WorldWideScience

Sample records for surface plasmon excitations

  1. Excitations of surface plasmon polaritons by attenuated total reflection, revisited

    International Nuclear Information System (INIS)

    Barchesi, D.; Otto, A.

    2013-01-01

    Many textbooks and review papers are devoted to plasmonics based on a selection of the numerous bibliography. But none describes the details of the first culmination of plasmonics in 1968, when surface plasmons become a field of optics. The coupling of light with the surface plasmon leads to the surface plasmon polariton (SPP). Therefore, the authors chose to associate historical insight (not avoiding a personal touch), a modern mathematical formulation of the excitation of the SPP by attenuated total reflection (ATR), considered as well understood since decades, and experimental applications since 1969, including recent developments.

  2. Electrical Excitation of Surface Plasmon Polaritons

    NARCIS (Netherlands)

    Loon, R.V.A. van

    2009-01-01

    A surface plasmon polariton (SPP) is an electromagnetic wave propagating at the interface between a metal and a dielectric material. The two-dimensional confinement of SPPs and the tunability of their dispersion enable optical functionality that cannot be achieved with regular dielectrics. Several

  3. Excitation of multipolar surface plasmon resonance in plasmonic nanoparticles by complex accelerating beams

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Jiafang; Li, Zhi-Yuan; Chen, Yue-Gang

    2015-01-01

    In this paper, through a vector-spherical harmonics approach, we investigate the optical spectra of plasmonic Au nanoparticles excited by two special accelerating beams: a non-paraxial Airy beam and a Bessel beam. We systematically analyze the impacts of the beam profile, phase, and helical wave front of the electromagnetic fields on the optical spectrum and the excitation of the surface plasmon resonance (SPR). We find that the high-order phase in the Airy beam would result in strong plasmonic oscillations in the optical spectra, while the cone angle and orbital angular momentum carried by the Bessel beam could be employed to engineer the plasmon modes excited in Au nanoparticles. Furthermore, the optical spectrum excited by a combined Airy–Bessel–Gauss beam is discussed. The study could help to deeply explore new ways to manipulate SPR in metal nanoparticles via the wave front engineering of optical beams for enhancing light–matter interaction and optical sensing performance. (paper)

  4. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... nm. We argue that excitation of this mode, featuring very strong absorption, has a crucial role in experimental realizations of non-resonant light absorption by ultra-sharp convex grooves with fabrication-induced asymmetry. The occurrence of the antisymmetric GSP mode along with the fundamental GSP...

  5. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  6. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  7. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  8. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  9. Excitation of nanowire surface plasmons by silicon vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Davydov, Valery A.; Agafonov, Viatcheslav N.

    2017-01-01

    , the corresponding exploitation of SiV centers has remained so far uncharted territory. Here, we report on the excitation of surface plasmon modes supported by silver nanowires using SiV centers in nanodiamonds. The coupling of SiV center fluorescence to surface plasmons is observed, when a nanodiamond situated...

  10. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  11. Giant enhancement of sum-frequency yield by surface-plasmon excitation

    NARCIS (Netherlands)

    van der Ham, E. W. M.; Vrehen, Q. H. F.; Eliel, E. R.; Yakovlev, V. A.; Valieva, E. V.; Kuzik, L. A.; Petrov, J. E.; Sychugov, V. A.; van der Meer, A. F. G.

    1999-01-01

    We show experimentally that the radiation generated in infrared-visible sum-frequency mixing at an air-silver interface can be greatly enhanced when the visible input beam excites a surface plasmon-polariton at the interface. With either a prism or a grating used to couple the visible radiation with

  12. Local excitation of surface plasmon polaritons by second-harmonic generation in crystalline organic nanofibers

    DEFF Research Database (Denmark)

    Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek

    2012-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation....... This is explained both as a consequence of approaching the peak of the fibers nonlinear response at the wavelength 772 nm, and as a consequence of better coupling to SPPs due to their stronger confinement. © 2012 Optical Society...

  13. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Surface plasmon polariton excitation by second harmonic generation in single organic nanofibers

    DEFF Research Database (Denmark)

    Simesen, Paw; Søndergaard, Thomas; Skovsen, Esben

    2015-01-01

    Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in individual aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The SH-SPP generation is considered theoretically and investigated...... experimentally with angular-resolved leakage radiation spectroscopy for normal incidence of the excitation beam. Both measurements and simulations show asymmetric excitation of left- and right-propagating SH-SPPs, which is explained as an effect of fiber molecules being oriented at an angle relative...... to the silver film surface....

  15. Ultraviolet Beam Focusing in Gallium Arsenide by Direct Excitation of Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    Senfeng Lai

    2015-01-01

    Full Text Available This paper proposed that ultraviolet beam could be focused by gallium arsenide (GaAs through direct excitation of surface plasmon polaritons. Both theoretical analysis and computer simulation showed that GaAs could be a reasonably good plasmonic material in the air in the deep ultraviolet waveband. With a properly designed bull’s eye structure etched in GaAs, the ultraviolet electric field could be enhanced to as high as 20 times the incident value, and the full-width-half-maximum (FWHM of the light beam could be shrunk from ~48° to ~6°. As a plasmonic material, GaAs was compared to Ag and Al. Within the studied ultraviolet waveband, the field enhancement in GaAs was much stronger than Ag but not as high as Al.

  16. Long-range surface-plasmon-polariton excitation at the quantum level

    International Nuclear Information System (INIS)

    Ballester, D.; Tame, M. S.; Kim, M. S.; Lee, C.; Lee, J.

    2009-01-01

    We provide the quantum-mechanical description of the excitation of long-range surface-plasmon polaritons (LRSPPs) on thin metallic strips. The excitation process consists of an attenuated-reflection setup, where efficient photon-to-LRSPP wave-packet transfer is shown to be achievable. For calculating the coupling, we derive the first quantization of LRSPPs in the polaritonic regime. We study quantum statistics during propagation and characterize the performance of photon-to-LRSPP quantum state transfer for single-photons, photon-number states, and photonic coherent superposition states.

  17. Dichroic directional excitation of surface plasmon based on an integer-programming model.

    Science.gov (United States)

    Chen, Quansheng; Sun, Yuanchao; Wang, Yueke

    2015-04-01

    A silver film perforated with two subwavelength uniform slits is proposed for dichroic directional excitation of surface plasmon polaritons (SPPs). Under backside oblique illumination, the SPPs for two work wavelengths can propagate along the two opposite directions or in the same direction. Based on SPP interference, an integer-programming model is established for dichroic directional excitation of SPPs. The branch and bound method is introduced to find the optimal solutions for the integer-programming model, and therefore, the parameters of the structure and illumination angles can be obtained. The field distribution of the structure is investigated by using the finite-difference time-domain method (FDTD) to verify our design. Our theoretical model can achieve dichroic directional excitation of SPPs, simultaneously.

  18. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    plasmon polaritons (SPPs) in organic/dielectric/metal systems. We have transferred the organic p-6P nanofibers onto a thin silver film covered with a dielectric (silicon dioxide) spacer layer with varying thicknesses. Coupling is investigated by two-photon fluorescence-lifetime imaging microscopy (FLIM...... of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices. © (2016) COPYRIGHT Society of Photo...

  19. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    plasmon polaritons (SPPs) in organic/dielectric/metal systems. We have transferred the organic p-6P nanofibers onto a thin silver film covered with a dielectric (silicon dioxide) spacer layer with varying thicknesses. Coupling is investigated by two-photon fluorescence-lifetime imaging microscopy (FLIM...... of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices. © (2016) COPYRIGHT Society of Photo...

  20. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing

    Science.gov (United States)

    Lirtsman, Vladislav; Golosovsky, Michael; Davidov, Dan

    2017-10-01

    We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.

  1. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  2. Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon Polarirons Excited by Cyclotron Electron Beam

    Science.gov (United States)

    Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang

    2015-01-01

    Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516

  3. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  4. Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco-Pena, Victor [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Minin, Igor V.; Minin, Oleg V. [National Research Tomsk State University, Lenina Ave., 36, Tomsk, 634050 (Russian Federation); Beruete, Miguel [Antennas Group - TERALAB, Universidad Publica de Navarra, Campus Arrosadia, 31006, Pamplona (Spain); Institute of Smart Cities, Public University of Navarra, 31006, Pamplona (Spain)

    2016-10-15

    In this paper we study the excitation of photonic nanojets (PNJ) in 3D dielectric cuboids by surface plasmons at telecommunication wavelengths. The analysis is done using the effective refractive index approach. It is shown that the refractive index contrast between the regions with and without cuboid should be roughly less than 2 in order to generate jets at the output of the cuboid. The best performance at λ{sub 0} = 1550 nm is obtained when the height of the cuboid is 160 nm producing a jet just at the output interface with a subwavelength resolution of 0.68λ{sub 0} and a high intensity enhancement (x 5) at the focus. The multi-wavelength response is also studied demonstrating that it is possible to use the proposed structure at different wavelengths. Finally, the backscattering enhancement is numerically evaluated by inserting a metal particle within the PNJ region, demonstrating a maximum value of ∝2.44 dB for a gold sphere of radius 0.1λ{sub 0}. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  6. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration

    Czech Academy of Sciences Publication Activity Database

    Bulíř, Jiří; Zikmund, Tomáš; Novotný, Michal; Lančok, Ján; Fekete, Ladislav; Juha, Libor

    2016-01-01

    Roč. 122, č. 4 (2016), s. 1-7, č. článku 412. ISSN 0947-8396 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : local surface plasmon resonance * luminescence * XUV laser * LiF Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016

  7. Hybrid-Mode-Assisted Long-Distance Excitation of Short-Range Surface Plasmons in a Nanotip-Enhanced Step-Index Fiber.

    Science.gov (United States)

    Tuniz, Alessandro; Chemnitz, Mario; Dellith, Jan; Weidlich, Stefan; Schmidt, Markus A

    2017-02-08

    We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.

  8. Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface.

    Science.gov (United States)

    Paul, Aniruddha; Kenens, Bart; Hofkens, Johan; Uji-i, Hiroshi

    2012-06-19

    In this contribution, we report an effective and relatively simple route to grow triangular flat-top silver nanoparticles (NPs) directly on a solid substrate from smaller NPs through a wet photochemical synthesis. The method consists of fixing small, preformed nanotriangles (NTs) on a substrate and subsequently irradiating them with light in a silver seed solution. Furthermore, the use of linearly polarized light allows for exerting control on the growth direction of the silver nanotriangles on the substrate. Evidence for the role of surface plasmon resonances in governing the growth of the NTs is obtained by employing linear polarized light. Thus, this study demonstrates that light-induced, directional synthesis of nanoparticles on solid substrates is in reach, which is of utmost importance for plasmonic applications.

  9. Culturing photosynthetic bacteria through surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David [Department of Mechanical and Industrial Engineering and Centre for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  10. Culturing photosynthetic bacteria through surface plasmon resonance

    Science.gov (United States)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-01

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 μm thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  11. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  12. Propagation and excitation of graphene plasmon polaritons

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jeppesen, Claus

    2013-01-01

    We theoretically investigate the propagation of graphene plasmon polaritons in graphene nanoribbon waveguides and experimentally observe the excitation of the graphene plasmon polaritons in a continuous graphene monolayer. We show that graphene nanoribbon bends do not induce any additional loss...... and nanofocusing occurs in a tapered graphene nanoriboon, and we experimentally demonstrate the excitation of graphene plasmon polaritonss in a continuous graphene monolayer assisted by a two-dimensional subwavelength silicon grating....

  13. Efficient channel-plasmon excitation by nano-mirrors

    DEFF Research Database (Denmark)

    Radko, Ilya; Holmgaard Stær, Tobias; Han, Zhanghua

    2011-01-01

    We demonstrate a configuration for efficient channel-plasmon mode excitation using tapered terminations of V-shaped groove waveguides. The plasmon excitation is achieved by directly illuminating tapers of gold V-grooves with a focused laser beam, incident normally onto the sample surface. For near......-infrared wavelengths, we find experimentally as well as numerically, by conducting three-dimensional finite-difference time-domain calculations, that the efficiency of channel-plasmon mode excitation exceeds 10% in the optimum configuration, which is the highest experimentally observed efficiency of coupling from free-propagation...

  14. Self-excited plasmon polaritons in counterstreaming quantum plasmas

    Science.gov (United States)

    Moslem, W. M.; Lazar, M.; Sabry, R.; Shukla, P. K.

    2009-12-01

    The effect of counterstreaming on the quantum plasmon-polariton excitation is examined. For this purpose, the dispersion relation describing a counterstreaming quantum plasma system has been derived. Solutions are displayed numerically and analyzed for different values of the quantum parameters and the streaming electrons. It is found that the quantum effects and the two-stream instability are relevant for the self-consistently excited surface plasmon polaritons.

  15. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  16. Comment on ``Enhanced transmission of light through a gold film due to excitation of standing surface-plasmon Bloch waves"

    OpenAIRE

    Weiner, J.

    2007-01-01

    The purpose of this comment is first to correct a misapprehension of the role played by composite wave diffraction on surface-wave generation at subwavelength structures and second to point out that periodic Bloch structures are unnecessary for the efficient production of the surface plasmon polariton (SPP) guided mode either as traveling or standing waves. Guided surface waves originate from simple slit or groove edges illuminated under normal incidence, and one-dimensional (1-D) surface cav...

  17. Multipole plasmon excitations of C{sub 60} dimers

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-07-14

    We study the multipole plasmon mode frequencies of a pair of C{sub 60} molecules by means of the linearized hydrodynamic theory for electronic excitations on the each C{sub 60} surface. We apply the two-center spherical coordinate system for mathematical convenience and find an explicit form of the surface plasmon energies. Numerical result shows when approaching the two C{sub 60} molecules, the coupling between the bare plasmon modes leads to the appearance of additional modes having energies that are different from those of the isolated C{sub 60} molecules.

  18. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  19. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  20. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  1. Surface Plasmon Singularities

    Directory of Open Access Journals (Sweden)

    Gabriel Martínez-Niconoff

    2012-01-01

    Full Text Available With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.

  2. Surface plasmon enhanced LED

    OpenAIRE

    Vučković, Jelena; Lončar, Marko; Painter, Oskar; Scherer, Axel

    2000-01-01

    Summary form only given. We designed and fabricated an LED based on a thin semiconductor membrane (λ/2) with silver mirrors. A large spontaneous emission enhancement and a high modulation speed are obtainable due to the strong localization of the electromagnetic field in the microcavity. The coupling to surface plasmon modes which are subsequently scattered out by means of a grating is used to improve the extraction efficiency of the LED. The bottom mirror is thick and unpatterned. The top mi...

  3. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  4. Slow relaxation of surface plasmon excitations in Au.sub.55./sub.: the key to efficient plasmonic heating in Au/TiO.sub.2./sub.

    Czech Academy of Sciences Publication Activity Database

    Ranasingha, O.; Wang, H.; Zobač, Vladimír; Jelínek, Pavel; Panapitiya, G.; Neukirch, A.J.; Prezhdo, O.V.; Lewis, J.P.

    2016-01-01

    Roč. 7, č. 8 (2016), s. 1563-1569 ISSN 1948-7185 Institutional support: RVO:68378271 Keywords : Au nanoparticles * non-adiabatic molecular dynamics * plasmonics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 9.353, year: 2016

  5. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Science.gov (United States)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David

    2014-01-01

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m2 and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m2, with individual biofilms producing as much as 12 μW/m2.

  6. A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Samsonoff, Nathan; Ooms, Matthew D.; Sinton, David [Department of Mechanical and Industrial Engineering, and Institute for Sustainable Energy, University of Toronto, Toronto M5S 3G8 (Canada)

    2014-01-27

    Excitation of photosynthetic biofilms using surface-confined evanescent light fields enables energy dense photobioreactors, while electrode-adhered biofilms can provide electricity directly. Here, we demonstrate concurrent light delivery and electron transport through a plasmonically excited metal film. Biofilms of cyanobacterium Synechococcus bacillaris on 50-nm gold films are excited via the Kretschmann configuration at λ = 670 nm. Cells show light/dark response to plasmonic excitation and grow denser biofilms, closer to the electrode surface, as compared to the direct irradiated case. Directly irradiated biofilms produced average electrical powers of 5.7 μW/m{sup 2} and plasmonically excited biofilms produced average electrical powers of 5.8 μW/m{sup 2}, with individual biofilms producing as much as 12 μW/m{sup 2}.

  7. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2014-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyon...

  8. Tunable surface plasmon devices

    Science.gov (United States)

    Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  9. Enhanced photoemission from laser-excited plasmonic nano-objects in periodic arrays

    Czech Academy of Sciences Publication Activity Database

    Fedorov, N.; Geoffroy, G.; Duchateau, G.; Štolcová, L.; Proška, J.; Novotný, F.; Domonkos, Mária; Jouin, H.; Martin, P.; Raynaud, M.

    2016-01-01

    Roč. 28, č. 31 (2016), s. 1-15, č. článku 315301. ISSN 0953-8984 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : photoemission * laser excitation * surface plasmon * plasmonics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.649, year: 2016

  10. How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    Directory of Open Access Journals (Sweden)

    Abdelmalek Ahmed

    2017-01-01

    Full Text Available A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation.

  11. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  12. Graphene Plasmonics: Guiding, Excitation and Strong SERS Enhancement

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Propagation of graphene plasmons in nanoribbon waveguides is numerically investigated and excitation of the graphene plasmons in a continuous graphene monolayer is experimentally demonstrated. Interaction between a graphene monolayer with metallic nanostructures is further experimentally studied......, and strong SERS enhancement for the graphene monolayer is observed with the aid of metallic nanostructures....

  13. Polarization-Directed Surface Plasmon Polariton Launching

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2017-01-05

    The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Additional experiments on single step edges also show asymmetric PSP launching with respect to polarization, analogous to the trench results. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Simultaneous excitation of the electric fields localized at both edges of the trench results in complex interactions between the right- and left-side PSP modes with Fabry-Perot and cylindrical modes. This results in a trench width-dependent PSP intensity ratio using otherwise identical driving fields. A systematic exploration of polarization directed PSP launching from a series of trench structures reveals an optimal PSP contrast ratio of 4.2 using a 500 nm-wide trench.

  14. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine ph...

  15. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  16. Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach

    DEFF Research Database (Denmark)

    Gonçalves, P:A.D.; Dias, E. J. C.; Bludov, Yu V.

    2016-01-01

    We study electromagnetic scattering and subsequent plasmonic excitations in periodic grids of graphene ribbons. To address this problem, we develop an analytical method to describe the plasmon-assisted absorption of electromagnetic radiation by a periodic structure of graphene ribbons forming...... a diffraction grating for THz and mid-IR light. The major advantage of this method lies in its ability to accurately describe the excitation of graphene surface plasmons (GSPs) in one-dimensional (1D) graphene gratings without the use of both time-consuming, and computationally demanding full-wave numerical...... compare the theoretical data with spectra taken from experiments, for which we observe a very good agreement. These theoretical tools may therefore be applied to design new experiments and cutting-edge nanophotonic devices based on graphene plasmonics....

  17. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands.

    Science.gov (United States)

    Nguyen, Huy A; Banerjee, Progna; Nguyen, Duc; Lyding, Joseph W; Gruebele, Martin; Jain, Prashant K

    2018-04-19

    An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.

  18. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  19. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons.

    Science.gov (United States)

    Sun, Zhijun; Zuo, Xiaoliu; Guan, Tengpeng; Chen, Wei

    2014-02-24

    Manipulation of light in subwavelength scale can be realized with metallic nanostructures for TM-polarization components due to excitation of surface plasmons. TE-polarization components of light are usually excluded in subwavelength metal structures for mesoscopic optical interactions. Here we show that, by introducing very thin high index dielectric layers on structured metal surfaces, pseudo surface polarization currents can be induced near metal surfaces, which bring to excitation of artificial TE-mode surface waves at the composite meta-surfaces. This provides us a way to manipulate TE-polarized light in subwavelength scale. Typical properties of the artificial surface waves are further demonstrate for their excitation, propagation, optical transmission, and enhancement and resonances of the localized fields, mimicking those of surface plasmon waves.

  20. Excitation of plasmonic waves in metal-dielectric structures by a laser beam using holography principles

    Science.gov (United States)

    Ignatov, A. I.; Merzlikin, A. M.

    2018-03-01

    A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.

  1. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  2. Surface Plasmons on Highly Doped InP

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Ottaviano, Luisa; Semenova, Elizaveta

    2016-01-01

    . The derived dielectric function is used to simulate the excitation of surface plasmons by a diffraction grating made of the grown material. The grating structure is fabricated using standard nanofabrication techniques. Spectral features from the grating agree well with the simulations and show spp coupling...

  3. Acousto-optical Transducer with Surface Plasmons

    Science.gov (United States)

    Kolomenskii, A. A.; Surovic, E.; Schuessler, H. A.

    2018-04-01

    The surface plasmon resonance (SPR) is a sensitive technique for the detection of changes in dielectric parameters in close proximity to a metal film supporting surface plasmon waves. Here we study the application of the SPR effect to an efficient conversion of an acoustic signal into an optical one. Such a transducer potentially has a large bandwidth and good sensitivity. When an acoustic wave is incident onto a receiving plate positioned within the penetration depth of the surface plasmons, it creates displacements of the surface of the plate and, thus, modulates the dielectric properties in the proximity of the gold film. This modulation, in turn, modifies the light reflection under surface plasmon resonance conditions. We simulate characteristics of this acousto-optical transducer with surface plasmons and provide sets of parameters at the optical wavelength of 800 nm and 633 nm for its realization.

  4. Creation and application of surface plasmon vortices (Conference Presentation)

    Science.gov (United States)

    Huang, Chen-Bin

    2016-09-01

    Optical vortices are waves carrying orbital angular momentum and exhibit helical phase fronts. Helical phase front leads to discontinuous azimuthal phase jumps and the number of phase discontinuities (abrupt phase jumps from-pi to pi) within a 2pi range is referred to as the topological charge of an optical vortex. Optical vortices have been applied in trapping and spinning of microparticles, and recently in free-space data transmission. Generation of optical beams carrying orbital angular momentum has received increasing attentions recently, both in the far-field and in the near-field. Near-field vortices are typically generated through the excitation of surface plasmons (SP). However, the intensity patterns of the SP vortices generated thus far, just like the free-space vortex beams, are all azimuthally symmetrical (annular) since mathematically they conform to the Bessel function. In this talk, I will first introduce our recent progress on spatial shaping the near-field spatial patterns of surface plasmon vortices. Moreover, in all past studies, SP vortices were excited by far-field circularly polarized light. This means the functionality of the SP devices were merely converting the far-field spin angular momentum to orbital angular momentum in the near-field. In the second part, I will focus on the creation of surface plasmon vortex using non-angular momentum excitation. In the last part, the application of surface plasmon vortex for particle trapping and rotation will be presented.

  5. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures

    Science.gov (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih

    2017-08-01

    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  6. Fourier Transform Surface Plasmon Resonance (FTSPR) with Gyromagnetic Plasmonic Nanorods.

    Science.gov (United States)

    Jung, Insub; Yoo, Haneul; Jang, Hee-Jeong; Cho, Sanghyun; Lee, Kyungeun; Hong, Seunghun; Park, Sungho

    2018-02-12

    An unprecedented active and dynamic sensing platform based on a LSPR configuration that is modulated by using an external magnetic field is reported. Electrochemically synthesized Au/Fe/Au nanorods exhibited plasmonically active behavior through plasmonic coupling, and the middle ferromagnetic Fe block responded to a magnetic impetus, allowing the nanorods to be modulated. The shear force variation induced by the specific binding events between antigens and antibodies on the nanorod surface is used to enhance the sensitivity of detection of antigens in the plasmonics-based sensor application. As a proof-of-concept, influenza A virus (HA1) was used as a target protein. The limit of detection was enhanced by two orders of magnitude compared to that of traditional LSPR sensing. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface plasmon polariton-induced hot carrier generation for photocatalysis.

    Science.gov (United States)

    Ahn, Wonmi; Ratchford, Daniel C; Pehrsson, Pehr E; Simpkins, Blake S

    2017-03-02

    Non-radiative plasmon decay in noble metals generates highly energetic carriers under visible light irradiation, which opens new prospects in the fields of photocatalysis, photovoltaics, and photodetection. While localized surface plasmon-induced hot carrier generation occurs in diverse metal nanostructures, inhomogeneities typical of many metal-semiconductor plasmonic nanostructures hinder predictable control of photocarrier generation and therefore reproducible carrier-mediated photochemistry. Here, we generate traveling surface plasmon polaritons (SPPs) at the interface between a noble metal/titanium dioxide (TiO 2 ) heterostructure film and aqueous solution, enabling simultaneous optical and electrochemical interrogation of plasmon-mediated chemistry in a system whose resonance may be continuously tuned via the incident optical excitation angle. To the best of our knowledge, this is the first experimental demonstration of SPP-induced hot carrier generation for photocatalysis. We found electrochemical photovoltage and photocurrent responses as SPP-induced hot carriers drive both solution-based oxidation of methanol and the anodic half-reaction of photoelectrochemical water-splitting in sodium hydroxide solution. A strong excitation angle dependence and linear power dependence in the electrochemical photocurrent confirm that the photoelectrochemical reactions are SPP-driven. SPP-generated hot carrier chemistry was recorded on gold and silver and with two different excitation wavelengths, demonstrating potential for mapping resonant charge transfer processes with this technique. These results will provide the design criteria for a metal-semiconductor hybrid system with enhanced hot carrier generation and transport, which is important for the understanding and application of plasmon-induced photocatalysis.

  8. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  9. Stimulated emission of surface plasmons by electron tunneling in metal-barrier-metal structures

    Science.gov (United States)

    Siu, D. P.; Gustafson, T. K.

