of dogs. To put these grafts in an electret state a corona discharge in air was used and homocharge was formed predominantly. To measure the formed surface charge the oscillating capacitor technique was used. In the electret state the grafts have showed an initial density of charge of 10- 8 C/cm 2 and the charge decay and time decay of the samples were measured under many conditions. We found two activation energies, E 2 =0.17 e V and E 3 =1.12 e V, due to rapid and slow decay, respectively. The charged grafts were sterilized with ethilene gas oxide and this process apparently did not influence the charges

  7. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    Science.gov (United States)

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  8. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  9. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation

    Science.gov (United States)

    Stubbs, T. J.; Farrell, W. M.; Halekas, J. S.; Burchill, J. K.; Collier, M. R.; Zimmerman, M. I.; Vondrak, R. R.; Delory, G. T.; Pfaff, R. F.

    2014-01-01

    The surface of the Moon is electrically charged by exposure to solar radiation on its dayside, as well as by the continuous flux of charged particles from the various plasma environments that surround it. An electric potential develops between the lunar surface and ambient plasma, which manifests itself in a near-surface plasma sheath with a scale height of order the Debye length. This study investigates surface charging on the lunar dayside and near-terminator regions in the solar wind, for which the dominant current sources are usually from the pohotoemission of electrons, J(sub p), and the collection of plasma electrons J(sub e) and ions J(sub i). These currents are dependent on the following six parameters: plasma concentration n(sub 0), electron temperature T(sub e), ion temperature T(sub i), bulk flow velocity V, photoemission current at normal incidence J(sub P0), and photo electron temperature T(sub p). Using a numerical model, derived from a set of eleven basic assumptions, the influence of these six parameters on surface charging - characterized by the equilibrium surface potential, Debye length, and surface electric field - is investigated as a function of solar zenith angle. Overall, T(sub e) is the most important parameter, especially near the terminator, while J(sub P0) and T(sub p) dominate over most of the dayside.

  10. The Natural Charge On The Surface Of The Earth | Mamah | Global ...

    African Journals Online (AJOL)

    The natural electric charge or its artificial analogue as the fundamental unit of exploration has been fundamentally derived and compared for both the equatorial region and the polar region. The ratio of the unit charge on the surface of the earth at the equatorial region (ω ± ω0) = 0.59 rad where ω0 = 1.65; to that at the polar ...

  11. Application of »Mass Titration« to Determination of Surface Charge of Metal Oxides

    OpenAIRE

    1998-01-01

    The mass titration method, used for the point of zero charge determination, was extended to the measurement of the surface charge density. The results agree with the common method, which is the acid-base titration of the colloidal suspension. The advantage of mass titration is that one does not need to perform blank titration, instead one simply adds metal oxide powder to the electrolyte aqueous solution of known pH. To cover the pH range above and below the point of zero charge, two experime...

  12. Onset of turbulence induced by electron nonthermality in a complex plasma in presence of positively charged dust grains

    Directory of Open Access Journals (Sweden)

    Susmita Sarkar

    2018-03-01

    Full Text Available In this paper onset of turbulence has been detected from the study of non linear dust acoustic wave propagation in a complex plasma considering electrons nonthermal and equilibrium dust charge positive. Dust grains are charged by secondary electron emission process. Our analysis shows that increase in electron nonthermality makes the grain charging process faster by reducing the magnitude of the nonadiabaticity induced pseudo viscosity. Consequently nature of dust charge variation changes from nonadiabatic to adiabatic one. For further increase of electron nonthermality, this pseudo viscosity becomes negative and hence generates a turbulent grain charging behaviour. This turbulent grain charging phenomenon is exclusively the outcome of this nonlinear study which was not found in linear analysis.

  13. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    International Nuclear Information System (INIS)

    Aguilera, Jesus; Wright, John D; Bean, Vern E

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 10 6 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 10 6 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 10 6 or larger due to surface tension, contact angle and temperature effects

  14. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    Science.gov (United States)

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  15. Two and three electron Auger transitions in collisions of highly-charged ions with surfaces

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Andriamonje, S.; Andrae, H.J.

    1991-01-01

    The Auger electron spectra from Ar 9+ approaching at 265 eV a Si or metal surface in vacua of 10 -5 Pa or UHV are identical. Experiments on atomic physics in front of surfaces are thus possible in standard vacuum. N 7+ approaching a surface at 1000 eV penetrates with great probability into the bulk and gives rise to K 2 L 2 L double Auger lines, observed for the first time with low energy highly charged ions. (orig.)

  16. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  17. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes

    Science.gov (United States)

    Freund, Friedemann T.; Freund, Minoru M.

    2012-01-01

    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  18. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Science.gov (United States)

    Yanagida, Kenichi; Suzuki, Shinsuke; Hanaki, Hirofumi

    2012-01-01

    This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM) that detects higher-order (multipole) moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420μm (circular) and ≧550μm (elliptical).

  19. Design study of beam position monitors for measuring second-order moments of charged particle beams

    Directory of Open Access Journals (Sweden)

    Kenichi Yanagida

    2012-01-01

    Full Text Available This paper presents a theoretical investigation on the multipole moments of charged particle beams in two-dimensional polar coordinates. The theoretical description of multipole moments is based on a single-particle system that is expanded to a multiparticle system by superposition, i.e., summing over all single-particle results. This paper also presents an analysis and design method for a beam position monitor (BPM that detects higher-order (multipole moments of a charged particle beam. To calculate the electric fields, a numerical analysis based on the finite difference method was created and carried out. Validity of the numerical analysis was proven by comparing the numerical with the analytical results for a BPM with circular cross section. Six-electrode BPMs with circular and elliptical cross sections were designed for the SPring-8 linac. The results of the numerical calculations show that the second-order moment can be detected for beam sizes ≧420  μm (circular and ≧550  μm (elliptical.

  20. Full charge-density calculation of the surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Kollár, J..; Skriver, Hans Lomholt

    1994-01-01

    of a spherically symmetrized charge density, while the Coulomb and exchange-correlation contributions are calculated by means of the complete, nonspherically symmetric charge density within nonoverlapping, space-filling Wigner-Seitz cells. The functional is used to assess the convergence and the accuracy......We have calculated the surface energy and the work function of the 4d metals by means of an energy functional based on a self-consistent, spherically symmetric atomic-sphere potential. In this approach the kinetic energy is calculated completely within the atomic-sphere approximation (ASA) by means...... of the linear-muffin-tin-orbitals (LMTO) method and the ASA in surface calculations. We find that the full charge-density functional improves the agreement with recent full-potential LMTO calculations to a level where the average deviation in surface energy over the 4d series is down to 10%....

  1. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  2. Charged particle modification of surfaces in the outer solar system

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1987-01-01

    Voyager reflectance spectra data have indicated clear leading/trailing differences in the albedo of the icy Galilean and Saturian satellites. For the Galilean satellites, these have been analyzed by Nelson, et al. and, more recently, by McEwen. They have described the longitudinal dependence of this data and attempted to interpret this in terms of plasma and meteorite modification of the surface. Primary attention has been paid to Europa at which the leading/trailing differences are the largest. This data was reanalyzed extracting the single grain albedo (w) and constructing the Espat-function, W = (1-w)/w from this. Because w is near unity, W is approximately 2(alpha)D where alpha is the absorption coefficient and D is the grain size. In doing so, a direct comparison to the longitudinal plasma bombardment flux was found for the first time. This occurs primarily in the UV and is probably due to an absorption associated with implanted S, as the UV band of Voyager overlaps the IUE data of Lane et al. The relative importance of grain size effects and implant impurity effects can now be studied

  3. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro.

    Science.gov (United States)

    Ge, Yuqing; Zhang, Yu; Xia, Jingguang; Ma, Ming; He, Shiying; Nie, Fang; Gu, Ning

    2009-10-15

    We synthesized three types of magnetic iron oxide nanoparticles (MNPs), which were meso-2,3-dimercaptosuccinic acid (DMSA) coated MNPs (DMSA@MNPs, 17.3+/-4.8 nm, negative charge), chitosan (CS) coated MNPs (CS@MNPs, 16.5+/-6.1 nm, positive charge) and magnetic nanoparticles agglomerates, formed by electronic aggregation between DMSA@MNPs and CS (CS-DMSA@MNPs, 85.7+/-72.9 nm, positive charge) respectively. The interactions of these MNPs with Oral Squamous Carcinoma Cell KB were investigated. The results showed that cellular uptakes of MNPs were on the dependence of incubation time, nanoparticles concentration and nanoparticles properties such as surface charge, size, etc. The cellular uptake was enhanced with the increase of incubation time and nanoparticles concentration. Although all MNPs could enter to cells, we observed apparent differences in the magnitude of nanoparticles uptaken. The cellular uptake of CS-DMSA@MNPs by KB cells was the highest and that of DMSA@MNPs was the lowest among the three types of MNPs. The same conclusions were drawn via the reduction of water proton relaxation times T(2)(*), resulting from the different iron load of labeled cells using a 1.5T clinical MR imager. The finding of this study will have implications in the chemical design of nanomaterials for biomedical applications.

  4. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures.

    Science.gov (United States)

    Masum, Shah Md; Li, Shu Jie; Awad, Tarek S; Yamazaki, Masahito

    2005-06-07

    To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly

  5. Position dependence of charge collection in prototype sensors for the CMS pixel detector

    CERN Document Server

    Rohe, Tilman; Chiochia, Vincenzo; Cremaldi, Lucien M; Cucciarelli, Susanna; Dorokhov, Andrei; Konecki, Marcin; Prokofiev, Kirill; Regenfus, Christian; Sanders, David A; Son Seung Hee; Speer, Thomas; Swartz, Morris

    2004-01-01

    This paper reports on the sensor R&D activity for the CMS pixel detector. Devices featuring several design and technology options have been irradiated up to a proton fluence1 of 1 multiplied by 10**1**5 n //e//q/cm**2 at the CERN PS. Afterward, they were bump bonded to unirradiated readout chips and tested using high energy pions in the H2 beam line of the CERN SPS. The readout chip allows a nonzero suppressed full analogue readout and therefore a good characterization of the sensors in terms of noise and charge collection properties. The position dependence of signal is presented and the differences between the two sensor options are discussed. 20 Refs.

  6. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  7. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  8. Proton surface charge determination in Spodosol horizons with organically bound aluminum

    Science.gov (United States)

    Skyllberg, Ulf; Borggaard, Ole K.

    1998-05-01

    Net proton surface charge densities were determined in O, E, Bh, and Bs horizons of a sandy till, Spodosol from Denmark, by means of acid-base titration combined with ion adsorption in 0.005 M Ca(NO 3) 2 and independent permanent charge determination. The release of organic anions exceeded the adsorption of NO 3-, resulting in a desorption of anions in all horizons. Data were found to obey the law of balance between surface charges and adsorbed ions only when charges pertaining to Al and organic anions released during the titration experiments were accounted for, in addition to charges pertaining the potential determining ions (PDI) H + and OH - and the index ions Ca 2+ and NO 3-. It was furthermore shown that the point of zero net proton charge (PZNPC) in soils highly depends on the concentration of organically bound Al. Approaches previously used in soils, in which adsorbed Al n+ has been ignored (i.e., considered equivalent to nH + as a PDI), resulted in a PZNPC of 4.1 in the Bs horizon. If instead organically bound Al was accounted for as a counter-ion similar to 3/2Ca 2+, a PZNPC of 2.9 was obtained for the same Bs horizon. Based on PZNPC values estimated by the latter approach, combined with a weak-acid analog, it was shown that organic proton surface charges buffered pH with a similar intensity in the O, E, Bh, and Bs horizons of this study. Because the acidity of Al adsorbed to conjugate bases of soil organic acids is substantially weaker than the acidity of the corresponding protonated form of the organic acids, the point of zero net proton charge (PZNPC) will increase if the concentration of organically adsorbed Al increases at the expense of adsorbed H. This means that PZNPC values determined for soils with unknown concentrations of organically adsorbed Al are highly operational and not very meaningful as references.

  9. Phase transition detection by surface photo charge effect in liquid crystals

    Science.gov (United States)

    Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.

    2018-05-01

    The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.

  10. Short- and Long-Term Effects of Prenatal Exposure to Iron Oxide Nanoparticles: Influence of Surface Charge and Dose on Developmental and Reproductive Toxicity

    Directory of Open Access Journals (Sweden)

    Kristin R. Di Bona

    2015-12-01

    Full Text Available Iron oxide nanoparticles (NPs are commonly utilized for biomedical, industrial, and commercial applications due to their unique properties and potential biocompatibility. However, little is known about how exposure to iron oxide NPs may affect susceptible populations such as pregnant women and developing fetuses. To examine the influence of NP surface-charge and dose on the developmental toxicity of iron oxide NPs, Crl:CD1(ICR (CD-1 mice were exposed to a single, low (10 mg/kg or high (100 mg/kg dose of positively-charged polyethyleneimine-Fe2O3-NPs (PEI-NPs, or negatively-charged poly(acrylic acid-Fe2O3-NPs (PAA-NPs during critical windows of organogenesis (gestation day (GD 8, 9, or 10. A low dose of NPs, regardless of charge, did not induce toxicity. However, a high exposure led to charge-dependent fetal loss as well as morphological alterations of the uteri (both charges and testes (positive only of surviving offspring. Positively-charged PEI-NPs given later in organogenesis resulted in a combination of short-term fetal loss (42% and long-term alterations in reproduction, including increased fetal loss for second generation matings (mice exposed in utero. Alternatively, negatively-charged PAA-NPs induced fetal loss (22% earlier in organogenesis to a lesser degree than PEI-NPs with only mild alterations in offspring uterine histology observed in the long-term.

  11. A positive (negative) surface ionization source concept for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1995-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ∼ = 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ ∼ = 1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of Cs to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for RIB applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the HRIBF The design features and operational principles of the source will be described in this report

  12. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    Directory of Open Access Journals (Sweden)

    Wang JY

    2016-07-01

    Full Text Available Jun-Ying Wang,1 Jie Chen,1 Jiang Yang,2 Hao Wang,1 Xiu Shen,1 Yuan-Ming Sun,1 Meili Guo,3 Xiao-Dong Zhang4 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 2Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University, Shanghai, 3Department of Physics, School of Science, Tianjin Chengjian University, 4Department of Physics, School of Science, Tianjin University, Tianjin, People’s Republic of China Abstract: Gold nanoclusters (Au NCs have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. Keywords: gold clusters, in vivo toxicity, long-term, cancer therapy

  13. Structural characterisation of Arquad 2HT-75 organobentonites: Surface charge characteristics and environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Binoy; Megharaj, Mallavarapu; Xi, Yunfei [CERAR - Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC CARE - Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [CERAR - Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); CRC CARE - Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, P.O. Box 486, Salisbury, SA 5106 (Australia)

    2011-11-15

    Highlights: {yields} Arquad 2HT-75 is comparatively less toxic and inexpensive surfactant. {yields} Increasing Arquad 2HT-75 loadings give rise to various organobentonite structures. {yields} The organobentonites produce positive zeta potential at TOC contents above 28.1%. {yields} Zeta potential values decrease with increasing suspension pH. {yields} Multiple mechanisms of partitioning, physio-sorption and chemisorption control adsorption. - Abstract: Organoclays are increasingly being used to remediate both contaminated soils and waste water. The present study was attempted to elucidate the structural evolution of bentonite based organoclays prepared from a commercially available, low-cost alkyl ammonium surfactant Arquad 2HT-75. XRD, FTIR, SEM and zeta potential measurement were used to characterise the organoclays. In particular, the relationship between surface charge characteristics of the organoclays and their ability to remediate organic contaminants such as phenol and p-nitrophenol was investigated. The investigation revealed that the arrangement and conformation of surfactant molecules in the bentonite became more regular, ordered and solid-like as of Arquad 2HT-75 loading increased. This also led to the formation of a positive zeta potential on the surface of organobentonites prepared with 3.57:1 and 4.75:1 surfactant-clay (w/w) ratio. The zeta potential values decreased with increasing pH of the suspension. The adsorption data of phenol and p-nitrophenol were best fitted to Freundlich isotherm model. The adsorption was controlled by multiple mechanisms of partitioning, physico-sorption and chemisorption. The outcomes of this study are useful for the synthesis of low cost organobentonite adsorbents for the remediation of ionisable organic contaminants such as phenol and p-nitrophenol from waste water.

  14. Think positive : phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology

    NARCIS (Netherlands)

    Cantaert, B.; Kim, Y.; Ludwig, H.; Nudelman, F.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Soluble macromolecules are essential to Nature's control over biomineral formation. Following early studies where macromolecules rich in aspartic and glutamic acid were extracted from nacre, research has focused on the use of negatively charged additives to control calcium carbonate precipitation.

  15. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    Science.gov (United States)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  16. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  17. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  18. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK

  19. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  20. Position statement on ethics, equipoise and research on charged particle radiation therapy.