    1978-01-01

    It is shown that correlation currents arising from the superposition of pairs of states on distinct sides of a potential barrier in metal-barrier-metal structures can result in inelastic tunneling through the emission of surface plasmons. Net gain of an externally excited plasmon field is possible.

  10. Semiclassical theory of nonclocal plasmonic excitation in metallic nanostructures

    DEFF Research Database (Denmark)

    Toscano, Giuseppe

    , that is commonly used in plasmonics. In particular, we show that the surface charge density has a finite thickness in the hydrodynamic model, and we discuss the correct form of the boundary conditions in the case of no electron spill-out. We present the numerical implementation of the hydrodynamic equations...

  11. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  12. Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gühlke, Marina; Kneipp, Janina

    2014-01-01

    We observed strong surface-enhanced Raman scattering on discontinuous nanostructured aluminum films using 785 nm excitation even though dielectric constants of this metal suggest plasmon supported spectroscopy in the ultraviolet range. The excitation of SERS correlates with plasmon resonances in ...... in the 1.3–2.5 eV range identified in electron energy loss spectra....

  13. Plasmon excitations in doped square-lattice atomic clusters

    Science.gov (United States)

    Wang, Yaxin; Yu, Ya-Bin

    2017-12-01

    Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).

  14. Terahertz surface plasmon-polaritons in one-dimensional graphene based Fibonacci photonic superlattices

    Science.gov (United States)

    Namdar, Abdolrahman; Feizollahi Onsoroudi, Rana; Khoshsima, Habib; Sahrai, Mostafa

    2018-03-01

    The surface plasmon-polaritons in one-dimensional graphene-based Fibonacci photonic superlattices in the terahertz frequency range have been theoretically investigated. Our numerical study shows that surface plasmon-polaritons can be realized in both transverse electric and transverse magnetic polarizations. It is shown that these modes are manageable by varying the quasi-periodic generation orders which play a critical role in the occurrence of surface modes. In addition, the effect of thickness of cap layer and chemical potential of graphene sheets on surface plasmon-polaritons and their electric field distribution are studied. We have verified the excitation of surface plasmon-polaritons by using the attenuated total reflection method. This inspection confirms that all the predicted surface modes in the dispersion curves are actually excitable with this method.

  15. Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers.

    Science.gov (United States)

    Watanabe, Koyo; Miyazaki, Ryosuke; Terakado, Goro; Okazaki, Takashi; Morigaki, Kenichi; Kano, Hiroshi

    2012-09-01

    We propose scanning localized surface plasmon microscopy of mixed lipid bilayers with submicron domain structures. Our observation technique, which employs localized surface plasmons excited on a flat metal surface as a sensing probe, provides non-label and non-contact imaging with the spatial resolution of ∼ 170 nm. We experimentally show that submicron domain structures of mixed lipid bilayers can be observed. A detailed analysis finds that the domains are classified into two groups.

  16. Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate Matter

    Science.gov (United States)

    Luthra, Antriksh

    With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different

  17. Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.

    Science.gov (United States)

    Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo

    2018-02-14

    Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

  18. Plasmonic flat surface Fabry-Perot interferometry

    Science.gov (United States)

    Sain, Basudeb; Kaner, Roy; Bondy, Yaara; Prior, Yehiam

    2018-02-01

    We report measurements of the optical transmission through a plasmonic flat surface interferometer. The transmission spectrum shows Fabry-Perot-like modes, where for each mode order, the maximal transmission occurs at a gap that grows linearly with wavelength, giving the appearance of diagonal dependence on gap and wavelength. The experimental results are supported by numerical solutions of the wave equations and by a simplified theoretical model that is based on the coupling between localized and propagating surface plasmon. This work explains not only the appearance of the modes but also their sharp dependence on the gap, taking into consideration the refractive indices of the surrounding media. The transmission spectra provide information about the phase difference between the light impinging on the two cavities, enabling interferometric measurement of the light phase by transmission through the coupled plasmonic cavities. The 1° phase-difference resolution is obtained without any propagation distance, thus making this interferometer suitable for on-chip operation.

  19. Colloquium: An algebraic model of localized surface plasmons and their interactions

    Science.gov (United States)

    Davis, T. J.; Gómez, D. E.

    2017-01-01

    Although localized surface plasmons in metal nanoparticles can be modeled by Maxwells equations, the difficulty in solving them forces many researchers to use numerical methods. Such methods give accurate results but rarely provide much insight into the complex behaviors of the surface plasmons, nor do they provide a means to choose a configuration of metal nanoparticles to achieve a desired optical response. This Colloquium presents a simple algebraic approach for modeling localized surface plasmons, their excitation by light, and their interactions with one another. Although the method is not numerically accurate it yields useful insight into plasmon behavior and provides a basis for the design of complex plasmonic devices. The approach relies on a description of the surface plasmons in terms of a set of eigenmodes. However, the functional form of these modes is not usually required and the entire problem is reduced to a simple algebra involving the plasmon amplitudes, resonance terms, and their mutual coupling. The algebraic method is derived from an electrostatic formalism, appropriate for near-field interactions at optical frequencies, which is then used to demonstrate a variety of optical effects associated with localized surface plasmons, such as plasmon hybridization, induced transparency, Fano resonances, optical phase detection, and all-optical modulation, among others.

  20. Unidirectional excitation of graphene plasmon in attenuated total reflection (ATR) configuration

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Hubei University of Education, Wuhan (China). School of Physics and Mechanical and Electrical Engineering; Wu, Yue-Chao [Nanyang Technological University, Singapore (Singapore). Div. of Physics and Applied Physics; Liu, Fang-Li [Maryland Univ., College Park, MD (United States). Joint Quantum Institute

    2016-08-01

    Graphene plasmon has been attracting interests from both theoretical and experimental research due to its gate tunability and potential applications in the terahertz frequency range. Here, we propose an effective scheme to unidirectionally excite the graphene plasmon by exploiting magneto-optical materials in the famous attenuated total reflection (ATR) configuration. We show that the graphene plasmon dispersion relation in such a device is asymmetric in different exciting directions, thus making it possible to couple the incident light unidirectionally to the propagating plasmon. The split of absorption spectrum of graphene clearly indicates that under a magnetic field for one single frequency, graphene plasmon can only be excited in one direction. The possible gate tunablity of excitation direction and the further application of the proposed scheme, such as optical isolator, also are discussed.

  1. Compact surface plasmon-enhanced fluorescence biochip

    Czech Academy of Sciences Publication Activity Database

    Toma, K.; Vala, Milan; Adam, Pavel; Homola, Jiří; Knoll, W.; Dostálek, J.

    2013-01-01

    Roč. 21, č. 8 (2013), s. 10121-10132 ISSN 1094-4087 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Surface plasmons * Diffraction gratings * Biological sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  2. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  3. Asymmetric transmission of surface plasmon polaritons

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 043805 ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : one-way duffarction grating * scattering * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.042, year: 2012

  4. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  5. Focus Issue on surface plasmon photonics introduction

    DEFF Research Database (Denmark)

    Levy, Uriel; Berini, Pierre; Maier, Stefan A.

    2015-01-01

    The 7th International Conference on Surface Plasmon Photonics (SPP7) was held in Jerusalem, Israel from May 31st to June 5th, 2015. This independent series of biennial conferences is widely regarded as the premier series in the field, and the 7th edition maintained the tradition of excellence. Th...

  6. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  7. The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Evlyukhin, Andrey

    2014-01-01

    In this work, the mutual coupling and coherent interaction of propagating and localized surface plasmons within a model-type plasmonic assembly is experimentally demonstrated, imaged, and analyzed. Using interferometric time-resolved photoemission electron microscopy the interplay between ultrash...

  8. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    We present an experimental study of guiding and routing of electromagnetic radiation along the nanometer-thin and micrometer-wide gold stripes embedded in a polymer via excitation of long-range surface plasmon polaritons (LR-SPPs) in a very broad wavelength range from 1000 to 1650 mn. For straight....... The transmission spectra of LR-SPP-based directional couplers are presented demonstrating an efficient (similar to 30 dB) separation of different telecom wavelength bands. Various possibilities for dynamic control of wavelength division/multiplexing with LRSPP-based directional couplers that utilize the thermo...

  9. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  10. Plasmon Modulation Spectroscopy of Noble Metals to Reveal the Distribution of the Fermi Surface Electrons in the Conduction Band

    Directory of Open Access Journals (Sweden)

    Kentaro Takagi

    2017-12-01

    Full Text Available To directly access the dynamics of electron distribution near the Fermi-surface after plasmon excitation, pump-probe spectroscopy was performed by pumping plasmons on noble-metal films and probing the interband transition. Spectral change in the interband transitions is sensitive to the electron distribution near the Fermi-surface, because it involves the d valence-band to the conduction band transitions and should reflect the k-space distribution dynamics of electrons. For the continuous-wave pump and probe experiment, the plasmon modulation spectra are found to differ from both the current modulation and temperature difference spectra, possibly reflecting signatures of the plasmon wave function. For the femtosecond-pulse pump and probe experiment, the transient spectra agree well with the known spectra upon the excitation of the respective electrons resulting from plasmon relaxation, probably because the lifetime of plasmons is shorter than the pulse duration.

  11. Excitation of fluorescent nanoparticles by channel plasmon polaritons propagating in V-grooves

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    Recently, it has been proven that light can be squeezed into metallic channels with subwavelength lateral dimensions. Here, we present the study of the propagation of channel plasmon polaritons confined in gold V-grooves, filled with fluorescent particles. In this way, channel plasmon polaritons......-diameter beads, we show the possibility of individual excitation, what may have applications to develop very sensitive biosensors....

  12. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  13. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  14. Surface Plasmon Wave Adapter Designed with Transformation Optics

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Wubs, Martijn

    2011-01-01

    On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved wit...... with homogeneous anisotropic naturally occurring materials or subwavelength grating-structured dielectric materials. Full wave simulations based on a finite-element method have been performed to validate our proposal.......On the basis of transformation optics, we propose the design of a surface plasmon wave adapter which confines surface plasmon waves on non-uniform metal surfaces and enables adiabatic mode transformation of surface plasmon polaritons with very short tapers. This adapter can be simply achieved...

  15. Plasmonic flat surface Fabry-Perot interferometry

    Directory of Open Access Journals (Sweden)

    Sain Basudeb

    2018-02-01

    Full Text Available We report measurements of the optical transmission through a plasmonic flat surface interferometer. The transmission spectrum shows Fabry-Perot-like modes, where for each mode order, the maximal transmission occurs at a gap that grows linearly with wavelength, giving the appearance of diagonal dependence on gap and wavelength. The experimental results are supported by numerical solutions of the wave equations and by a simplified theoretical model that is based on the coupling between localized and propagating surface plasmon. This work explains not only the appearance of the modes but also their sharp dependence on the gap, taking into consideration the refractive indices of the surrounding media. The transmission spectra provide information about the phase difference between the light impinging on the two cavities, enabling interferometric measurement of the light phase by transmission through the coupled plasmonic cavities. The 1° phase-difference resolution is obtained without any propagation distance, thus making this interferometer suitable for on-chip operation.

  16. Analysis of cell surface antigens by Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanovic, Ivan; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    Surface Plasmon Resonance (SPR) is most commonly used to measure bio-molecular interactions. SPR is used significantly less frequent for measuring whole cell interactions. Here we introduce a method to measure whole cells label free using the specific binding of cell surface antigens expressed on

  17. Fano resonance Rabi splitting of surface plasmons.

    Science.gov (United States)

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2017-08-14

    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  18. Plasmonic nanostructures for surface enhanced spectroscopic methods.

    Science.gov (United States)

    Jahn, Martin; Patze, Sophie; Hidi, Izabella J; Knipper, Richard; Radu, Andreea I; Mühlig, Anna; Yüksel, Sezin; Peksa, Vlastimil; Weber, Karina; Mayerhöfer, Thomas; Cialla-May, Dana; Popp, Jürgen

    2016-02-07

    A comprehensive review of theoretical approaches to simulate plasmonic-active metallic nano-arrangements is given. Further, various fabrication methods based on bottom-up, self-organization and top-down techniques are introduced. Here, analytical approaches are discussed to investigate the optical properties of isotropic and non-magnetic spherical or spheroidal particles. Furthermore, numerical methods are introduced to research complex shaped structures. A huge variety of fabrication methods are reviewed, e.g. bottom-up preparation strategies for plasmonic nanostructures to generate metal colloids and core-shell particles as well as complex-shaped structures, self-organization as well as template-based methods and finally, top-down processes, e.g. electron beam lithography and its variants as well as nanoimprinting. The review article is aimed at beginners in the field of surface enhanced spectroscopy (SES) techniques and readers who have a general interest in theoretical modelling of plasmonic substrates for SES applications as well as in the fabrication of the desired structures based on methods of the current state of the art.

  19. Multi-analyte surface plasmon resonance biosensing

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Vaisocherová, Hana; Dostálek, Jakub; Piliarik, Marek

    2005-01-01

    Roč. 37, č. 1 (2005), s. 26-36 ISSN 1046-2023 R&D Projects: GA ČR(CZ) GA303/03/0249; GA ČR(CZ) GA203/02/1326; GA ČR(CZ) GA102/03/0633 Grant - others:European Commision(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.591, year: 2005

  20. QED and surface plasmons on graphene

    Science.gov (United States)

    Bordag, M.; Pirozhenko, I. G.

    2016-01-01

    We consider the quantum field theory approach to graphene. The model consists of the photon field in the bulk, i.e., in (3+1) dimensions, and a spinor field on a brane, i.e., in (2+1) dimensions. Integrating out the spinor field, an effective action appears, from which one has modified Maxwell equations accounting for the response of graphene. Within this model, one has the known one-loop polarization tensor allowing to investigate specific questions. Here, we consider the surface plasmons which may travel along graphene, with finite chemical potential or finite temperature.

  1. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal...... and suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...... junction. (C) 1998 American Institute of Physics. [S0003-6951(98)02223-2]....

  2. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  3. Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems

    Science.gov (United States)

    Guan, Fuxin; Sun, Shulin; Ma, Shaojie; Fang, Zhening; Zhu, Baocheng; Li, Xin; He, Qiong; Xiao, Shiyi; Zhou, Lei

    2018-03-01

    Although surface plasmon polaritons (SPPs) have been intensively studied in past years, the transmission/reflection properties of SPPs at an interface between two plasmonic media are still not fully understood. In this article, we employ a mode expansion method (MEM) to systematically study such a problem based on a model system jointing two superlattices, each consisting of a periodic stacking of dielectric and plasmonic slabs with different material properties. Such a generic model can represent two widely used plasmonic structures (i.e. interfaces between two single dielectric/metal systems or between two metal–insulator–metal waveguides) under certain conditions. Our MEM calculations, in excellent agreement with full-wave simulations, uncover the rich physics behind the SPP reflections at generic plasmonic interfaces. In particular, we successfully derive from the MEM several analytical formulas that can quantitatively describe the SPP reflections at different plasmonic interfaces, and show that our formulas exhibit wider applicable regions than previously proposed empirical ones.

  4. Multiplexed infrared plasmonic surface lattice resonances

    Science.gov (United States)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2018-01-01

    We demonstrate that arrays of flat gold nanodisks with rectangular lattices can support a tunable hybrid frequency gap formed by the surface lattice resonances in the substrate ((+1, 0)sub) and the superstrate ((-1, 0)sup). For a certain polarization, rotation of the arrays reduces this gap, forming a band crossing (degenerate state) wherein both surface lattice resonances happen around a single wavelength (˜1300 nm). This highlights a situation wherein hybridization of the Rayleigh anomaly with localized surface plasmon resonances with different multipolar natures happens around the same wavelength. We demonstrate that for a different polarization of the incident light the arrays support the formation of a photonic-plasmonic state at about 1650 nm. Our results show that as the projection of the wave vector of the incident light on the planes of the nanodisk arrays increases, within a given wavelength range, the (+1, 0) mode of this state becomes amplified. Under this condition, this mode can undergo a significant blue shift without broadening, while its amplitude increases.

  5. Localized surface plasmon modes in a system of two interacting metallic cylinders

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Vergeles, Sergey S.; Vorobev, Petr E.

    2012-01-01

    We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions of geomet...

  6. Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration

    Directory of Open Access Journals (Sweden)

    F. Ramos-Mendieta

    2014-06-01

    Full Text Available High sensitivity of the Attenuated Total Reflectance technique for exciting transverse magnetic surface plasmons in free-standing doped graphene is reported; complete agreement with the electromagnetic dispersion relation is numerically demonstrated in the terahertz regime. By reducing the air gap between prism and graphene in the Otto configuration we found that the surface plasmon excitation is weakened, but interference effects arise producing perfect absorption. At 5 THz two dips of zero-reflection were found, one of them with residual plasmonic contribution. Consequently, the reflection can be suppressed by changing the separation between prism and graphene; it is not needed to modify the graphene doping level. Conditions for destructive interference leading to complete absorption are presented and a particular behavior of the evanescent magnetic fields just at perfect absorption is reported

  7. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.

    Science.gov (United States)

    Petefish, Joseph W; Hillier, Andrew C

    2015-11-03

    We demonstrate the application of metal-coated diffraction gratings possessing multiple simultaneous pitch values for surface enhanced infrared absorption (SEIRA) spectroscopy. SEIRA increases the magnitude of vibrational signals in infrared measurements by one of several mechanisms, most frequently involving the enhanced electric field associated with surface plasmon resonance (SPR). While the majority of SEIRA applications to date have employed nanoparticle-based plasmonic systems, recent advances have shown how various metals and structures lead to similar signal enhancement. Recently, diffraction grating couplers have been demonstrated as a highly tunable platform for SEIRA. Indeed, gratings are an experimentally advantageous platform due to the inherently tunable nature of surface plasmon excitation at these surfaces since both the grating pitch and incident angle can be used to modify the spectral location of the plasmon resonance. In this work, we use laser interference lithography (LIL) to fabricate gratings possessing multiple pitch values by subjecting photoresist-coated glass slides to repetitive exposures at varying orientations. After metal coating, these gratings produced multiple, simultaneous plasmon peaks associated with the multipitched surface, as identified by infrared reflectance measurements. These plasmon peaks could then be coupled to vibrational modes in thin films to provide localized enhancement of infrared signals. We demonstrate the flexibility and tunability of this platform for signal enhancement. It is anticipated that, with further refinement, this approach might be used as a general platform for broadband enhancement of infrared spectroscopy.

  8. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  9. High-resolution biosensor based on localized surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Šípová, Hana; Kvasnička, Pavel; Galler, N.; Krenn, J. R.; Homola, Jiří

    2012-01-01

    Roč. 20, č. 1 (2012), s. 672-680 ISSN 1094-4087 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * surface plasmon resonance * localized surface plasmon Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  10. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  11. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime.

    Science.gov (United States)

    Chu, Ming-Wen; Sharma, Pradeep; Chang, Ching-Pin; Liou, Sz Chian; Tsai, Kun-Tong; Wang, Juen-Kai; Wang, Yuh-Lin; Chen, Cheng Hsuan

    2009-06-10

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (approximately 30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at approximately 3.5 eV (approximately 355 nm) and approximately 7.0 eV (approximately 177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  12. Probing surface plasmons in individual Ag nanoparticles in the ultra-violet spectral regime

    International Nuclear Information System (INIS)

    Chu, M-W; Chang, C-P; Liou, S C; Wang, J-K; Chen, C H; Sharma, Pradeep; Tsai, K-T; Wang, Y-L

    2009-01-01

    Previous investigations of surface plasmons in Ag largely focused on their excitations in the visible spectral regime. Using scanning transmission electron microscopy with an electron beam of 0.2 nm in conjunction with electron energy-loss spectroscopy, we spectrally and spatially probe the surface plasmons in individual Ag nanoparticles (∼30 nm), grown on Si, in the ultra-violet spectral regime. The nanomaterials show respective sharp and broad surface-plasmon resonances at ∼3.5 eV (∼355 nm) and ∼7.0 eV (∼177 nm), and the correlated spectral calculations established their multipolar characteristics. The near-field distributions of the surface plasmons on the nanoparticles were also mapped out, revealing the predominant dipolar nature of the 3.5 eV excitation with obvious near-field enhancements at one end of the nano-object. The unveiled near-field enhancements have potential applications in plasmonics and molecular sensing.

  13. Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon

    Science.gov (United States)

    Jung, Dae-Ryong; Kim, Jongmin; Nahm, Changwoo; Choi, Hongsik; Nam, Seunghoon; Park, Byungwoo

    2011-09-01

    Semiconductor nanoparticles have recently attracted a significant amount of attention from the materials science community. Nanoparticles with diameters in the range of 1 nm to 20 nm exhibit unique physical properties that give rise to many potential applications. Two fundamental factors are crucial as regards the novel properties of semiconductor nanoparticles. The first is the large surface-to-volume ratio. In this regard, the surface states are likely to trap electrons and/or holes, and induce a nonradiative recombination of these charge carriers, leading to a reduction in the luminescent and photovoltaic efficiency. The second approach takes advantage of the surface-plasmon resonance from metal nanostructures to semiconductors. The interactions between the semiconductor nanoparticles and the surface plasmons generate enhanced emission by electromagnetic-field amplification, and also causes the suppression of the emission by the energy transfer between the semiconductor and the metal nanoparticles. Therefore, surface passivation and surface plasmon in semiconductor nanoparticles with controlled nanostructures are important when attempting to improve both the luminescent and photovoltaic efficiency.

  14. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  15. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  16. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  17. Surface plasmon-enhanced optical trapping of quantum-dot-conjugated surface molecules on neurons cultured on a plasmonic chip

    Science.gov (United States)

    Miyauchi, Kohei; Tawa, Keiko; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2016-06-01

    Living neurons in a complex neuronal network communicate with each other through synaptic connections. The molecular dynamics of cell surface molecules localized at synaptic terminals is essential for functional connections via synaptic plasticity in the neuronal network. Here, we demonstrate surface-plasmon-resonance-based optical trapping using a plasmonic chip toward realizing effective manipulation of molecules on the surface of neurons. Surface-plasmon-enhanced optical trapping was evaluated by the fluorescence analysis of nanoparticles suspended in water and neural cell adhesion molecules (NCAMs) labeled with quantum dots (Q-dots) on rat hippocampal neurons. The motion of nanoparticles in water and the molecular dynamics of NCAMs on neuronal cells cultured on a plasmonic chip were constrained at the laser focus more effectively than those on a glass substrate because of the surface plasmon resonance effect.

  18. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    Science.gov (United States)

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  19. Plasmonic dimer antennas for surface enhanced Raman scattering.

    Science.gov (United States)

    Höflich, Katja; Becker, Michael; Leuchs, Gerd; Christiansen, Silke

    2012-05-11

    Electron beam induced deposition (EBID) has recently been developed into a method to directly write optically active three-dimensional nanostructures. For this purpose a metal-organic precursor gas (here dimethyl-gold(III)-acetylacetonate) is introduced into the vacuum chamber of a scanning electron microscope where it is cracked by the focused electron beam. Upon cracking the aforementioned precursor gas, 3D deposits are realized, consisting of gold nanocrystals embedded in a carbonaceous matrix. The carbon content in the deposits hinders direct plasmonic applications. However, it is possible to activate the deposited nanostructures for plasmonics by coating the EBID structures with a continuous silver layer of a few nanometers thickness. Within this silver layer collective motions of the free electron gas can be excited. In this way, EBID structures with their intriguing precision at the nanoscale have been arranged in arrays of free-standing dimer antenna structures with nanometer sized gaps between the antennas that face each other with an angle of 90°. These dimer antenna ensembles can constitute a reproducibly manufacturable substrate for exploiting the surface enhanced Raman effect (SERS). The achieved SERS enhancement factors are of the order of 10⁴ for the incident laser light polarized along the dimer axes. To prove the signal enhancement in a Raman experiment we used the dye methyl violet as a robust test molecule. In future applications the thickness of such a silver layer on the dimer antennas can easily be varied for tuning the plasmonic resonances of the SERS substrate to match the resonance structure of the analytes to be detected.

  20. Critical coupling of surface plasmons in graphene attenuated total reflection geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina)

    2016-12-09

    We study the optical response of an attenuated total reflection (ATR) structure in Otto configuration with graphene sheet, paying especial attention to the occurrence of total absorption. Our results show that due to excitation of surface plasmons on the graphene sheet, two different conditions of total absorption may occur. At these conditions, the energy loss of the surface plasmon by radiation is equal to its energy loss by absorption into the graphene sheet. We give necessary conditions on ATR parameters for the existence of total absorption. - Highlights: • Attenuated total reflection (ATR) structure with graphene sheet. • Surface plasmons and power matched condition. • Necessary conditions on ATR parameters for the existence of total absorption.

  1. Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Y. Premkumar Singh

    2013-01-01

    Full Text Available The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.

  2. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  3. Excitation of graphene plasmons as an analogy with the two-level system

    International Nuclear Information System (INIS)

    Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi

    2016-01-01

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  4. Terahertz superconducting plasmonic hole array

    OpenAIRE

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applicatio...

  5. A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device.

    Science.gov (United States)

    Zeng, Zheng; Mendis, Madu N; Waldeck, David H; Wei, Jianjun

    Surface plasmon resonance (SPR) of nanostructured thin metal films (so-called nanoplasmonics) has attracted intense attention due to its versatility for optical sensing and chip-based device integration. Understanding the underlying physics and developing applications of nanoplasmonic devices with desirable optical properties, e.g. intensity of light scattering and high refractive index (RI) sensitivity at the perforated metal film, is crucial for practical uses in physics, biomedical detection, and environmental monitoring. This work presents a semi-analytical model that enables decomposition and quantitative analysis of surface plasmon generation at a new complex nanoledge aperture structure under plane-wave illumination, thus providing insight on how to optimize plasmonic devices for optimal plasmonic generation efficiencies and RI sensitivity. A factor analysis of parameters (geometric, dielectric-RI, and incident wavelength) relevant to surface plasmon generation is quantitatively investigated to predict the surface plasmon polariton (SPP) generation efficiency. In concert with the analytical treatment, a finite-difference time-domain (FDTD) simulation is used to model the optical transmission spectra and RI sensitivity as a function of the nanoledge device's geometric parameters, and it shows good agreement with the analytical model. Further validation of the analytical approach is provided by fabricating subwavelength nanoledge devices and testing their optical transmission and RI sensitivity.

  6. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  7. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  8. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  9. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  10. Surface plasmon oscillations on a quantum plasma half-space

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2015-01-15

    We investigate the propagation of surface electrostatic oscillations on a quantum plasma half-space, taking into account the quantum effects. We derive the quantum surface wave frequencies of the system, by means the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions. Numerical results show in the presence of the slow nonlocal variations, plasmon wave energies of the system are significantly modified and plasmonic oscillations with blue-shifted frequencies emerge.

  11. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    KAUST Repository

    Xu, Quan

    2016-11-29

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  12. Magnetoelectrically coupled polariton excitation in a plasmonic crystal composed of nanorod dimers

    International Nuclear Information System (INIS)

    Zhou, L; Tang, X M; Zhang, Y; Zhu, Y Y; Huang, C P

    2012-01-01

    In this work, the long wavelength optical properties of a plasmonic crystal, composed of gold nanorod dimers arranged parallel, have been studied. Due to the strong coupling between incident light and the oscillation of free electrons inside nanorod dimers, the magnetically induced and/or magnetoelectrically coupled plasmonic polaritons can be excited. A theoretical demonstration has been proposed and coupled equations that show similar profiles to the Huang-Kun equations for ionic crystals have been deduced, indicating the constitutive abnormalities and polaritonic bandgap effect. The analogy between the magnetoelectrically coupled metamaterials and ionic crystals may shed light on physical explanations, as well as constitutive parameter retrieval, for the magnetoelectric metamaterials. (paper)

  13. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    Science.gov (United States)

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system.

  14. Perfect coupling of light to surface plasmons with ultra-narrow linewidths.

    Science.gov (United States)

    Sukharev, M; Sievert, P R; Seideman, T; Ketterson, J B

    2009-07-21

    We examine the coupling of electromagnetic waves incident normal to a thin silver film that forms an oscillatory grating embedded between two otherwise uniform, semi-infinite half spaces. Two grating structures are considered, in one of which the midpoint of the Ag film remains fixed whereas the thickness varies sinusoidally, while in the other the mid point oscillates sinusoidally whereas the film thickness remains fixed. On reducing the light wavelength from the long wavelength limit, we encounter signatures in the transmission, T, and reflection, R, coefficients associated with: (i) the short-range surface plasmon mode, (ii) the long-range surface plasmon mode, and (iii) electromagnetic diffraction tangent to the grating. The first two features can be regarded as generalized (plasmon) Wood's anomalies whereas the third is the first-order conventional (electromagnetic) Wood's anomaly. The energy density at the film surface is enhanced for wavelengths corresponding to these three anomalies, particularly for the long-range plasmon mode in thin films. When exciting the silver film with a pair of waves incident from opposite directions, we find that by adjusting the grating oscillation amplitude and fixing the relative phase of the incoming waves to be even or odd, T+R can be made to vanish for one or the other of the plasmon modes; this corresponds to perfect coupling (impedance matching in the language of electrical engineering) between the incoming light and these modes.

  15. Long-range surface plasmons for high-resolution surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Nenninger, G. G.; Tobiška, Petr; Homola, Jiří; Yee, S. S.

    B74, 1/3 (2001), s. 145-151 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Grant - others:Department of Defense(US) DAAD13-99-C-0032 Institutional research plan: CEZ:AV0Z2067918 Keywords : sensors * surface plasmons * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  16. Mid-Infrared Localized Surface Plasmon Resonance of Indium Tin Oxide Nanostructures

    Science.gov (United States)

    Kang, Mi Sun

    In this thesis we investigate the phenomenon of surface plasmons on patterned surfaces of conducting thin films. The interaction of electromagnetic radiation with the electrons of a thin film made of a conducting metal oxide (CMO) can results in a surface plasmon resonance (SPR). However, patterned surfaces give rise to two optical phenomena known as localized surface plasmon resonance (LSPR) or capacitive plasmon resonance (CPR). LSPR is the optical phenomenon of the interaction of light with nano-scale objects. CPR is from a perpendicularly interaction to the surface between surface plasmon and incident light in a very thin film, i.e. with a thickness less than the skin depth of the conducting material. Surface plasmons (SP) are collective electronic oscillations of electrons which are induced by electromagnetic wave at the interface between and conductor and a dielectric. SP couple with incident light to form a surface oscillation known as asurface plasmon polariton (SPP), which can propagate along the surface of the conductor-insulator interface. Then, SPPs can be excited by either electrons or photons and the excitation is measured or observed as a SPR. Specially, on a nanoscale patterned surface or in a nanoparticle sample, the excitations of SPPs are detectable as LSPR. The shapes, sizes, or properties of the conducting materials can be controlled to give rise to a variety of LSPR signatures. Therefore, the lithographic techniques, which are able to make patterns or shapes on the micro- to nano-scale, have been also received attention in photonic applications. Many researchers, until now, have focused on noble metals such as gold and silver as plasmonic materials. Gold (Au) and silver (Ag) are well known for their plasmonic absorption in the ultraviolet and visible regions. Despite the fact that this is a well-developed field of investigation there are many fundamental aspects that cannot be studied with the noble metals: First, it is not possible to make a

  17. Multidimensional Hybridization of Dark Surface Plasmons.

    Science.gov (United States)

    Yankovich, Andrew B; Verre, Ruggero; Olsén, Erik; Persson, Anton E O; Trinh, Viet; Dovner, Gudrun; Käll, Mikael; Olsson, Eva

    2017-04-25

    Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.

  18. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    in the most important for applications plasmonic and photonic regimes are numerically investigated. We also demonstrate fabrication of photonic crystal membranes, high-quality transfer of large area chemically vapor deposited graphene on them and their comprehensive Raman, AFM and FTIR experimental....... Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  19. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    Science.gov (United States)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been

  20. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    Directory of Open Access Journals (Sweden)

    Ahmmed A. Rifat

    2015-05-01

    Full Text Available We propose a surface plasmon resonance (SPR sensor based on photonic crystal fiber (PCF with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs. Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM. The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1 with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint.

  1. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.

    Science.gov (United States)

    Rifat, Ahmmed A; Mahdiraji, G Amouzad; Chow, Desmond M; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-05-19

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 × 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.

  2. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii......We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity....... Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  3. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  4. ITO induced tunability of surface plasmon resonance of silver thin film

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ruijin; Wang, Xianhai; Ji, Jialin; Tao, Chunxian [Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093 (China); Zhang, Daohua [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Dawei, E-mail: dwzhang@usst.edu.cn [Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093 (China)

    2015-11-30

    Highlights: • The localized surface plasmon resonance of silver thin film was generated by ITO buffer layer. • The tunability of surface plasmon resonance wavelength was realized by varying silver thin film thickness. • Raman scattering intensity varies with silver layer thickness. • FDTD calculation results of electronic field distribution are consistent with those of experiments. - Abstract: A series of silver films with various thicknesses were deposited on ITO covered silica substrates by magnetron sputtering at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of silver thin film. By adjusting the silver layer thickness from 5 to 40 nm, the resonance wavelength shows a blueshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and ITO layer. In contrast, when the ITO layer is absent from the system, no noticeable shift in the resonance wavelength is observed upon varying the silver thin film thickness.

  5. Terahertz superconducting plasmonic hole array.

    Science.gov (United States)

    Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Wu, Judy; Zhang, Weili

    2010-11-01

    We demonstrate a superconductor array of subwavelength holes with active thermal control over the resonant transmission induced by surface plasmon polaritons. The array was lithographically fabricated on a high-temperature yttrium barium copper oxide superconductor and characterized by terahertz time-domain spectroscopy. We observe a clear transition from a virtual excitation of the surface plasmon mode to a real surface plasmon mode. The highly controllable superconducting plasmonic crystals may find promising applications in the design of low-loss, large- dynamic-range amplitude modulation and surface-plasmon-based terahertz devices.

  6. Surface plasmon polariton Wannier-Stark ladder

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A. A.; Méndez, E.R.

    2014-01-01

    Roč. 39, č. 6 (2014), s. 1613-1616 ISSN 0146-9592 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Finite difference time domain method * Electromagnetic wave polarization * Plasmons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  7. Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: Electrostatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Nilesh Kumar; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, Delhi-110016 (India)

    2016-05-23

    We have systematically study the nano-plasmonic coupling to the perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) dielectric media in terms of surface plasmon resonance. The surface plasmon resonances are exhibited by the metal nanoparticles which is the electromagnetic excitation conduction electron when it is irradiated by incident light photon. Tunable behaviour of SPRs can be utilized to enhance the absorption of photon inside the surrounding environment in the wavelength range 300 to 800 nm. We have been selected two different types of nanogeometry such as coated and non-coated metal nanoparticles (radii ranges from 10 to 15 nm) to understand the plasmonic interaction to the dielectric media. Finally, we have observed that the coated nanogeometry is more preferable as compared to non-coated system to analyse the tunability of SPR peaks.

  8. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  9. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.

    Science.gov (United States)

    Takeuchi, K; Yamamoto, N

    2011-06-20

    A cathodoluminescence technique using a 200-keV transmission electron microscope revealed the dispersion patterns of surface plasmon polaritons (SPPs) in a two-dimensional plasmonic crystal with cylindrical hole arrays. The dispersion curves of the SPP modes involving the Γ point were derived from the angle-resolved spectrum patterns. The contrast along the dispersion curves changed with the polarization direction of the emitted light due to the property of the SPP modes. The SPP modes at the Γ point were identified from the photon maps, which mimicked standing SPP waves in a real space. The beam-scan spectral images across the plasmonic crystal edge clearly demonstrated the dependence of the SPP to light conversion efficiency on the emission angle and polarization of light.

  10. Temperature-mediated transition from Dyakonov-Tamm surface waves to surface-plasmon-polariton waves

    Science.gov (United States)

    Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh

    2017-08-01

    The effect of changing the temperature on the propagation of electromagnetic surface waves (ESWs), guided by the planar interface of a homogeneous isotropic temperature-sensitive material (namely, InSb) and a temperature-insensitive structurally chiral material (SCM) was numerically investigated in the terahertz frequency regime. As the temperature rises, InSb transforms from a dissipative dielectric material to a dissipative plasmonic material. Correspondingly, the ESWs transmute from Dyakonov-Tamm surface waves into surface-plasmon-polariton waves. The effects of the temperature change are clearly observed in the phase speeds, propagation distances, angular existence domains, multiplicity, and spatial profiles of energy flow of the ESWs. Remarkably large propagation distances can be achieved; in such instances the energy of an ESW is confined almost entirely within the SCM. For certain propagation directions, simultaneous excitation of two ESWs with (i) the same phase speeds but different propagation distances or (ii) the same propagation distances but different phase speeds are also indicated by our results.

  11. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    Science.gov (United States)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  12. Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface.

    Science.gov (United States)

    Frank, Bettina; Kahl, Philip; Podbiel, Daniel; Spektor, Grisha; Orenstein, Meir; Fu, Liwei; Weiss, Thomas; Horn-von Hoegen, Michael; Davis, Timothy J; Meyer Zu Heringdorf, Frank-J; Giessen, Harald

    2017-07-01

    We experimentally and theoretically visualize the propagation of short-range surface plasmon polaritons using atomically flat single-crystalline gold platelets on silicon substrates. We study their excitation and subfemtosecond dynamics via normal-incidence two-photon photoemission electron microscopy. By milling a plasmonic disk and grating structure into a single-crystalline gold platelet, we observe nanofocusing of the short-range surface plasmon polariton. Localized two-photon ultrafast electron emission from a spot with a smallest dimension of 60 nm is observed. Our novel approach opens the door toward reproducible plasmonic nanofocusing devices, which do not degrade upon high light intensity or heating due to the atomically flat surface without any tips, protrusions, or holes. Our nanofoci could also be used as local emitters for ultrafast electron bunches in time-resolved electron microscopes.

  13. Nucleic acid detection with surface plasmon resonance using cationic latex

    NARCIS (Netherlands)

    de Vries, E.F.A.; Schasfoort, Richardus B.M.; van der Plas, J.; Greve, Jan

    1994-01-01

    An affinity sensor based on Surface Plasmon Resonance (SPR) was used to detect nucleic acids. SPR is an optical technique that is able to detect small changes in the refractive index of the immediate vicinity of a metal surface. After a specific amplification of DNA, achieved using the polymerase

  14. Compact Surface Plasmon Resonance Sensor for Underwater Chemical Sensing Robot

    Directory of Open Access Journals (Sweden)

    Yuichi Minagawa

    2017-01-01

    Full Text Available This paper reports on the development of compact surface plasmon resonance (SPR sensors for mobile robot olfaction. Underwater robots benefit from olfactory sensing capabilities in various tasks including the search for unexploded ordnance and undersea wreckage. Although the SPR-based chemical sensor is a promising sensing platform, the cumbersome optical setup has been limiting its use on mobile robots. The proposed sensor employs a periodic metal structure formed on a self-assembled layer of polystyrene particles of 200 nm in diameter. With the grating of this size, SPR can be excited even with a simple LED light source. The change in the absorbance is simply measured using a photodiode. Demonstration of the proposed SPR sensor is provided by mounting the sensors on an underwater crayfish robot that autonomously searches for a chemical source. The fabricated sensor shows linear response to ascorbic acid for a concentration range from 20 to 80 mM. Responses of the bare and thiol-coated gold nanostructure to different chemical substances are presented to show the change in the selectivity of the sensor by the coating. Discussions are made on the importance of sample collection for the sensor to attain sensitive chemical detection on a mobile robot.

  15. The effect of holes in the dispersion relation of propagative surface plasmon modes of nanoperforated semitransparent metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Kekesi, R., E-mail: renata.kekesi@csic.es; Meneses-Rodríguez, D.; García-Pérez, F.; González, M. U.; García-Martín, A.; Cebollada, A.; Armelles, G., E-mail: gaspar@imm.cnm.csic.es [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain)

    2014-10-07

    We have analysed the effect that holes have on the properties of propagative surface plasmon modes in semitransparent nanoperforated Au films. The modes have been excited in Kretschmann configuration. Contrary to continuous films, where only one mode is excited, two modes are observed in Au nanohole array. The origin of this different behavior is discussed using effective optical properties for the nanoperforated films. The presence of the holes affects the effective optical constants of the membranes in two ways: it changes the contribution of the free electrons, and it gives rise to a localized transition due to a hole induced plasmon resonance. This localized transition interacts with the propagative surface plasmon modes, originating the two detected modes.

  16. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays

    International Nuclear Information System (INIS)

    Dai, Z G; Xiao, X H; Zhang, Y P; Ren, F; Wu, W; Zhang, S F; Zhou, J; Jiang, C Z; Mei, F

    2012-01-01

    Control of the plasmon-driven chemical reaction for the transformation of 4-nitrobenzenethiol to p,p′-dimercaptoazobenzene by Ag nanoparticle arrays was studied. The Ag nanoparticle arrays were fabricated by means of nanosphere lithography. By changing the PS particle size, the localized surface plasmon resonance (LSPR) peaks of the Ag nanoparticle arrays can be tailored from 460 to 560 nm. The controlled reaction process was monitored by in situ surface-enhanced Raman scattering. The reaction can be dramatically influenced by varying the duration of laser exposure, Ag nanoparticle size, laser power and laser excitation wavelength. The maximum reaction speed was achieved when the LSPR wavelength of the Ag nanoparticle arrays matched the laser excitation wavelength. The experimental results reveal that the strong LSPR can effectively drive the transfer of the ‘hot’ electrons that decay from the plasmon to the reactants. The experimental results were confirmed by theoretical calculations. (paper)

  17. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  18. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    International Nuclear Information System (INIS)

    Talebi, Nahid; Shahabadi, Mahmoud

    2010-01-01

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  19. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Nahid; Shahabadi, Mahmoud, E-mail: n.talebi@ece.ut.ac.i [Photonics Research Laboratory, Center of Excellence for Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2010-04-07

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  20. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  1. Coupling between surface plasmon polaritons and transverse electric polarized light via L-shaped nano-apertures.

    Science.gov (United States)

    Yang, Jing; Hu, Chuang; Wen, Qiuling; Zhao, Chenglong; Zhang, Jiasen

    2015-03-15

    Given that plasmonic fields are intrinsically transverse magnetic (TM), coupling surface plasmon polaritons (SPPs) and transverse electric (TE) polarized light, especially at nanoscale, remain challenging. We propose the use of L-shaped nano-apertures to overcome this fundamental limitation and enable coupling between SPPs and TE polarized light. Polarization conversion originates from the interference of two resonant modes excited in the nano-apertures and the nearly 180° phase retardation between them. The experiments show that both TE-to-plasmon and plasmon-to-TE couplings can be implemented at the subwavelength scale. This discovery provides great freedom when manipulating light based on SPPs at the nanoscale and helps in using the energy of TE polarized light.

  2. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  3. Enhanced Group Delay of the Pulse Reflection with Graphene Surface Plasmon via Modified Otto Configuration

    Directory of Open Access Journals (Sweden)

    Guimei Li

    2017-01-01

    Full Text Available In this paper, the group delay of the transverse magnetic (TM polarized wave reflected from a modified Otto configuration with graphene surface plasmon is investigated theoretically. The findings show that the optical group delay in this structure can be enhanced negatively and can be switched from negative to positive due to the excitation of surface plasmon by graphene. It is clear that the negative group delay can be actively tuned through the Fermi energy of the graphene. Furthermore, the delay properties can also be manipulated by changing either the relaxation time of graphene or the distance between the coupling prism and the graphene. These tunable delay characteristics are promising for fabricating grapheme-based optical delay devices and other applications in the terahertz regime.

  4. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Shesterikov, A. B.; Gubin, M. Yu. [Vladimir State University (Russian Federation); Gladush, M. G. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Prokhorov, A. V., E-mail: avprokhorov33@mail.ru [Vladimir State University (Russian Federation)

    2017-01-15

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  5. Observation of surface-plasmon-polariton transmission through a silver film sputtered on a photorefractive substrate

    International Nuclear Information System (INIS)

    Chen Jing; Li Yudong; Lu Wenqiang; Qi Jiwei; Cui Guoxin; Liu Hongbing; Xu Jingjun; Sun Qian

    2007-01-01

    The diffraction of holographic gratings in a photorefractive iron-doped lithium niobate (LiNbO 3 :Fe) crystal, on which surface a silver film was sputtered, was experimentally investigated. Besides the Bragg diffraction, an additional diffraction was observed. The experimental results present evidence of surface-plasmon-polariton (SPP) transmission through the silver film on the photorefractive substrate. The excitation of SPPs is speculated to be due to the corrugations of the silver film, which are caused by the photorefractive and the converse piezoelectric effect in the LiNbO3:Fe sample

  6. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

    DEFF Research Database (Denmark)

    Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui

    2015-01-01

    surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...

  7. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded...

  8. A silicon-based electrical source for surface plasmon polaritons

    NARCIS (Netherlands)

    Walters, Robert J.; van Loon, Rob V.A.; Brunets, I.; Schmitz, Jurriaan; Polman, Albert

    2009-01-01

    This work demonstrates the fabrication of a silicon-based electrical source for surface plasmon polaritons (SPPs) at low temperatures using silicon nanocrystal doped alumina within a metal-insulator-metal (MIM) waveguide geometry. The fabrication method uses established microtechnology processes

  9. Surface plasmon effect in nanocrystalline copper/DLC composite ...

    Indian Academy of Sciences (India)

    Composite films of nanocrystalline copper embedded in DLC matrix prepared by electrodeposition technique were studied for their optical properties. Particle size and metal volume fractions were tailored by varying the amount of copper containing salt in the electrolyte. Blue-shift of the surface plasmon resonance peak in ...

  10. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953 ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmons * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  11. Surface plasmon resonance sensing of nucleic acids: A review

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Homola, Jiří

    -, č. 773 (2013), s. 9-23 ISSN 0003-2670 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Surface plasmon resonance * Nucleic acid * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 4.517, year: 2013

  12. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn

    2006-01-01

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  13. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...

  14. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Optical Sensing and Trapping Based on Localized Surface Plasmons

    Science.gov (United States)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  16. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  17. Surface plasmon enhancement in gold nanoparticles in the presence of an optical gain medium: an analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sathiyamoorthy, K; Sreekanth, K V; Sidharthan, R; Murukeshan, V M [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xing Bengang, E-mail: mmurukeshan@ntu.edu.sg [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2011-10-26

    The localized surface plasmon (LSP) enhancement in a gold nanoparticle is demonstrated in this paper. The enhancement of LSP is influenced by both size and the dielectric gain medium surrounding the nanoparticles. The nanoparticle is found to induce plasmonic enhancement of varying degrees depending on its size, and it is inferred that a gold nanoparticle of size 60 nm exhibits the maximum LSP for 532 nm excitation. Singularity due to cancellation of SP loss by an infinite gain medium and LSP enhancement are studied using a pump-probe Rayleigh scattering experiment. Gold nanoparticles of average size 60 nm exhibit the lowest threshold power to observe Rayleigh scattering. Furthermore, compared with the bare nanoparticles, a 12.5 fold enhancement of LSP is observed when the nanoparticle of average size 60 nm is kept in the gain medium.

  18. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  19. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  20. Compact Surface Plasmon Resonance Biosensor for Fieldwork Environmental Detection

    Science.gov (United States)

    Boyd, Margrethe; Drake, Madison; Stipe, Kristian; Serban, Monica; Turner, Ivana; Thomas, Aaron; Macaluso, David

    2017-04-01

    The ability to accurately and reliably detect biomolecular targets is important in innumerable applications, including the identification of food-borne parasites, viral pathogens in human tissue, and environmental pollutants. While detection methods do exist, they are typically slow, expensive, and restricted to laboratory use. The method of surface plasmon resonance based biosensing offers a unique opportunity to characterize molecular targets while avoiding these constraints. By incorporating a plasmon-supporting gold film within a prism/laser optical system, it is possible to reliably detect and quantify the presence of specific biomolecules of interest in real time. This detection is accomplished by observing shifts in plasmon formation energies corresponding to optical absorption due to changes in index of refraction near the gold-prism interface caused by the binding of target molecules. A compact, inexpensive, battery-powered surface plasmon resonance biosensor based on this method is being developed at the University of Montana to detect waterborne pollutants in field-based environmental research.

  1. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  2. Intersubband surface plasmon polaritons in all-semiconductor planar plasmonic resonators

    Science.gov (United States)

    ZałuŻny, M.

    2018-01-01

    We theoretically discuss properties of intersubband surface plasmon polaritons (ISPPs) supported by the system consisting of a multiple quantum well (MQW) slab embedded into planar resonator with highly doped semiconducting claddings playing the role of cavity mirrors. Symmetric structures, where the MQW slab occupies the whole space between the claddings and asymmetric structures, where the MQW occupy only half of the space between mirrors, are considered. We focus mainly on the nearly degenerate structures where intersubband frequency is close to frequency of the surface plasmon of the mirrors. The ISPP characteristics are calculated numerically using a semiclassical approach based on the transfer matrix formalism and the effective-medium approximation. The claddings are described by the lossless Drude model. The possibility of engineering the dispersion of the ISPP branches is demonstrated. In particular, for certain parameters of the asymmetric structures we observe the formation of the multimode ISPP branches with two zero group velocity points. We show that the properties of the ISPP branches are reasonably well interpreted employing quasiparticle picture provided that the concept of the mode overlap factor is generalized, taking into account the dispersive character of the mirrors. In addition to this, we demonstrate that the lossless dispersion characteristics of the ISPP branches obtained in the paper are consistent with the angle-resolved reflection-absorption spectra of the GaAlAs-based realistic plasmonic resonators.

  3. Numerical investigation into a surface plasmon resonance sensor based on optical fiber microring

    Science.gov (United States)

    Zhao, Chunliu; Wang, Yanru; Wang, Dongning; Ding, Zhewen

    2017-06-01

    A reflective surface plasmon resonance (SPR) sensor based on optical fiber microring is proposed. In such a sensor, plasmons on the outer surface of the metallized channels containing analyte can be excited by a fundamental mode of a thin-core fiber (TCF). The refractive index (RI) sensing can be achieved as the surface plasmons are sensitive to changes in the refrective index of the analyte. Numerical simulation results show that the resonance spectrum shifts toward the shorter wavelength gradually when the analyte refractive index increases from 1.0 to 1.33, whereas it shifts toward the longer wavelength gradually when the analyte refractive index increases from 1.33 to 1.43, and there is a turning point at the refractive index value of 1.33. The highest sensitivity achieved is up to 2.30×103 nm/RIU near the refractive index value of 1.0. Such a compact sensor has potential in gaseous substance monitoring.

  4. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    Science.gov (United States)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-06-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement.

  5. Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea; Proietti Zaccaria, Remo; Krahne, Roman

    2014-01-01

    We report the fabrication of Au nanostar arrays by means of electron beam lithography, in which the plasmon resonance energy can be tuned via the nanostar size from the visible into the near-infrared region. The spectral response of the nanostar arrays was investigated by optical extinction (transmittance) experiments, and their surface enhanced Raman scattering performance has been tested at two different excitation wavelengths, 633 nm and 830 nm, using chemisorbed Cresyl violet molecules as analyte. The experimental results are supported by numerical simulations of the spatial and spectral electric field enhancement. (papers)

  6. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  7. Surface plasmon resonance fiber optic biosensor-based graphene and photonic crystal

    Science.gov (United States)

    Tong, Kai; Guo, Jia; Dang, Peng; Wang, Meiyu; Wang, Fucheng; Zhang, Yungang; Wang, Meiting

    2018-02-01

    A new sensor — transverse electric (TE) polarized excite surface plasmon resonance (SPR) fiber optic biosensor is proposed. The graphene is the plasma layer. The transfer matrix method and the finite difference time domain method are applied to conduct the numerical simulation of the four layers (fiber core/photonic crystals/graphene/sample) of fiber optic biosensor. The results show that the relationship between refractive index and resonant wavelength is linear and the sensitivity of the fiber optic biosensor reaches 1942 nm/RIU.