    Science.gov (United States)

    Sheehan, Mark; Timlin, Claire; Peach, Ken; Binik, Ariella; Puthenparampil, Wilson; Lodge, Mark; Kehoe, Sean; Brada, Michael; Burnet, Neil; Clarke, Steve; Crellin, Adrian; Dunn, Michael; Fossati, Piero; Harris, Steve; Hocken, Michael; Hope, Tony; Ives, Jonathan; Kamada, Tadashi; London, Alex John; Miller, Robert; Parker, Michael; Pijls-Johannesma, Madelon; Savulescu, Julian; Short, Susan; Skene, Loane; Tsujii, Hirohiko; Tuan, Jeffrey; Weijer, Charles

    2014-08-01

    The use of charged-particle radiation therapy (CPRT) is an increasingly important development in the treatment of cancer. One of the most pressing controversies about the use of this technology is whether randomised controlled trials are required before this form of treatment can be considered to be the treatment of choice for a wide range of indications. Equipoise is the key ethical concept in determining which research studies are justified. However, there is a good deal of disagreement about how this concept is best understood and applied in the specific case of CPRT. This report is a position statement on these controversies that arises out of a workshop held at Wolfson College, Oxford in August 2011. The workshop brought together international leaders in the relevant fields (radiation oncology, medical physics, radiobiology, research ethics and methodology), including proponents on both sides of the debate, in order to make significant progress on the ethical issues associated with CPRT research. This position statement provides an ethical platform for future research and should enable further work to be done in developing international coordinated programmes of research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Nano-scale surface modification of materials with slow, highly charged ion beams

    International Nuclear Information System (INIS)

    Sakurai, M.; Tona, M.; Takahashi, S.; Watanabe, H.; Nakamura, N.; Yoshiyasu, N.; Yamada, C.; Ohtani, S.; Sakaue, H.A.; Kawase, Y.; Mitsumori, K.; Terui, T.; Mashiko, S.

    2007-01-01

    Some results on surface modification of Si and graphite with highly charged ions (HCIs) are presented. Modified surfaces were observed using scanning tunneling microscopy. Crater-like structure with a diameter in nm region is formed on a Si(1 1 1)-(7 x 7) surface by the incidence of a single HCI. The protrusion structure is formed on a highly oriented pyrolytic graphite surface on the other hand, and the structure becomes an active site for molecular adsorption. A new, intense HCI source and an experimental apparatus are under development in order to process and observe aligned nanostructures created by the impact of collimated HCI beam

  2. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  3. Positively versus negatively charged moral emotion expectancies in adolescence: the role of situational context and the developing moral self.

    Science.gov (United States)

    Krettenauer, Tobias; Johnston, Megan

    2011-09-01

    The study analyses adolescents' positively charged versus negatively charged moral emotion expectancies. Two hundred and five students (M= 14.83 years, SD= 2.21) participated in an interview depicting various situations in which a moral norm was either regarded or transgressed. Emotion expectancies were assessed for specific emotions (pride, guilt) as well as for overall strength and valence. In addition, self-importance of moral values was measured by a questionnaire. Results revealed that positively charged emotion expectancies were more pronounced in contexts of prosocial action than in the context of moral transgressions, whereas the opposite was true for negatively charged emotions. At the same time, expectations of guilt and pride were substantially related to the self-importance of moral values. ©2010 The British Psychological Society.

  4. Design and production of a new surface mount charge-integrating amplifier for CDF

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.; Drake, G.

    1991-12-31

    We present our experiences in designing and producing 26,000 new charge-integrating amplifiers for CDF, using surface-mount components. The new amplifiers were needed to instrument 920 new 24-channel CDF RABBIT boards, which are replacing an older design rendered obsolete by increases in the collision rate. Important design considerations were frequency response, physical size and cost. 5 refs.

  5. Design and production of a new surface mount charge-integrating amplifier for CDF

    International Nuclear Information System (INIS)

    Nelson, C.; Drake, G.

    1991-01-01

    We present our experiences in designing and producing 26,000 new charge-integrating amplifiers for CDF, using surface-mount components. The new amplifiers were needed to instrument 920 new 24-channel CDF RABBIT boards, which are replacing an older design rendered obsolete by increases in the collision rate. Important design considerations were frequency response, physical size and cost. 5 refs

  6. Surface complexation of selenite on goethite: MO/DFT geometry and charge distribution

    NARCIS (Netherlands)

    Hiemstra, T.; Rietra, R.P.J.J.; Riemsdijk, van W.H.

    2007-01-01

    The adsorption of selenite on goethite (alpha-FeOOH) has been analyzed with the charge distribution (CD) and the multi-site surface complexation (MUSIC) model being combined with an extended Stem (ES) layer model option. The geometry of a set of different types of hydrated iron-selenite complexes

  7. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  8. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  9. A theoretical study on the effect of piezoelectric charges on the surface potential and surface depletion region of ZnO nanowires

    International Nuclear Information System (INIS)

    Purahmad, Mohsen; Stroscio, Michael A; Dutta, Mitra

    2013-01-01

    The electrostatic potential and depletion width in piezoelectric semiconductor nanowires are derived by considering a non-depleted region and a surface depleted region and solving the Poisson equation. By determining the piezoelectric-induced charge density, in terms of equivalent density of charges, the effect of piezoelectric charges on the surface depletion region and the distributed electric potential in nanowire have been investigated. The numerical results demonstrate that the ZnO NWs with a smaller radius have a larger surface depletion region which results in a stronger surface potential and depletion region perturbation by induced piezoelectric charges. (paper)

  10. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges

    Science.gov (United States)

    Zhong, Yong; Huang, Lihong; Zhang, Zhisen; Xiong, Yunjing; Sun, Liping; Weng, Jian

    2016-01-01

    Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR. PMID:27956830

  11. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  12. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effect of charged deep states in hydrogenated amorphous silicon on the behavior of iron oxides nanoparticles deposited on its surface

    International Nuclear Information System (INIS)

    Gmucova, Katarina; Weis, Martin; Nadazdy, Vojtech; Capek, Ignac; Satka, Alexander; Chitu, Livia; Cirak, Julius; Majkova, Eva

    2008-01-01

    Langmuir-Blodgett technique has been used for the deposition of ordered two-dimensional arrays of iron oxides (Fe 3 O 4 /Fe 2 O 3 ) nanoparticles onto the photovoltaic hydrogenated amorphous silicon (a-Si:H) thin film. Electric field at the a-Si:H/iron oxides nanoparticles interface was directly in the electrochemical cell modified by light soaking and bias voltage (negative or positive) pretreatment resulting in the change of the dominant type of charged deep states in the a-Si:H layer. Induced reversible changes in the nanoparticle redox behavior have been observed. We suggest two possible explanations of the data obtained, both of them are needed to describe measured electrochemical signals. The first one consists in the electrocatalytical effect caused by the defect states (negatively or positively charged) in the a-Si:H layer. The second one consists in the possibility to manipulate the nanoparticle cores in the prepared structure immersed in aqueous solution via the laser irradiation under specific bias voltage. In this case, the nanoparticle cores are assumed to be covered with surface clusters of heterovalent complexes created onto the surface regions with prevailing ferrous or ferric valency. Immersed in the high viscosity surrounding composed of the wet organic nanoparticle envelope these cores are able to perform a field-assisted pivotal motion. The local electric field induced by the deep states in the a-Si:H layer stabilizes their 'orientation ordering' in an energetically favourable position

  14. Gas-surface dynamics and charging effects during plasma processing of semiconductors

    Science.gov (United States)

    Hwang, Gyeong Soon

    This thesis work attempts to elucidate the fundamentals of gas-surface interactions that occur during plasma etching. Controlled experiments using hyperthermal fluorine beams have enabled us to uncover the scattering dynamics at complex surfaces similar to those encountered in etching. By analyzing energy and angular distributions of inelastically scattered F atoms, we were able to distinguish single- and multiple-bounce scattering and to develop models to describe these exit channels. Furthermore, we found that hard-sphere collision kinematics can capture well the energy transfer of the hyperthermal F atoms onto fluorinated silicon surfaces. Based on the fundamental scattering information, we have developed a kinetic model that is described by two parameters: (1) direct inelastic scattering probability and (2) sticking (reaction) probability. These parameters are formulated as a function of the incident energy and angle of F atoms. By incorporating the empirical kinetic model into Monte Carlo based profile evolution simulations, we have unraveled the origin of many etch profile peculiarities which appear during hyperthermal F-beam etching, such as microtrenching, inverse microloading, and undercutting. The kinetic model has been used to describe successfully etching in Cl2-plasmas. For the study of pattern-dependent charging, we have developed a numerical model that combines plasma, sheath, and charging dynamics. The charging simulations illustrate that the directionality difference between ions and electrons arriving at the wafer, brought about by the sheath, causes differential charging on patterned areas even when the plasma is uniform. Using the newly developed charging model, we have investigated gate oxide damage. The results show that a potential drop across the thin gate oxide caused by differential microstructure charging is primarily responsible for gate oxide degradation by driving Fowler-Nordheim stress currents. In general, increasing the flux of low

  15. Tuning the Electron Gas at an Oxide Heterointerface via Free Surface Charges

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-11

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed matter science. One remarkable example is the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators, exhibiting two dimensional superconductivity and unusual magnetotransport properties. An ideal tool to tune such an electron gas is the electrostatic field effect. In principle, the electrostatic field can be generated by bound charges due to polarization (as in the normal and ferroelectric field effects) or by adding excess free charge. In previous studies, a large modulation of the carrier density and mobility of the LAO/STO interface has been achieved using the normal field effect. However, little attention has been paid to the field effect generated by free charges. This issue is scarcely addressed, even in conventional semiconductor devices, since the free charges are typically not stable. Here, we demonstrate an unambiguous tuning of the LAO/STO interface conductivity via free surface charges written using conducting atomic force microscopy (AFM). The modulation of the carrier density was found to be reversible, nonvolatile and surprisingly large, {approx}3 x 10{sup 13} cm{sup -2}, comparable to the maximum modulation by the normal field effect. Our finding reveal the efficiency of free charges in controlling the conductivity of this oxide interface, and suggest that this technique may be extended more generally to other oxide systems.

  16. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    International Nuclear Information System (INIS)

    You, Dong Soo

    1983-01-01

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  17. Radiographic study of bone deformans on charged condylar head position in TMJ arthrosis

    Energy Technology Data Exchange (ETDEWEB)

    You, Dong Soo [Department of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1983-11-15

    The author analyzed the morphologic changes of bone structure from 848 radiographics (424 joints) of 212 patients with temporomandibular joint arthrosis, which were obtained by the oblique-lateral transcranial projection and ortho pantomography. The interrelation of the bone changes and condylar head positions the results were as follows: 1. In the 212 patients with TMJ arthrosis, 210 patients (99.05%) show the condylar positional changes. Among them, 187 patients (89.05%) show the bone changes. 2. In TMJ arthrosis patients with bone changes, 108 patients (57.75%) show both the condylar positional changes and bone changes. 66 patients show the condylar positional changes bilaterally and bone changes unilaterally. On the other hand, 11 patients (5.88%) show the condylar positional changes unilaterally and bone change bilaterally. 3. The bone changes in the TMJ arthrosis patients with the condylar positional changes were as follows: There were the flattening of articular surface in 103 cases (26.55%) the erosion in 99 cases (25.52%), and the erosion in 88 cases (22.68%). There were not much differences among the three types of bone changes. And the deformity in 70 cases (18.04%), the sclerosis in 22 cases (5.67%), the marginal proliferation in 6 cases (1.55%) were seen. 4. The regions of bone changes in TMJ arthrosis patients with condylar positional changes were as follows: They occurred at the condyle head (51.04%), the articular eminence (39.20%) and the articular fossa (9.60%) in that order. The condylar positional changes and bone changes according to the regions were as follows: a) In the bone changes at the condylar head, the flattening (34.63%) was a most frequent finding and the deformity (27.63%) the erosion (34.63%) in the order. In the condylar positional changes, the downward positioning of condyle (41.44%) was a most frequent finding in the mouth closed state and the restricted movement within the articular fossa (35.46%) in the mouth open state. b) In

  18. Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model

    Directory of Open Access Journals (Sweden)

    Li Wan

    2014-03-01

    Full Text Available In this work, we treat the Poisson-Nernst-Planck (PNP equations as the basis for a consistent framework of the electrokinetic effects. The static limit of the PNP equations is shown to be the charge-conserving Poisson-Boltzmann (CCPB equation, with guaranteed charge neutrality within the computational domain. We propose a surface potential trap model that attributes an energy cost to the interfacial charge dissociation. In conjunction with the CCPB, the surface potential trap can cause a surface-specific adsorbed charge layer σ. By defining a chemical potential μ that arises from the charge neutrality constraint, a reformulated CCPB can be reduced to the form of the Poisson-Boltzmann equation, whose prediction of the Debye screening layer profile is in excellent agreement with that of the Poisson-Boltzmann equation when the channel width is much larger than the Debye length. However, important differences emerge when the channel width is small, so the Debye screening layers from the opposite sides of the channel overlap with each other. In particular, the theory automatically yields a variation of σ that is generally known as the “charge regulation” behavior, attendant with predictions of force variation as a function of nanoscale separation between two charged surfaces that are in good agreement with the experiments, with no adjustable or additional parameters. We give a generalized definition of the ζ potential that reflects the strength of the electrokinetic effect; its variations with the concentration of surface-specific and surface-nonspecific salt ions are shown to be in good agreement with the experiments. To delineate the behavior of the electro-osmotic (EO effect, the coupled PNP and Navier-Stokes equations are solved numerically under an applied electric field tangential to the fluid-solid interface. The EO effect is shown to exhibit an intrinsic time dependence that is noninertial in its origin. Under a step-function applied

  19. One-Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge

    Directory of Open Access Journals (Sweden)

    Rares Stiufiuc

    2013-01-01

    Full Text Available The present work reports a rapid, simple and efficient one-step synthesis and detailed characterisation of stable aqueous colloids of gold nanoparticles (AuNPs coated with unmodified poly(ethyleneglycol (PEG molecules of different molecular weights and surface charges. By mixing and heating aqueous solutions of PEG with variable molecular chain and gold(III chloride hydrate (HAuCl4 in the presence of NaOH, we have successfully produced uniform colloidal 5 nm PEG coated AuNPs of spherical shape with tunable surface charge and an average diameter of 30 nm within a few minutes. It has been found out that PEGylated AuNPs provide optical enhancement of the characteristic vibrational bands of PEG molecules attached to the gold surface when they are excited with both visible (532 nm and NIR (785 nm laser lines. The surface enhanced Raman scattering (SERS signal does not depend on the length of the PEG molecular chain enveloping the AuNPs, and the stability of the colloid is not affected by the addition of concentrated salt solution (0.1 M NaCl, thus suggesting their potential use for in vitro and in vivo applications. Moreover, by gradually changing the chain length of the biopolymer, we were able to control nanoparticles’ surface charge from −28 to −2 mV, without any modification of the Raman enhancement properties and of the colloidal stability.

  20. On gel electrophoresis of dielectric charged particles with hydrophobic surface: A combined theoretical and numerical study.

    Science.gov (United States)

    Majee, Partha Sarathi; Bhattacharyya, Somnath; Gopmandal, Partha Pratim; Ohshima, Hiroyuki

    2018-03-01

    A theoretical study on the gel electrophoresis of a charged particle incorporating the effects of dielectric polarization and surface hydrophobicity at the particle-liquid interface is made. A simplified model based on the weak applied field and low charge density assumption is also presented and compared with the full numerical model for a nonpolarizable particle to elucidate the nonlinear effects such as double layer polarization and relaxation as well as surface conduction. The main motivation of this study is to analyze the electrophoresis of the surface functionalized nanoparticle with tunable hydrophobicity or charged fluid drop in gel medium by considering the electrokinetic effects and hydrodynamic interactions between the particle and the gel medium. An effective medium approach, in which the transport in the electrolyte-saturated hydrogel medium is governed by the Brinkman equation, is adopted in the present analysis. The governing electrokinetic equations based on the conservation principles are solved numerically. The Navier-slip boundary condition along with the continuity condition of dielectric displacement are imposed on the surface of the hydrophobic polarizable particle. The impact of the slip length on the electrophoresis is profound for a thinner Debye layer, however, surface conduction effect also becomes significant for a hydrophobic particle. Impact of hydrophobicity and relaxation effects are higher for a larger particle. Dielectric polarization creates a reduction in its electrophoretic propulsion and has negligible impact at the thinner Debye length as well as lower gel screening length. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  2. The dependence of the nuclear charge form factor on short range correlations and surface fluctuation effects

    International Nuclear Information System (INIS)

    Massen, S. E.; Garistov, V. P.; Grypeos, M. E.

    1996-01-01

    The effects of nuclear surface fluctuations on harmonic oscillator elastic charge form factor of light nuclei are investigated, simultaneously approximating the short-range correlations through a Jastrow correlation factor. Inclusion of the surface fluctuation effects within this description, by truncating the cluster expansion at the two-body part, is found to improve somewhat the fit to the elastic charge form-factor of 16 O and 40 Ca. However, the convergence of the cluster expansion is expected to deteriorate. An additional finding is that surface-fluctuation correlations produce a drastic change in the asymptotic behaviour of the point-proton form-factor, which now falls off quite slowly (i.e. as const.q -4 ) at large values of the momentum transfer q

  3. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    Science.gov (United States)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  4. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  5. The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels.

    Science.gov (United States)

    Cukras, C A; Jeliazkova, I; Nichols, C G

    2002-09-01

    Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.

  6. Charge transfer rates for xenon Rydberg atoms at metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu; Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Dunham, H.R. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States); Lancaster, J.C. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)

    2007-05-15

    Recent progress in the study of charge exchange between xenon Rydberg atoms and surfaces is reviewed. Experiments using Au(1 1 1) surfaces show that under appropriate conditions each incident atom can be detected as an ion. The ionization dynamics, however, are strongly influenced by the perturbations in the energies and structure of the atomic states that occur as the ion collection field is applied and as the atom approaches the surface. These lead to avoided crossings between different atomic levels causing the atom to successively assume the character of a number of different states and lose much of its initial identity. The effects of this mixing are discussed. Efficient surface ionization is also observed at Si(1 0 0) surfaces although the ion signal is influenced by stray fields present at the surface.