  8. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded......) into the investigated PC structures. Using a self-consistent description based on the Green'S function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects...

  9. Theoretical reexamination of the cross conversion between surface plasmon polaritons and quasi-cylindrical waves.

    Science.gov (United States)

    Li, Guangyuan; Cai, Lin; Xiao, Feng; Xu, Anshi

    2010-10-01

    The cross conversion between surface plasmon polaritons (SPPs) and quasi-cylindrical waves (CWs) is theoretically reexamined. Except for the CW-to-SPP conversion, we find the SPP-to-CW conversion, as well as the reflection and transmission of the CW, plays an indispensable role in the interaction between SPPs and light via periodic grooves. The completeness of the whole scattering coefficients is emphasized by an SPP-CW model proposed to quantitatively predict the SPP excitation efficiency for any number of periodic grooves.

  10. Surface-Plasmon-Enhanced Photodriven CO2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers.

    Science.gov (United States)

    Zhang, Huabin; Wang, Tao; Wang, Junjie; Liu, Huimin; Dao, Thang Duy; Li, Mu; Liu, Guigao; Meng, Xianguang; Chang, Kun; Shi, Li; Nagao, Tadaaki; Ye, Jinhua

    2016-05-01

    Highly efficient utilization of solar light with an excellent reduction capacity is achieved for plasmonic Fe@C nanostructures. By carbon layer coating, the optimized catalyst exhibits enhanced selectivity and stability applied to the solar-driven reduction of CO2 into CO. The surface-plasmon effect of iron particles is proposed to excite CO2 molecules, and thereby facilitates the final reaction activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance.

    Science.gov (United States)

    Niezgoda, J Scott; Rosenthal, Sandra J

    2016-03-03

    The field of semiconductor plasmonics has grown rapidly since its outset, only roughly six years ago, and now includes many crystalline substances ranging from GeTe to wide-bandgap transition-metal oxides. One byproduct of this proliferation is the sea of differing synthetic methods to realize localized surface plasmon resonances (LSPRs) based on the studied material. Strategies vary widely from material to material, but all have the common goal of introducing extremely high carrier densities to the semiconductor system. This doping results in tunable, size-quantized, and on/off-switchable LSPR modes, which are a complete departure from traditional metal-nanoparticle-based plasmon resonances. This Minireview will provide an overview of the current state of nanocrystal and quantum-dot plasmonics and the physical basis thereof, however its main purpose is to summarize the methods for realizing LSPRs in the various syntheses and systems that have been reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles.

    Science.gov (United States)

    Ranjan, M

    2012-06-01

    Growth of bimodally distributed silver nanoparticles using sequential physical vapour deposition (PVD) is reported. Growth conditions of nanoparticles are defined in the following three steps: In the first step, nanoparticles are grown at a heated substrate and then exposed to atmosphere, in the second step, nanoparticles are vacuum annealed and finally re-deposition of silver is performed in the third step. This special way of deposition leads to the formation of bimodally distributed nanoparticles. It has been investigated that by changing the deposition time, different sets of bimodally distributed nanoparticles can be grown. Localized surface plasmon resonance (LSPR) of such bimodally distributed nanoparticles generates double plasmon resonance peaks with overlapped absorption spectra. Double plasmon resonance peaks provide a quick indication of the existence of two sets of nanoparticles. LSPR spectra of such bimodally distributed nanoparticles could be modeled with double Lorentz oscillator model. Inclusion of double Lorentz oscillator model indicates that there exist two sets of non-interacting nanoparticles resonating at different plasma frequencies. It is also reported that silver nanoparticles grown at a heated substrate, again attain the new shape while being exposed to atmosphere, followed by vacuum annealing at the same temperature. This is because of physisorption of oxygen at the silver surface and change in surface free energy. The re-shaping due to the adsorbed oxygen on the surface is responsible for bimodal size distribution of nanoparticles.

  13. Surface Plasmons Carry the Pancharatnam-Berry Geometric Phase

    Science.gov (United States)

    Daniel, Salman; Saastamoinen, Kimmo; Saastamoinen, Toni; Vartiainen, Ismo; Friberg, Ari T.; Visser, Taco D.

    2017-12-01

    Surface plasmon polaritons (SPPs) are electromagnetic surface waves that travel along the boundary of a metal and a dielectric medium. They can be generated when freely propagating light is scattered by structural metallic features such as gratings or slits. In plasmonics, SPPs are manipulated, amplified, or routed before being converted back into light by a second scattering event. In this process, the light acquires a dynamic phase and perhaps an additional geometric phase associated with polarization changes. We examine the possibility that SPPs mediate the Pancharatnam-Berry phase, which follows from a closed path of successive in-phase polarization-state transformations on the Poincaré sphere and demonstrate that this is indeed the case. The geometric phase is shown to survive the light →SPP →light process and, moreover, its magnitude agrees with Pancharatnam's rule. Our findings are fundamental in nature and highly relevant for photonics applications.

  14. Surface plasmon resonance sensing of nucleic acids: A review

    Energy Technology Data Exchange (ETDEWEB)

    Šípová, Hana [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague (Czech Republic); Homola, Jiří, E-mail: homola@ufe.cz [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague (Czech Republic)

    2013-04-22

    Highlights: ► Advances of nucleic acid (NA) surface plasmon resonance (SPR) sensors are presented. ► Bioanalytical applications of NA SPR biosensors are reviewed. ► Applications for study of molecular interactions involving NAs are also discussed. -- Abstract: Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA–NA, NA–protein, NA–small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.

  15. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  16. Monitoring RAYT activity by surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Špringer, Tomáš; Nečasová, Iva; Nunvář, Jaroslav; Schneider, Bohdan; Homola, Jiří

    2015-01-01

    Roč. 407, č. 14 (2015), s. 3985-3993 ISSN 1618-2642 R&D Projects: GA ČR GAP305/12/1801 Grant - others:GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:67985882 ; RVO:86652036 Keywords : Surface plasmon resonance * Biosensor * REP-associated tyrosine transposase Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.125, year: 2015

  17. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Karasová, L.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    2001-01-01

    Roč. 74, 1/3 (2001), s. 100-105 ISSN 0925-4005 R&D Projects: GA ČR GA102/99/0549; GA AV ČR KSK2055603 Institutional research plan: CEZ:AV0Z4050913 Keywords : optical sensors * surface plasmon resonance * immunosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  18. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  19. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  20. High Excitation Density Effects in Plasmonic GaAs-AlGaAs-GaAs Core-Shell Nanowires

    Science.gov (United States)

    Kaveh-Baghbadorani, Masoud; Gao, Qiang; Jagadish, Chennupati; Wagner, Hans-Peter

    We investigate the near-band emission of highly exited hybrid plasmonic GaAs-AlGaAs-GaAs core-shell nanowire (NW) heterostructures using time integrated (TI) photoluminescence (PL) measurements. The plasmonic structures are composed of 130 nm diameter zincblende NWs, either as bare NWs lying on an Au coated glass substrate or as Au coated NWs lying on a bare glass substrate. Intensity-dependent PL measurements on bare and plasmonic NW samples at high excitation densities reveal electron-hole-plasma (EHP) recombination. The EHP band shows a super-linear increase with increasing excitation intensity suggesting amplified spontaneous emission (ASE) at a threshold power density of around 60 microJ/cm2. Plasmonic NW samples excited above the threshold fluence reveal a weakly resolved sub-structure within the broad EHP band. The emerging sub-bands have a bandwidth which is by a factor of around 3 smaller than the width of the EHP background and are tentatively attributed to plasmonic lasing modes. This interpretation is supported by the fact that photonic lasing from 130 nm diameter thin uncoated GaAs NWs is theoretically not possible and that no sub-structure in the EHP band has been observed on bare nanowires.

  1. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  2. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  3. Plasmonic photocatalysis.

    Science.gov (United States)

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  4. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.

    Science.gov (United States)

    Kegel, Laurel L; Boyne, Devon; Booksh, Karl S

    2014-04-01

    Nanohole arrays exhibit unique surface plasmon resonance (SPR) characteristics according to hole periodicity, diameter, and excitation wavelength (λ(SPR)). This contribution investigates the SPR characteristics and surface sensitivity of various nanohole arrays with the aim of tuning the parameters for optimal sensing capability. Both the Bragg surface plasmons (SPs) arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. Several trends in bulk sensitivity and penetration depth were established, and the surface sensitivity was calculated from bulk sensitivity and penetration depth of the SPs for different analyte thicknesses. Increased accuracy and precision in penetration depth values were achieved by incorporating adsorbate effects on substrate permittivity. The optimal nanohole array conditions for highest surface sensitivity were determined (820 nm periodicity, 0.27 diameter/periodicity, and λ(SPR) = 1550 nm), which demonstrated an increase in surface sensitivity for the 10 nm analyte over continuous gold films at their optimal λ(SPR) (1300 nm) and conventional visible λ(SPR) (700 nm).

  5. Effects of plasmon excitation on photocatalytic activity of Ag/TiO 2 and Au/TiO2 nanocomposites

    DEFF Research Database (Denmark)

    Sellappan, Raja; González-Posada, Fernando; Chakarov, Dinko

    2013-01-01

    Model nanocomposite photocatalysts consisting of undoped TiO2 films with optically active Ag or Au nanoparticles (NPs) were designed, fabricated, and examined to address the role of plasmon excitations in their performance. Different composition configurations were tested in which the NPs were ei...

  6. Shape effects on localized surface plasmon resonances in metallic nanoparticles

    International Nuclear Information System (INIS)

    Sandu, Titus

    2012-01-01

    The effect of smooth shape changes of metallic nanoparticles on localized surface plasmon resonances is assessed with a boundary integral equation method. The boundary integral equation method allows compact expressions of nanoparticle polarizability which is expressed as an eigenmode sum of terms that depends on the eigenvalues and eigenfunctions of the integral operator associated to the boundary integral equation method. Shape variations change not only the eigenvalues but also their coupling weights to the electromagnetic field. Thus, rather small changes in the shape may induce large variations of the coupling weights. It has been found that shape changes that bring volume variations >12 % induce structural changes in the extinction spectrum of metallic nanoparticles. Also, the largest variations in eigenvalues and their coupling weights are encountered by shape changes along the smallest cross-sections of nanoparticles. These results are useful as guiding rules in the process of designing plasmonic nanostrucrures.

  7. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-01

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  8. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-09

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  9. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  10. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  11. Dynamics of a quantum emitter resonantly coupled to both external field and localized surface plasmon

    Science.gov (United States)

    Nerkararyan, Khachatur V.; Yezekyan, Torgom S.; Bozhevolnyi, Sergey I.

    2018-01-01

    We investigate excitation dynamics in the system of a quantum dipole emitter (QDE) coupled to a located nearby metal nanoparticle (MNP), which exhibits a dipolar localized surface plasmon (LSP) resonance at the frequency of the QDE radiative transition, in the presence of a strong external resonant electromagnetic field. Considering the QDE-field interactions in the regime of strong QDE-field coupling, we show that the feedback provided by the MNP on the QDE (due to the LSP excitation with the field generated by the dipole moment of the QDE transition) influences significantly the coherent process of Rabi oscillations, resulting in the occurrence of additional satellite frequencies in the radiation spectrum scattered by the QDE-MNP configuration. The relative ratio of high harmonics depends strongly on the QDE-MNP separation, an important characteristic feature that can be used for observing this effect and can be exploited, for example, for controlling distances at the nanoscale.

  12. Ultrafast self-action of surface-plasmon polaritons at an air/metal interface

    Science.gov (United States)

    Baron, Alexandre; Hoang, Thang B.; Fang, Chao; Mikkelsen, Maiken H.; Smith, David R.

    2015-05-01

    We investigate both theoretically and experimentally the nonlinear propagation of surface-plasmon polaritons (SPP) on a single air/metal interface. Inspired by nonlinear dielectric waveguide theory, we analytically derive a model that describes the nonlinear propagation of SPPs, thus bridging the description of plasmonic and dielectric waveguides. The model, the numerical simulations, and the experiments, which are carried out in the 100 fs regime, reveal that the SPP undergoes strong ultrafast self-action which manifests itself through self-induced absorption. Our observations are consistent with a large, bulk, third-order nonlinear susceptibility (χ(3 )) of gold and provide a self-consistent theory of self-action of SPPs at an air/metal interface. Experimentally, we find Im {χ-(3 )} ˜3 ×10-16m2/V2 . These findings have important implications in the nonlinear physics of plasmonics and metamaterials as they provide evidence that nonlinear absorption has a significant effect on the propagation of SPPs excited by intense optical pulses. This self-action is also expected to affect the anomalous absorption of light near subwavelength structures as well as the strength of desirable nonlinear processes such as third-harmonic generation and four-wave mixing, which will inevitably compete with nonlinear absorption.

  13. Surface Plasmon Polariton-Assisted Long-Range Exciton Transport in Monolayer Semiconductor Lateral Heterostructure

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.

  14. Infrared Surface-Plasmon-Resonance -- a novel biophysical tool for studying living cell

    OpenAIRE

    Golosovsky, M.; Lirtsman, V.; Yashunsky, V.; Davidov, D.; Aroeti, B.

    2009-01-01

    We discuss the Surface-Plasmon-Resonance (SPR) technique based on Fourier -Transform - InfraRed (FTIR) spectrometry. We explore the potential of the infrared surface plasmon resonance technique for biological studies in aqueous solutions and compare it to the conventional surface plasmon technique operating in the visible range. We demonstrate that the sensitivity of the SPR technique in the infrared range is not lower and in fact is even higher. We show several examples of applying FTIR-SPR ...

  15. Scattering-Type Surface-Plasmon-Resonance Biosensors

    Science.gov (United States)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  16. Surface Plasmonic Lens Driven Photoelectron Source for Multi-beam Applications

    Science.gov (United States)

    Choi, Heon J.

    Surface plasmon polariton (SPP) assisted photoelectron source array is proposed for use in distributed multiple electron beam lithography applications. Individual source is composed of a metal/dielectric surface structure with concentric circular grooves of subwavelength width surrounding a sub-wavelength aperture. Such optical power concentrators, called "plasmonic lenses", collect light incident over a broad area by converting it to surface electromagnetic waves, specifically SPP's, through diffraction by the sub-wavelength grooves surrounding the aperture. Through constructive interference of the generated SPPs between neighboring grooves, controlled by the periodicity of the grooves, high optical power densities can be achieved at the center of the lens near the aperture. This facilitates high transmission of optical power through the aperture which results in more light being transmitted than is incident on the aperture itself. Such an approach results in a focal spot at the exit side of the aperture with highly enhanced optical power density compared to the incident light. Optimization of the circular groove-aperture plasmonic lens is demonstrated through finite-difference-in-time-domain simulations that focus on the overall performance of the optical power density enhancement at the operating wavelength of 266 nm. The basic method for the fabrication of plasmonic lenses based on electron beam lithography and reactive ion etching techniques is demonstrated. Additionally, the fabricated structures are tested by the measurement of plasmonic lens facilitated photoemission current driven by a 266 nm laser. Experimental results of the performance of the fabricated structures, composed of Al and a-SiO2, is measured and analyzed. The plasmonic lens fabricated with the optimized design exhibit ˜15 enhancement of the incident optical power density. The plasmonic lens arrays are designed to drive photoelectron emission from nanodots with diamters in the sub-100 nm

  17. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Zhang, Baile, E-mail: blzhang@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371 (Singapore)

    2016-03-14

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  18. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    Conventional photonic band gap (PBG) structures are composed of regions with periodic modulation of refractive index that do not allow the propagation of electromagnetic waves in a certain interval of wavelengths, i.e., that exhibit the PBG effect. The PBG effect is essentially an interference...... phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...... PBG-based components within a few hundred micrometers, we realized that other two-dimensional waves, e.g., surface plasmon polaritons (SPPs), might be employed for the same purpose. The SPP band gap (SPPBG) has been observed for the textured silver surfaces by performing angular measurements...

  19. Electron- and photon-induced plasmonic excitations in two-dimensional silver nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, C. V.; Rana, M. [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Nagao, T., E-mail: Nagao.Tadaaki@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2014-06-23

    Plasmons are the quasi particles of collective oscillations of electrons and form the basis of plasmonics and optical metamaterials. We combined electron spectroscopy and optical spectroscopy techniques to study plasmons in atomically smooth Ag films and in epitaxial Ag nanodisks to map the momentum-energy dispersion curves of the two-dimensional (2D) sheet plasmon and the quasi-2D plasmons to clarify the essential differences between them. Our experimental results combined with the results of numerical electromagnetic simulations showed that the bulk-like nature of the silver plasmon starts in layers that are only two atoms thick.

  20. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  1. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  2. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2014-03-19

    Photoexcitation of the plasmon band in metallic nanoparticles adsorbed on a TiO2 surface initiates many important photovoltaic and photocatalytic processes. The traditional view on the photoinduced charge separation involves excitation of a surface plasmon, its subsequent dephasing into electron-hole pairs, followed by electron transfer (ET) from the metal nanoparticle into TiO2. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to demonstrate that an electron appears inside TiO2 immediately upon photoexcitation with a high probability (~50%), bypassing the intermediate step of electron-hole thermalization inside the nanoparticle. By providing a detailed, atomistic description of the charge separation, energy relaxation, and electron-hole recombination processes, the simulation rationalizes why the experimentally observed ultrafast photoinduced ET in an Au-TiO2 system is possible in spite of the fast energy relaxation. The simulation shows that the photogenerated plasmon is highly delocalized onto TiO2, and thus, it is shared by the electron donor and acceptor materials. In the 50% of the cases remaining after the instantaneous photogeneration of the charge-separated state, the electron injects into TiO2 on a sub-100 fs time scale by the nonadiabatic mechanism due to high density of acceptor states. The electron-phonon relaxation parallels the injection and is slower, resulting in a transient heating of the TiO2 surface by 40 K. Driven by entropy, the electron moves further into TiO2 bulk. If the electron remains trapped at the TiO2 surface, it recombines with the hole on a picosecond time scale. The obtained ET and recombination times are in excellent agreement with the experiment. The delocalized plasmon state observed in our study establishes a novel concept for plasmonic photosensitization of wide band gap semiconductors, leading to efficient conversion of photons to charge carriers and to hybrid materials with a wide

  3. Quantum theory of spontaneous and stimulated emission of surface plasmons

    International Nuclear Information System (INIS)

    Archambault, Alexandre; Marquier, Francois; Greffet, Jean-Jacques; Arnold, Christophe

    2010-01-01

    We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media without invoking any specific model for the dielectric constant. Working in Coulomb's gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green's tensor approach in the nonlossy case. Green's approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too small to obtain gain in this frequency region.

  4. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    Science.gov (United States)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    . The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made. Electronic supplementary information (ESI) available: The SERS spectra of ThT on A-E samples are provided at two different excitations: 532 and 785 nm (Fig. S1). See DOI: 10.1039/c5nr02819a

  5. Surface plasmon oscillations in a semi-bounded semiconductor plasma

    Science.gov (United States)

    M, SHAHMANSOURI; A, P. MISRA

    2018-02-01

    We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.

  6. Ultrahigh resolution long range surface plasmon-based sensor

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří

    2007-01-01

    Roč. 123, č. 1 (2007), s. 10-12 ISSN 0925-4005 R&D Projects: GA ČR GP202/04/P141; GA ČR GA203/02/1326; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323; US FDA (US) FD-U-002250 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * refractive index Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.934, year: 2007

  7. Radiative decay of surface plasmons on nonspherical silver particles

    International Nuclear Information System (INIS)

    Little, J.W.; Ferrell, T.L.; Callcott, T.A.; Arakawa, E.T.

    1982-01-01

    We have studied the radiation emitted by electron-bombarded silver particles. Electron micrographs have shown that the particles, obtained by heating thin (5 nm) silver films, were oblate (flattened) with minor axes aligned along the substrate normal. The characteristic wavelength obtained by bombarding these particles with 15-keV electrons was found to vary with angle of photon emission. We have modeled this wavelength shift as a result of the mixture of radiation from dipole and quadrupole surface-plasmon oscillations on oblate spheroids. Experimental observations of the energy, polarization, and angular distribution of the emitted radiation are in good agreement with theoretical calculations

  8. Surface plasmon resonance biosensor based on integrated optical waveguide

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Čtyroký, Jiří; Homola, Jiří; Brynda, Eduard; Skalský, Miroslav; Nekvindová, P.; Špirková, J.; Škvor, J.; Schröfel, J.

    2001-01-01

    Roč. 76, 1/3 (2001), s. 8-12 ISSN 0925-4005. [International Meeting on Chemical Sensors IMCS /8./. Basel, 02.07.2000-05.07.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : surface plasmon resonance * optical sensors * integrated optics * biosensors * optical waveguides Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  9. Novel spectral fiber optic sensor based on surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří; Čtyroký, Jiří; Brynda, Eduard

    B74, 1/3 (2001), s. 106-111 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  10. Graphene surface plasmon bandgap based on two dimensional Si gratings

    Directory of Open Access Journals (Sweden)

    Yueke Wang

    2017-11-01

    Full Text Available A graphene/Si system, which is composed of a two-dimensional subwavelength silicon gratings and a graphene sheet, is designed to realize the complete band gap in infrared region for graphene surface plasmons (GSPs theoretically. The complete band gap originates from the strong scatterings, which is caused by the periodical distribution of effective refractive index. The band structure has been calculated using the plane wave expansion method, and full wave numerical simulations are conducted by finite element method. Thanks to the tunable permittivity of graphene, the band structure can be easily tuned, which provides a way to manipulate in-plane GSPs’ propagation.

  11. High Throughput Spectroscopic Catalyst Screening via Surface Plasmon Spectroscopy

    Science.gov (United States)

    2015-07-15

    elements in a quasi-solid-state ion-gel capacitor. We show that in such a device that the localised surface plasmon resonance (LSPR) of a single Au NR...particles and the dielectric function of the supporting medium have on LSPR changes. Buso et al. and Della Gaspera et al. concluded that LSPR...gold particle spectra to H2 induced dielectric function changes of nearby Pt NPs separated by a SiO2 support 23. More recent studies showed that

  12. Nanostructure-enhanced surface plasmon resonance imaging (Conference Presentation)

    Science.gov (United States)

    Špašková, Barbora; Lynn, Nicholas S.; Slabý, Jiří Bocková, Markéta; Homola, Jiří

    2017-06-01

    There remains a need for the multiplexed detection of biomolecules at extremely low concentrations in fields of medical diagnostics, food safety, and security. Surface plasmon resonance imaging is an established biosensing approach in which the measurement of the intensity of light across a sensor chip is correlated with the amount of target biomolecules captured by the respective areas on the chip. In this work, we present a new approach for this method allowing for enhanced bioanalytical performance via the introduction of nanostructured sensing chip and polarization contrast measurement, which enable the exploitation of both amplitude and phase properties of plasmonic resonances on the nanostructures. Here we will discuss a complex theoretical analysis of the sensor performance, whereby we investigate aspects related to both the optical performance as well as the transport of the analyte molecules to the functionalized surfaces. This analysis accounts for the geometrical parameters of the nanostructured sensing surface, the properties of functional coatings, and parameters related to the detection assay. Based on the results of the theoretical analysis, we fabricated sensing chips comprised of arrays of gold nanoparticles (by electron-beam lithography), which were modified by a biofunctional coating to allow for the selective capturing of the target biomolecules in the regions with high sensitivity. In addition, we developed a compact optical reader with an integrated microfluidic cell, allowing for the measurement from 50 independent sensing channels. The performance of this biosensor is demonstrated through the sensitive detection of short oligonucleotides down to the low picomolar level.

  13. Nanoarray-based biomolecular detection using individual Au nanoparticles with minimized localized surface plasmon resonance variations.

    Science.gov (United States)

    Guo, Longhua; Ferhan, Abdul Rahim; Lee, Kijoon; Kim, Dong-Hwan

    2011-04-01

    Here, we present a mean to expand the use of individual metallic nanoparticles to two-dimensional plasmonic nanoarrays. An optical detection platform to track down localized surface plasmon resonance (LSPR) signals of individual nanoparticles on substrates was built for the application of plasmonic nanoarrays. A pseudoimage of nanoparticles on a substrate was reconstructed from their scattering spectra obtained by scanning a user-defined area. The spectral and spatial resolutions of the system were also discussed in detail. Most importantly, we present a method to normalize the localized surface plasmon resonance from geometrically different nanoparticles. After normalization, plasmonic responses from different particles become highly consistent, creating well-fitted dose-response curves of both surrounding refractive index changes and receptor-analyte binding to the surface of individual nanoparticles. Finally, the proof-of-concept system for plasmonic nanoarray detection is demonstrated by the measurement of the aptamer-thrombin binding event.

  14. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration

    Science.gov (United States)

    Esteban, Óscar; Díaz-Herrera, Natalia; Navarrete, María-Cruz; González-Cano, Agustín

    2006-10-01

    We present a configuration for surface plasmon resonance sensors based on uniform-waist tapered optical fibers and reflective elements. Once the fiber is tapered fulfilling the adiabatic criterion, a multilayer including a metallic medium is asymmetrically deposited on the uniform waist of the fiber. This feature provides the resonant excitation of multiple surface plasma waves. In addition, a mirror is produced at the fiber tip by a chemical Tollens reaction. In this way, the sensor operates in a reflective mode, more convenient for dip probes. When these sensors are spectrally interrogated, a high sensitivity of 10-4 refractive index units per nanometer is attained. These devices can be advantageously used for any kind of chemical sensing and biosensing.

  15. Physical nature of volume plasmon polaritons in hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Kidwai, Omar; Sipe, J. E.

    2013-01-01

    We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton ex...... excitations in the individual metal layers....

  16. Systematic screening of viral entry inhibitors using surface plasmon resonance.

    Science.gov (United States)

    Kumar, Penmetcha K R

    2017-11-01

    Viral binding and entry into host cells for various viruses have been studied extensively, yielding a detailed understanding of the overall viral entry process. As cell entry is an essential and requisite process by which a virus initiates infection, it is an attractive target for therapeutic intervention. The advantages of targeting viral entry are an extracellular target site, relatively easy access for biological interventions, and lower toxicity. Several cell-based strategies and biophysical techniques have been used to screen compounds that block viral entry. These studies led to the discovery of inhibitors against HIV, HCV, influenza, Ebola, and RSV. In recent years, several compounds screened by fragment-based drug discovery have been approved as drugs or are in the final stages of clinical trials. Among fragment screening technologies, surface plasmon resonance has been widely used because it provides accurate information on binding kinetics, allows real-time monitoring of ligand-drug interactions, requires very small sample amounts to perform analyses, and requires no modifications to or labeling of ligands. This review focuses on surface plasmon resonance-based schemes for screening viral entry inhibitors. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Reference compensation for localized surface-plasmon resonance sensors

    Science.gov (United States)

    Nehru, Neha

    Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage---LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit the applicability and impact of the sensor. In spite of the extensive amount of work done in this field, there has been a clear absence of efforts to make LSPR sensors immune to interfering effects. The work presented in this document investigates, both experimentally and numerically, dual- and tri-mode LSPR sensors that utilize the multiple surface plasmon modes of gold nanostructures to distinguish target analyte from interfering bulk and non-specific binding effects. Finally, a series of biosensing experiments are performed to examine various regeneration assays for LSPR sensors built on indium tin oxide coated glass substrate.

  18. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  19. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  20. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  1. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  2. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies.......e., the particle mode and the cavity mode. The particle mode can be hybridized via leaning of pillars. The LSPR wavelength of the cavity mode is dominant only by the diameter of the Si pillar. The presence of a substrate dramatically changes the intensities of these two LSPR modes, by introducing constructive...... displaying a very large average SERS EF of >108. From a practical point of view, the developed SERS substrates are particularity interesting, since they are easy to handle and store and the fabrication is scalable, facilitating a wide and simple use of SERS in sensing applications....

  3. Realization of surface plasmon polaritons by Fresnel diffraction

    Science.gov (United States)

    Aalipour, Rasoul; Esmaeilie, Shahram

    2018-01-01

    When a part of an optical wave-front experiences a sharp change in its phase, Fresnel diffraction becomes appreciable. Sharp change in phase occurs as a wave-front reflects from a surface with an abrupt change in reflectivity. We apply this concept to a modified Kretschmann configuration for coupling surface plasmon. In Kretschmann configuration a metal film is placed at the interface of two dielectric media. First medium with higher refractive index is a prism and second medium with lower refractive index can be the air or the solutions of interest. But, in our modified configuration, the metal film is coated only on one half of a specified face of the prism. When a parallel-polarized light travels from the higher refractive index medium to the lower refractive index medium with an angle θtechnique by theory and experiment.

  4. SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles

    Science.gov (United States)

    Chen, Lei; Zhang, Fan; Deng, Xin-Yu; Xue, Xiangxin; Wang, Li; Sun, Yantao; Feng, Jing-Dong; Zhang, Yongjun; Wang, Yaxin; Jung, Young Mee

    2018-01-01

    A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56 nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

  5. Efficiency droop suppression of distance-engineered surface plasmon-coupled photoluminescence in GaN-based quantum well LEDs

    Directory of Open Access Journals (Sweden)

    Yufeng Li

    2017-11-01

    Full Text Available Ag coated microgroove with extreme large aspect-ratio of 500:1 was fabricated on p-GaN capping layer to investigate the coupling behavior between quantum wells and surface plasmon in highly spatial resolution. Significant photoluminescence enhancement was observed when the distance between Ag film and QWs was reduced from 220 nm to about 20 nm. A maximum enhancement ratio of 18-fold was achieved at the groove bottom where the surface plasmonic coupling was considered the strongest. Such enhancement ratio was found highly affected by the excitation power density. It also shows high correlation to the internal quantum efficiency as a function of coupling effect and a maximum Purcell Factor of 1.75 was estimated at maximum coupling effect, which matches number calculated independently from the time-resolved photoluminescence measurement. With such Purcell Factor, the efficiency was greatly enhanced and the droop was significantly suppressed.

  6. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation...

  7. Size-dependent surface plasmon resonance in silver silica nanocomposites

    International Nuclear Information System (INIS)

    Thomas, Senoy; Nair, Saritha K; Jamal, E Muhammad Abdul; Anantharaman, M R; Al-Harthi, S H; Varma, Manoj Raama

    2008-01-01

    Silver silica nanocomposites were obtained by the sol-gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO 3 ) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO 3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5-10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory

  8. Trends in interfacial design for surface plasmon resonance based immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Dhesingh Ravi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2007-12-07

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  9. Trends in interfacial design for surface plasmon resonance based immunoassays

    International Nuclear Information System (INIS)

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Immunosensors based on surface plasmon resonance (SPR) have become a promising tool in sensor technology for biomedical, food, environmental, industrial and homeland security applications. SPR is a surface sensitive optical technique, suitable for real-time and label-free analysis of biorecognition events at functional transducer surfaces. Fabrication of highly active and robust sensing surfaces is an important part in immunoassays because the quality, quantity, chemistry and topography of the interfacial biomembranes play a major role in immunosensor performance. Eventually, a variety of immobilization methods such as physical adsorption, covalent coupling, Langmuir-Blodgett film, polymer thin film, self-assembly, sol-gel, etc, have been introduced over the years for the immobilization of biomolecules (antibody or antigen) on the transducer surfaces. The selection of an immobilization method for an immunoassay is governed by several factors such as nature and stability of the biomolecules, target analyte, application, detection principle, mode of signal transduction, matrix complexity, etc. This paper provides an overview of the various surface modification methods for SPR based immunosensor fabrication. The preparation, structure and application of different functional interfacial surfaces have been discussed along with a brief introduction to the SPR technology, biomolecules and detection principles. (review article)

  10. First-principles study of surface plasmons on Ag(111) and H/Ag(111)

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2011-01-01

    Linear-response time-dependent density functional theory is used to investigate the relation between molecular bonding and surface plasmons for the model system H/Ag(111). We employ an orbital-dependent exchange-correlation functional to obtain a correct description of the Ag 3d band, which...... is crucial to avoid overscreening the plasmon by the s-d interband transitions. For the clean surface, this approach reproduces the experimental plasmon energies and dispersion to within 0.15 eV. Adsorption of hydrogen shifts and damps the Ag(111) surface plasmon and induces a new peak in the loss function...... at 0.6 eV below the Ag(111) plasmon peak. This feature originates from interband transitions between states located on the hydrogen atoms and states on the Ag surface atoms....

  11. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  12. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure

    Science.gov (United States)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu

    2015-03-01

    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  13. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    Science.gov (United States)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  14. Propagation of long-range surface plasmon polaritons in photonic band gap structures

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, Thomas

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold fil embedded...... in polymer. Radiation is delivered to and from the PC structures with the help of LR-SPP guides that consist of 8 mm wide and 15 nm thick gold stripes attached to wide film sections (of the same thickness) covered with bumps (diameter ~300 nm, height up to 150 nm on each side of the film). We investigate......, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  15. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate

    International Nuclear Information System (INIS)

    D’Antonio, Palma; Vincenzo Inchingolo, Alessio; Perna, Giuseppe; Capozzi, Vito; Stomeo, Tiziana; De Vittorio, Massimo; Magno, Giovanni; Grande, Marco; Petruzzelli, Vincenzo; D’Orazio, Antonella

    2012-01-01

    In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal–dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip. (paper)

  16. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    Bazan, Guillermo; Mikhailovsky, Alexander

    2008-01-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  17. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Guillermo Bazan; Alexander Mikhailovsky

    2008-08-01

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is

  18. Rapidly accelerating Mathieu and Weber surface plasmon beams.

    Science.gov (United States)

    Libster-Hershko, Ana; Epstein, Itai; Arie, Ady

    2014-09-19

    We report the generation of two types of self-accelerating surface plasmon beams which are solutions of the nonparaxial Helmholtz equation in two dimensions. These beams preserve their shape while propagating along either elliptic (Mathieu beam) or parabolic (Weber beam) trajectories. We show that owing to the nonparaxial nature of the Weber beam, it maintains its shape over a much larger distance along the parabolic trajectory, with respect to the corresponding solution of the paraxial equation-the Airy beam. Dynamic control of the trajectory is realized by translating the position of the illuminating free-space beam. Finally, the ability of these beams to self-heal after blocking obstacles is demonstrated as well.

  19. Calibration of Surface Plasmon Resonance Imager for Biochemical Detection

    Directory of Open Access Journals (Sweden)

    T. Ktari

    2012-01-01

    Full Text Available We present a new Surface Plasmon Resonance imager (SPRi based on immobilized T4-phage for bacteria detection. First, we present the sensitivity of the SPR imager towards refractive index variation for biosensor application. The SPR imager can be calibrated versus different percentage of triethylene glycol mixture in ultrapure water. The system can be used as a refractometer with sensitivity below 5×10−5 in the range of 1.33300–1.34360. Second, bacteriophage (T4-phage can be physisorbed on gold microarray spots for bacteria detection. The kinetic physisorption of different concentrations of T4-phages can be observed in real time. Finally, two types of bacteria such as E. coli (gram negative and Lactobacillus (gram positive were used for positive and negative tests. The results show a selectivity of T4-phage toward E. coli with a detection limit below 104 CFU/mL and with good reproducibility.

  20. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    . By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs......-QW coupling does not necessarily lead to emission enhancement. The findings of this work show that the scattering and absorption properties of NPs play a crucial role in determining whether the implementation will improve or degrade the optical performance. By applying these principles, a novel design...... methods are presented to improve the efficiency of the QWs. Furthermore, a design for electrically driven LED device with SP compatibility is proposed, and requirements on p-type GaN layer thickness and current spreading properties are investigated experimentally....

  1. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    Noble metal nanostructures support localized surface plasmon (LSPR) resonances that depend on their dimensions, shapes and compositions. Particle LSPR's can be used to spatially confine the incident light and produce enormous electromagnetic (EM) field enhancement spots, i.e. hot spots. Hot spots...... have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...... experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations...

  2. Pass-band reconfigurable spoof surface plasmon polaritons

    Science.gov (United States)

    Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun

    2018-04-01

    In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

  3. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...

  4. Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films

    DEFF Research Database (Denmark)

    Huck, Alexander; Witthaut, Dirk; Kumar, Shailesh

    2013-01-01

    We investigate the optical nonlinear effects of a long-range surface plasmon polariton mode propagating on a thin gold film. These effects may play a key role in the design of future nanophotonic circuits as they allow for the realization of active plasmonic elements. We demonstrate a significant...

  5. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  6. Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region

    Science.gov (United States)

    Son, Taehwang; Kim, Donghyun

    2015-03-01

    We present a theoretical approach to single nanoparticle detection using surface plasmon scattering microscopy. Through rigorous coupled wave analysis assuming light incidence on a gold coated BK7 glass substrate under total internal reflection condition for a 200-nm polystyrene as targets attached to the gold film, it was found that surface plasmon polariton induced by incident light on the gold thin film is perturbed. As a result, parabolic waves were observed in the reflection plane. By varying angles of incidence and wavelengths, optimum incident conditions for surface plasmon scattering microscopy were obtained.

  7. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  8. Electrochemical surface plasmon resonance: basic formalism and experimental validation.

    Science.gov (United States)

    Wang, Shaopeng; Huang, Xinping; Shan, Xiaonan; Foley, Kyle J; Tao, Nongjian

    2010-02-01

    A quantitative formalism of electrochemical surface plasmon resonance (EC-SPR) was developed for studying electrochemical reactions. The EC-SPR signal from the reactions was found to be a convolution function of electrochemical current, and therefore, EC-SPR is a powerful tool that can provide information similar to the conventional current-based electrochemical techniques. As an example, potential-sweep EC-SPR was analyzed in details and was found to provide a new way to measure convolution voltammetry without the need of numerical integration. In addition to the benefits provided by the conventional convolution voltammetry, the EC-SPR has several unique advantages, including (1) spatial resolution that is particularly attractive for studying heterogeneous reactions, (2) optical properties of the reactions species that may assist identification of reaction mechanisms, and (3) high surface sensitivity for studying surface binding of the reaction species. Experiments and numerical simulations were carried out for a model system, hexaammineruthenium(III) chloride. The simultaneously measured electrochemical current and SPR response confirmed the relationship between the two quantities, and the numerical simulations were in excellent agreement with the measurements.

  9. Detection of Carcinoembryonic Antigens Using a Surface Plasmon Resonance Biosensor

    Science.gov (United States)

    Su, Fengyu; Xu, Chunye; Taya, Minoru; Murayama, Kimie; Shinohara, Yasuro; Nishimura, Shin-Ichiro

    2008-01-01

    Carcinoembryonic antigen (CEA) is an oncofoetal cell-surface glycoprotein that serves as an important tumor marker for colorectal and some other carcinomas. In this work, a CEA immunoassay using a surface plasmon resonance (SPR) biosensor has been developed. SPR could provide label-free, real-time detection with high sensitivity, though its ability to detect CEA in human serum was highly dependent on the analytical conditions employed. We investigated the influences of various analytical conditions including immobilization methods for anti-CEA antibody and composition of sensor surface on the selective and sensitive detection of CEA. The results show that anti-CEA antibody immobilized via Protein A or Protein G caused a large increase in the resonance signal upon injection of human serum due to the interactions with IgGs in serum, while direct covalent immobilization of anti-CEA antibody could substantially reduce it. An optimized protocol based on further kinetic analysis and the use of 2nd and 3rd antibodies for the sandwich assay allowed detecting spiked CEA in human serum as low as 25 ng/mL. Furthermore, a self-assembled monolayer of mixed ethylene-glycol terminated alkanethiols on gold was found to have a comparable ability in detecting CEA as CM5 with thick dextran matrix and C1 with short flat layer on gold. PMID:27879935

  10. Engineering plasmonic nanostructured surfaces by pulsed laser deposition

    Science.gov (United States)

    Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea

    2018-03-01

    The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.

  11. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    Science.gov (United States)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  12. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  13. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    Science.gov (United States)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  14. Application of STEM/EELS to Plasmon-Related Effects in Optical Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Camden, Jon [Univ. of Notre Dame, IN (United States). Dept. of Chemistry and Biochemistry

    2017-08-15

    In this project we employed EELS/STEM to understand the near-field enhancements that drive current applications of plasmonic nanostructures. In particular, we explore the connection between optical and electron excitation of plasmon modes in metallic nanostructures: (1) Probing the structural parameters and dielectric properties of multimetallic nanoparticles; (2) Characterization of the near-electric-field enhancements obtained upon excitation of the localized surface plasmon resonance and understand the connection between electron- and photon-driven plasmons; (3) Understanding the behavior of molecules in plasmon-enhanced fields which is essential to emerging applications such as plasmon-assisted catalysis and solar energy harvesting.

  15. A system suitable for observing surface plasmon in a semi-infinite semiconductor superlattice

    International Nuclear Information System (INIS)

    Zhu Yun; Cai Shengshan; Zhou Shixun.

    1987-08-01

    A model of semi-infinite semiconductor superlattice topped with a metal-insulator(M-I-SL) is suggested. A modified Giuliani-Quinn surface plasmon is found. It is interesting to note that the frequency and critical wavelength can be arbitrarily chosen by varying thickness of the insulator. In particular, a new type of surface plasmon with null critical wave vector exists only below the bulk plasmon continuum, and the frequency is directly related to the ratio of thickness of the insulator d to the superlattice spacing a. (author). 9 refs, 3 figs

  16. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  17. Non-destructive plasma frequency measurement for a semiconductor thin film using broadband surface plasmon polaritons

    Science.gov (United States)

    Yang, Tao; Ge, Jia-cheng; Li, Xing-ao; Stantchev, Rayko Ivanov; Zhu, Yong-yuan; Zhou, Yuan; Huang, Wei

    2018-03-01

    Measurement of the plasma frequency of a semiconductor film using broadband surface plasmon is demonstrated in this paper. We theoretically deduce a formula about the relation between plasma frequency and characteristic surface plasmon frequency. The characteristic surface plasmon frequency can be captured from the cut-off frequency of the transmission spectra of the broadband surface plasmon, which is used to measure the plasma frequency indirectly. The plasma frequencies of an intrinsic indium antimonide with and without optical illuminance are measured with a THz time-domain spectrometer at room temperature. The experimental measured plasma frequencies fit well with theoretical and simulation results. Compared with other methods, the proposed method has a special advantage on measuring the plasma frequency for a thin semiconductor film coated on other materials.

  18. Generation of Bessel Surface Plasmon Polaritons in a Finite-Thickness Metal Film

    Directory of Open Access Journals (Sweden)

    S. N. Kurilkina

    2013-01-01

    Full Text Available A theory of generation of low- and high-index Bessel surface plasmon polaritons and their superposition in a metal film of a finite thickness is developed. Correct analytical expressions are obtained for the field of two families of Bessel surface plasmon polariton modes formed inside and outside the metal layer. The intensity distribution near the boundary of the layer has been calculated and analyzed. A scheme for the experimental realization of a superposition of Bessel surface plasmon polaritons is suggested. Our study demonstrates that it is feasible to use the superposition of Bessel surface plasmon polaritons as a virtual tip for near-field optical microscopy with a nanoscale resolution.

  19. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    Science.gov (United States)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  20. Controlling surface charge and spin density oscillations by Dirac plasmon interaction in thin topological insulators

    Science.gov (United States)

    Poyli, M. Ameen; Hrtoň, M.; Nechaev, I. A.; Nikitin, A. Y.; Echenique, P. M.; Silkin, V. M.; Aizpurua, J.; Esteban, R.

    2018-03-01

    Thin topological insulator (TI) films support optical and acoustic plasmonic modes characterized by effective net charge or net spin density, respectively. We combine many-body and electromagnetic calculations to study how these modes can be selectively excited at films and nanodisks at infrared and THz frequencies. We first discuss the excitation of propagating plasmons in a thin film by a point dipolar source. We emphasize how changing the distance between the dipolar source and the film allows us to control the relative strength of the acoustic and optical plasmons and thus to excite net-spin or net-charge waves on demand. The acoustic and optical modes in a nanodisk structure can be efficiently tuned by changing the size of the disk or by applying electrostatic gating. Furthermore, these modes can be confined to regions of dimensions much smaller than the wavelength. The control of the excitation of acoustic and optical modes indicates that thin topological insulators are a promising system to manipulate the spin and charge properties of the plasmonic response, with potential applications in fast, compact, and electrically-controlled spintronic devices.

  1. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  2. Quantum bus of metal nanoring with surface plasmon polaritons

    International Nuclear Information System (INIS)

    Lin Zhirong; Guo Guoping; Tu Tao; Li Haiou; Zou Changling; Ren Xifeng; Guo Guangcan; Chen Junxue; Lu Yonghua

    2010-01-01

    We develop an architecture for distributed quantum computation using quantum bus of plasmonic circuits and spin qubits in self-assembled quantum dots. Deterministic quantum gates between two distant spin qubits can be reached by using an adiabatic approach in which quantum dots couple with highly detuned plasmon modes in a metallic nanoring. Plasmonic quantum bus offers a robust and scalable platform for quantum optics experiments and the development of on-chip quantum networks composed of various quantum nodes, such as quantum dots, molecules, and nanoparticles.

  3. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    Science.gov (United States)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  4. Surface plasmon resonance investigation of optical detection in plasma-modified phospholipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungchoo; Cho, Chanyoun; Choi, Kyoungho; Jeon, Honggoo [Kwangwoon University, Seoul (Korea, Republic of)

    2012-03-15

    We herein report on a study of surface plasmon resonance (SPR) in thin gold (Au) films coated with thin layers of phospholipid material, which had been exposed to an atmospheric pressure (AP) plasma containing both pure Ar and Ar mixed with O{sub 2} (Ar/O{sub 2}, 0.8%). The phospholipid material that we used for the SPR experiments was lecithin, and the AP plasma system was applied in air by means of a radio-frequency (RF) plasma generator. A thin (∼60 nm) film of Au and a thin (∼15 nm) layer of lecithin were deposited and attached to the face of a prism, and surface plasmon modes were excited along the interfaces of the prism-Au-lecithin-air system by means of prism coupling using a He-Ne Laser (632.8 nm). The experimental SPR reflectance curves of the Au-lecithin-air modes were found to be shifted towards those of the Au-air mode with increasing applications of AP RF plasma treatment. From the shifts in the SPR curves, we found that the estimated thickness of the lecithin layer treated with a pure Ar plasma showed a linear decrease with etching rate of about 3 nm per treatment while the thickness of the lecithin layer treated with a mixed Ar/O{sub 2} plasma showed a tendency to saturate following a large initial decrease (ca. 14 nm). All these results demonstrate that the use of SPR sensing could facilitate the detection of extremely small variations in plasma-treated films of biomaterials.

  5. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  6. Surface plasmon resonance of Ag organosols: Experimental and theoretical investigations

    Directory of Open Access Journals (Sweden)

    Vodnik Vesna

    2012-01-01

    Full Text Available The aim of this paper is to investigate and compare the changes in surface plasmon resonance (SPR of silver (Ag hydrosol and organosols obtained by experimental and theoretical approaches. Silver nanoparticles (Ag NPs of 5 ± 1.5 nm in diameter were prepared in water by reduction of silver nitrate with sodium borohydride. Nanoparticles were subsequently transferred into different organic solvents (chloroform, hexane, toluene, 1,2-dichlorobenzene using oleylamine as a transfer agent. These solvents were chosen because of the differences in their refractive indices. Using UV-Vis absorption spectrophotometry and transmission electron microscopy (TEM, we confirmed that there were no shape and size changes of the nanoparticles upon the transfer to the organic phase. The absorption spectra of the obtained Ag organosols showed only changes in the position of SPR band depending on dielectric property of the used solvent. To analyze these changes, absorption spectra were modelled using Mie theory for small spherical particles. The experimental and theoretical resonance values were compared with those predicted by Drude model and its limitations in the analysis of absorption behavior of Ag NPs in organic solvents were briefly discussed.

  7. Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System.

    Science.gov (United States)

    Wu, Yichuan; Yao, Manwen; Fang, Xiangyi; Yang, Yucong; Cheng, Xiaoli

    2015-11-01

    To prevent illegal use of clenbuterol and for quality control in the food industry, more efficient and reliable methods for clenbuterol detection are needed. In this study, clenbuterol was detected using a spectral imaging surface plasmon resonance sensor system via two inhibition methods: (1) the target site compensation method, in which anti-clenbuterol antibody was immobilized on the sensor chip as a bioprobe and (2) the solution competition method in which a clenbuterol-BSA conjugate was immobilized on the sensor chip as the bioprobe. The detectable clenbuterol concentration ranged between 6.25 and 100 μg/mL for both methods. The clenbuterol limit of detection for the target site compensation method and solution competition method are estimated to be 6.7 and 4.5 μg/mL, respectively. The proposed methods were successfully applied to the detection of clenbuterol molecules and were found to have high specificity and high-throughput and were label free and operationally convenient.

  8. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  9. Surface plasmon resonance investigation procedure as a structure sensitive method for SnO{sub 2} nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Grinevich, V.S., E-mail: grinevich@onu.edu.ua [Odessa I.I. Mechnikov National University, 2 Dvoryanska St., 65082 Odessa (Ukraine); Filevska, L.M., E-mail: lfilevska@gmail.com [Odessa I.I. Mechnikov National University, 2 Dvoryanska St., 65082 Odessa (Ukraine); Matyash, I.E.; Maximenko, L.S.; Mischuk, O.N.; Rudenko, S.P. [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky Prospect, 03028 Kiev (Ukraine); Serdega, B.K., E-mail: bserdega@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 45 Nauky Prospect, 03028 Kiev (Ukraine); Smyntyna, V.A. [Odessa I.I. Mechnikov National University, 2 Dvoryanska St., 65082 Odessa (Ukraine); Ulug, B., E-mail: bulentulug@gmail.com [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2012-11-01

    General principles of the surface plasmon resonance (SPR) phenomenon are applied to studying the structure and physical properties of thin conducting tin dioxide (SnO{sub 2}) films. The SPR effects are detected and investigated by the methods of polarization modulation of the incident electromagnetic radiation. Angular and spectral dependencies of the reflection coefficients R{sub s}{sup 2} and R{sub p}{sup 2} for the s- and p-polarized radiation, together with their polarization difference {rho} = R{sub s}{sup 2} - R{sub p}{sup 2} are measured in the wavelength range of 400-1600 nm. Experimentally obtained {rho}({theta}, {lambda}) characteristics reflect the peculiar optical properties associated with the film structure and morphology. Surface plasmon-polaritons and local plasmons excited by s- and p-polarized radiation were observed. The results confirm that the SPR technique is a sensitive and informative method for the analysis of the SnO{sub 2} film structure. - Highlights: Black-Right-Pointing-Pointer Polarimetric technique for surface plasmon resonance was applied to SnO{sub 2} films. Black-Right-Pointing-Pointer Principle optical parameter of the film {rho}({theta}, {lambda}) was measured. Black-Right-Pointing-Pointer {rho}({theta}, {lambda}) = R{sub s}{sup 2} - R{sub p}{sup 2} - reflection coefficient difference Black-Right-Pointing-Pointer It was established that {rho}({theta}, {lambda}) is associated with SnO{sub 2} films' structure. Black-Right-Pointing-Pointer {rho}({theta}, {lambda}) amplitude is reported to be dependent on precursor concentration.