  7. Nanofabrication on a Si surface by slow highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Terui, Toshifumi; Mashiko, Shinro; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed surface chemical reactions which occur at the impact sites on a Si(1 1 1)-(7 x 7) surface and a highly oriented pyrolytic graphite (HOPG) surface bombarded by highly charged ions (HCIs) by using a scanning tunneling microscope (STM). Crater structures are formed on the Si(1 1 1)-(7 x 7) surface by single I 50+ -impacts. STM-observation for the early step of oxidation on the surface suggests that the impact site is so active that dangling bonds created by HCI impacts are immediately quenched by reaction with residual gas molecules. We show also the selective adsorption of organic molecules at a HCI-induced impact site on the HOPG surface

  8. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating

    Czech Academy of Sciences Publication Activity Database

    Huk, A.; Izak-Nau, E.; el Yamani, N.; Uggerud, H.; Vadset, M.; Zasońska, Beata Anna; Duschl, A.; Dusinska, M.

    2015-01-01

    Roč. 12, 24 July (2015), 25_1-25_20 ISSN 1743-8977 Institutional support: RVO:61389013 Keywords : silver nanomaterials * surface charge * surface coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.649, year: 2015

  9. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  10. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    Science.gov (United States)

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant

  11. An algorithm for three-dimensional Monte-Carlo simulation of charge distribution at biofunctionalized surfaces

    KAUST Repository

    Bulyha, Alena

    2011-01-01

    In this work, a Monte-Carlo algorithm in the constant-voltage ensemble for the calculation of 3d charge concentrations at charged surfaces functionalized with biomolecules is presented. The motivation for this work is the theoretical understanding of biofunctionalized surfaces in nanowire field-effect biosensors (BioFETs). This work provides the simulation capability for the boundary layer that is crucial in the detection mechanism of these sensors; slight changes in the charge concentration in the boundary layer upon binding of analyte molecules modulate the conductance of nanowire transducers. The simulation of biofunctionalized surfaces poses special requirements on the Monte-Carlo simulations and these are addressed by the algorithm. The constant-voltage ensemble enables us to include the right boundary conditions; the dna strands can be rotated with respect to the surface; and several molecules can be placed in a single simulation box to achieve good statistics in the case of low ionic concentrations relevant in experiments. Simulation results are presented for the leading example of surfaces functionalized with pna and with single- and double-stranded dna in a sodium-chloride electrolyte. These quantitative results make it possible to quantify the screening of the biomolecule charge due to the counter-ions around the biomolecules and the electrical double layer. The resulting concentration profiles show a three-layer structure and non-trivial interactions between the electric double layer and the counter-ions. The numerical results are also important as a reference for the development of simpler screening models. © 2011 The Royal Society of Chemistry.

  12. Exploring the entrance of proton pathways in cytochrome c oxidase from Paracoccus denitrificans: surface charge, buffer capacity and redox-dependent polarity changes at the internal surface.

    Science.gov (United States)

    Kirchberg, Kristina; Michel, Hartmut; Alexiev, Ulrike

    2013-03-01

    Cytochrome c oxidase (CcO), the terminal oxidase of cellular respiration, reduces molecular oxygen to water. The mechanism of proton pumping as well as the coupling of proton and electron transfer is still not understood in this redox-linked proton pump. Eleven residues at the aqueous-exposed surfaces of CcO from Paracoccus denitrificans have been exchanged to cysteines in a two-subunit base variant to yield single reactive cysteine variants. These variants are designed to provide unique labeling sites for probes to be used in spectroscopic experiments investigating the mechanism of proton pumping in CcO. To this end we have shown that all cysteine variants are enzymatically active. Cysteine positions at the negative (N-) side of the membrane are located close to the entrance of the D- and K-proton transfer pathways that connect the N-side with the catalytic oxygen reduction site. Labeling of the pH-indicator dye fluorescein to these sites allowed us to determine the surface potential at the cytoplasmic CcO surface, which corresponds to a surface charge density of -0.5 elementary charge/1000Å(2). In addition, acid-base titrations revealed values of CcO buffer capacity. Polarity measurements of the label environment at the N-side provided (i) site-specific values indicative of a hydrophilic and a more hydrophobic environment dependent on the label position, and (ii) information on a global change to a more apolar environment upon reduction of the enzyme. Thus, the redox state of the copper and heme centers inside the hydrophobic interior of CcO affect the properties at the cytoplasmic surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Physico-chemical studies on the interaction of dendrimers with lipid bilayers. 1. Effect of dendrimer generation and liposome surface charge.

    Science.gov (United States)

    Roy, Biplab; Panda, Amiya Kumar; Parimi, Srinivas; Ametov, Igor; Barnes, Timothy; Prestidge, Clive A

    2014-01-01

    Studies on the interaction of different generation poly (amido amine) (PAMAM) dendrimers (2G, 4G and 6G) and liposomes of different compositions were carried out by a combined turbidity, dynamic light scattering and atomic force microscopic measurements. Liposomes comprising soy lecithin (SLC, negative surface charge), 1, 2-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC, mildly positive surface charge), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, negatively charged) and a biologically simulated mixture of DPPC + DPPG (7:3, M/M, negatively charged) were used as model bilayers. 30 wt% cholesterol was used in each combination as it is known to control the fluidity of membrane bilayers. Silica was used as a negatively charged hard sphere model with an aim to compare the results. Both the turbidity and hydrodynamic diameter values of all the liposomes, except DPPC, passed through maxima upon the progressive addition of PAMAM; the effect was insignificant in case of DPPC. Formation of dendriosome, a complex formed between dendrimer and liposome, resulted in the charge reversal of the negatively charged liposomes. Interaction between PAMAM and liposome was found to be governed by electrostatic as well as hydrogen bonding. Generation dependent PAMAM activity followed the order: 6G >4G>2G in terms of overall dendrimer concentration. However, interestingly, the order was reverse when PAMAM activity was considered in terms of total end group concentrations. AFM studies reveal the rupture of bilayer structure upon addition of dendrimer.

  14. Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: Evaluation of the effective cross sections for recombination and trapping

    International Nuclear Information System (INIS)

    Said, K.; Damamme, G.; Si Ahmed, A.; Moya, G.; Kallel, A.

    2014-01-01

    Highlights: • A novel approach for the analysis of the secondary electron emission in connection with the surface density of trapped charges. • Experimental estimation of the effective cross section for electron–hole recombination and electron trapping in defects. • A simplified charge transport and trapping model which corroborates qualitatively the interpretation of the results. - Abstract: The evolution of the secondary electron emission from sapphire and polycrystalline alumina during electron irradiation, achieved in a scanning electron microscope at room temperature, is derived from the measurement of the induced and the secondary electron currents. The semi-logarithmic plot of the secondary electron emission yield versus the surface density of trapped charges displays a plateau followed by a linear variation. For positive charging, the slope of the linear part, whose value is of about 10 −9 cm 2 , is independent of the primary electron energy, the microstructure and the impurities. It is interpreted as an effective microscopic cross section for electron–hole recombination. For negative charging of sapphire, the slope is associated with an effective electron trapping cross section close to 10 −11 cm 2 , which can be assigned to the dominant impurity trap. These effective values reflect the multiple interactions leading to the accumulation of charges. The yield corresponding to the plateau is controlled by the initial density of impurity traps. A charge transport and trapping >model, based on simplifying assumptions, confirms qualitatively these inferences

  15. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    International Nuclear Information System (INIS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-01-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20–25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30–60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p + implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO 2 interface charge densities ( Q f ) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p + implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Q f , that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  16. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    Science.gov (United States)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  17. The effects of two counterpropagating surface acoustic wave beams on single electron acoustic charge transport

    International Nuclear Information System (INIS)

    He Jianhong; Guo Huazhong; Song Li; Zhang Wei; Gao Jie; Lu Chuan

    2010-01-01

    We present a comprehensive study of the effects of two counterpropagating surface acoustic waves on the acoustoelectric current of single electron transport devices. A significant improvement in the accuracy of current quantization is achieved as a result of an additional surface acoustic wave beam. The experiments reveal the sinusoidally periodical modulation in the acoustoelectric current characteristic as a function of the relative phase of the two surface acoustic wave beams. Besides, by using standing surface acoustic waves, the acoustoelectric current is detected which we consider as the so-called anomalous acoustoelectric current produced by acoustic wave mechanical deformations. This kind current is contributed to one component of the acoustoelectric current in surface acoustic wave device, which could enable us to establish a more adequate description of acoustoelectric effects on single-electron acoustic charge transport.

  18. Specification of electron radiation environment at GEO and MEO for surface charging estimates

    Science.gov (United States)

    Ganushkina, N.; Dubyagin, S.; Mateo Velez, J. C.; Liemohn, M. W.

    2017-12-01

    A series of anomalies at GEO have been attributed to electrons of energy below 100 keV, responsible for surface charging. The process at play is charge deposition on covering insulating surfaces and is directly linked to the space environment at a time scale of a few tens of seconds. Even though modern satellites benefited from the analysis of past flight anomalies and losses, it appears that surface charging remains a source of problems. Accurate specification of the space environment at different orbits is of a key importance. We present the operational model for low energy (model (IMPTAM). This model has been operating online since March 2013 (http://fp7-spacecast.eu and imptam.fmi.fi) and it is driven by the real time solar wind and IMF parameters and by the real time Dst index. The presented model provides the low energy electron flux at all L-shells and at all satellite orbits, when necessary. IMPTAM is used to simulate the fluxes of low energy electrons inside the Earth's magnetosphere at the time of severe events measured on LANL satellites at GEO. There is no easy way to say what will be the flux of keV electrons at MEO when surface charging events are detected at GEO than to use a model. The maximal electron fluxes obtained at MEO (L = 4.6) within a few tens of minutes hours following the LANL events at GEO have been extracted to feed a database of theoretical/numerical worst-case environments for surface charging at MEO. All IMPTAM results are instantaneous, data have not been average. In order to validate the IMPTAM output at MEO, we conduct the statistical analysis of measured electron fluxes onboard Van Allen Probes (ECT HOPE (20 eV-45 keV) and ECT MagEIS (30 - 300 keV) at distances of 4.6 Re. IMPTAM e- flux at MEO is used as input to SPIS, the Spacecraft Plasma Interaction System Software toolkit for spacecraft-plasma interactions and spacecraft charging modelling (http://dev.spis.org/projects/spine/home/spis). The research leading to these results

  19. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R., E-mail: rrojas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); De Pauli, C.P. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Avena, M.J. [Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-01-15

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl{sup -}/CO{sub 3}{sup 2-} ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH{sup -} uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  20. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    International Nuclear Information System (INIS)

    Rojas, R.; Barriga, C.; De Pauli, C.P.; Avena, M.J.

    2010-01-01

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl - /CO 3 2- ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH - uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  1. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    Directory of Open Access Journals (Sweden)

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  2. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  3. Charge dividing mechanism on resistive electrode in position-sensitive detectors

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.

    1978-10-01

    A complete charge-division mechanism, including both the diffusion and the electromagnetic wave propagation on resistive electrodes, is presented. The charge injected into such a transmission line divides between the two ends according to the ratio of resistancies and independently of the value of the line resistance, of the propagation mechanism and of the distribution of inductance and capacitance along the line. The shortest charge division time is achieved for Rl = 2π (L/C) 1 / 2 , where R, L, C are resistance, inductance and capacitance per unit length and l is the length of the line

  4. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  5. Interaction of current filaments in dielectric barrier discharges with relation to surface charge distributions

    International Nuclear Information System (INIS)

    Stollenwerk, L

    2009-01-01

    In a planar, laterally extended dielectric barrier discharge (DBD) system operated in glow mode, a filamentary discharge is observed. The filaments tend to move laterally and hence tend to cause collisions. Thereby, usually one collision partner becomes destroyed. In this paper, the collision process and especially the preceding time period is investigated. Beside the luminescence density of the filaments, the surface charge density accumulated between the single breakdowns of the DBD is observed via an optical measurement technique based on the linear electro-optical effect (pockels effect). A ring-like substructure of the surface charge distribution of a single filament is found, which correlates to the filament interaction behaviour. Furthermore, a preferred filament distance is found, suggesting the formation of a filamentary quasi-molecule.

  6. Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization

    KAUST Repository

    Ataherian, Fatemeh; Wu, Nae-Lih

    2011-01-01

    The long-term charge/discharge cycling stability of MnO 2 electrode under positive polarization in aqueous KCl electrolyte has been studied over different potential windows spanning from the open circuit potential to varied higher-end potential

  7. Binding of chloroquine to ionic micelles: Effect of pH and micellar surface charge

    Energy Technology Data Exchange (ETDEWEB)

    Souza Santos, Marcela de, E-mail: marcelafarmausp77@gmail.com [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Perpétua Freire de Morais Del Lama, Maria, E-mail: mpemdel@fcfrp.usp.br [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, Ribeirão Preto, São Paulo 14040-903 (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Departamento de Química Analítica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, s/n, Campinas, São Paulo 13083-970 (Brazil); Siuiti Ito, Amando, E-mail: amandosi@ffclrp.usp.br [Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo 14040-901 (Brazil); and others

    2014-03-15

    The pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug–micelle interaction. Chloroquine first dissociation constant (pKa{sub 1}) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K{sub b}) revealed that electrostatic forces mediate charged drug–micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine–micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. -- Highlights: • Chloroquine (CQ) pKa{sub 1} increased for SDS micelles and decreased for CTAB micelles. • CQ is solubilized to the surface of both CTAB and SDS micelles. • Monoprotonated CQ is buried deeper into SDS micelles than neutral CQ. • Neutral CQ is less exposed to aqueous phase in CTAB over SDS micelles. • Local pH and micellar surface charge mediate interaction of CQ with

  8. Development of GaN-based nanosensors using surface charge lithography

    International Nuclear Information System (INIS)

    Popa, Veaceslav; Braniste, Tudor; Volciuc, Olesea; Pavlidis, Dimitris; Sarua, Andrei; Kuball, Martin; Heard, Peter

    2011-01-01

    Semiconductor nanotechnology is a fast developing branch of modern engineering that offers perspectives for the development of electronic devices with superior parameters. A special and important niche in nanotechnology is allocated to the fabrication of nanosensors which are expected to exhibit higher sensitivity in comparison with classical microelectronic sensors. Various aspects of fabrication of GaN based nanosensors using Surface Charge Lithography are discussed and preliminary tests for gas sensors applications are presented.

  9. Charge Spreading and Position Sensitivity in a Segmented Planar Germanium Detector (Preprint)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Gehrels, N; Johnson, W. N; Kurfess, J. D; Phlips, B. P; Tueller, J

    1998-01-01

    The size of the charge cloud collected in a segmented germanium detector is limited by the size of the initial cloud, uniformity of the electric field, and the diffusion of electrons and holes through the detector...

  10. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Directory of Open Access Journals (Sweden)

    Morroll Shaun

    2009-08-01

    Full Text Available Abstract Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins. HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as

  11. The crystal structure of Haloferax volcanii proliferating cell nuclear antigen reveals unique surface charge characteristics due to halophilic adaptation

    Science.gov (United States)

    Winter, Jody A; Christofi, Panayiotis; Morroll, Shaun; Bunting, Karen A

    2009-01-01

    Background The high intracellular salt concentration required to maintain a halophilic lifestyle poses challenges to haloarchaeal proteins that must stay soluble, stable and functional in this extreme environment. Proliferating cell nuclear antigen (PCNA) is a fundamental protein involved in maintaining genome integrity, with roles in both DNA replication and repair. To investigate the halophilic adaptation of such a key protein we have crystallised and solved the structure of Haloferax volcanii PCNA (HvPCNA) to a resolution of 2.0 Å. Results The overall architecture of HvPCNA is very similar to other known PCNAs, which are highly structurally conserved. Three commonly observed adaptations in halophilic proteins are higher surface acidity, bound ions and increased numbers of intermolecular ion pairs (in oligomeric proteins). HvPCNA possesses the former two adaptations but not the latter, despite functioning as a homotrimer. Strikingly, the positive surface charge considered key to PCNA's role as a sliding clamp is dramatically reduced in the halophilic protein. Instead, bound cations within the solvation shell of HvPCNA may permit sliding along negatively charged DNA by reducing electrostatic repulsion effects. Conclusion The extent to which individual proteins adapt to halophilic conditions varies, presumably due to their diverse characteristics and roles within the cell. The number of ion pairs observed in the HvPCNA monomer-monomer interface was unexpectedly low. This may reflect the fact that the trimer is intrinsically stable over a wide range of salt concentrations and therefore additional modifications for trimer maintenance in high salt conditions are not required. Halophilic proteins frequently bind anions and cations and in HvPCNA cation binding may compensate for the remarkable reduction in positive charge in the pore region, to facilitate functional interactions with DNA. In this way, HvPCNA may harness its environment as opposed to simply surviving in

  12. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density.

    Science.gov (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo

    2015-02-07

    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  13. Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators

    Science.gov (United States)

    Peng, Xingyue

    As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.

  14. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  15. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N; Grether, M; Spieler, A; Niemann, D [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  16. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  17. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  18. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection.