  10. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  11. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    International Nuclear Information System (INIS)

    Prill Sempere, Luis

    2010-01-01

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO 2 ) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 μm and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO 2 from the metal wires. Two different approaches have been tried: etching of the SiO 2 and cleaving the PCF. (orig.)

  12. Plasmonic excitations on metallic nanowires embedded in silica photonic crystal fibers

    Energy Technology Data Exchange (ETDEWEB)

    Prill Sempere, Luis

    2010-06-17

    This thesis describes the theoretical and experimental investigation of metal-filled photonic crystal fibers (PCFs) and their fabrication. The thesis explains how to overcome the obstacles when infiltrating molten metals into sub-micron holes in fused silica (SiO{sub 2}) PCF. The optical properties of such filled fibers are theoretically and experimentally investigated, focusing on the coupling between the core mode of the fibers and the surface plasmon polaritons (SPPs) on the metal wires. The thesis introduces the ideas, physical challenges and results of two new filling techniques: the pressure cell technique and the splicing technique. These techniques make it possible for the first time to fill different fiber structures with sub-micron sized holes, such as PCFs and single-hole capillaries, with different metals like gold (Au) and silver (Ag). Samples with hole diameters between 120 nm and 20 {mu}m and aspect ratios as high as 75000 have been realized. Theoretical simulations and models have been developed in order to understand the optical behavior of these novel structures. The light guided in the core of the filled PCF structure will couple to SPP modes on the wires. Several measurements have been performed to determine the resonance wavelengths and losses of such filled PCF structures. Also, different phenomena such as the shift of the resonance position with the wire diameter or pitch and the polarization dependence of SPP in polarization maintaining (PM)-PCF have been investigated. The fabrication of free standing metal arrays was another focus of this work. The critical question was how to remove the surrounding SiO{sub 2} from the metal wires. Two different approaches have been tried: etching of the SiO{sub 2} and cleaving the PCF. (orig.)

  13. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    Science.gov (United States)

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-02-19

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2017-10-01

    Full Text Available We proposed and demonstrated a novel tilted fiber Bragg grating (TFBG-based surface plasmon resonance (SPR label-free biosensor via a special boronic acid derivative to detect glycoprotein with high sensitivity and selectivity. TFBG, as an effective sensing element for optical sensing in near-infrared wavelengths, possess the unique capability of easily exciting the SPR effect on fiber surface which coated with a nano-scale metal layer. SPR properties can be accurately detected by measuring the variation of transmitted spectra at optical communication wavelengths. In our experiment, a 10° TFBG coated with a 50 nm gold film was manufactured to stimulate SPR on a sensor surface. To detect glycoprotein selectively, the sensor was immobilized using designed phenylboronic acid as the recognition molecule, which can covalently bond with 1,2- or 1,3-diols to form five- or six-membered cyclic complexes for attaching diol-containing biomolecules and proteins. The phenylboronic acid was synthetized with long alkyl groups offering more flexible space, which was able to improve the capability of binding glycoprotein. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with a protein concentration sensitivity up to 2.867 dB/ (mg/mL and a limit of detection (LOD of 15.56 nM.

  15. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system

    Science.gov (United States)

    Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.

    2017-12-01

    The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.

  16. Compact surface plasmon amplifier in nonlinear hybrid waveguide

    Science.gov (United States)

    Shu-shu, Wang; Dan-qing, Wang; Xiao-peng, Hu; Tao, Li; Shi-ning, Zhu

    2016-07-01

    Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (∼ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail. Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.

  17. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    Science.gov (United States)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.

    2007-09-01

    Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  18. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Tribedi, L C

    2007-01-01

    Se have investigated single and double ionization of C 60 molecule in collisions with 2.33 MeV/u Si q+ (q=6-14) and 3.125 MeV/u O q+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C 60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening

  19. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles......, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold...

  20. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  1. Surface Plasmon-Polaritons and Transverse Spin Angular Momentum at the Boundary of Hyperbolic Metamaterial with Arbitrary Orientation of the Optical Axis

    Directory of Open Access Journals (Sweden)

    V. Belyi

    2017-10-01

    Full Text Available The possibility is established and the conditions are found for localization of plasmon-polaritons (PPs near the boundaries of hyperbolic metamaterials (HMs of both I and II types with arbitrary orientation of the optical axis. It is grounded that such surface PP has the transverse spin momentum which depends on the wavelength of the exciting wave, the orientation of the optical axis of the hyperbolic metamaterial, and dielectric properties of bordered media.

  2. Using Metal-Multilayer-Dielectric Structure to Increase Sensitivity of Surface Plasmon Resonance Sensor

    Science.gov (United States)

    Ilchenko, Svitlana G.; Lymarenko, Ruslan A.; Taranenko, Victor B.

    2017-04-01

    We propose using a specially designed metal-multilayer-dielectric structure deposited on glass substrate to enhance the evanescent field and improve the sensitivity of the surface plasmon resonance sensor. The proposed structure supports both hybrid plasmonic transverse magnetic modes and conventional waveguide transverse electric modes. We show numerically the significant enhancement of the evanescent field and improvement of the sensitivity for the waveguide transverse electric mode.

  3. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  4. High Excitation Efficiency of Channel Plasmon Polaritons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate >50% conversion of light to V-groove channel plasmon-polaritons (CPPs) via compact waveguide-termination mirrors. Devices are fabricated using UV-lithography and crystallographic silicon etching. The V-shape is tailored by thermal oxidation to support confined CPPs....

  5. Subwavelength topological structures resulting from surface two-plasmon resonance by femtosecond laser exposure solid surface.

    Science.gov (United States)

    Song, Hai-Ying; Liu, Shi-Bing; Liu, H Y; Wang, Yang; Chen, Tao; Dong, Xiang-Ming

    2016-05-30

    We present that surface two-plasmon resonance (STPR) in electron plasma sheet produced by a femtosecond laser irradiating a solid surface is the self-formation mechanism of periodic subwavelength ripple structures. Peaks of overdense electrons, formed by resonant two-plasmon wave mode, pull bound ions out of the metal surface. Thus, the wave pattern of STPR is "carved" on the surface by Coulomb ablation (removal) due to periodic distributed strong electrostatic field produced by charge separation. To confirm the STPR model, we have performed analogical carving experiments by two femtosecond laser beams with perpendicular polarizations and time delay. The results explicitly show that two wave patterns of STPR generated by each beam are independently created in the pulse exposure area of a target surface, which is like the traditional "layer-carving" technique by comparison with the structured topological features. The time-scale of ablation dynamics and the electron temperature in ultrafast interaction are also verified by a time-resolved spectroscopy experiment and numerical simulation, respectively. The present model can self-consistently explain the formation of subwavelength ripple structures even with spatial periods shorter than half of the laser wavelength, shedding light on the understanding of ultrafast laser-solid interaction.

  6. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    Science.gov (United States)

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  7. Surface Plasmon Resonance Immunosensor for the Detection of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Noor Azlina Masdor

    2017-05-01

    Full Text Available Campylobacteriosis is an internationally important foodborne disease caused by Campylobacter jejuni. The bacterium is prevalent in chicken meat and it is estimated that as much as 90% of chicken meat on the market may be contaminated with the bacterium. The current gold standard for the detection of C. jejuni is the culturing method, which takes at least 48 h to confirm the presence of the bacterium. Hence, the aim of this work was to investigate the development of a Surface Plasmon Resonance (SPR sensor platform for C. jejuni detection. Bacterial strains were cultivated in-house and used in the development of the sensor. SPR sensor chips were first functionalized with polyclonal antibodies raised against C. jejuni using covalent attachment. The gold chips were then applied for the direct detection of C. jejuni. The assay conditions were then optimized and the sensor used for C. jejuni detection, achieving a detection limit of 8 × 106 CFU·mL−1. The sensitivity of the assay was further enhanced to 4 × 104 CFU·mL−1 through the deployment of a sandwich assay format using the same polyclonal antibody. The LOD obtained in the sandwich assay was higher than that achieved using commercial enzyme-linked immunosorbent assay (ELISA (106–107 CFU·mL−1. This indicate that the SPR-based sandwich sensor method has an excellent potential to replace ELISA tests for C. jejuni detection. Specificity studies performed with Gram-positive and Gram-negative bacteria, demonstrated the high specific of the sensor for C. jejuni.

  8. Surface Plasmon Resonance and Bending Loss-Based U-Shaped Plastic Optical Fiber Biosensors

    Directory of Open Access Journals (Sweden)

    Ariadny da S. Arcas

    2018-02-01

    Full Text Available Escherichia coli (E. coli is a large and diverse bacteria group that inhabits the intestinal tract of many mammals. Most E. coli strains are harmless, however some of them are pathogenic, meaning they can make one sick if ingested. By being in the feces of animals and humans, its presence in water and food is used as indicator of fecal contamination. The main method for this microorganism detection is the bacterial culture medium that is time-consuming and requires a laboratory with specialized personnel. Other sophisticated methods are still not fast enough because they require sending samples to a laboratory and with a high cost of analysis. In this paper, a gold-coated U-shaped plastic optical fiber (POF biosensor for E. coli bacteria detection is presented. The biosensor works by intensity modulation principle excited by monochromatic light where the power absorption is imposed by predominant effect of either bending loss or surface plasmon resonance (SPR, depending on the gold thickness. Bacterial selectivity is obtained by antibody immobilization on the fiber surface. The biosensor showed a detection limit of 1.5 × 103 colony-forming units (CFU/mL, demonstrating that the technology can be a portable, fast response and low-cost alternative to conventional methodologies for quality analysis of water and food.

  9. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  10. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR sensor applications

    Directory of Open Access Journals (Sweden)

    Samsuri Nurul Diyanah

    2017-01-01

    Full Text Available Gold nanoparticles (GNPs have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  11. Spectrally resolved surface plasmon resonance dispersion using half-ball optics

    Science.gov (United States)

    Dehmel, Raphael; Baumberg, Jeremy J.; Steiner, Ullrich; Wilts, Bodo D.

    2017-11-01

    In this work, a variant of a Kretschmann-type surface plasmon resonance (SPR) sensor is introduced. k-space imaging is combined with half-ball glass optics to facilitate the measurement of SPRs across the visible spectral range. In contrast to current state-of-the-art techniques, which are widely utilized in commercially available systems, the presented method allows single-shot-acquisition of the full angular reflection without any moving parts, as well as mapping of the surface plasmon dispersion by scanning across the entire visible wavelength range. Measurements on various thin metallic films demonstrate the sensitivity of the system towards minute changes of the metal surface and its close vicinity. The fast and precise measurement of surface plasmon resonances paves the way for improved detection in applications such as immunoassays or gas-sensors, especially for real-time in situ measurements.

  12. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing

    Science.gov (United States)

    Makhneva, Ekaterina; Obrusník, Adam; Farka, Zdeněk; Skládal, Petr; Vandenbossche, Marianne; Hegemann, Dirk; Zajíčková, Lenka

    2018-01-01

    Stable carboxyl-rich plasma polymers (PPs) were deposited onto the gold surface of surface plasmon resonance (SPR) chips under conditions that were chosen based on lumped kinetic model results. Carboxyl-rich films are of high interest for bio-applications thanks to their high reactivity, allowing the formation of covalent linkages between biomolecules and a surface. Accordingly, the monoclonal antibody, specific to human serum albumin (HSA), was immobilized and the performance of SPR immunosensors was evaluated by the immunoassay flow test. The developed sensors performed high level of stability and provided selective and high response to the HSA antigen solutions. The achieved results confirmed that the presented methodologies for the grafting of biomolecules on the gold surfaces have great potential for biosensing applications.

  13. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  14. Surface plasmon resonance imaging based multiplex biosensor: Integration of biomolecular screening, detection and kinetics estimation.

    NARCIS (Netherlands)

    Krishnamoorthy, G.; Carlen, Edwin; van den Berg, Albert; Schasfoort, Richardus B.M.

    2010-01-01

    We present a multiplex biosensing method to simultaneously screen targets of interest in a multiple target analyte sample and to extract the binding affinities of all interactant pairs from a single sensor surface using a commercial surface plasmon resonance imaging system. For demonstration, we

  15. Label-free screening of foodborne Salmonella using surface plasmon resonance imaging

    Science.gov (United States)

    Since 15 pathogens cause approximately 95% of the foodborne infections, it is desirable to develop rapid and simultaneous screening methods for these major pathogens. In this study, we developed an immunoassay for Salmonella based on surface plasmon resonance imaging (SPRi). The sensor surface modif...

  16. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  17. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  18. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles

    NARCIS (Netherlands)

    Gool, Elmar L.; Stojanovic, Ivan; Schasfoort, Richardus B.M.; Sturk, Auguste; Van Leeuwen, Ton G.; Nieuwland, Rienk; Terstappen, Leon W.M.M.; Coumans, Frank A.W.

    2017-01-01

    BACKGROUND: Identification, enumeration, and characterization of extracellular vesicles (EVs) are hampered by the small size of EVs, a low refractive index, and low numbers of antigens on their surface. METHODS: We investigated the potential of a 48- multiplex surface plasmon resonance imaging

  19. Surface Plasmon Resonance is an Analytically Sensitive Method for Antigen Profiling of Extracellular Vesicles

    NARCIS (Netherlands)

    Gool, Elmar L.; Stojanovic, Ivan; Schasfoort, Richard B. M.; Sturk, Auguste; van Leeuwen, Ton G.; Nieuwland, Rienk; Terstappen, Leon W. M. M.; Coumans, Frank A. W.

    2017-01-01

    Identification, enumeration, and characterization of extracellular vesicles (EVs) are hampered by the small size of EVs, a low refractive index, and low numbers of antigens on their surface. We investigated the potential of a 48-multiplex surface plasmon resonance imaging (SPRi) system to perform EV

  20. Surface plasmon polariton assisted red shift in excitonic emission of semiconductor microflowers

    Science.gov (United States)

    Parameswaran, Chithra; Warrier, Anita R.; Bingi, Jayachandra; Vijayan, C.

    2014-10-01

    We report on the study of metal nanoparticle-semiconductor hybrid system composed of β-indium sulfide (β-In2S3) and gold (Au) nanoparticles. β-In2S3 micron sized flower like structures (˜1 μm) and Au nanoparticles (˜10 nm) were synthesized by chemical route. These Au nanoparticles have surface plasmon resonance at ˜ 520 nm. We study the influence of Au surface plasmon polaritons on the radiative properties of the β-In2S3 microflowers. As a result of the coupling between the surface plasmon polaritons and the excitons there is a red shift ˜ 50 nm in emission spectrum of hybrid β-In2S3-Au system. Such hybrid systems provide scope for a control on the optical properties of semiconductor microstructures, thus rendering them suitable for specific device applications in optoelectronics and photovoltaics.

  1. Detection of the ODMR signal of a nitrogen vacancy centre in nanodiamond in propagating surface plasmons

    Science.gov (United States)

    Al-Baiaty, Zahraa; Cumming, Benjamin P.; Gan, Xiaosong; Gu, Min

    2018-02-01

    We demonstrate that the optically detected magnetic resonance (ODMR) signal of a nitrogen vacancy (NV) centre can be coupled to propagating surface plasmons for the detection of the NV centre spin states, and of external magnetic fields. By coupling the spin dependent luminescence signal of a NV centre in a nanodiamond (ND) to a chemically synthesized silver nanowire, we demonstrate the readout of the ODMR signal as a reduction in the surface plasmon polariton intensity, with improved contrast in comparison to the emission from the NV centre. Furthermore, on the application of a permanent magnetic field from zero to 13 G, we demonstrate that the Zeeman splitting of the magnetic spin states of the nitrogen vacancy centre ground states can also be detected in the coupled surface plasmons. This is an important step in the development of a compact on-chip information processing system utilizing the nitrogen vacancy in nanodiamond as an on-chip source with efficient magnetometry sensing properties.

  2. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single...

  3. Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Fofang, Nche T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Cruz-Campa, Jose L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frank, Ian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies; Campione, Salvatore [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies

    2014-08-21

    Here, we demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm2, a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties.

  4. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  5. Near-Infrared Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K.; Luther, Joey; Ewers, Trevor; Alivisatos, A. Paul

    2010-10-12

    Quantum confinement of electronic wavefunctions in semiconductor quantum dots (QDs) yields discrete atom-like and tunable electronic levels, thereby allowing the engineering of excitation and emission spectra. Metal nanoparticles, on the other hand, display strong resonant interactions with light from localized surface plasmon resonance (LSPR) oscillations of free carriers, resulting in enhanced and geometrically tunable absorption and scattering resonances. The complementary attributes of these nanostructures lends strong interest toward integration into hybrid nanostructures to explore enhanced properties or the emergence of unique attributes arising from their interaction. However, the physicochemical interface between the two components can be limiting for energy transfer and synergistic coupling within such a hybrid nanostructure. Therefore, it is advantageous to realize both attributes, i.e., LSPRs and quantum confinement within the same nanostructure. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots. This opens up possibilities for light harvesting, non-linear optics, optical sensing and manipulation of solid-state processes in single nanocrystals.

  6. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  7. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    International Nuclear Information System (INIS)

    Rana, Aniket; Lochan, Abhiram; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.; Gupta, Neeraj; Sharma, G. D.

    2016-01-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  8. Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H.; Akinoglu, E. M.; Fumagalli, P., E-mail: paul.fumagalli@fu-berlin.de [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Caballero, B.; García-Martín, A. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, Tres Cantos, E-28760 Madrid (Spain); Papaioannou, E. Th. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany); Cuevas, J. C. [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Giersig, M. [Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin (Germany); Helmholtz Zentrum Berlin, Institute of Nanoarchitectures for Energy Conversion, 14195 Berlin (Germany)

    2015-04-13

    A combined experimental and theoretical study of the magneto-optic properties of a series of nickel antidot thin films is presented. The hole diameter varies from 869 down to 636 nm, while the lattice periodicity is fixed at 920 nm. This results in an overall increase of the polar Kerr rotation with decreasing hole diameter due to the increasing surface coverage with nickel. In addition, at photon energies of 2.7 and 3.3 eV, where surface-plasmon excitations are expected, we observe distinct features in the polar Kerr rotation not present in continuous nickel films. The spectral position of the peaks exhibits a red shift with decreasing hole size. This is explained within the context of an effective medium theory by a change in the effective dielectric function of the Ni thin films.

  9. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  10. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  11. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  12. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  13. Surface Plasmon Resonances of an Axially Magnetized Plasma Column in the Presence of Collisional Loss

    Science.gov (United States)

    Es'kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V.

    2018-02-01

    Surface plasmon resonances arising in the course of scattering of an H-polarized plane electromagnetic wave by an axially magnetized plasma column are analyzed. Main attention is paid to the behavior of these resonances in the presence of collisional loss in the magnetoplasma filling the scatterer. The frequencies, Q factors, and amplitude coefficients of the electromagnetic field of multipole surface plasmon resonances of different orders are found, and conditions under which the collisional loss in the plasma completely suppresses a given resonance are determined.

  14. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.

    1989-01-01

    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  15. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs.

  16. Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We develop a nonlocal-response generalization to the Green's function surface-integral method (GSIM), also known as the boundary-element method. This numerically efficient method can accurately describe the linear hydrodynamic nonlocal response of arbitrarily shaped plasmonic nanowires in arbitrary...... and the longitudinal wave number become smaller, or when the effective background permittivity or the mode inhomogeneity increase. The inhomogeneity can be expressed in terms of an effective angular momentum of the surface-plasmon mode. We compare local and nonlocal response of freestanding nanowires, and of nanowires...

  17. Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting

    Science.gov (United States)

    Wu, Fengqin; Han, Dezhuan; Hu, Xinhua; Liu, Xiaohan; Zi, Jian

    2009-05-01

    We show theoretically that a complete band gap for surface plasmon-polaritons (SPPs) can exist in a flat metal surface coated with a two-dimensional periodic array of dielectric cylinders. Based on the SPP band gap, gap-governed SPP waveguides, bends and splitters at telecom wavelengths can be achieved by introducing line defects. Numerical simulations show that the proposed SPP waveguides have a very low loss, while SPP bends and splitters can bend and split guided SPPs efficiently. The proposed SPP waveguides, bends and splitters could thus be exploited to construct compact integrated optical circuits in the emerging field of plasmonics.

  18. Efficient Excitation of Channel Plasmons in Tailored, UV-Lithography-Defined V-Grooves

    DEFF Research Database (Denmark)

    Smith, Cameron L. C.; Thilsted, Anil Haraksingh; Garcia-Ortiz, Cesar E.

    2014-01-01

    We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 μm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic...... silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable...

  19. Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; de Lasson, Jakob Rosenkrantz; Beleggia, Marco

    2014-01-01

    The dependence of surface plasmon coupling on the distance between two nanoparticles (dimer) is the basis of nanometrology tools such as plasmon rulers. Application of these nanometric rulers requires an accurate description of the scaling of the surface plasmon resonance (SPR) wavelength...... with distance. Here, we have applied electron energy-loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) imaging to investigate the relationship between the SPR wavelength of gold and silver nanosphere dimers (radius R) and interparticle distance (d) in the range 0.1R .... Instead, within the range 0.1R gold and silver dimers. Despite this common power dependence, consistently larger SPR wavelength shifts are registered for silver for a given change in d, implying...

  20. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.

    Science.gov (United States)

    Liu, C H; Hong, M H; Cheung, H W; Zhang, F; Huang, Z Q; Tan, L S; Hor, T S A

    2008-07-07

    Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

  1. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    R. Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  2. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies

    Science.gov (United States)

    Liao, Zhen; Liu, Shuo; Ma, Hui Feng; Li, Chun; Jin, Biaobing; Cui, Tie Jun

    2016-01-01

    We numerically and experimentally demonstrate a plasmonic metamaterial whose unit cell is composed of an ultrathin metallic disk and four ultrathin metallic spiral arms at terahertz frequencies, which supports both spoof electric and magnetic localized surface plasmon (LSP) resonances. We show that the resonant wavelength is much larger than the size of the unit particle, and further find that the resonant wavelength is very sensitive to the particle’s geometrical dimensions and arrangements. It is clearly illustrated that the magnetic LSP resonance exhibits strong dependence to the incidence angle of terahertz wave, which enables the design of metamaterials to achieve an electromagnetically induced transparency effect in the terahertz frequencies. This work opens up the possibility to apply for the surface plasmons in functional devices in the terahertz band. PMID:27277417

  3. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  4. Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes

    Science.gov (United States)

    Tanaka, K.; Burr, G. W.; Grosjean, T.; Maletzky, T.; Fischer, U. C.

    2008-10-01

    Metal-coated dielectric tetrahedral tips (T-tip) have long been considered to be interesting structures for the confinement of light to nanoscopic dimensions, and in particular as probes for scanning near-field optical microscopy. Numerical investigations using the Finite-Difference Time-Domain (FDTD) method are used to explore the operation of a T-tip in extraction mode. A dipole source in close proximity to the apex excites the tip, revealing the field evolution in the tip, the resulting edge and face modes on the metal-coated surfaces, and the coupling from these modes into highly directional radiation into the dielectric interior of the tip. These results are the starting point for illumination-mode numerical investigations by a Volume Integral equation method, which compute the field distribution that develops in a T-tip when a Gaussian beam is incident into the tip, and which show that a highly confined electric field is produced at the apex of the tip. The process of light confinement can be considered as a superfocussing effect, because the intensity of the tightly confined light spot is significantly higher than that of the focussed yet much wider incident beam. The mechanism of superfocussing can be considered as a dimensional reduction of surface plasmon modes, where an edge plasmon is the most important link between the waveguide-modes inside the tip and the confined near field at the apex.

  5. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    Science.gov (United States)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  6. Multiple ionization of C60 in collisions with 2.33MeV/u O-ions and giant plasmon excitation

    International Nuclear Information System (INIS)

    Kelkar, A.H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L.C.

    2007-01-01

    Single and multiple ionization of C 60 in collisions with fast (v=9.7a.u.) O q+ ions have been studied. Relative cross sections for production of C 60 1+ to C 60 4+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model

  7. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    International Nuclear Information System (INIS)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C

    2007-01-01

    We have investigated the single and multiple ionizations of the C 60 molecule in collisions with fast Si q+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process

  8. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    Science.gov (United States)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  9. Effect of multiple plasmon excitation on single, double and multiple ionizations of C{sub 60} in collisions with fast highly charged Si ions

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A H; Kadhane, U; Misra, D; Kumar, A; Tribedi, L C [Tata Institute of Fundamental Research, Colaba, Mumbai -5 (India)

    2007-06-28

    We have investigated the single and multiple ionizations of the C{sub 60} molecule in collisions with fast Si{sup q+} projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  10. Optical properties of plasmonic nanostructures: Theory & experiments

    Science.gov (United States)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are

  11. Unidirectional transmission based on polarization conversion and excitation of magnetic or surface polaritons

    Directory of Open Access Journals (Sweden)

    Xiaohu Wu

    2017-07-01

    Full Text Available We propose in this work combing a uniaxial crystal slab with a one-dimensional grating to realize unidirectional transmission (UDT. The physical mechanism for the UDT is attributed to polarization conversion with uniaxial crystal slab and excitation of magnetic polaritons (MPs or surface plasmon polaritons (SPPs in the grating region. Numerical simulations were performed by taking hexagonal boron nitride as the uniaxial crystal. The results reveal that UDT can be achieved for both TE and TM waves in the mid-infrared and the optical regions if the grating material is respectively selected as silicon carbide (SiC and silver (Ag with properly chosen values of the structure’s geometric parameters. This work may provide important guidelines for design of novel unidirectional transmission devices.