    Science.gov (United States)

    Geall, A J; Eaton, M A; Baker, T; Catterall, C; Blagbrough, I S

    1999-10-15

    We have quantified the effects of the regiochemical distribution of positive charges along the polyamine moiety in lipopolyamines for DNA molecular recognition. High affinity binding leads to charge neutralisation, DNA condensation and ultimately to lipofection. Binding affinities for calf thymus DNA were determined using an ethidium bromide displacement assay and condensation was detected by changes in turbidity using light scattering. The in vitro transfection competence of cholesterol polyamine carbamates was measured in CHO cells. In the design of DNA condensing and transfecting agents for non-viral gene therapy, the interrelationship of ammonium ions, not just their number, must be considered.

  19. Interaction of slow, highly charged ions with the surface of ionic crystals

    International Nuclear Information System (INIS)

    Heller, Rene

    2009-01-01

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v≤5 x 10 5 m/s) highly charged (q≤40) ions on the ionic crystal surfaces of CaF 2 and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E grenz pot (E kin ) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF 2 (111) surfaces could be verified for lowest kinetic energies (E kin ≤150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by complementary investigations of the secondary

  20. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    Science.gov (United States)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  1. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    Science.gov (United States)

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-06

    Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to

  2. Local charge exchange of He{sup +} ions at Aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN – Gruppo collegato di Cosenza, Via P. Bucci cubo 33C, Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering University of Virginia, Charlottesville, VA 22904 (United States)

    2017-04-04

    We report on experiments designed to observe the correlation between the autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. The autoionizing states are formed when incident He{sup +*} and He{sup ++} are neutralized by resonant electron capture at the surface. 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact, where the dielectronic transition occurs after promotion of the 1s electron of incoming ions. - Highlights: • We observe the correlation between autoionization of doubly excited helium atoms and the Auger decay of 2p vacancies in Al. • 2p excitation in Al occurs in dielectronic charge transfer during the close encounter of an excited helium ion and an Al atom. • These results clarify the mechanism for Al-2p excitation in the case of singly charged ground state He{sup +}(1s) ion impact.

  3. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  4. 'Memory' and sustention of microdischarges in a steady-state DBD: volume plasma or surface charge?

    International Nuclear Information System (INIS)

    Akishev, Yuri; Aponin, Gregory; Balakirev, Anton; Grushin, Mikhail; Karalnik, Vladimir; Petryakov, Alexander; Trushkin, Nikolay

    2011-01-01

    The results of a numerical study on the spatio-temporal behavior of transient microdischarges (MDs) in a steady-state dielectric barrier discharge (DBD) excited by a sinusoidal voltage are presented. MDs have a spatial 'memory'-every subsequent MD appears at exactly the same location occupied by the MD at the preceding half-period (HP). In the majority of cases each MD appears at its location only once during every HP. For such a case, the memory effect is not attributed to the residual surface charge deposited by the preceding MD but determined by the residual MD plasma column shunting the gap right up to the beginning of the next HP. In contrast to good memory in space, each individual MD has a large scatter with time in its appearance within every HP, i.e. there is no 'memory' concerning the phase of an applied voltage. This MD jittering within the period is attributed to the stochastic nature of partial surface breakdowns around the bases of the MD plasma column. Numerical calculations show that surface breakdown provides an MD current splash at every HP. Hence, in the steady-state DBD, the volume plasma is responsible for the existence of MD spatial 'memory' (i.e. where the MD appears), and the deposited surface charge is responsible for MD jittering in time (i.e. when the MD appears).

  5. Bounds on area and charge for marginally trapped surfaces with a cosmological constant

    International Nuclear Information System (INIS)

    Simon, Walter

    2012-01-01

    We sharpen the known inequalities AΛ ≤ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ≤ 4πQ 2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* Λ+λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q 2 , as well as the upper bound Q≤1/(2√(Λ * )) for the charge, which reduces to Q≤1/(2√(Λ)) in the stable case λ ≥ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for 'jumps' and mergers of charged MOTS. (fast track communication)

  6. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Silva Filho, F C; Elias, C A; Souza, W de

    1986-05-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells.

  7. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  8. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  9. The quantum nonthermal radiation and horizon surface gravity of an arbitrarily accelerating black hole with electric charge and magnetic charge

    International Nuclear Information System (INIS)

    Xie Zhi-Kun; Pan Wei-Zhen; Yang Xue-Jun

    2013-01-01

    Using a new tortoise coordinate transformation, we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time, and obtain the event horizon surface gravity and the Hawking temperature on that event horizon. The results show that there is a crossing of particle energy near the event horizon. We derive the maximum overlap of the positive and negative energy levels. It is also found that the Hawking temperature of a black hole depends not only on the time, but also on the angle. There is a problem of dimension in the usual tortoise coordinate, so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable

  10. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    International Nuclear Information System (INIS)

    Jiang Jingkun; Oberdoerster, Guenter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO 2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO 2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO 2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO 2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO 2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  11. On a possibility of creation of positive space charge cloud in a system with magnetic insulation of electrons

    International Nuclear Information System (INIS)

    Goncharov, A.A.; Dobrovol'skii, A.M.; Dunets, S.P.; Evsyukov, A.N.; Protsenko, I.M.

    2009-01-01

    We describe a new approach for creation an effective, low-cost, low-maintenance axially symmetric plasma optical tools for focusing and manipulating high-current beams of negatively charged particles, electrons and negative ions. This approach is based on fundamental plasma optical concept of magnetic insulation of electrons and non-magnetized positive ions providing creation of controlled uncompensated cloud of the space charge. The axially symmetric electrostatic plasma optical lens is well-known and well developed tool where this concept is used successfully. This provides control and focusing high-current positive ion beams in wide range of parameters. Here for the first time we present optimistic experimental results describing the application of an idea of magnetic insulation of electrons for generation of the stable cloud of positive space charge by focusing onto axis the converging stream of heavy ions produced by circular accelerator with closed electron drift. The estimations of a maximal concentration of uncompensated cloud of positive ions are also made

  12. Effect of scanning in the supine and prone positions on dilation of air-charged colon in CTVC

    International Nuclear Information System (INIS)

    Ye Jing; Chen Junkun; Zhang Zongjun; Wang Junpeng; Gao Dazhi

    2003-01-01

    Objective: To evaluate the effect of scanning in the supine and prone positions on dilation of air-charged colon in CT virtual colonoscopy (CTVC). Methods: Thirty cases underwent CTVC scanning in both the supine and prone positions immediately before colonoscopy, and the dilation of each intestine was graded. The differences of colon dilation in different positions were compared. Results: In supine and prone position, there were 26 (17.3%) and 22 (14.7%) insufficient dilating colon segments, respectively, and only 5 (3.3%) insufficient dilating colon segments in double positions. 15(50.0%) and 13(43.3%) colons dilated insufficiently in supine and prone position, respectively, and decreased to 5 (16.7%) in double positions. The dilation of rectum, sigmoid colon, and transverse colon had significant difference in different positions. Conclusion: When performing CTVC, it is highly necessary to scan in both the supine and prone positions in order to ensure the sufficient dilation of colon. In supine position, the dilation of transverse colon is better, while the dilation of rectum and sigmoid colon in prone position is superior to that in supine position

  13. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  14. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  15. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  16. Dynamics of very low energy photoelectrons interacting with image charge of Cs/Cu(111) surface

    International Nuclear Information System (INIS)

    Hayashi, K.; Arafune, R.; Ueda, S.; Uehara, Y.; Ushioda, S.

    2005-01-01

    We have measured the very low energy photoelectron spectra of Cs-covered Cu(111) surfaces, and determined the mechanism for the appearance of a spike structure due to the interaction of emitted electron with its image charge. At high Cs coverage of 0.10 and 0.14 monolayers (ML), the spike structure appeared at the vacuum level. No such structure was found at low coverage of 0.06 ML. The vacuum level at high coverage lies in the energy gap at the Γ point in the surface Brillouin zone of the Cu(111) surface, while it lies outside the energy gap at low coverage. These results confirm the validity of our proposed mechanism that the spike structure appears when the vacuum level lies in the energy gap

  17. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  18. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Science.gov (United States)

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  19. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    Science.gov (United States)

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  20. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  1. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  2. Memory effect on energy losses of charged particles moving parallel to solid surface

    International Nuclear Information System (INIS)

    Kwei, C.M.; Tu, Y.H.; Hsu, Y.H.; Tung, C.J.

    2006-01-01

    Theoretical derivations were made for the induced potential and the stopping power of a charged particle moving close and parallel to the surface of a solid. It was illustrated that the induced potential produced by the interaction of particle and solid depended not only on the velocity but also on the previous velocity of the particle before its last inelastic interaction. Another words, the particle kept a memory on its previous velocity, v , in determining the stopping power for the particle of velocity v. Based on the dielectric response theory, formulas were derived for the induced potential and the stopping power with memory effect. An extended Drude dielectric function with spatial dispersion was used in the application of these formulas for a proton moving parallel to Si surface. It was found that the induced potential with memory effect lay between induced potentials without memory effect for constant velocities v and v. The memory effect was manifest as the proton changes its velocity in the previous inelastic interaction. This memory effect also reduced the stopping power of the proton. The formulas derived in the present work can be applied to any solid surface and charged particle moving with arbitrary parallel trajectory either inside or outside the solid

  3. Controlling charges distribution at the surface of a single GaN nanowire by in-situ strain

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2017-08-01

    Full Text Available Effect of the strain on the charge distribution at the surface of a GaN semiconductor nanowire (NW has been investigated inside transmission electron microscope (TEM by in-situ off-axis electron holography. The outer and inner surfaces of the NW bent axially under compression of two Au electrodes were differently strained, resulting in difference of their Fermi levels. Consequently, the free electrons flow from the high Fermi level to the low level until the two Fermi levels aligned in a line. The potential distributions induced by charge redistribution in the two vacuum sides of the bent NW were examined respectively, and the opposite nature of the bounded charges on the outer and inner surfaces of the bent NW was identified. The results provide experimental evidence that the charge distribution at the surfaces of a single GaN NW can be controlled by different strains created along the NW.

  4. Towards hot electron mediated charge exchange in hyperthermal energy ion-surface interactions

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Thomsen, Lasse Bjørchmar

    2010-01-01

    shows that the primary energy loss mechanism is the atomic displacement of Au atoms in the thin film of the metal–oxide–semiconductor device. We propose that neutral particle detection of the scattered flux from a biased device could be a route to hot electron mediated charge exchange.......We have made Na + and He + ions incident on the surface of solid state tunnel junctions and measured the energy loss due to atomic displacement and electronic excitations. Each tunnel junction consists of an ultrathin film metal–oxide–semiconductor device which can be biased to create a band of hot...

  5. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    Science.gov (United States)

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  6. Surface charges and J H Poynting’s disquisitions on energy transfer in electrical circuits

    Science.gov (United States)

    Matar, M.; Welti, R.

    2017-11-01

    In this paper we review applications given by J H Poynting (1884) on the transfer of electromagnetic energy in DC circuits. These examples were strongly criticized by O Heaviside (1887). Heaviside stated that Poynting had a misconception about the nature of the electric field in the vicinity of a wire through which a current flows. The historical review of this conflict and its resolution based on the consideration of electrical charges on the surface of the wires can be useful for student courses on electromagnetism or circuit theory.

  7. Lithium position and occupancy fluctuations in a cathode during charge/discharge cycling of lithium-ion battery

    International Nuclear Information System (INIS)

    Sharma, N.; Yu, D.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2012-01-01

    Lithium-ion batteries are undergoing rapid development to meet the energy demands of the transportation and renewable energy-generation sectors. The capacity of a lithium-ion battery is dependent on the amount of lithium that can be reversibly incorporated into the cathode. Neutron diffraction provides greater sensitivity towards lithium relative to other diffraction techniques. In conjunction with the penetration depth afforded by neutron diffraction, the information concerning lithium gained in a neutron diffraction study allows commercial lithium-ion batteries to be explored with respect to the lithium content in the whole cathode. Furthermore, neutron diffraction instruments featuring area detectors that allow relatively fast acquisitions enable perturbations of lithium location and occupancy in the cathode during charge/discharge cycling to be determined in real time. Here, we present the time, current, and temperature dependent lithium transfer occurring within a cathode functioning under conventional charge-discharge cycling. The lithium location and content, oxygen positional parameter, and lattice parameter of the Li 1+y Mn 2 0 4 cathode are measured and linked to the battery's charge/discharge characteristics (performance). We determine that the lithium-transfer mechanism involves two crystallographic sites, and that the mechanism differs between discharge and charge, explaining the relative ease of discharging (compared with charging) this material. Furthermore, we find that the rate of change of the lattice is faster on charging than discharging, and is dependent on the lithium insertion/ extraction processes (e.g. dependent on how the site occupancies evolve). Using in situ neutron diffraction data the atomic-scale understanding of cathode functionality is revealed, representing detailed information that can be used to direct improvements in battery performance at both the practical and fundamental level.

  8. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    Science.gov (United States)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models

  9. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  10. Charge loss experiments in surface channel CCD's explained by the McWhorter interface states model

    NARCIS (Netherlands)

    Penning De Vries, R.G.M.; Wallinga, Hans

    1985-01-01

    On the basis of the McWhorter interface states model the CCD charge loss is derived as a function of bias charge, signal charge and channel width. As opposed to existing models, the charge loss is now attributed to interface states in the entire gate area, even for high bias charge levels.

  11. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.

    Science.gov (United States)

    Wu, Tingting; Wang, Gang; Zhan, Fei; Dong, Qiang; Ren, Qidi; Wang, Jianren; Qiu, Jieshan

    2016-04-15

    The potential of zero charge (Epzc) of electrodes can greatly influence the salt removal capacity, charge efficiency and cyclic stability of capacitive deionization (CDI). Thus optimizing the Epzc of CDI electrodes is of great importance. A simple strategy to negatively shift the Epzc of CDI electrodes by modifying commercial activated carbon with quaternized poly (4-vinylpyridine) (AC-QPVP) is reported in this work. The Epzc of the prepared AC-QPVP composite electrode is as negative as -0.745 V vs. Ag/AgCl. Benefiting from the optimized Epzc of electrodes, the asymmetric CDI cell which consists of the AC-QPVP electrode and a nitric acid treated activated carbon (AC-HNO3) electrode exhibits excellent CDI performance. For inverted CDI, the working potential window of the asymmetric CDI cell can reach 1.4 V, and its salt removal capacity can be as high as 9.6 mg/g. For extended voltage CDI, the salt removal capacity of the asymmetric CDI cell at 1.2/-1.2 V is 20.6 mg/g, which is comparable to that of membrane CDI using pristine activated carbon as the electrodes (19.5 mg/g). The present work provides a simple method to prepare highly positively charged CDI electrodes and may pave the way for the development of high-performance CDI cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure

    Science.gov (United States)

    Kanouni, F.; Brezini, A.; Djenane, M.; Zou, Q.

    2018-03-01

    We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig-Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig-Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers nx, ny, nz. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.

  13. Effect of hydrogen charging on the stability of SAE 10B22 steel surface in alkaline solutions

    International Nuclear Information System (INIS)

    Modiano, S.; Carreno, J.A.; Fugivara, C.S.; Benedetti, A.V.; Mattos, O.R.

    2005-01-01

    The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity

  14. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  15. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    Science.gov (United States)

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J. G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca2+ nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles. PMID:20921229

  16. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame

    2017-07-07

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  17. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, Aurelien

    2017-01-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  18. Dirac spin-orbit torques and charge pumping at the surface of topological insulators

    Science.gov (United States)

    Ndiaye, Papa B.; Akosa, C. A.; Fischer, M. H.; Vaezi, A.; Kim, E.-A.; Manchon, A.

    2017-07-01

    We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.

  19. Quantum-mechanical interference in charge exchange between hydrogen and graphene-like surfaces

    International Nuclear Information System (INIS)

    Romero, M; Iglesias-García, A; Goldberg, E C

    2012-01-01

    The neutral to negative charge fluctuation of a hydrogen atom in front of a graphene surface is calculated by using the Anderson model within an infinite intra atomic Coulomb repulsion approximation. We perform an ab initio calculation of the Anderson hybridization function that allows investigation of the effect of quantum-mechanical interference related to the Berry phase inherent to the graphene band structure. We find that consideration of the interaction of hydrogen on top of many C atoms leads to a marked asymmetry of the imaginary part of the hybridization function with respect to the Fermi level. Consequently, Fano factors larger than one and strongly dependent on the energy around the Fermi level are predicted. Moreover, the suppression of the hybridization for energies above the Fermi level can explain the unexpected large negative ion formation measured in the scattering of protons by graphite-like surfaces. (paper)

  20. Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    Directory of Open Access Journals (Sweden)

    Kouji Suemori

    2017-04-01

    Full Text Available We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current.