  12. Anomalous Acoustic Plasmon Mode from Topologically Protected States

    Science.gov (United States)

    Jia, Xun; Zhang, Shuyuan; Sankar, Raman; Chou, Fang-Cheng; Wang, Weihua; Kempa, K.; Plummer, E. W.; Zhang, Jiandi; Zhu, Xuetao; Guo, Jiandong

    2017-09-01

    Plasmons, the collective excitations of electrons in the bulk or at the surface, play an important role in the properties of materials, and have generated the field of "plasmonics." We report the observation of a highly unusual acoustic plasmon mode on the surface of a three-dimensional topological insulator (TI) Bi2Se3 , using momentum resolved inelastic electron scattering. In sharp contrast to ordinary plasmon modes, this mode exhibits almost linear dispersion into the second Brillouin zone and remains prominent with remarkably weak damping not seen in any other systems. This behavior must be associated with the inherent robustness of the electrons in the TI surface state, so that not only the surface Dirac states but also their collective excitations are topologically protected. On the other hand, this mode has much smaller energy dispersion than expected from a continuous media excitation picture, which can be attributed to the strong coupling with surface phonons.

  13. Surface plasmon field enhancements in deterministic aperiodic structures.

    Science.gov (United States)

    Shugayev, Roman

    2010-11-22

    In this paper we analyze optical properties and plasmonic field enhancements in large aperiodic nanostructures. We introduce extension of Generalized Ohm's Law approach to estimate electromagnetic properties of Fibonacci, Rudin-Shapiro, cluster-cluster aggregate and random deterministic clusters. Our results suggest that deterministic aperiodic structures produce field enhancements comparable to random morphologies while offering better understanding of field localizations and improved substrate design controllability. Generalized Ohm's law results for deterministic aperiodic structures are in good agreement with simulations obtained using discrete dipole method.

  14. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  15. The Higgs as a Portal to Plasmon-like Unparticle Excitations

    CERN Document Server

    Delgado, A; No, J M; Quirós, Mariano

    2008-01-01

    A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.

  16. Study of Planar Surface Wave Excited Plasma

    Science.gov (United States)

    Tian, Caizhong

    2008-10-01

    The need for plasma processing has increased as miniaturization in semiconductor manufacturing goes ahead. In these processes, a large-diameter plasma source is required with respect to 300mm wafer size. A Radial Line Slot Antenna (RLSA) driven surface-wave-sustained plasma is a potential best candidate to various applications with respect to damage free process. Many researches focus on the control of plasma density and electron temperature in RLSA technique. However, the plasma stability and uniformity control are less implemented in the practice. In recent years, we study sheath formation and plasma behavior at the interface, where the surface wave propagate, by using electromagnetic particle-in-cell simulation techniques. The simulations include the effects of ionization, and allow us to study the buildup of plasma density associated with ionization in the presence of the large fields of the RF-enhanced sheath. Our results show both the mechanism of plasma generation and heating at the plasma dielectric interface and the strong effect on geometric design of dielectric. Various scenarios are of interest, and help us to design an optimal RLSA driven plasma source, where the plasma stability and uniformity are firmly sustained under the various process conditions. Plasma diagnosis is carried out to reveal the more essential difference in plasma behavior between our RLSA and a custom inductively coupled plasma (ICP) source.

  17. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves

    DEFF Research Database (Denmark)

    Sondergaard, T.; Novikov, S. M.; Holmgaard, T.

    2012-01-01

    Excitation of localized and delocalized surface plasmon resonances can be used for turning excellent reflectors of visible light, such as gold and silver, into efficient absorbers, whose wavelength, polarization or angular bandwidths are however necessarily limited owing to the resonant nature......) absorption of unpolarized light, reaching an average level of 96%. Efficient absorption of visible light by nanostructured metal surfaces open new exciting perspectives within plasmonics, especially for thermophotovoltaics....... of surface plasmon excitations involved. Nonresonant absorption has so far been achieved by using combined nano- and micro-structural surface modifications and with composite materials involving metal nanoparticles embedded in dielectric layers. Here we realize nonresonant light absorption in a well...

  18. Spectroscopy of Bragg-scattered surface plasmons for characterization of thin biomolecular films

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Adam, Pavel; Kvasnička, Pavel; Telezhniková, Olga; Homola, Jiří

    2007-01-01

    Roč. 32, č. 20 (2007), s. 2903-2905 ISSN 0146-9592 R&D Projects: GA AV ČR(CZ) IAA400500507; GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmons * Bragg gratings * thin films Subject RIV: BO - Bio physics Impact factor: 3.711, year: 2007

  19. New surface plasmon polariton waveguide based on GaN nanowires

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Lasers are nowadays widely used in industry, in hospitals and in many devices that we have at home. Random laser development is challenging given its high threshold and low integration. Surface plasmon polariton (SPP can improve random laser characteristics because of its ability to control diffraction. In this study, we establish a random laser structural model with silicon-based parcel GaN nanowires. The GaN nanowire gain and enhanced surface plasmon increase population inversion level. Our laser model is based on random particle scattering feedback mechanism, nanowire use, and surface plasmon enhancement effect, which causes stochastic laser emergence. Analysis shows that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. We also investigate emergent laser performance for a more limited light field capacity and lower threshold. Keywords: Random laser, Surface plasmon polariton, Feedback mechanism, Low threshold, Subwavelength constraints

  20. Multiplex surface plasmon resonance imaging platform for label-free detection of foodborne pathogens

    Science.gov (United States)

    Salmonellae are among the leading causes of foodborne outbreaks in the United States, and more rapid and efficient detection methods are needed. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multiple targets simultaneous...

  1. Detection of mycotoxins using imaging surface plasmon resonance (iSPR)

    Science.gov (United States)

    Significant progress has been made in the development of biosensors that can be used to detect mycotoxins. One technology that has been extensively tested is surface plasmon resonance (SPR). In 2003 a multi-toxin method was reported that detected aflatoxin B1 (AFB1), zearalenone (ZEA), fumonisin B1 ...

  2. Surface plasmon resonance imaging for label-free detection of foodborne pathogens and toxins

    Science.gov (United States)

    More rapid and efficient detection methods for foodborne pathogenic bacteria and toxins are needed to address the long assay time and limitations in multiplex capacity. Surface plasmon resonance imaging (SPRi) is an emerging optical technique, which allows for rapid and label-free screening of multi...

  3. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor

    NARCIS (Netherlands)

    Thomas, M.E.; Bouma, A.; Eerden, van E.; Landman, W.J.M.; Knapen, van F.; Stegeman, J.A.; Bergwerff, A.A.

    2006-01-01

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two

  4. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  5. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Bocková, Markéta; Homola, Jiří

    2010-01-01

    Roč. 26, č. 4 (2010), s. 1656-1661 ISSN 0956-5663 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Protein array * Cancer marker Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.361, year: 2010

  6. Surface plasmon resonance sensor for detection of bisphenol A in drinking water

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Homola, Jiří

    2010-01-01

    Roč. 151, č. 1 (2010), s. 177-179 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * drinking water Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  7. Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes

    Czech Academy of Sciences Publication Activity Database

    Pimková, K.; Bocková, Markéta; Hegnerová, Kateřina; Suttnar, J.; Čermák, J.; Homola, Jiří; Dyr, J. E.

    2012-01-01

    Roč. 402, č. 1 (2012), s. 381-387 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * myelodysplastic syndromes * vascular endothelial growth factor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.659, year: 2012

  8. Spectroscopy of Bragg-scattered surface plasmons for characterization of thin biomolecular films

    Czech Academy of Sciences Publication Activity Database

    Dostálek, Jakub; Adam, Pavel; Kvasnička, Pavel; Telezhniková, Olga; Homola, Jiří

    2007-01-01

    Roč. 2, č. 11 (2007), --- ISSN 1931-1532 R&D Projects: GA AV ČR(CZ) IAA400500507; GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmons * Bragg gratings * thin films Subject RIV: BO - Biophysics http://vjbo.osa.org/virtual_issue.cfm?vid=50

  9. Surface Plasmon Resonance Biosensor for Rapid Label-Free Detection of Microribonucleic Acid at Subfemtomole Level

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Zhang, S.-Ch.; Dudley, A.M.; Galas, D.; Wang, K.; Homola, Jiří

    2010-01-01

    Roč. 82, č. 24 (2010), s. 10110-10115 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * microRNA * cancer diagnostics * biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.874, year: 2010

  10. Detection of bisphenol A using a novel surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Piliarik, Marek; Šteinbachová, M.; Flegelová, Z.; Černohorská, H.; Homola, Jiří

    2010-01-01

    Roč. 398, č. 5 (2010), s. 1963-1966 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * endocrine disruptor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.841, year: 2010

  11. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  12. Real/time monitoring of biomolecular interactions in blood plasma using a surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Špringer, Tomáš; Piliarik, Marek; Homola, Jiří

    2010-01-01

    Roč. 398, č. 5 (2010), s. 1955-1961 ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * molecular interaction analysis * microfluidics * optical biosensor Subject RIV: BO - Biophysics Impact factor: 3.841, year: 2010

  13. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre -optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  14. Enhancement of the Modulation Bandwidth for surface Plasmon coupled LEDs for Visible Light Communication

    DEFF Research Database (Denmark)

    Li, Jiehui; Fadil, Ahmed; Ou, Haiyan

    2016-01-01

    The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system....

  15. Detection of apoptosis in cancer cell lines using Surface Plasmon Resonance imaging

    NARCIS (Netherlands)

    Stojanović, I.; van Hal, Y.; van der Velden, T.J.G.; Schasfoort, Richardus B.M.; Terstappen, Leonardus Wendelinus Mathias Marie

    2016-01-01

    Induction of apoptosis in cancer cells by therapeutic agents is an important event to detect the potential effectiveness of therapies. Here we explore the potential of Surface Plasmon Resonance imaging (SPRi) to assess apoptosis in cancer cells exposed to therapeutic agents by measuring the

  16. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  17. Guiding of long-range surface plasmon polaritons along channels in periodic arrays of scatterers

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Hvam, Jørn Märcher; Nikolajsen, T.

    2004-01-01

    We investigate waveguiding of long-range surface plasmon polaritons in periodic arrays of scatterers at telecommunication wavelengths. A propagation loss of approximately 6 dB/mm and a coupling loss of 0.5 dB is reported for 8-ìm-wide channels....

  18. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates...

  19. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  20. Surface plasmon enhanced organic light emitting diodes by gold nanoparticles with different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-11-30

    Highlights: • Different varieties, sizes, and shapes for nanoparticles will generate different surface plasmon resonance effects in the devices. • The red-shift phenomenon for absorption peaks is because of an increasing contribution of higher-order plasmon modes for the larger gold nanoparticles. • The mobility of electrons in the electron-transport layer of organic light-emitting diodes is a few orders of magnitude lower than that of holes in the hole-transport layer of organic light-emitting diodes. - Abstract: The influence of gold nanoparticles (GNPs) with different sizes doped into (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) (PEDOT:PSS) on the performance of organic light-emitting diodes is investigated in this study. The current efficiency of the device, at a current density of 145 mA/cm, with PEDOT:PSS doped with GNPs of 8 nm is about 1.57 times higher than that of the device with prime PEDOT:PSS because the absorption peak of GNPs is closest to the photoluminescence peak of the emission layer, resulting in maximum surface plasmon resonance effect in the device. In addition, the surface-enhanced Raman scattering spectroscopy also reveals the maximum surface plasmon resonance effect in the device when the mean particle size of GNPs is 8 nm.

  1. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  2. Modelling and characterisation of surface plasmon based sensors for the detection of E. coli

    Czech Academy of Sciences Publication Activity Database

    Rajarajan, M.; Dar, T.; Themistos, Ch.; Rahman, A.; Grattan, K.; Homola, Jiří

    2009-01-01

    Roč. 56, č. 4 (2009), s. 564-571 ISSN 0950-0340 Institutional research plan: CEZ:AV0Z20670512 Keywords : SPR sensor * long-range surface plasmon * bacterium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.942, year: 2009

  3. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  4. Observation of Dirac plasmons in a topological insulator.

    Science.gov (United States)

    Di Pietro, P; Ortolani, M; Limaj, O; Di Gaspare, A; Giliberti, V; Giorgianni, F; Brahlek, M; Bansal, N; Koirala, N; Oh, S; Calvani, P; Lupi, S

    2013-08-01

    Plasmons are quantized collective oscillations of electrons and have been observed in metals and doped semiconductors. The plasmons of ordinary, massive electrons have been the basic ingredients of research in plasmonics and in optical metamaterials for a long time. However, plasmons of massless Dirac electrons have only recently been observed in graphene, a purely two-dimensional electron system. Their properties are promising for novel tunable plasmonic metamaterials in the terahertz and mid-infrared frequency range. Dirac fermions also occur in the two-dimensional electron gas that forms at the surface of topological insulators as a result of the strong spin-orbit interaction existing in the insulating bulk phase. One may therefore look for their collective excitations using infrared spectroscopy. Here we report the first experimental evidence of plasmonic excitations in a topological insulator (Bi2Se3). The material was prepared in thin micro-ribbon arrays of different widths W and periods 2W to select suitable values of the plasmon wavevector k. The linewidth of the plasmon was found to remain nearly constant at temperatures between 6 K and 300 K, as expected when exciting topological carriers. Moreover, by changing W and measuring the plasmon frequency in the terahertz range versus k we show, without using any fitting parameter, that the dispersion curve agrees quantitatively with that predicted for Dirac plasmons.

  5. Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE)

    OpenAIRE

    Chowdhury, Mustafa H.; Ray, Krishanu; Geddes, Chris D.; Lakowicz, Joseph R.

    2008-01-01

    We report that self-assembled monolayers of colloidal silver nanoparticles can increase the intensity of the surface plasmon-coupled emission (SPCE) signal from sulforhodamine 101 (S101). The S101 was spin coated on a glass slide coated with a layer of continuous silver, and a silica layer upon which the nanoparticle layer was self-assembled. Of the various colloid sizes studied, the 40 nm colloids showed both the highest enhancements in the SPCE signal and the largest extent of plasmon coupl...

  6. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...... augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  7. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    Science.gov (United States)

    Raza, Søren; Mortensen, N. Asger

    2016-03-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface.

  8. Correlating the structure and localized surface plasmon resonance of single silver right bipyramids.

    Science.gov (United States)

    Ringe, Emilie; Zhang, Jian; Langille, Mark R; Mirkin, Chad A; Marks, Laurence D; Van Duyne, Richard P

    2012-11-09

    Localized surface plasmon resonances (LSPRs), collective electron oscillations in metal nanoparticles, are being heavily scrutinized for applications in prototype devices and circuits, as well as for chemical and biological sensing. Both the plasmon frequency and linewidth of a LSPR are critical factors for application optimization, for which their dependence on structural factors has been qualitatively unraveled over the past decade. However, quantitative knowledge based on systematic single particle studies has only recently become available for a few particle shapes. We show here that to understand the effect of structure (both size and shape) on plasmonic properties, one must take multiple parameters into account. We have successfully done so for a large data set on silver right bipyramids. By correlating plasmon energy and linewidth with edge length and corner rounding for individual bipyramids, we have found that the corner rounding has a significant effect on the plasmon energy for particles of the same size, and thus corner rounding must be taken into account to accurately describe the dependence of a LSPR on nanoparticle size. A detailed explanation of the phenomena responsible for the observed effects and their relationship to each other is presented.

  9. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure

    Science.gov (United States)

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-02-01

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.

  10. Coupling of a dipolar emitter into one-dimensional surface plasmon.

    Science.gov (United States)

    Barthes, Julien; Bouhelier, Alexandre; Dereux, Alain; Colas des Francs, Gérard

    2013-01-01

    Quantum plasmonics relies on a new paradigm for light-matter interaction. It benefits from strong confinement of surface plasmon polaritons (SPP) that ensures efficient coupling at a deep subwavelength scale, instead of working with a long lifetime cavity polariton that increases the duration of interaction. The large bandwidth and the strong confinement of one dimensional SPP enable controlled manipulation of a nearby quantum emitter. This paves the way to ultrafast nanooptical devices. However, the large SPP bandwidth originates from strong losses so that a clear understanding of the coupling process is needed. In this report, we investigate in details the coupling between a single emitter and a plasmonic nanowire, but also SPP mediated coupling between two emitters. We notably clarify the role of losses in the Purcell factor, unavoidable to achieve nanoscale confinement down to 10(-4)(λ/n)(3). Both the retarded and band-edge quasi-static regimes are discussed.

  11. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging

    International Nuclear Information System (INIS)

    Dhawan, A; Vo-Dinh, T; Duval, A; Nakkach, M; Barbillon, G; Moreau, J; Canva, M

    2011-01-01

    In this paper, we describe wafer-scale fabrication and characterization of plasmonic chips-containing different sizes and spacings of metallic micro- and nanoline structures-using deep UV lithography. Using a high dose (25 mJ cm -2 ) and a proper lift-off process, feature sizes as small as 25 nm are obtained. Moreover, we study the dependence of surface plasmon resonance on the angle of incidence and wavelength for different micro- and nanoline size and spacing values, yielding localized to quasi-propagative plasmonic behaviors. Rigorous coupled wave analysis (RCWA) techniques are employed to numerically confirm these experimental observations. Finally, the refractive index of media around the SPRI sensor chips is varied, showing the angulo-spectral regions of higher sensitivity for each type of structure.

  12. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    Science.gov (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  13. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    International Nuclear Information System (INIS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-01-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. (topical review)

  14. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation. The energy of the charge-transfer excitations obtained for the gas phase complexes are found...... consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  15. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors.

    Science.gov (United States)

    Liu, Xia; Huang, Renliang; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2014-08-13

    Antifouling surfaces capable of reducing nonspecific protein adsorption from natural complex media are highly desirable in surface plasmon resonance (SPR) biosensors. A new protein-resistant surface made through the chemical grafting of easily available hyaluronic acid (HA) onto gold (Au) substrate demonstrates excellent antifouling performance against protein adsorption. AFM images showed the uniform HA layer with a thickness of ∼10.5 nm on the Au surface. The water contact angles of Au surfaces decreased from 103° to 12° with the covalent attachment of a carboxylated HA matrix, indicating its high hydrophilicity mainly resulted from carboxyl and amide groups in the HA chains. Using SPR spectroscopy to investigate nonspecific adsorption from single protein solutions (bovine serum albumin (BSA), lysozyme) and complex media (soybean milk, cow milk, orange juice) to an HA matrix, it was found that ultralow or low protein adsorptions of 0.6-16.1 ng/cm(2) (e.g., soybean milk: 0.6 ng/cm(2)) were achieved on HA-Au surfaces. Moreover, anti-BSA was chosen as a model recognition molecule to characterize the immobilization capacity and the antifouling performance of anti-BSA/HA surfaces. The results showed that anti-BSA/HA sensor surfaces have a high anti-BSA loading of 780 ng/cm(2), together with achieving the ultralow (<3 ng/cm(2) for lysozyme and soybean milk) or low (<17 ng/cm(2) for cow milk and 10% blood serum) protein adsorptions. Additionally, the sensor chips also exhibited a high sensitivity to BSA over a wide range of concentrations from 15 to 700 nM. Our results demonstrate a promising antifouling surface using extremely hydrophilic HA as matrix to resist nonspecific adsorption from complex media in SPR biosensors.

  16. Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns.

    Science.gov (United States)

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2013-10-07

    We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported "hot spots" that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.

  17. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  18. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  19. Hybrid surface platform for the simultaneous detection of proteins and DNA using a surface plasmon resonance (SPR) imaging sensor

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Ladd, J.; Taylor, A.; Shaoyi, J.

    2008-01-01

    Roč. 80, č. 11 (2008), s. 4231-4236 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * DNA -directed immobilization * protein array Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.712, year: 2008

  20. Surface functionalization for self-referencing surface plasmon resonance /SPR/ biosensors by multi-step self assembly

    Czech Academy of Sciences Publication Activity Database

    Boozer, C.; Yu, Q.; Chen, S.; Lee, Ch.-Y.; Homola, Jiří; Yee, S. S.; Jiang, S.

    2003-01-01

    Roč. 90, 1/3 (2003), s. 22-30 ISSN 0925-4005 Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.391, year: 2003

  1. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  2. Preparation and characterization of SrTiO3-Ag/AgCl hybrid composite with promoted plasmonic visible light excited photocatalysis

    Science.gov (United States)

    Shen, Hongfang; Wei, Hongyu; Pan, Zhidong; Lu, Youjun; Wang, Yanmin

    2017-11-01

    An efficient visible light responsive photocatalyst hybrid composite SrTiO3-Ag/AgCl was prepared via hydrothermal method and subsequent chemical precipitation/in-situ photoreduction at room temperature. The phase structure, morphology, element mapping distribution, surface chemical composition, specific surface area, and light absorption ability of the samples were characterized. The transient photocurrent response and electrochemical impedance under visible light illumination indicate that SrTiO3-Ag/AgCl composite possesses a more intense photocurrent response and a smaller surface resistance than SrTiO3 and Ag/AgCl due to the lower electrons-holes recombination. SrTiO3-Ag/AgCl composite exhibits an obvious promoted visible light excited photovcatalytic activity in photodecomposition of methyl orange, rhodamine B and phenol, compared to SrTiO3 and Ag/AgCl. A possible photocatalytic mechanism was proposed, indicating that the synergistic effect of surface plasmonic resonance of Ag0 photoreduced from AgCl and decreased the recombination rate of photogenerated carriers through transferring electrons from the surface of Ag0 to SrTiO3 promote the excellent photocatalytic activity of SrTiO3-Ag/AgCl. Moreover, the photodegradation reaction process of methyl orange, rhodamine B and phenol on SrTiO3-Ag/AgCl follows the pseudo-first-order kinetic model, and the reaction rate constants are approximately 10 times greater than those on Ag/AgCl. Four-recycling photocatalytic process of methyl orange on SrTiO3-Ag/AgCl also indicates a superior stability and durability.

  3. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  4. Self-calibrated dynamical optical biochip system using surface plasmon resonance imaging: application to genotyping

    Science.gov (United States)

    Hottin, Jérôme; Moreau, Julien; Spadavecchia, Jolanda; Bellemain, Alain; Lecerf, Laure; Goossens, Michel; Canva, Michael

    2008-04-01

    The present paper summarizes some of our work in the field of genetic diagnosis using Surface Plasmon Resonance Imaging. The optical setup and its capability are presented, as well as the gold surface functionalization used. Results obtained with oligonucleotides targets, specific to Cystic Fibrosis disease, in high and low concentration are shown. The self-calibration method we have developed to reduce data dispersion in genetic diagnosis applications is described.

  5. Localization of optical excitations on random surfaces: SNOM studies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Localization of optical excitations on nanostructured metal surfaces and fractal colloid silver aggregates are studied by using a scanning near-field optical microscope (SNOM). The SNOM images obtained in both configurations exhibit spatially localized (within 150 to 250 nm) light intensity...

  6. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    elements in metal waveguides increase the number of their natural modes and give rise to new effects accompanying wave propagation, e.g. excitation of SPW in these waveguides. Such large area surface wave plasma sources have been reported using a microwave launcher of large aperture formed on a waveguide, ...

  7. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...

  8. Growth temperature dependent surface plasmon resonances of densely packed gold nanoparticles’ films and their role in surface enhanced Raman scattering of Rhodamine6G

    International Nuclear Information System (INIS)

    Verma, Shweta; Rao, B. Tirumala; Bhartiya, S.; Sathe, V.; Kukreja, L.M.

    2015-01-01

    Highlights: • Growth temperature produces and tunes the surface plasmon resonance (SPR) of gold films. • Optimum thickness and growth temperature combination results narrow SPR band. • Alumina capping red-shifted the SPR band and showed marginal re-sputtering of films. • Densely packed gold nanoparticles of varying sizes can be realized by pulsed laser deposition. • High SERS intensity of dye from gold films of large SPR strength at excitation wavelength. - Abstract: Localized surface plasmon resonance (LSPR) characteristics of gold nanoparticles films grown at different substrate temperatures and mass thicknesses with and without alumina capping were studied. At different film mass thicknesses, the LSPR response was observed mainly in the films grown at high substrate temperatures. About 300 °C substrate temperature was found to be optimum for producing narrow and strong LSPR band in both uncapped and alumina capped gold nanoparticles films. The LSPR wavelength could be tuned in the range of 600–750 nm by changing either number of ablation pulses or decreasing target to substrate distance (TSD) and alumina layer capping. Though the alumina capping re-sputtered the gold films still these films exhibited stronger LSPR response compared to the uncapped films. Atomic force microscopic analysis revealed formation of densely packed nanoparticles films exhibiting strong LSPR response which is consistent with the package density of the nanoparticles predicted by the theoretical calculations. The average size of nanoparticles increased with substrate temperature, number of ablation pulses and decreasing the TSD. For the same mass thickness of gold films grown at different substrate temperatures the surface enhanced Raman scattering (SERS) intensity of Rhodamine6G dye was found to be significantly different which had direct correlation with the LSPR strength of the films at the excitation wavelength

  9. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.