  1. Effect of position and momentum constraints on charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Rajni; Kumar, Suneel

    2012-01-01

    The rich phenomenology of multifragmentation has been widely explored after two decades of its discovery. It has been experimentally shown that in one single heavy ion collision many intermediate mass fragments (IMFs) are produced, where IMFs are defined as fragments with 5 ≤ A ≤ A tot /6. In the earlier literature, the multifragmentation was studied by Jakobsson et al. who measured the charge particle distribution along with their kinetic energy spectra in 16 O/ 36 Ar induced reaction between 25 and 200 MeV/nucleon representing the various phenomena in heavy ion collisions

  2. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  3. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Mansuripur, T S [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Pascall, A J; Squires, T M [Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 (United States)], E-mail: squires@engineering.ucsb.edu

    2009-07-15

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  4. Asymmetric flows over symmetric surfaces: capacitive coupling in induced-charge electro-osmosis

    International Nuclear Information System (INIS)

    Mansuripur, T S; Pascall, A J; Squires, T M

    2009-01-01

    We report curious asymmetric induced-charge electro-osmotic (ICEO) flows over a symmetric, planar gate electrode under applied ac electric fields, whereas symmetric, counter-rotating rolls are expected. Furthermore, the asymmetric component of the flow is consistently directed towards the grounded electrode. We propose that capacitive coupling of the gate electrode to the microscope stage-a comparatively large equipotential surface that acts effectively as a ground-is responsible for this symmetry breaking. This stray capacitance drives the formation of a double layer whose zeta potential is proportional to the potential drop from the electrolyte directly above the gate electrode to the external stage. Therefore, the charge in this 'stray' double layer varies in phase with the driving field, resulting in a rectified, steady flow as with standard ICEO. We experimentally vary the stray capacitance, the electric potential of the stage and the location of the gate electrode, and find that the effect on the stray flow is qualitatively consistent with the predictions of the proposed mechanism. In the process, we demonstrate that capacitive coupling offers an additional means of manipulating fluid flow over a polarizable surface.

  5. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles

    International Nuclear Information System (INIS)

    Xu, Jingyue; Li, Ying; Bie, Jiaxin; Guo, Jiajia; Luo, Yeli; Shen, Fei; Sun, Chunyan; Jiang, Wei

    2015-01-01

    A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527 /A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL −1 , with a detection limit of 0.11 ng∙mL −1 . The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA. (author)

  6. Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

    Directory of Open Access Journals (Sweden)

    Dickson Joseph

    2014-09-01

    Full Text Available The biocompatibility and ease of functionalization of gold nanoparticles underlie significant potential in biotechnology and biomedicine. Eight different proteins were examined in the preparation of gold nanoparticles (AuNPs in aqueous medium under microwave irradiation. Six of the proteins resulted in the formation of AuNPs. The intrinsic pH of the proteins played an important role in AuNPs with strong surface plasmon bands. The hydrodynamic size of the nanoparticles was larger than the values observed by TEM and ImageJ. The formation of a protein layer on the AuNPs accounts for this difference. The AuNPs exhibited sensitivity towards varying pH conditions, which was confirmed by determining the difference in the isoelectric points studied by using pH-dependent zeta potential titration. Cytotoxicity studies revealed anticancerous effects of the AuNPs at a certain micromolar concentration by constraining the growth of cancer cells with different efficacies due to the use of different proteins as capping agents. The positively charged AuNPs are internalized by the cells to a greater level than the negatively charged AuNPs. These AuNPs synthesized with protein coating holds promise as anticancer agents and would help in providing a new paradigm in area of nanoparticles.

  7. Modification of metallic surfaces by positive ion bombardment

    International Nuclear Information System (INIS)

    Rickards C, J.

    1989-01-01

    Reported are the fundamentals and recent advances in the use of ion implantation techniques and gaseous emissions to modify metal surfaces. The physical phenomena involved, the necessary equipment and some applications which have been successful on an industrial scale are described. (Author). 13 refs, 1 fig

  8. Robust combined position and formation control for marine surface craft

    DEFF Research Database (Denmark)

    Ihle, Ivar-Andre F.; Jouffroy, Jerome; Fossen, Thor I.

    We consider the robustness properties of a formation control system for marine surface vessels. Intervessel constraint functions are stabilized to achieve the desired formation configuration. We show that the formation dynamics is Input-to-State Stable (ISS) to both environmental perturbations th...

  9. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  10. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  11. A positioning and data logging system for surface geophysical surveys

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs

  12. Nano-sized surface modifications induced by the impact of slow highly charged ions - A first review

    International Nuclear Information System (INIS)

    Aumayr, F.; El-Said, A.S.; Meissl, W.

    2008-01-01

    Irradiation of crystalline solid targets with swift heavy ions can lead to the formation of latent tracks in the solid and the creation of (mostly-hillock type) nanostructures on the surface. Recently similar surface modifications with nanometer dimensions have been demonstrated for the impact of individual, very slow but highly charged ions on various surfaces. We will review the current state of this new field of research. In particular we will discuss the circumstances and conditions under which nano-sized features (hillocks or craters) on different surfaces due to impact of slow highly charged ions can be produced. The use of slow highly charged ions instead of swift heavy ions might be of considerable interest for some practical applications

  13. Memory for media: investigation of false memories for negatively and positively charged public events.

    Science.gov (United States)

    Porter, Stephen; Taylor, Kristian; Ten Brinke, Leanne

    2008-01-01

    Despite a large body of false memory research, little has addressed the potential influence of an event's emotional content on susceptibility to false recollections. The Paradoxical Negative Emotion (PNE) hypothesis predicts that negative emotion generally facilitates memory but also heightens susceptibility to false memories. Participants were asked whether they could recall 20 "widely publicised" public events (half fictitious) ranging in emotional valence, with or without visual cues. Participants recalled a greater number of true negative events (M=3.31/5) than true positive (M=2.61/5) events. Nearly everyone (95%) came to recall at least one false event (M=2.15 false events recalled). Further, more than twice as many participants recalled any false negative (90%) compared to false positive (41.7%) events. Negative events, in general, were associated with more detailed memories and false negative event memories were more detailed than false positive event memories. Higher dissociation scores were associated with false recollections of negative events, specifically.

  14. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...

  15. Determination of surface charge density of α-alumina by acid-base titration

    Directory of Open Access Journals (Sweden)

    Justin W. Ntalikwa

    2007-04-01

    Full Text Available The surface charge density (σo of colloidal alpha alumina suspended in various 1:1 electrolytes was measured using acid-base titration. An autotitrator capable of dispensing accurately 25 plus or minus 0.1 μL of titrant was used. The pH and temperature in the titration cell were monitored using single junction electrodes and platinum resistance thermometers, respectively. A constant supply of nitrogen gas in the cell was used to maintain inert conditions. The whole set up was interfaced with a computer for easy data acquisition. It was observed that the material exhibits a point of zero charge (PZC, this occurred at pH of 7.8 plus or minus 0.1, 7.6 plus or minus 0.2, 8.5 plus or minus 0.1, 8.3 plus or minus 0.1 for NaCl, NaNO3, CsCl and CsNO3 systems, respectively. It was also observed that below PZC, σo increases with increase in electrolyte concentration (Co whereas above PZC, σo decreases with increase in Co. It was concluded that σo of this material is a function of pH and Co and that its polarity can be varied through zero by varying these parameters.

  16. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    Science.gov (United States)

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Charge transfer dynamics from adsorbates to surfaces with single active electron and configuration interaction based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)

    2015-01-13

    Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.

  18. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  19. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  20. Determination of Oxygen in Zircaloy Surfaces by Means of Charged Particle Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzen, J; Brune, D

    1973-01-15

    Oxygen in zircaloy surfaces has been determined by means of charged particle activation analysis employing the following two reactions I. 16O (d, n) 17F ->(beta+decay) 17O Q = - 1.63 MeV; II. 16O (d, pgamma) 17O Q = + 1.05 MeV. The detection limits for oxygen in such surfaces has been investigated by measuring the promptly emitted 0.87 MeV gamma rays (reaction II) and also the 511 keV annihilation radiation which arises from beta-decay of 17F (reaction I). The correlation between the detection limit for oxygen in zircaloy, the particle energy and the surface thickness analyzed has been evaluated. At a deuteron energy of 3 MeV a detection limit of 0.7 x 10-7 g/cm2 was obtained from the measurement of the prompt gamma radiation arising from the second of these reactions. The analysis carried out by means of this technique is characterized by a high rapidity

  1. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    Science.gov (United States)

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Surface damage on 6H–SiC by highly-charged Xeq+ ions irradiation

    International Nuclear Information System (INIS)

    Zhang, L.Q.; Zhang, C.H.; Han, L.H.; Xu, C.L.; Li, J.J.; Yang, Y.T.; Song, Y.; Gou, J.; Li, J.Y.; Ma, Y.Z.

    2014-01-01

    Surface damage on 6H–SiC irradiated by highly-charged Xe q+ (q = 18, 26) ions to different fluences in two geometries was studied by means of AFM, Raman scattering spectroscopy and FTIR spectrometry. The FTIR spectra analysis shows that for Xe 26+ ions irradiation at normal incidence, a deep reflection dip appears at about 930 cm −1 . Moreover, the reflectance on top of reststrahlen band decreases as the ion fluence increases, and the reflectance at tilted incidence is larger than that at normal incidence. The Raman scattering spectra reveal that for Xe 26+ ions at normal incidence, surface reconstruction occurs and amorphous stoichiometric SiC and Si–Si and C–C bonds are generated and original Si–C vibrational mode disappears. And the intensity of scattering peaks decreases with increasing dose. The AFM measurement shows that the surface swells after irradiation. With increasing ion fluence, the step height between the irradiated and the unirradiated region increases for Xe 18+ ions irradiation; while for Xe 26+ ions irradiation, the step height first increases and then decreases with increasing ion fluence. Moreover, the step height at normal incidence is higher than that at tilted incidence by the irradiation with Xe 18+ to the same ion fluence. A good agreement between the results from the three methods is found

  3. A computer simulation of the surface channeling of MeV heavy charged particles

    International Nuclear Information System (INIS)

    Morita, K.

    1980-01-01

    The surface channeling of 1.5 MeV N + ions incident near the [011] direction on the (100) surface and near the [001] direction on the (110) surface of Ge crystals has been studied using computer simulation. The trajectories of ions incident at angles near the critical angle for axial channeling were traced. The energy spectra, the angular distributions and the reflection-depth distributions of scattered ions were obtained. The calculated energy spectra for both directions are found to be composed of a surface peak and a broad peak, the latter being at the low energy side of the surface peak. The height of the surface peak and the energy position of the broad peak are found to depend on the azimuthal component and the tilt component of the incident angle, respectively. This result is explained to be due to the focusing effect of channeled ions deflected by the atomic rows at the surface. It is shown that the calculated angular distributions of scattered ions form a half-ring pattern and clear dips appear in the scattering intensity curve along the half-ring. The dips are found to be caused by the blocking for scattered ions by the atomic rows arrayed in the major planar directions. (author)

  4. Effect of nuclear shielding in collision of positive charged helium ions with helium atoms

    Science.gov (United States)

    Ghavaminia, Hoda; Ghavaminia, Shirin

    2018-03-01

    Differential in angle and absolute cross sections in energy of the scattered particles are obtained for single charge exchange in ^3He^+-^4He collisions by means of the four body boundary-corrected first Born approximation (CB1-4B). The quantum-mechanical post and prior transition amplitudes are derived in terms of two-dimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The effect of the dynamic electron correlation through the complete perturbation potential and the nuclear-screening influence of the passive electrons on the electron capture process is investigated. The results obtained in the CB1-4B method are compared with the available experimental data. For differential cross sections, the present results are in better agreement with experimental data than other theoretical data at extreme forward scattering angles. The integral cross sections are in excellent agreement with the experiment. Also, total cross sections for single electron capture, has been investigated using the classical trajectory Monte Carlo method. The present calculated results are found to be in an excellent agreement with the experimental data.

  5. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  6. Electrom emission from slow highly charged ions interacting with a metal surface

    International Nuclear Information System (INIS)

    Aumayr, F.; Kurz, H.; Toeglhofer, K.; Winter, H.

    1992-01-01

    Recent progress in investigating electron emission from slow highly charged ions approaching a metal surface is discussed. In particular, new informations on generation and decay of transient multiply excited ''hollow atoms'' developing during these processes have been gained from measurement of the statistics of emitted electrons (ES). ES and precise total electron yields derived from the former have been measured for normal incidence of slow (impact velocity 1/15.10 4 ms -1 ) multicharged ions N q+ (q≤6), Ne q+ (q≤10), Ar q+ (q≤16), Kr q+ (q≤10), Xe q+ (q≤10) and I q+ (q≤25) on clean polycrystalline gold. A classical over-barrier approach as recently introduced by Burgdoerfer et al. 1991 has been extended and successfully applied to model the measured impact-velocity dependences of total electron yields. In this way contributions from different electron emission mechanisms could be identified. (orig.)

  7. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  8. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  9. High Efficiency, Low EMI and Positioning Tolerant Wireless Charging of EVs

    Energy Technology Data Exchange (ETDEWEB)

    Chabaan, Rakan [Hyundai American Technical Center Inc. (HATCI), Superior Twp, MI (United States)

    2017-12-01

    The objective of this project is to develop, implement, and demonstrate a wireless power transfer (WPT) system that is capable of the following metrics: Total system efficiencies of more than 85 percent with minimum 20 cm coil-to-coil gap; System output power at least 6.6 kW; but design system up to 19.2 kW for future higher power study; Maximum lateral positioning tolerance achievable while meeting regulatory emission guidelines.

  10. Impact of the interaction with the positive charge in adsorption of benzene and other organic compounds from aqueous solutions on carbons

    Science.gov (United States)

    Terzyk, Artur P.; Ćwiertnia, Magdalena S.; Wiśniewski, Marek; Gauden, Piotr A.; Rychlicki, Gerhard; Szymański, Grzegorz S.

    2007-02-01

    We present the results of benzene adsorption at the acidic pH level determined on the series of chemically modified activated carbons and at three temperatures. The influence of carbon surface chemical composition on benzene adsorption is discussed. It is shown that the decrease in the pH level from 7 up to 1.5 increases benzene adsorption and the only exception is carbon modified with gaseous ammonia. Basing on the results of current work and those published previously (for phenol, paracetamol, acetanilide and aniline) and using the results of quantum chemistry calculations (DFT, Gaussian 98) we show, that the value of the energy of interaction with unit positive charge is crucial during the analysis of the influence of pH level on adsorption. Obtained results allow to predict the changes in adsorption of aromatics on carbons with the decrease in the pH level.

  11. A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells.

    Science.gov (United States)

    Deryabin, Dmitry G; Efremova, Ludmila V; Vasilchenko, Alexey S; Saidakova, Evgeniya V; Sizova, Elena A; Troshin, Pavel A; Zhilenkov, Alexander V; Khakina, Ekaterina A; Khakina, Ekaterina E

    2015-08-08

    The cause-effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate's size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characteristics affect the bioenergetics of freshwater Escherichia coli and marine Photobacterium phosphoreum bacteria. Dynamic light scattering, laser Doppler micro-electrophoresis, agarose gel electrophoresis, atomic force microscopy, and bioluminescence inhibition assay were used to characterize the fullerene aggregation behavior in aqueous solution and their interaction with the bacterial cell surface, following zeta potential changes and toxic effects. Dynamic light scattering results indicated the formation of self-assembled [60]fullerene aggregates in aqueous suspensions. The measurement of the zeta potential of the particles revealed that they have different surface charges. The relationship between these physicochemical characteristics was presented as an exponential regression that correctly described the dependence of the aggregate's size of penta-substituted [60]fullerene derivatives in salt-free aqueous suspension from zeta potential value. The prevalence of DLVO-related effects was shown in salt-added aqueous suspension that decreased zeta potential values and affected the aggregation of [60]fullerene derivatives expressed differently for individual compounds. A bioluminescence inhibition assay demonstrated that the toxic effect of [60]fullerene derivatives against E. coli cells was strictly determined by their positive zeta potential charge value being weakened against P. phosphoreum cells in an aquatic system of high salinity. Atomic force microscopy data suggested that the

  12. Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li2FeSiO4 surfaces.

    Science.gov (United States)

    Hörmann, Nicolas G; Groß, Axel

    2014-07-21

    The ionic compounds that are used as electrode materials in Li-based rechargeable batteries can exhibit polar surfaces that in general have high surface energies. We derive an analytical estimate for the surface energy of such polar surfaces assuming charge redistribution as a polarity compensating mechanism. The polar contribution to the converged surface energy is found to be proportional to the bandgap multiplied by the surface charge necessary to compensate for the depolarization field, and some higher order correction terms that depend on the specific surface. Other features, such as convergence behavior, coincide with published results. General conclusions are drawn on how to perform polar surface energy calculations in a slab configuration and upper boundaries of "purely" polar surface energies are estimated. Furthermore, we compare these findings with results obtained in a density functional theory study of Li(2)FeSiO(4) surfaces. We show that typical polar features are observed and provide a decomposition of surface energies into polar and local bond-cutting contributions for 29 different surfaces. We show that the model is able to explain subtle differences of GGA and GGA+U surface energy calculations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact

    International Nuclear Information System (INIS)

    Ruehlicke, C.; Briere, M.A.; Schneider, D.

    1994-01-01

    Radiation induced defects on mica caused by the impact of slow very highly charged ions (SVHCI) have been investigated with an atomic force microscope (AFM). Freshly cleaved surfaces of different types of muscovite were irradiated with SVHCI extracted from the LLNL electron beam ion trap (EBIT) at velocities of ca. 2 keV/amu. Atomic force microscopy of the surface reveals the formation of blisterlike defects associated with single ion impact. The determined defect volume which appears to increase linearly with the incident charge state and exhibits a threshold incident charge state has been determined using the AFM. These results indicate that target atoms are subjected to mutual electrostatic repulsion due to ionization through potential electron emission upon approach of the ion. If the repulsion leads to permanent atomic displacement, surface defects are formed

  14. Effect of far-UV and near-UV radiation on the cell surface charge of the protozoan Tritrichomonas foetus

    International Nuclear Information System (INIS)

    Silva Filho, F.C.; Elias, C.A.; Souza, W. de

    1986-01-01

    Cell electrophoresis was used to detect the effect of far-UV or near-UV radiation on the cell surface charge of the pathogenic protozoan Tritrichomonas foetus. Either far-UV or near-UV radiation interfered with the surface charge of T. foetus at fluences which inhibited cell growth by 50%. Both UV-radiations induced a significant decrease on surface charge of T. foetus, as evaluated by measurement of its electrophoretic mobility (EPM). Determinations of EPM of protozoa in solution of low ionic strength indicated that the decrease in the EPM induced by far-UV is much less pronounced that that observed for near-UV or control cells. (author)

  15. Evolution of offshore wind waves tracked by surface drifters with a point-positioning GPS sensor

    Science.gov (United States)

    Komatsu, K.

    2009-12-01

    Wind-generated waves have been recognized as one of the most important factors of the sea surface roughness which plays crucial roles in various air-sea interactions such as energy, momentum, heat and gas exchanges. At the same time, wind waves with extreme wave heights representatively called as freak or rogue waves have been a matter of great concern for many people involved in shipping, fishing, constracting, surfing and other marine activities, because such extreme waves frequently affect on the marine activities and sometimes cause serious disasters. Nevertheless, investigations of actual conditions for the evolution of wind waves in the offshore region are less and sparse in contrast to dense monitoring networks in the coastal regions because of difficulty of offshore observation with high accuracy. Recently accurate in situ observation of offshore wind waves is getting possible at low cost owing to a wave height and direction sensor developed by Harigae et al. (2004) by installing a point-positioning GPS receiver on a surface drifting buoy. The point-positioning GPS sensor can extract three dimensional movements of the buoy excited by ocean waves with minimizing effects of GPS point-positioning errors through the use of a high-pass filter. Two drifting buoys equipped with the GPS-based wave sensor charged by solar cells were drifted in the western North Pacific and one of them continued to observe wind waves during 16 months from Sep. 2007. The RMSE of the GPS-based wave sensor was less than 10cm in significant wave height and about 1s in significant wave period in comparison with other sensors, i.e. accelerometers installed on drifting buoys of Japan Meteorological Agency, ultrasonic sensors placed at the Hiratsuka observation station of the University of Tokyo and altimeter of the JASON-1. The GPS-based wave buoys enabled us to detect freak waves defined as waves whose height is more than twice the significant wave height. The observation conducted by the

  16. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode

    International Nuclear Information System (INIS)

    Zhang Lingyan; Yuan Ruo; Chai Yaqing; Li Xuelian

    2007-01-01

    Positively charged gold nanoparticle (positively charged nano-Au), which was prepared, characterized by ξ-potential and transmission electron microscopy (TEM) was used in combination with L-cysteine to fabricate a modified electrode for electrocatalytic reaction of biomolecules. Compared with electrodes modified by negatively charged gold nanoparticle/L-cysteine, or L-cysteine alone, the electrode modified by the positively charged gold nanoparticle/L-cysteine exhibited excellent electrochemical behavior toward the oxidation of biomolecules such as ascorbic acid, dopamine and hydrogen peroxide. Moreover, the proposed mechanism for electrocatalytic response of positively charged gold nanoparticle was discussed. The immunosensor showed a specific to ascorbic acid in the range 5.1 x 10 -7 -6.7 x 10 -4 M and a low detection limit of 1.5 x 10 -7 M. The experimental results demonstrate that positively charged gold nanoparticle have more efficient electrocatalytic reaction than negatively charged gold nanoparticle, which opens up new approach for fabricating sensor

  17. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    International Nuclear Information System (INIS)

    Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L

    2016-01-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)

  18. Rydberg-state reionization of multiply charged ions escaping from solid surfaces

    International Nuclear Information System (INIS)

    Nedeljkovic, Lj.D.; Nedeljkovic, N.N.

    2003-01-01

    Reionization rates of Rydberg states (n>>1 and l=0, 1, and 2) of multiply charged ionic projectiles escaping solid surfaces are calculated. These rates are obtained in an analytic form as a function of the ion-surface distance R. A phenomenological model of the reionization process, based on two-state quantum dynamics, is adopted for the vicinity of the potential barrier top. The results of calculations show that ionization rates for different Rydberg states are strictly localized and relatively separated. Universality of the reionization rate as a function of the scaling parameter α, describing the turning point configurations, is demonstrated. The reionization is discussed within the framework of a nonresonant population-reionization process at intermediate ionic velocities (v∼1 a.u.). The influence of reionization on the population of ionic Rydberg states is expressed in terms of a renormalized neutralization rate. It is demonstrated that the reionization effect significantly changes the population curves for all Rydberg states. The population curves obtained correlate with beam-foil experimental data concerning the S VI, Cl VII, and Ar VIII ions

  19. Extracellular Polymeric Substances Govern the Surface Charge of Biogenic Elemental Selenium Nanoparticles

    KAUST Repository

    Jain, Rohan

    2015-02-03

    © 2014 American Chemical Society. The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  20. The Positively Charged Hyperbranched Polymers with Tunable Fluorescence and the Cell Imaging Application.

    Science.gov (United States)

    Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang

    2018-04-25

    Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.

  1. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  2. Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charged surface

    Science.gov (United States)

    Sukhishvili, Svetlana A.; Granick, Steve

    1999-05-01

    We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.

  3. Supplementary Material for: Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad B. S.

    2017-01-01

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  4. Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames

    KAUST Repository

    Alquaity, Awad

    2016-08-22

    Cations and anions are formed as a result of chemi-ionization processes in combustion systems. Electric fields can be applied to reduce emissions and improve combustion efficiency by active control of the combustion process. Detailed flame ion chemistry models are needed to understand and predict the effect of external electric fields on combustion plasmas. In this work, a molecular beam mass spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane–oxygen argon burner-stabilized atmospheric flames. Lean and stoichiometric flames are considered to assess the dependence of ion chemistry on flame stoichiometry. Relative ion concentration profiles are compared with numerical simulations using various temperature profiles, and good qualitative agreement was observed for the stoichiometric flame. However, for the lean flame, numerical simulations misrepresent the spatial distribution of selected ions greatly. Three modifications are suggested to enhance the ion mechanism and improve the agreement between experiments and simulations. The first two modifications comprise the addition of anion detachment reactions to increase anion recombination at low temperatures. The third modification involves restoring a detachment reaction to its original irreversible form. To our knowledge, this work presents the first detailed measurements of cations and flame temperature in canonical methane–oxygen-argon atmospheric flat flames. The positive ion profiles reported here may be useful to validate and improve ion chemistry models for methane-oxygen flames.

  5. Influence of joint direction and position of explosive charge on fragmentation

    International Nuclear Information System (INIS)

    Hafsaoui, Abdellah; Talhi, Korichi

    2009-01-01

    Although researchers have realized varying degrees of success in small-scale physical in situ testing, most will agree that the greatest uncertainty stems from the uncontrollable field variables. Given the diverse nature of field conditions encountered, there exists no reliable and proven method of predicting fragmentation. Due to the lack of adequate field controls, it is unlikely that a universal physical model will ever be developed for all blasting. This paper presents the results of a test conducted at the Hadjar Essoud quarry to investigate the problems associated with the discontinuities in the rock, which are among the factors causing the reduction of the resistance of the rocks to the explosive. Nevertheless, the distance between the joints, their dip and strike, and the position of the detonator play a significant role in the final fragmentation of the rock. In this work, we studied the role of the abovementioned factors on models of limestone rock of 150 X 375 X 450 mm. Accurate measurement of blast, fragmentation is important in mining and quarrying operations, in monitoring blasts, and optimizing their design. We shall use the Kuznetsov-Rammler method to measure fragmentation. It shows great potential as a practical aid to predict and control the quality of the fragmented material in the Hadjar Essoud quarry. (author)

  6. Mécanismes d'écoulement des charges à la surface des polymères granulaires

    Directory of Open Access Journals (Sweden)

    M. Kachi

    2014-09-01

    Full Text Available Les forces électriques s’exerçant sur des polymères granulaires chargés sont mises à profit dans plusieurs processus électrostatiques. La dynamique de charges de surface de ces matériaux est très importante pour ce type de processus. Le but de ce papier est d’analyser l’écoulement des charges à la surface de couches compactes de polymères granulaires, en interprétant les mesures sans contact réalisées par trois sondes de potentiel, de champ et de charge, ayant chacune une taille différente. Des mesures du profile de potentiel à différents instants sont également réalisées afin d’expliquer les différences entre les vitesses de déclin de potentiel, de champ et de charge mesurées par les trois sondes. Les résultats mettent en évidence un écoulement transversal et longitudinal de la charge surfacique.

  7. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Lorenz G. [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Leitner, Michael; Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Bonazza, Klaus [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Leclercq, Laurent; Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Ebner, Andreas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stutz, Hanno, E-mail: hanno.stutz@sbg.ac.at [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria)

    2017-01-25

    A successive multiple ionic polymer layer (SMIL) coating composed of four layers improved the capillary electrophoretic separation of a recombinant major birch pollen allergen and closely related variants when poly(acrylamide-co-2-acrylamido-2-methyl-1-propansulfonate) (55% PAMAMPS) replaced dextran sulfate as terminal SMIL layer. 55% PAMAMPS decelerated the electroosmotic flow (EOF) due to its lower charge density. Atomic force microscopy (AFM) was used to investigate SMIL properties directly on the inner capillary surface and to relate them to EOF measurements and results of associated CZE separations of a mixture of model proteins and peptides that were performed in the same capillary. For the first time, AFM-based biosensing topography and recognition imaging mode (TREC) under liquid conditions was applied for a sequential characterization of the inner surface of a SMIL coated capillary after selected treatments including pristine SMIL, SMIL after contact with the model mixture, after alkaline rinsing, and the replenishment of the terminal polyelectrolyte layer. A cantilever with tip-tethered avidin was used to determine the charge homogeneity of the SMIL surface in the TREC mode. SMIL coated rectangular capillaries with 100 μm internal diameter assured accessibility of the inner surface for this cantilever type. Observed changes in CZE performance and EOF mobility during capillary treatment were also reflected by alterations in surface roughness and charge distribution of the SMIL coating. A renewal of the terminal SMIL layer restored the original surface properties of SMIL and the separation performance. The alliance of the novel TREC approach and CZE results allows for an improved understanding and a comprehensive insight in effects occurring on capillary coatings. - Highlights: • SMIL coating with a terminal layer of reduced charge density improves CZE separation. • Capillaries with rectangular diameter allow for in-capillary TREC-AFM measurement.

  8. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  9. Computer analysis of the significance of surface boundary conditions on the collection of α-induced charge

    International Nuclear Information System (INIS)

    Terrill, K.W.; Hu, C.; Neureuther, A.R.; California Univ., Berkeley

    1983-01-01

    The collection of α-particle generated charge by collectors surrounded by either uniform reflecting or uniform absorbing surfaces are compared as the two extreme cases of any real condition in IC's. The comparison for varying α-particle energies and collector sizes indicates that the differences in collected charge for the two cases is less than a factor of two if the α-particle strike is through the center of the collector. It is shown that variation of collected charge with feature length is approximately linear in both cases. The effect of scaling on soft errors in static RAM's is discussed. It is assumed that the charge transport is by diffusion only. (author)

  10. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline; Rinaldi, Carlos

    2013-01-01

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions

  11. Particle emission induced by the interaction of highly charged slow Xe-ions with a SiO2 surface

    International Nuclear Information System (INIS)

    Schiwietz, G.; Skogvall, B.; Schneider, D.; Clark, M.; DeWitt, D.; McDonald, J.

    1991-01-01

    Sputtering of surface atoms by low energy (a few keV) heavy ions is a commonly used technique in material science and applied physics. In general, sputtering occurs via nuclear energy transfer processes and is determined mainly by the atom-atom interaction potentials. In the energy range of interest these potentials depend only slightly on the charge state of one collision partner if the other is neutral. The development of new ion-sources, however, allows for the use of ions with charged states of q > 50. For these highly charged ions it is conceivable that electronic processes come into play as well. If, for example, the density of charged surface atoms exceeds a certain limit, then particle emission can occur via the electrostatic repulsion of target atoms, the so-called Coulomb explosion. Indications for such electronic effects have been found in a few investigations of ion-induced sputtering Si (q q+ ). However, the order of magnitude of this effect is not clear until now. In this work we present preliminary data on sputtering, ion backscattering, electron and photon emission from SiO 2 surface induced by incident Xe ions of very high charge states (q=30--50). The experiment was performed at the electron beam ion trap (EBIT) of the Lawrence Livermore National Laboratory using a time-of-flight (TOF) ion analyzer-system from the Hahn-Meitner-Institute, Berlin

  12. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline [University of Puerto Rico, Department of Chemical Engineering (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering (United States)

    2013-08-15

    Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle-cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine-silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33-45 nm. Surface charge of carboxymethyl-substituted dextran-coated nanoparticles ranged from -50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle-cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions.

  13. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    Science.gov (United States)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  14. Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c

    CERN Document Server

    Abgrall, N.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogusz, M.; Boldizsar, L.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Busygina, O.; Cetner, T.; Choi, K.U.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Engel, R.; Ereditato, A.; Esposito, L.S.; Feofilov, G.A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Garrido, X.; Gazdzicki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hakobyan, H.; Hasegawa, T.; Idczak, R.; Ivanov, Y.; Ivashkin, A.; Kadija, K.; Kapoyannis, A.; Katrynska, N.; Kielczewska, D.; Kikola, D.; Kim, J.H.; Kirejczyk, M.; Kisiel, J.; Kobayashi, T.; Kochebina, O.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Lacey, R.; Lagoda, J.; Laszlo, A.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Malakhov, A.I.; Marchionni, A.; Marcinek, A.; Maris, I.; Marin, V.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Meregaglia, A.; Messina, M.; Mrowczynski, St.; Murphy, S.; Nakadaira, T.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A.D.; Paul, T.; Peryt, W.; Petukhov, O.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Rohrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Skrzypczak, E.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Strabel, C.; Strobele, H.; Susa, T.; Szaflik, P.; Szuba, M.; Tada, M.; Taranenko, A.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Yi, J.G.; Yoo, I.K.; Zambelli, L.; Zipper, W.

    2012-01-01

    Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published...

  15. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    Institute of Scientific and Technical Information of China (English)

    M Eshghi; H Mehraban; S M Ikhdair

    2017-01-01

    We solve the Schr(o)dinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov-Bohm (AB) flux fields.The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions.We also study the thermal quantifies of such a system.Further,the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism.We give plots for energy states as a function of various physical parameters.The behavior of the internal energy,specific heat,and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown.

  16. Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M; Mehraban, H; Ikhdair, S M

    2017-01-01

    We solve the Schrödinger equation with a position-dependent mass (PDM) charged particle interacted via the superposition of the Morse-plus-Coulomb potentials and is under the influence of external magnetic and Aharonov–Bohm (AB) flux fields. The nonrelativistic bound state energies together with their wave functions are calculated for two spatially-dependent mass distribution functions. We also study the thermal quantities of such a system. Further, the canonical formalism is used to compute various thermodynamic variables for second choosing mass by using the Gibbs formalism. We give plots for energy states as a function of various physical parameters. The behavior of the internal energy, specific heat, and entropy as functions of temperature and mass density parameter in the inverse-square mass case for different values of magnetic field are shown. (paper)

  17. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Science.gov (United States)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  18. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    International Nuclear Information System (INIS)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y; Crivelli, P; Gendotti, U; Rubbia, A

    2010-01-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·10 11 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  19. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, T; Debu, P; Dupre, P; Liszkay, L; Mansoulie, B; Perez, P; Rey, J M; Ruiz, N; Sacquin, Y [Irfu, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Crivelli, P; Gendotti, U; Rubbia, A, E-mail: tomoko.muranaka@cea.f [Institut fuer TelichenPhysik, ETHZ, CH-8093 Zuerich (Switzerland)

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5{center_dot}10{sup 11} per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  20. A Combined Model of Charging of the Surface and Bulk of a Dielectric Target by Electrons with the Energies 10-30 keV

    Science.gov (United States)

    Zykov, V. M.; Neiman, D. A.

    2018-04-01

    A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.

  1. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    Energy Technology Data Exchange (ETDEWEB)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Inorganiche e dei Plasmi UOS Bari-c/o Dipartimento di Chimica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Colaianni, A [Dipartimento di Geologia e Geofisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy); Schiavulli, L, E-mail: paolofrancesco.ambrico@cnr.i [Dipartimento Interateneo di Fisica, Universita degli Studi di Bari ' Aldo Moro' , via Orabona, 4, 70126 Bari (Italy)

    2010-08-18

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  2. IEP as a parameter characterizing the pH-dependent surface charging of materials other than metal oxides.

    Science.gov (United States)

    Kosmulski, Marek

    2012-01-01

    The numerical values of points of zero charge (PZC, obtained by potentiometric titration) and of isoelectric points (IEP) of various materials reported in the literature have been analyzed. In sets of results reported for the same chemical compound (corresponding to certain chemical formula and crystallographic structure), the IEP are relatively consistent. In contrast, in materials other than metal oxides, the sets of PZC are inconsistent. In view of the inconsistence in the sets of PZC and of the discrepancies between PZC and IEP reported for the same material, it seems that IEP is more suitable than PZC as the unique number characterizing the pH-dependent surface charging of materials other than metal oxides. The present approach is opposite to the usual approach, in which the PZC and IEP are considered as two equally important parameters characterizing the pH-dependent surface charging of materials other than metal oxides. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Thermoluminescence study of the trapped charge at an alumina surface electrode in different dielectric barrier discharge regimes

    International Nuclear Information System (INIS)

    Ambrico, P F; Ambrico, M; Dilecce, G; De Benedictis, S; Colaianni, A; Schiavulli, L

    2010-01-01

    In this study, the charge trapping effect in alumina dielectric surfaces has been deeply investigated by means of a dedicated dielectric barrier discharge apparatus in different discharge regimes and gas mixtures. This work further validates our previous findings in the case of air discharges in a filamentary regime. Long lasting charge trapping has been evidenced by ex situ thermoluminescence characterizations of alumina dielectric barrier plates exposed to a plasma. The density of trapped surface charges was found to be higher in the glow discharge with respect to pseudo-glow and filamentary regimes, and for all regimes the minimum trap activation temperature was 390 K and the trap energy was less than or around 1 eV. This implies that in the case of glow discharges a higher reservoir of electrons is present. Also, the effect was found to persist for several days after running the discharge.

  4. Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges

    Science.gov (United States)

    Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang

    2018-04-01

    Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.

  5. Buffer-eliminated, charge-neutral epitaxial graphene on oxidized 4H-SiC (0001) surface

    International Nuclear Information System (INIS)

    Sirikumara, Hansika I.; Jayasekera, Thushari

    2016-01-01

    Buffer-eliminated, charge-neutral epitaxial graphene (EG) is important to enhance its potential in device applications. Using the first principles Density Functional Theory calculations, we investigated the effect of oxidation on the electronic and structural properties of EG on 4H-SiC (0001) surface. Our investigation reveals that the buffer layer decouples from the substrate in the presence of both silicate and silicon oxy-nitride at the interface, and the resultant monolayer EG is charge-neutral in both cases. The interface at 4H-SiC/silicate/EG is characterized by surface dangling electrons, which opens up another route for further engineering EG on 4H-SiC. Dangling electron-free 4H-SiC/silicon oxy-nitride/EG is ideal for achieving charge-neutral EG.

  6. A trial fabrication of activity standard surface sources and positional standard surface sources for an imaging plate system

    International Nuclear Information System (INIS)

    Sato, Yasushi; Hino, Yoshio; Yamada, Takahiro; Matsumoto, Mikio

    2003-01-01

    An imaging plate system can detect low level activity, but quantitative analysis is difficult because there are no adequate standard surface sources. A new fabrication method was developed for standard surface sources by printing on a sheet of paper using an ink-jet printer with inks in which a radioactive material was mixed. The fabricated standard surface sources had high uniformity, high positional resolution arbitrary shapes and a broad intensity range. The standard sources were used for measurement of surface activity as an application. (H. Yokoo)

  7. Continuous agglomerate model for identifying the solute- indifferent part of colloid nanoparticle's surface charge

    International Nuclear Information System (INIS)

    Alfimov, A V; Aryslanova, E M; Chivilikhin, S A

    2016-01-01

    This work proposes an explicit analytical model for the surface potential of a colloidal nano-agglomerate. The model predicts that when an agglomerate reaches a certain critical size, its surface potential becomes independent of the agglomerate radius. The model also provides a method for identifying and quantifying the solute-indifferent charge in nanocolloids, that allows to assess the stability of toxicologically significant parameters of the system. (paper)

  8. Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Gustavo A.; Lohse, Samuel E.; Torelli, Marco; Murphy, Catherine; Hamers, Robert J.; Orr, Galya; Klaper, Rebecca D.

    2015-05-01

    Concern has been raised regarding the current and future release of engineered nanomaterials into aquatic environments from industry and other sources. However, not all nanomaterials may cause an environ-mental impact and identifying which nanomaterials may be of greatest concern has been difficult. It is thought that the surface groups of a functionalized nanoparticles (NPs) may play a significant role in determining their interactions with aquatic organisms, but the way in which surface properties of NPs impact their toxicity in whole organisms has been minimally explored. A major point of interaction of NPs with aquatic organisms is in the gastrointestinal tract as they ingest particulates from the water column or from the sediment. The main goal of this study was to use model gold NP (AuNPs) to evaluate the potential effects of the different surfaces groups on NPs on the gut of an aquatic model organism, Daphnia magna. In this study, we exposed daphnids to a range of AuNPs concentrations and assessed the impact of AuNP exposure in the daphnid gut by measuring reactive oxygen species (ROS) production and expression of genes associated with oxidative stress and general cellular stress: glutathione S-transferase(gst), catalase (cat), heat shock protein 70 (hsp70), and metallothionein1 (mt1). We found ROS formation and gene expression were impacted by both charge and the specific surface ligand used. We detected some degree of ROS production in all NP exposures, but positively charged AuNPs induced a greater ROS response. Similarly, we observed that, compared to controls, both positively charged AuNPs and only one negatively AuNP impacted expression of genes associated with cellular stress. Finally, ligand-AuNP exposures showed a different toxicity and gene expression profile than the ligand alone, indicating a NP specific effect.

  9. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries

    NARCIS (Netherlands)

    van Haaren, Paul M. A.; VanBavel, Ed; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    We hypothesized that modulation of the effective charge density of the endothelial surface layer ( ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries ( diameter similar to 190 mu m) were isolated, cannulated, perfused, and superfused

  10. Adsorption of molecular brushes with polyelectrolyte backbones onto oppositely charged surfaces: A self-consistent field theory

    NARCIS (Netherlands)

    Feuz, L.; Leermakers, F.A.M.; Textor, M.; Borisov, O.V.

    2008-01-01

    The two-gradient version of the Scheutjens¿Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with

  11. Electronic coupling effects and charge transfer between organic molecules and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forker, Roman

    2010-07-01

    We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. (orig.)

  12. Mechanical Properties of Surface-Charged Poly(Methyl Methacrylate as Denture Resins

    Directory of Open Access Journals (Sweden)

    Sang E. Park

    2009-01-01

    Full Text Available The aim of this study was to examine the mechanical properties of a new surface-modified denture resin for its suitability as denture base material. This experimental resin is made by copolymerization of methacrylic acid (MA to poly(methyl methacrylate (PMMA to produce a negative charge. Four experimental groups consisted of Orthodontic Dental Resin (DENTSPLY Caulk as a control and three groups of modified PMMA (mPMMA produced at differing ratios of methacrylic acid (5 : 95, 10 : 90, and 20 : 80 MA : MMA. A 3-point flexural test using the Instron Universal Testing Machine (Instron Corp. measured force-deflection curves and a complete stress versus strain history to calculate the transverse strength, transverse deflection, flexural strength, and modulus of elasticity. Analysis of Variance and Scheffe Post-test were performed on the data. Resins with increased methacrylic acid content exhibited lower strength values for the measured physical properties. The most significant decrease occurred as the methacrylic acid content was increased to 20% mPMMA. No significant differences at P<.05 were found in all parameters tested between the Control and 5% mPMMA.

  13. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  14. Improved numerical calculation of the generation of a neutral beam by charge transfer between chlorine ions/neutrals and a graphite surface

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Samukawa, Seiji; Watanabe, Naoki; Ohtsuka, Shingo; Iwasaki, Takuya; Ono, Kohei; Iriye, Yasuroh

    2014-01-01

    The charge transfer process between chlorine particles (ions or neutrals) and a graphite surface on collision was investigated by using a highly stable numerical simulator based on time-dependent density functional theory to understand the generation mechanism of a high-efficiency neutral beam developed by Samukawa et al (2001 Japan. J. Appl. Phys. 40 L779). A straightforward calculation was achieved by adopting a large enough unit cell. The dependence of the neutralization efficiency on the incident energy of the particle was investigated, and the trend of the experimental result was reproduced. It was also found that doping the electrons and holes into graphite could change the charge transfer process and neutralization probability. This result suggests that it is possible to develop a neutral beam source that has high neutralization efficiency for both positive and negative ions. (paper)

  15. Impact of Surface Type, Wheelchair Weight, and Axle Position on Wheelchair Propulsion by Novice Older Adults

    Science.gov (United States)

    Cowan, Rachel E.; Nash, Mark S.; Collinger, Jennifer L.; Koontz, Alicia M.; Boninger, Michael L.

    2009-01-01

    Objective To examine the impact of surface type, wheelchair weight, and rear axle position on older adult propulsion biomechanics. Design Crossover trial. Setting Biomechanics laboratory. Participants Convenience sample of 53 ambulatory older adults with minimal wheelchair experience (65−87y); men = 20, women = 33. Intervention Participants propelled 4 different wheelchair configurations over 4 surfaces; tile, low carpet, high carpet, and an 8% grade ramp (surface, chair order randomized). Chair configurations included: (1) unweighted chair with an anterior axle position, (2) 9.05kg weighted chair with an anterior axle position, (3) unweighted chair with a posterior axle position (Δ0.08m), and (4) 9.05kg weighted chair with a posterior axle position (Δ0.08m). Weight was added to a titanium folding chair, simulating the weight difference between very light and depot wheelchairs. Instrumented wheels measured propulsion kinetics. Main Outcome Measures Average self-selected velocity, push-frequency, stroke length, peak resultant and tangential force. Results Velocity decreased as surface rolling resistance or chair weight increased. Peak resultant and tangential forces increased as chair weight increased, surface resistance increased, and with a posterior axle position. The effect of a posterior axle position was greater on high carpet and the ramp. The effect of weight was constant, but more easily observed on high carpet and ramp. The effects of axle position and weight were independent of one another. Conclusion Increased surface resistance decreases self-selected velocity and increases peak forces. Increased weight decreases self-selected velocity and increases forces. Anterior axle positions decrease forces, more so on high carpet. Effects of weight and axle position are independent. Greatest reductions in peak forces occur in lighter chairs with anterior axle positions. PMID:19577019

  16. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  17. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  18. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  19. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    Science.gov (United States)

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  20. Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Theoretical Chemistry, Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden (Germany); Zörgiebel, Felix [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany)

    2015-05-18

    One dimensional nanowire field effect transistors (NW-FETs) are a promising platform for sensor applications. The transport characteristics of NW-FETs are strongly modified in liquid environment due to the charging of surface functional groups accompanied with protonation or deprotonation. In order to investigate the influence of surface charges and ionic concentrations on the transport characteristics of Schottky-barrier NW-FETs, we have combined the modified Poisson-Boltzmann theory with the Landauer-Büttiker transport formalism. For a typical device, the model is able to capture the reduction of the sensitivity of NW-FETs in ionic solutions due to the screening from counter ions as well as a local gating from surface functional groups. Our approach allows to model, to investigate, and to optimize realistic Schottky-barrier NW-FET devices in liquid environment.

  1. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    Science.gov (United States)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  2. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    Science.gov (United States)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of

  3. Investigation of reordered (001) Au surfaces by positive ion channeling spectroscopy, LEED and AES

    International Nuclear Information System (INIS)

    Appleton, B.R.; Noggle, T.S.; Miller, J.W.; Schow, O.E. III; Zehner, D.M.; Jenkins, L.H.; Barrett, J.H.

    1974-01-01

    As a consequence of the channeling phenomenon of positive ions in single crystals, the yield of ions Rutherford scattered from an oriented single crystal surface is dependent on the density of surface atoms exposed to the incident ion beam. Thus, the positive ion channeling spectroscopy (PICS) technique should provide a useful tool for studying reordered surfaces. This possibility was explored by examining the surfaces of epitaxially grown thin Au single crystals with the combined techniques of LEED-AES and PICS. The LEED and AES investigations showed that when the (001) surface was sputter cleaned in ultra-high vacuum, the normal (1 x 1) symmetry of the (001) surfaces reordered into a structure which gave a complex (5 x 20) LEED pattern. The yield and energy distributions of 1 MeV He ions scattered from the Au surfaces were used to determine the number of effective monolayers contributing to the normal and reordered surfaces. These combined measurements were used to characterize the nature of the reordered surface. The general applicability of the PICS technique for investigations of surface and near surface regions is discussed

  4. A Study of Electrostatic Charge on Insulating Film by Electrostatic Force Microscopy

    International Nuclear Information System (INIS)

    Kikunaga, K; Toosaka, K; Kamohara, T; Sakai, K; Nonaka, K

    2011-01-01

    Electrostatic charge properties on polypropylene film have been characterized by atomic force microscopy and electrostatic force microscopy. The measurements have been carried out after the polypropylene film was electrified by contact and separation process in an atmosphere of controlled humidity. The negative and positive charge in concave surface has been observed. The correlation between concave surface and charge position suggests that the electrostatic charges could be caused by localized contact. On the other hand, positive charge on a flat surface has been observed. The absence of a relationship between surface profile and charge position suggests that the electrostatic charge should be caused by discharge during the separation process. The spatial migration of other positive charges through surface roughness has been observed. The results suggest that there could be some electron traps on the surface roughness and some potentials on the polypropylene film.

  5. Mechanism of charge transport in ligand-capped crystalline CdTe nanoparticles according to surface photovoltaic and photoacoustic results

    Energy Technology Data Exchange (ETDEWEB)

    Li Kuiying, E-mail: kuiyingli@ysu.edu.cn [National Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Hebei Str. 438, Qinhuangdao, Hebei Province 066004 (China); Zhang Hao [Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Yang Weiyong; Wei Sailing [National Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Hebei Str. 438, Qinhuangdao, Hebei Province 066004 (China); Wang Dayang, E-mail: dayang@mpikg-golm.mpg.de [Max Planck Institute of Colloids and Interfaces, Potsdam 14424 (Germany)

    2010-09-01

    By combining surface photovoltaic and photoacoustic techniques, we probed the photogenerated charge transport channels of 3-mercaptopropionic acid (MPA)- and 2-mercaptoethylamine (MA)-capped crystalline CdTe nanoparticles on illumination with UV-near IR light. The results experimentally confirmed the presence of a CdS shell outside the CdTe core that formed through the self-assembly and decomposition of mercapto ligands during CdTe preparation. The data revealed that the CdS layer was partly responsible for the deexcitation behavior of the photogenerated carriers, which is related to the quantum tunnel effect. Experiments demonstrated that two quantum wells were located at wavelengths of 440 and 500 nm in buried interfacial space-charge regions, whereas the formation of a ligand layer obstructed charge transfer transitions of the core CdTe nanoparticles to a certain extent.

  6. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    Science.gov (United States)

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  7. Angle resolved electron spectroscopy of spontaneous ionization processes occurring in doubly charged ion-surface collisions at grazing incidence

    International Nuclear Information System (INIS)

    Wouters, P.A.A.F.; Emmichoven, P.A.Z. van; Niehaus, A.

    1989-01-01

    The experimental setup used to measure electron spectra at well defined detection angles for grazing incidence doubly charged ion-surface collisions at keV-energies is described. Electron spectra are reported for the rare gas ions colliding with a Cu(110)-surface. The spectra are analyzed in terms of various spontaneous ionization processes using a newly developed model. It is found that double capture followed by atomic auto-ionization on the incoming trajectory and Auger-capture processes in which the first and second hole in the doubly charged projectiles are successively filled are the main processes contributing to the electron spectra. From a comparison of model calculations with measured spectra it is concluded that the metal electrons cannot adapt adiabatically to the sudden changes of the charge state of the projectile in front of the surface. A parameter characterizing the partly diabatic behavior is determined. The variation of spectra upon adsorption of a monolayer of oxygen on the surface is reported and discussed. (author)

  8. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  9. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  10. Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes

    Directory of Open Access Journals (Sweden)

    Seong Min Kim

    2012-12-01

    Full Text Available We theoretically investigate external surface charge effects on piezoelectric potential of ZnO and AlN nanowires (NWs and nanotubes (NTs under uniform compression. The free carrier depletion caused by negative surface charges via surface functionalization on vertically compressed ZnO and AlN NWs/NTs is simulated using finite element calculation; this indicates the enhancement of piezoelectric potential is due to the free carriers (electrons being fully depleted at the critical surface charge density. Numerical simulations reveal that full coverage of surface charges surrounding the NTs increases the piezoelectric output potential exponentially within a relatively smaller range of charge density compared to the case of NWs for a typical donor concentration (∼1017 cm−3. The model can be used to design functional high-power semiconducting piezoelectric nanogenerators.

  11. Bose-Einstein study of position-momentum correlations of charged pions in hadronic $Z^{0}$ decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2007-01-01

    A study of Bose-Einstein correlations in pairs of identically charged pions produced in e+e- annihilations at the Z0 peak has been performed for the first time assuming a non-static emitting source. The results are based on the high statistics data obtained with the OPAL detector at LEP. The correlation functions have been analyzed in intervals of the average pair transverse momentum and of the pair rapidity, in order to study possible correlations between the pion production points and their momenta (position-momentum correlations). The Yano-Koonin and the Bertsch-Pratt parameterizations have been fitted to the measured correlation functions to estimate the geometrical parameters of the source as well as the velocity of the source elements with respect to the overall centre-of-mass frame. The source rapidity is found to scale approximately with the pair rapidity, and both the longitudinal and transverse source dimensions are found to decrease for increasing average pair transverse momenta.

  12. The role of space charge in the performance of the bunching system for the ATLAS Positive Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Smith, R.

    1995-01-01

    The bunching system of the ATLAS Positive Ion Injector consists of a four-frequency harmonic buncher, a beam-tail removing chopper, and a 24.25 MHz spiral resonator sine-wave rebuncher. The system is designed to efficiently create beam pulses of approximately 0.25 nsec FWHM for injection into mid acceleration by the ATLAS superconducting linac. Studies of the effect of space charge on the performance of the system have been undertaken and compared to simulations as part of the design process for a new bunching system to be developed for a second ion source. Results of measurements and modeling studies indicate that the present system suffers significant bunching performance deterioration at beam currents as low as 5 eμA for 238 U 26+ at a velocity of β=0.0085. The low beam current tolerance of the present system is in reasonable agreement with computer simulation. Studies of two alternatives to the present bunching system are discussed and their limitations are explored

  13. Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2017-12-01

    Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.

  14. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  15. Reactivity of etoricoxib based on computational study of molecular orbitals, molecular electrostatic potential surface and Mulliken charge analysis

    Science.gov (United States)

    Sachdeva, Ritika; Soni, Abhinav; Singh, V. P.; Saini, G. S. S.

    2018-05-01

    Etoricoxib is one of the selective cyclooxygenase inhibitor drug which plays a significant role in the pharmacological management of arthritis and pain. The theoretical investigation of its reactivity is done using Density Functional Theory calculations. Molecular Electrostatic Potential Surface of etoricoxib and its Mulliken atomic charge distribution are used for the prediction of its electrophilic and nucleophilic sites. The detailed analysis of its frontier molecular orbitals is also done.

  16. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon. Effect of surface charge and interactions

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra; Kopecká, Ivana; Pivokonský, Martin

    2011-01-01

    Roč. 45, č. 11 (2011), s. 3359-3368 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902; GA ČR GPP105/10/P515 Institutional research plan: CEZ:AV0Z20600510 Keywords : cellular organic matter * granular activated carbon * molecular weight distribution * surface charge * cyanobacterial peptides Subject RIV: BK - Fluid Dynamics Impact factor: 4.865, year: 2011

  17. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    Science.gov (United States)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  18. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane

    Science.gov (United States)

    Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie

    2018-04-01

    Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.

  19. Basal electric and magnetic fields of celestial bodies come from positive-negative charge separation caused by gravitation of quasi-Casimir pressure in weak interaction

    Science.gov (United States)

    Chen, Shao-Guang

    According to f =d(mv)/dt=m(dv/dt)+ v(dm/dt), a same gravitational formula had been de-duced from the variance in physical mass of QFT and from the variance in mass of inductive energy-transfer of GR respectively: f QF T = f GR = -G (mM/r2 )((r/r)+(v/c)) when their interaction-constants are all taken the experimental values (H05-0029-08, E15-0039-08). f QF T is the quasi-Casimir pressure. f GR is equivalent to Einstein's equation, then more easy to solve it. The hypothesis of the equivalent principle is not used in f QF T , but required by f GR . The predictions of f QF T and f GR are identical except that f QF T has quantum effects but f GR has not and f GR has Lense-Thirring effect but f QF T has not. The quantum effects of gravitation had been verified by Nesvizhevsky et al with the ultracold neutrons falling in the earth's gravitational field in 2002. Yet Lense-Thirring effect had not been measured by GP-B. It shows that f QF T is essential but f GR is phenomenological. The macro-f QF T is the statistic average pressure collided by net virtual neutrinos ν 0 flux (after self-offset in opposite directions) and in direct proportion to the mass. But micro-f QF T is in direct proportion to the scattering section. The electric mass (in inverse proportion to de Broglie wavelength λ) far less than nucleonic mass and the electric scattering section (in direct proportion to λ2 ) far large than that of nucleon, then the net ν 0 flux pressure exerted to electron far large than that to nucleon and the electric displacement far large than that of nucleon, it causes the gravitational polarization of positive-negative charge center separation. Because the gravity far less than the electromagnetic binding force, in atoms the gravitational polarization only produces a little separation. But the net ν 0 flux can press a part freedom electrons in plasma of ionosphere into the earth's surface, the static electric force of redundant positive ions prevents electrons from further

  20. The noise analysis and optimum filtering techniques for a two-dimensional position sensitive orthogonal strip gamma ray detector employing resistive charge division

    International Nuclear Information System (INIS)

    Gerber, M.S.; Muller, D.W.

    1976-01-01

    The analysis of an orthogonal strip, two-dimensional position sensitive high purity germanium gamma ray detector is discussed. Position sensitivity is obtained by connecting each electrode strip on the detector to a resistor network. Charge, entering the network, divides in relation to the resistance between its entry point and the virtual earth points of the charge sensitive preamplifiers located at the end of each resistor network. The difference of the voltage pulses at the output of each preamplifier is proportional to the position at which the charge entered the resistor network and the sum of the pulse is proportional to the energy of the detected gamma ray. The analysis and spatial noise resolution is presented for this type of position sensitive detector. The results of the analysis show that the position resolution is proportional to the square root of the filter amplifier's output pulse time constant and that for energy measurement the resolution is maximized at the filter amplifier's noise corner time constant. The design of the electronic noise filtering system for the prototype gamma ray camera was based on the mathematical energy and spatial resolution equations. For the spatial channel a Gaussian trapezoidal filtering system was developed. Gaussian filtering was used for the energy channel. The detector noise model was verified by taking rms noise measurements of the filtered energy and spatial pulses from resistive readout charge dividing detectors. These measurements were within 10% of theory. (Auth.)

  1. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid

    Directory of Open Access Journals (Sweden)

    Lu T

    2012-09-01

    Full Text Available Tingli Lu,1 Zhao Wang,2 Yufan Ma,1 Yang Zhang,2 Tao Chen1,21Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 2Liposome Research Centre, Xi'an, ChinaBackground: Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid (PEAA vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature.Methods: Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability.Results: The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC . DPPC . DSPC. Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures.Conclusion: The observed

  2. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    International Nuclear Information System (INIS)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-01-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO 2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na 2 Ti 2 O 5 ·H 2 O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO 2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO 2 ), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C 9 H 10 ClN 5 O 2 ) degradation to CO 2 formation under UV irradiation because of its largest surface area 176 m 2 g −1 among the catalysts studied.

  3. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes

    Science.gov (United States)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO2 catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na2Ti2O5·H2O) particles (W = 9-12 nm and L = 82-115 nm) and rice like pure anatase-TNR particles (W = 8-13 nm and L = 81-134 nm) are obtained by the hydrothermal treatment of P25-TiO2 with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = -2.82 (P25-TiO2), -13.5 (TNT) and -22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C9H10ClN5O2) degradation to CO2 formation under UV irradiation because of its largest surface area 176 m2 g-1 among the catalysts studied.

  4. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  5. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  6. Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Vulfius, C.A.; Corbacheva, E.V.; Mordvintsev, D.Y.; Utkin, Y.N.; van Elk, R.; Smit, A.B.; Tsetlin, V.I.

    2006-01-01

    α-Conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of α-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into α-conotoxins

  7. 3D numerical surface charge model including relative permeability : the general theory

    NARCIS (Netherlands)

    Casteren, van D.T.E.H.; Paulides, J.J.H.; Lomonova, E.A.

    2014-01-01

    One of the still "open" issues within low-frequency magnetics is the inclusion of µr in the calculations using the magnetic charge method. In this paper a new iterative method to take the relative permeability into account is investigated. Results show that the model accurately accounts for the

  8. Ion adsorption on oxides : surface charge formation and cadmium binding on rutile and hematite

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe

  9. Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control

    DEFF Research Database (Denmark)

    Solis, Nestor; Larsen, Martin Røssel; Cordwell, Stuart J

    2010-01-01

    Proteolytic treatment of intact bacterial cells is an ideal means for identifying surface-exposed peptide epitopes and has potential for the discovery of novel vaccine targets. Cell stability during such treatment, however, may become compromised and result in the release of intracellular proteins...... that complicate the final analysis. Staphylococcus aureus is a major human pathogen, causing community and hospital-acquired infections, and is a serious healthcare concern due to the increasing prevalence of multiple antibiotic resistances amongst clinical isolates. We employed a cell surface "shaving" technique...... to trypsin and three identified in the control. The use of a subtracted false-positive strategy improved enrichment of surface-exposed peptides in the trypsin data set to approximately 80% (124/155 peptides). Predominant surface proteins were those associated with methicillin resistance-surface protein SACOL...

  10. Delayed charge recovery discrimination of passivated surface alpha events in P-type point-contact detectors

    Science.gov (United States)

    Gruszko, J.; Majorana Collaboration

    2017-09-01

    The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.

  11. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  12. Contribution of inner shell electrons to position-dependent stopping powers of a crystal surface

    International Nuclear Information System (INIS)

    Narumi, Kazumasa; Fujii, Yoshikazu; Kishine, Keiji; Kurakake, Hiroshi; Kimura, Kenji; Mannami, Michi-hiko

    1994-01-01

    Position-dependent stopping powers of the (001) surface of SnTe single crystal for specularly reflected 15 - 200 keV H + ions are studied. The position dependence of the experimental stopping powers varies with the energy of ions. From the comparison with the theoretical stopping powers based on both the single ion-electron collision and the collective excitation of the valence electrons, it is concluded that the observed change in the position-dependent stopping powers with energy of H + is due to the variation of contribution of inner shell electrons to stopping. (author)

  13. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  14. Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning

    DEFF Research Database (Denmark)

    Zhang, X.H.; Andersen, Ole Baltazar

    2006-01-01

    Five days of continuous GPS observation data were collected in the frontal zone of the Amery ice shelf and subsequently post-processed using precise point position (PPP) technology based on precise orbit and clock products from the International GNSS service. The surface ice flow velocity of the ...

  15. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay

  16. Anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma

    DEFF Research Database (Denmark)

    Villarruel, Jenni Martinez; Li, Xiao Q.; Bach-Holm, Daniella

    2017-01-01

    Purpose: To compare the anterior lamina cribrosa (LC) surface position in patients with idiopathic intracranial hypertension (IIH), primary open-angle glaucoma (high-tension glaucoma [HTG] and normal-tension glaucoma [NTG]), and healthy controls using enhanced depth imaging spectral-domain optical...

  17. Oscillations of centroid position and surface area of soccer teams in small-sided games

    NARCIS (Netherlands)

    Frencken, Wouter; Lemmink, Koen; Delleman, Nico; Visscher, Chris

    2011-01-01

    There is a need for a collective variable that captures the dynamics of team sports like soccer at match level. The centroid positions and surface areas of two soccer teams potentially describe the coordinated flow of attacking and defending in small-sided soccer games at team level. The aim of the

  18. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar

    2011-01-31

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Charge transfer effects on the Fermi surface of Ba0.5K 0.5Fe2As2

    KAUST Repository

    Nazir, Safdar; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2011-01-01

    Ab-initio calculations within density functional theory are performed to obtain a more systematic understanding of the electronic structure of iron pnictides. As a prototypical compound we study Ba0.5K 0.5Fe2As2 and analyze the changes of its electronic structure when the interaction between the Fe2As 2 layers and their surrounding is modified. We find strong effects on the density of states near the Fermi energy as well as the Fermi surface. The role of the electron donor atoms in iron pnictides thus cannot be understood in a rigid band picture. Instead, the bonding within the Fe2As 2 layers reacts to a modified charge transfer from the donor atoms by adapting the intra-layer Fe-As hybridization and charge transfer in order to maintain an As3- valence state. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mechanisms of Zr surface corrosion determined via molecular dynamics simulations with charge-optimized many-body (COMB) potentials

    International Nuclear Information System (INIS)

    Noordhoek, Mark J.; Liang, Tao; Chiang, Tsu-Wu; Sinnott, Susan B.; Phillpot, Simon R.

    2014-01-01

    Highlights: • An interatomic potential for zirconium–zirconium oxide–zirconium hydride is presented. • Diffusion of oxygen and hydrogen into Zr (0 0 0 1). • Deposition of O 2 and H 2 O on low-index Zr surfaces. • Surface structure affects resulting corrosion behavior. - Abstract: A charge-optimized many-body (COMB) potential is proposed for the zirconium–zirconium oxide–zirconium hydride system. This potential is developed to describe the energetics of the interactions of oxygen and hydrogen with zirconium metal. We perform classical molecular dynamics simulations showing the initial corrosion behavior of three low-index zirconium surfaces via the deposition of O 2 and H 2 O molecules. The basal (0 0 0 1) surface shows greater resistance to oxygen diffusion than the prism (101 ¯ 0) and (112 ¯ 0) surfaces. We suggest ways in which the surface structure has a unique role in the experimentally observed enhanced corrosion of the prism surfaces

  1. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    Science.gov (United States)

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  2. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  3. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  4. Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Singha, R.K. [Department of Physics, Visva-Bharati, Santiniketan 731235 (India); Manna, S.; Bar, R.; Das, S. [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur 721302 (India)

    2017-06-15

    Highlights: We have elaborately explained the individual Ge QD charging phenomena and current transport, which is very important to understand the Ge/Si nano devices. This paper will give a flavor to properly understand these phenomena linked together along with the photocurrent mechanism which is related to the Ge/Si valence band offset. • Both the CAFM and KPFM techniques point out the functionality of doping nature of the underneath Si substrate on the aforementioned characteristics of Ge QDs. • Analysis of the surface potential mapping using KPFM technique yields an approximate valence band offset measurement which is required to understand the intra-valence transition of holes for the realization of long wavelength infrared photodetector. • KPFM and CAFM can be utilized to explore the charging/discharging phenomena of dots and their composition variations. • Current-voltage (I–V) characteristics of the individual Ge QD strongly depends on the individual QD size. • Energy band diagrams for diamond tip and Ge QD shows the higher barrier for electrons and lower barrier for holes allowing the easy tunneling for holes to dominate the transport. - Abstract: It is fundamentally important to understand the nanoscale electronic properties of a single quantum dot (QD) contrary to an ensemble of QDs. Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM) are two important tools, which could be employed to probe surface potential, charging phenomena, and current transport mechanism of individual QD. We demonstrate the aforementioned characteristics of self-assembled Ge QDs, which was grown on Si substrates by solid source molecular beam epitaxy driven by the Stranski-Krastanov method. Study reveals that each Ge QD acts as charge storage node even at zero applied bias. The shape, size and density of QDs could be well probed by CAFM and KPFM, whereas QD facets could be better resolved by the conductive tip. The CAFM investigation

  5. A new concept positive (negative) surface ionization source for RIB applications

    International Nuclear Information System (INIS)

    Alton, G.D.; Welton, R.F.; Cui, B.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed. fabricated, and tests completed which can operate in either positive- or negative-ion beam generation modes without mechanical changes to the source. The highly permeable, composite Ir/C has an intrinsic work function of 0 = 5.29 eV and can be used directly for the generation of positive-ion beams of highly electropositive elements. For negative-surface ionization, the work function is lowered by dynamic flow of a highly electropositive adsorbate such as Cs through the ionizer matrix. The results of initial testing indicate that the source is reliable, stable and easy to operate, with efficiencies for Cs + estimated to exceed 60% and as high as ∼50% for F - generation. The design features, operational principles, and initial performance of the source for generating Cs + and F - , when operated with Cs, are discussed in this article

  6. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  7. Electrical Double-Layer and Ion Bridging Forces between Symmetric and Asymmetric Charged Surfaces in the Presence of Mono- and Divalent Ions

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Feilberg, Karen Louise; Yan, Wei

    2017-01-01

    charged (3-aminopropyl)trimethoxysilane, and the negatively charged (3-mercaptopropyl)trimethoxysilane. The interactions between the three symmetric systems, as well as between the three asymmetric combinations of surfaces, were measured and compared to calculated electrical double-layer forces...

  8. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiaojun Tao

    Full Text Available Nanoparticle (NP compositions such as hydrophobicity and surface charge are vital to determine the presence and amount of human serum albumin (HSA binding. The HSA binding influences drug release, biocompatibility, biodistribution, and intercellular trafficking of nanoparticles (NPs. Here, we prepared 2 kinds of nanomaterials to investigate HSA binding and evaluated drug release of HSA-bound NPs. Polysaccharides (pullulan carboxyethylated to provide ionic derivatives were then conjugated to cholesterol groups to obtain cholesterol-modified carboxyethyl pullulan (CHCP. Cholesterol-modified pullulan (CHP conjugate was synthesized with a similar degree of substitution of cholesterol moiety to CHCP. CHCP formed self-aggregated NPs in aqueous solution with a spherical structure and zeta potential of -19.9 ± 0.23 mV, in contrast to -1.21 ± 0.12 mV of CHP NPs. NPs could quench albumin fluorescence intensity with maximum emission intensity gradually decreasing up to a plateau at 9 to 12 h. Binding constants were 1.12 × 10(5 M(-1 and 0.70 × 10(5 M(-1 to CHP and CHCP, respectively, as determined by Stern-Volmer analysis. The complexation between HSA and NPs was a gradual process driven by hydrophobic force and inhibited by NP surface charge and shell-core structure. HSA conformation was altered by NPs with reduction of α-helical content, depending on interaction time and particle surface charges. These NPs could represent a sustained release carrier for mitoxantrone in vitro, and the bound HSA assisted in enhancing sustained drug release.

  9. Fast time-of-flight camera based surface registration for radiotherapy patient positioning

    International Nuclear Information System (INIS)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    Purpose: This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. Methods: A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an ''ICP only'' strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. Results: The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07 deg. ± 0.05 deg., respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. Conclusions: The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration

  10. Synthetic peptides derived from salivary proteins and the control of surface charge densities of dental surfaces improve the inhibition of dental calculus formation.

    Science.gov (United States)

    Grohe, Bernd

    2017-08-01

    Peptides descended from the salivary proteins statherin and histatin were recently identified in saliva and the acquired enamel pellicle (AEP), a proteomic layer