    Science.gov (United States)

    Shi, Jinwei; Lin, Meng-Hsien; Chen, I-Tung; Mohammadi Estakhri, Nasim; Zhang, Xin-Quan; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alù, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr

    2017-06-26

    Atomically thin lateral heterostructures based on transition metal dichalcogenides have recently been demonstrated. In monolayer transition metal dichalcogenides, exciton energy transfer is typically limited to a short range (~1 μm), and additional losses may be incurred at the interfacial regions of a lateral heterostructure. To overcome these challenges, here we experimentally implement a planar metal-oxide-semiconductor structure by placing a WS 2 /MoS 2 monolayer heterostructure on top of an Al 2 O 3 -capped Ag single-crystalline plate. We find that the exciton energy transfer range can be extended to tens of microns in the hybrid structure mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, allowing cascaded exciton energy transfer from one transition metal dichalcogenides region supporting high-energy exciton resonance to a different transition metal dichalcogenides region in the lateral heterostructure with low-energy exciton resonance. The realized planar hybrid structure combines two-dimensional light-emitting materials with planar plasmonic waveguides and offers great potential for developing integrated photonic and plasmonic devices.Exciton energy transfer in monolayer transition metal dichalcogenides is limited to short distances. Here, Shi et al. fabricate a planar metal-oxide-semiconductor structure and show that exciton energy transfer can be extended to tens of microns, mediated by an exciton-surface-plasmon-polariton-exciton conversion mechanism.

  10. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  11. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  12. Elastic scattering of surface plasmon polaritons: Modeling and experiment

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Coello, V.

    1998-01-01

    excitation wavelengths (594 and 633 nm) and different metal (silver and gold) films. The near-field optical images obtained are related to the calculated SPP intensity distributions demonstrating that the model developed can be successfully used in studies of SPP elastic scattering, e.g., to design...

  13. Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications

    Directory of Open Access Journals (Sweden)

    Genç Aziz

    2016-09-01

    Full Text Available Metallic nanostructures have received great attention due to their ability to generate surface plasmon resonances, which are collective oscillations of conduction electrons of a material excited by an electromagnetic wave. Plasmonic metal nanostructures are able to localize and manipulate the light at the nanoscale and, therefore, are attractive building blocks for various emerging applications. In particular, hollow nanostructures are promising plasmonic materials as cavities are known to have better plasmonic properties than their solid counterparts thanks to the plasmon hybridization mechanism. The hybridization of the plasmons results in the enhancement of the plasmon fields along with more homogeneous distribution as well as the reduction of localized surface plasmon resonance (LSPR quenching due to absorption. In this review, we summarize the efforts on the synthesis of hollow metal nanostructures with an emphasis on the galvanic replacement reaction. In the second part of this review, we discuss the advancements on the characterization of plasmonic properties of hollow nanostructures, covering the single nanoparticle experiments, nanoscale characterization via electron energy-loss spectroscopy and modeling and simulation studies. Examples of the applications, i.e. sensing, surface enhanced Raman spectroscopy, photothermal ablation therapy of cancer, drug delivery or catalysis among others, where hollow nanostructures perform better than their solid counterparts, are also evaluated.

  14. Role of multipolar plasmon resonances during surface-enhanced Raman spectroscopy on Au micro-patches

    DEFF Research Database (Denmark)

    Dowd, Annette; Geisler, Mathias; Zhu, Shaoli

    2016-01-01

    The enhancement of a Raman signal by multipolar plasmon resonances – as opposed to the more common practice of using dipolar resonances – is investigated. A wide range of gold stars, triangles, circles and squares with multipolar resonances in the visible region were designed and then produced...... by electron beam lithography. We used 633 nm excitation and Rhodamine 6G as a probe molecule to confirm that, although the dipolar resonances of these shapes lie well into the infrared, SERS in the visible can still be obtained by coupling to their ‘dark mode’ multipolar resonances. However, the magnitude...

  15. Near field evidence of backward surface plasmon polaritons on negative index material boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas, Mauro, E-mail: cuevas@df.uba.ar [Facultad de Ingeniería y Tecnología Informática, Universidad de Belgrano, Villanueva 1324, C1426BMJ, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Grunhut, Vivian [Facultad de Ingeniería, Universidad Austral (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Depine, Ricardo A. [Grupo de Electromagnetismo Aplicado, Departamento de Física, FCEN, Universidad de Buenos Aires and IFIBA, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-12-09

    Highlights: • Electromagnetic scattering from a localized defect on a NIM surface is presented. • The electromagnetic response strongly depends on the SPPs excited. • Near field distribution reveals the forward or backward character of SPPs excited. - Abstract: We present a detailed analysis about the electromagnetic response of a metamaterial surface with a localized defect. The excitation of electromagnetic surface waves leads to a near-field distribution showing a periodic dependence along the metamaterial surface. We find that this periodic pattern provides a direct demonstration of the forward or backward surface wave propagation.

  16. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds

    International Nuclear Information System (INIS)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza; Saravanan, Pichiah

    2014-01-01

    Graphical abstract: - Highlights: • Ag/TiO 2 was synthesized with aid of natural photon stimulated photoreduction. • Deposited Ag prompted well the LSPRs, Schottky barrier for visible light utilization. • Photocatalytic activity was evaluated by degrading EDCs under visible light. • 3.0 wt% Ag/TiO 2 resulted with good photocatalytic efficiency over others. - Abstract: Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO 2 ) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO 2 photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron–hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO 2 with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO 2 revealed the implication of plasmonics on TiO 2 for the enhanced visible light photocatalytic activity

  17. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO{sub 2} photocatalyst for degradation of endocrine disturbing compounds

    Energy Technology Data Exchange (ETDEWEB)

    Leong, Kah Hon; Gan, Bee Ling; Ibrahim, Shaliza [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Saravanan, Pichiah, E-mail: saravananpichiah@um.edu.my [Environmental Engineering Laboratory, Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    Graphical abstract: - Highlights: • Ag/TiO{sub 2} was synthesized with aid of natural photon stimulated photoreduction. • Deposited Ag prompted well the LSPRs, Schottky barrier for visible light utilization. • Photocatalytic activity was evaluated by degrading EDCs under visible light. • 3.0 wt% Ag/TiO{sub 2} resulted with good photocatalytic efficiency over others. - Abstract: Surface deposition of silver nanoparticles (Ag NPs) onto the 100% anatase titania (Ag/TiO{sub 2}) for evolution of surface plasmon resonance (SPR) was achieved sustainably with the assistance of solar energy. The preparation resulted in Ag/TiO{sub 2} photocatalyst with varied Ag depositions (0.5 wt%, 1.0 wt%, 3.0 wt% and 5.0 wt%). All obtained photocatalysts were characterized for the evolution of SPR via crystalline phase analysis, morphology, lattice fringes, surface area and pore size characteristics, chemical composition with chemical and electronic state, Raman scattering, optical and photoluminescence properties. The deposition of synthesized Ag NPs exhibited high uniformity and homogeneity and laid pathway for effective utilization of the visible region of electromagnetic spectrum through SPR. The depositions also lead for suppressing recombination rates of electron–hole. The photocatalytic evaluation was carried out by adopting two different class of endocrine disturbing compound (EDC) i.e., amoxicillin (pharmaceutical) and 2,4-dichlorophenol (pesticide) excited with artificial visible light source. Ag/TiO{sub 2} with Ag > 0.5 wt% exhibited significant degradation efficiency for both amoxicillin and 2,4-dichlorophenol. Thus synthesized Ag/TiO{sub 2} revealed the implication of plasmonics on TiO{sub 2} for the enhanced visible light photocatalytic activity.

  18. On quantum approach to modeling of plasmon photovoltaic effect

    DEFF Research Database (Denmark)

    Kluczyk, Katarzyna; David, Christin; Jacak, Witold Aleksander

    2017-01-01

    .g., upon commercial COMSOL software system). Both approaches are essentially classical ones and neglect quantum particularities related to plasmon excitations in metallic components. We demonstrate that these quantum plasmon effects are of crucial importance especially in theoretical simulations of plasmon...... to the semiconductor solar cell mediated by surface plasmons in metallic nanoparticles deposited on the top of the battery. In addition, short-ranged electron-electron interaction in metals is discussed in the framework of the semiclassical hydrodynamic model. The significance of the related quantum corrections...

  19. Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise.

    Science.gov (United States)

    Ginzburg, Pavel; Zayats, Anatoly V

    2013-05-28

    Nonlocal optical response of materials, important at the nanometric scale, influences numerous optical phenomena, such as electromagnetic field confinement and spectral characteristics of plasmonic resonances. Here, we present a general phenomenological approach to account for nonlocal material polarizabilities in nanoscale metal particles. The problem of nonlocal plasmonic resonances is formulated by an integro-differential equation in a space domain and solved by adopting its weak form, implemented in the finite element method, thus, dispensing with the requirements on additional boundary conditions. As an example, nonlocal smearing effects in plasmonic nanorods of various cross sections and nanotubes have been considered. Clear signature of nonlocality manifests itself in the interference fringes in the potential profile and a significant frequency shift of the localized surface plasmon resonances. These effects are especially important for nanoparticles with geometrical features comparable to the de Broglie wavelengths of electrons participating in the light-matter interactions. The proposed method provides a universal tool for phenomenological account of nonlocalities of any kind with the only requirement of linearity in system's response.

  20. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg......The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  1. Surface and volume photoemission of hot electrons from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.

    2014-01-01

    We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions....

  2. Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application

    Science.gov (United States)

    Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro

    2018-04-01

    Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.

  3. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  4. Surface plasmon resonance sensors a materials guide to design and optimization

    CERN Document Server

    Oliveira, Leiva Casemiro; Thirstrup, Carsten; Neff, Helmut Franz

    2015-01-01

    This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.

  5. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  6. Efficient interfacing of light and surface plasmon polaritons for quantum optics applications

    DEFF Research Database (Denmark)

    Eran, Kot

    light and quantum emitters proves a difficult task. Current days solutions range from cavities, atomic ensembles, photonic band gaps structures, ion traps and optical latices are all being improved and studied but none has yet to emerge as superior. Recently, another proposal for such a strong coupling......The research of light and matter interactions is the most fascinating and powerful tool in advancing our understanding of both atomic and light physics. From the pioneering work of Niels Bohr in devising a model for the atom to recent research in manipulation of single atoms, light matter...... system has been put forward. By exploiting the strong confinement of light in a surface plasmon mode, a cavity-free, broadband tool can be designed to engineer the light-emitter interaction in the vicinity of metallic nano-structures. These surface plasmons, hybrid waves of light and electronic...

  7. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles

    International Nuclear Information System (INIS)

    Sri Nengsih; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahaya

    2011-01-01

    This paper reports on the detection of several organic vapors using the unique characteristic of localized surface plasmon resonance (LSPR) gold nanoparticles. Gold nanoparticles on quartz substrate were prepared using seed mediated growth method. In a typical process, gold nanoparticles with average size ca. 36 nm were obtained to densely grown on the substrate. Detection of gas was based on the change in the LSPR of the gold nanoparticles film upon the exposure to the gas sample. It was found that gold nanoparticles were sensitive to the presence of volatile organic compound (VOC) gas from the change in the surface plasmon resonance (SPR) intensity. The mechanism for the detection of VOCs gas will be discussed. (author)

  8. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis......We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate...... photoemission rate and transition absorption for nanoparticles surrounded by various media with a broad range of permittivities and show that photoemission rate and transition absorption follow the same dependence on the permittivity. Thus, we conclude that transition absorption is responsible...

  9. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  10. Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Chadtová Song, Xue; Gedeonová, Erika; Levová, K.; Kalousová, M.; Zima, T.; Homola, Jiří

    2016-01-01

    Roč. 408, č. 26 (2016), s. 7265-7269 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GBP205/12/G118 Grant - others:AV ČR(CZ) AP1101 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985882 Keywords : Nanoparticles * Blood sample * Surface plasmon resonance Subject RIV: BO - Biophysics Impact factor: 3.431, year: 2016

  11. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Chen, S.; Taylor, A. D.; Homola, Jiří; Hock, B.; Jiang, S.

    2005-01-01

    Roč. 107, č. 1 (2005), s. 193-201 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CTS-0092699 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.646, year: 2005

  12. Detection of botulinum neurotoxins in buffer and hney using a surface plasmon resonance (SPR) sensor

    Czech Academy of Sciences Publication Activity Database

    Ladd, J.; Taylor, A.; Homola, Jiří; Jiang, S.

    2008-01-01

    Roč. 130, č. 1 (2008), s. 129-134 ISSN 0925-4005 Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CBET-0528605 Institutional research plan: CEZ:AV0Z20670512 Source of funding: N - neverejné zdroje ; N - neverejné zdroje Keywords : surface plasmons * biosensors * toxicology Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.122, year: 2008

  13. Surface plasmon resonance: advances of label-free approaches in the analysis of biological samples

    Czech Academy of Sciences Publication Activity Database

    Riedel, Tomáš; Majek, P.; Rodriguez-Emmenegger, Cesar; Brynda, Eduard

    2014-01-01

    Roč. 6, č. 24 (2014), s. 3325-3336 ISSN 1757-6180 R&D Projects: GA ČR(CZ) GBP205/12/G118; GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : surface plasmon resonance sensors * polymer brushes * human serum samples Subject RIV: CE - Biochemistry Impact factor: 3.003, year: 2014

  14. Toward single-molecule detection with sensors based on propagating surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Kvasnička, Pavel; Chadt, Karel; Vala, Milan; Bocková, Markéta; Homola, Jiří

    2012-01-01

    Roč. 37, č. 2 (2012), s. 163-165 ISSN 0146-9592 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA MŠk(CZ) LH11102 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * single molecule * surface plasmon microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.385, year: 2012

  15. Coupling characteristics of dielectric-loaded surface plasmon polariton waveguides: a simple method of analysis.

    Science.gov (United States)

    Srivastava, Triranjita; Kumar, Arun

    2009-11-01

    A simple method to obtain the coupling characteristics of a directional coupler consisting of two dielectric-loaded surface plasmon polariton waveguides is reported. The method is found to give accurate results in comparison with the widely used effective index method. Theoretical results are also found to match excellently with recently reported measurements on coupling lengths in such waveguides [Opt. Lett.34, 310 (2009)OPLEDP0146-959210.1364/OL.34.000310].

  16. Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Mrkvová, Kateřina; Piliarik, Marek; Jinoch, P.; Šteinbachová, M.; Homola, Jiří

    2007-01-01

    Roč. 22, č. 6 (2007), s. 1020-1026 ISSN 0956-5663 R&D Projects: GA ČR GA102/03/0633; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.061, year: 2007

  17. Spectral surface plasmon resonance biosensor for detection of staphylococal enterotoxin B /SEB/ in milk

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Dostálek, Jakub; Chen, S.; Rasooly, A.; Jiang, S.; Yee, S. S.

    2002-01-01

    Roč. 75, 1/2 (2002), s. 61-69 ISSN 0168-1605 R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.719, year: 2002

  18. Controlling surface plasmon polaritons by a static and/or time-dependent external magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Eyderman, Sergey; Vanwolleghem, M.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 045403 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP205/10/0046 Grant - others:GA MŠk(CZ) MP0702 Institutional support: RVO:67985882 Keywords : one-way electromegnetic waveguide * magneto- optic photonic crystal * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.767, year: 2012

  19. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy L.; Ni, Xingjie

    2012-01-01

    that titanium nitride could perform as an alternative plasmonic material in the visible and near-infrared regions. We demonstrate the excitation of surface-plasmon-polaritons on titanium nitride thin films and discuss the performance of various plasmonic and metamaterial structures with titanium nitride...... as the plasmonic component. We also show that titanium nitride could provide performance that is comparable to that of gold for plasmonic applications and can significantly outperform gold and silver for transformation-optics and some metamaterial applications in the visible and near-infrared regions....

  20. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    Science.gov (United States)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  1. Study of surface plasmon resonance of Au nanoparticles coated with dielectric layers

    Science.gov (United States)

    He, Jia-Yu; Huang, Chan-yan; Dai, Ning; Zhu, Da-ming

    2011-08-01

    In this work, atomic layer deposition (ALD) was used to deposit different thickness layers of Al2O3 on Au nanoparticles fabricated by thermal annealing of Au thin films. The effects of the Au-coated Al2O3 layer thickness variation to local surface plasmon resonance (LSPR) in gold (Au) nanoparticles was investigated using transmission surface plasmon resonance (T-SPR) spectroscopy. Thermal annealing of ultrathin films of Au sputtered on transparent substrates can get a dispersed metal particles system which exhibit transmission spectra showing an extinction band attributed to localized surface plasmon resonance (LSPR). The particles prepared by thermal annealing are much more like elliptical rather than sphere. The dielectric medium layer Al2O3 was deposited on these Au particles with the thickness from few nanometers to tens of nanometers by ALD. We found that All the LSPR peak positions of particles on different substrates red shifted as the thickness of deposition layer increase, but the LSPR red-shift effect of particles on alumina substrate was much more remarkable than particles on glass substrate. The results in this paper show that it is a very continent method to manipulate LSPR position which is a profound useful effect in solar cell application by controlling the deposition layer thickness on particles prepared by thermal annealing on suitable substrate.

  2. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor

    Directory of Open Access Journals (Sweden)

    Marlia Morsin

    2017-04-01

    Full Text Available Localized surface plasmon resonance (LSPR properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR and the longitudinal surface plasmon resonance (l-SPR at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.

  3. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  4. Cancer cell death pathways caused by photothermal and photodynamic effects through gold nanoring induced surface plasmon resonance

    Science.gov (United States)

    He, Yulu; Hsiao, Jen-Hung; Yu, Jian-He; Tseng, Po-Hao; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi

    2017-07-01

    The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.

  5. Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration

    International Nuclear Information System (INIS)

    Torres, V.; Beruete, M.; Sánchez, P.; Del Villar, I.

    2016-01-01

    An indium tin oxide (ITO) refractometer based on the generation of lossy mode resonances (LMRs) and surface plasmon resonances (SPRs) is presented. Both LMRs and SPRs are excited, in a single setup, under grazing angle incidence with Kretschmann configuration in an ITO thin-film deposited on a glass slide. The sensing capabilities of the device are demonstrated using several solutions of glycerin and water with refractive indices ranging from 1.33 to 1.47. LMRs are excited in the visible range, from 617 nm to 682 nm under TE polarization and from 533 nm to 637 nm under TM polarization, with a maximum sensitivity of 700 nm/RIU and 1200 nm/RIU, respectively. For the SPRs, a sensing range between 1375 nm and 2494 nm with a maximum sensitivity of 8300 nm/RIU is measured under TM polarization. Experimental results are supported with numerical simulations based on a modification of the plane-wave method for a one-dimensional multilayer waveguide

  6. Surface-plasmon-assisted electron capture in H+/Mg and H+/Al collisions

    International Nuclear Information System (INIS)

    Sandoval, R.; Gutierrez, F.A.; Jouin, H.

    2007-01-01

    We analyze the velocity-dependent threshold behavior of the transition rate for the surface-plasmon mode of proton neutralization at metallic surfaces. Consideration of the proton velocity, which had not been considered so far, affects the transition rates in a nonnegligible way. In particular we study the opening of the collective channel for the H + /Al system, which remains closed in the fixed ion approximation. Preliminary calculations of neutral fractions, after grazing incidence collision of a proton beam with an Al(1 1 1) surface, seem to indicate that the collective mechanism starts to play a significant role for impact velocities greater than 0.5 a.u

  7. Surface plasmon-mediated energy transfer of electrically-pumped excitons

    Science.gov (United States)

    An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.

    2015-08-25

    An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.

  8. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects.

    Science.gov (United States)

    Uskov, Alexander V; Protsenko, Igor E; Ikhsanov, Renat S; Babicheva, Viktoriia E; Zhukovsky, Sergei V; Lavrinenko, Andrei V; O'Reilly, Eoin P; Xu, Hongxing

    2014-05-07

    We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles--surface and volume ones--and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ∼5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

  9. The effect of surface plasmon resonance on optical response in ...

    Indian Academy of Sciences (India)

    By increasing the shell radius and therefore increasing the metal content the SPR at the outer surface shifts to higher energy and the weaker peak (at inner surface) shifts to lower energy. Also, depending on the metal shell materials SPR occurs in different energy regions and therefore can be tuned the SP frequency at ...

  10. Plasmon polaritons in nanostructured graphene

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2013-01-01

    Graphene has attracted considerable attention due to its unique electronic and optical properties. When graphene is electrically/chemically doped, it can support surface plasmon where the light propagates along the surface with a very short wavelength and an extremely small mode volume. The optical...... properties of graphene can be tuned by electrical gating, thus proving a promising way to realize a tunable plasmonic material. We firstly investigate the performance of bends and splitters in graphene nanoribbon waveguides, and show that bends and splitters do not induce any additional loss provided...... that the nanoribbon width is sub-wavelength. Then we experimentally demonstrate the excitation of graphene plasmon polaritons in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The silicon grating is realized by a nanosphere lithography technique with a self...

  11. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  12. Beam filter and splitter based on surface plasmon propagation in ...

    Indian Academy of Sciences (India)

    BS) constructed using metal ... devices such as filters, splitters, resonators, sensors, optical switches, and so on. Keywords. Surface ... features a high demand of optical passive components such as power splitters, vari- able attenuators and ...

  13. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  14. Multiple ionization of C{sub 60} in collisions with 2.33MeV/u O-ions and giant plasmon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, A.H. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)]. E-mail: lokesh@tifr.res.in; Kadhane, U. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Misra, D. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Kumar, Ajay [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India)

    2007-03-15

    Single and multiple ionization of C{sub 60} in collisions with fast (v=9.7a.u.) O{sup q+} ions have been studied. Relative cross sections for production of C{sub 60}{sup 1+} to C{sub 60}{sup 4+} have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  15. Preparation of plasmonic platforms of silver wires on gold mirrors and their application to surface enhanced fluorescence.

    Science.gov (United States)

    Shtoyko, Tanya; Raut, Sangram; Rich, Ryan M; Sronce, Randy J; Fudala, Rafal; Mason, Rachel N; Akopova, Irina; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA · Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA · Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA · Cl dye was significantly reduced (∼ 4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization.

  16. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    Science.gov (United States)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  17. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  18. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    International Nuclear Information System (INIS)

    Yu, Xia; Zhang, Ying; Pan, Shanshan; Shum, Ping; Yan, Min; Leviatan, Yehuda; Li, Changming

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor

  19. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  20. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  1. Surface plasmon resonance spectroscopy for analysis of influenza vaccines

    Science.gov (United States)

    The hemagglutinin (HA) compounds are surface glycoproteins of a virus that can initiate an immune response from a host organism. Hemagglutinin and the related neuraminidase (NA) compounds are the basis for virus strain classification and have become part of the accepted HN taxonomy. These compounds ...

  2. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  3. Surface Plasmon-Induced Band Gap in the Photocurrent Response of Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Ribal Georges Sabat

    2010-01-01

    Full Text Available A 260 nm layer of organic bulk heterojunction blend of the polymer poly(3-hexylthiophene (P3HT and the fullerene [6,6]-phenyl C61-butyric (PCBM was spin-coated in between aluminum and gold electrodes, respectively, on top of a laser inscribed azo polymer surface-relief diffraction grating. Angle-dependent surface plasmons (SPs with a large band gap were observed in the normalized photocurrent by the P3HT-PCBM layer as a function of wavelength. The SP-induced photocurrents were also investigated as a function of the grating depth and spacing.

  4. Efficient interfacing of light and surface plasmon polaritons for quantum optics applications

    DEFF Research Database (Denmark)

    Eran, Kot

    oscillations propagating on the surface of metals have been shown to be useful in coupling to quantum dots, nanodiamond NV-centers defects and other quantum emitters. However, being lossy these modes too need to be efficiently coupled out to photons in order to facilitate experimental control of the system...... in a proximity to a metallic interface. Concentric grating rings then couple light propagating normal to the surface to a inward propagating plasmons, showing coupling efficiencies of 70% and enhancement of the emitters decay rate by up to 45 times that of the isolated emitter’s decay rate. Finally, we explore...

  5. Localized Surface Plasmon on 6H SiC with Ag Nanoparticles

    DEFF Research Database (Denmark)

    Wei, Yi; Fadil, Ahmed; Ou, Haiyan

    2017-01-01

    Silver (Ag) nanoparticles (NPs) were deposited on the surface of bulk Nitrogen-Boron co-doped 6H silicon carbide (SiC), and the Ag NPs were observed to induce localized surface plasmons (LSP) resonances on the SiC substrate, which was expected to improve the internal quantum efficiency (IQE...... of an Ag nanoparticle on the SiC substrate, it is predicted that when the diameter of the cross section on the xy plane of the Ag nanoparticle is greater than 225 nm, the LSP starts to enhance the PL intensity. With implementation of a 3rd order exponential decay fitting model to the TRPL results...

  6. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    Science.gov (United States)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  7. Standing surface waves in dusty microwave slot-excited plasma

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Yu, M.Y.; Sugai, H.

    2000-01-01

    Full text: The effect of charged dust particles on microwave slot-excited plasma has been studied. The dusts absorb significant proportion of the plasma electrons, which leads to a substantial modification of the electromagnetic field structure. The overall charge balance and the eigenfrequencies of the standing TM electromagnetic surface modes are modified by the presence of dust. It has been found that the originally excited surface waves can be shifted out of resonance. For certain proportions of dusts, mode conversion appears to be possible. Microwave gas discharges sustained by surface waves (SW) are promising for many industrial applications as sources of large-volume and large-area low-temperature plasmas. Here, we study the surface-wave sustained microwave plasma reactor contaminated by fine dust particles that usually appear as a substrate-etching product or as a result of polymerization in the gaseous phase. The structure that models the slot-excited planar plasma source is considered. A vertical circular cylinder is short-circuited at its top by a metal plate. A dielectric layer isolates the cylinder top from the plasma, and the chamber bottom is open. We have shown that uncontrolled release of the dusts in the discharge chamber can adversely affect the discharge performance and under certain conditions cause a discharge disruption. This can best be understood by noting that macroparticles absorb a significant proportion of plasma electrons and hence modify the ionization-recombination balance. Moreover, stable operation of the microwave surface-wave sustained discharge depends on the resonant conditions for the operating mode, and it is thus crucial to understand how dusts affect the eigenfrequencies of the SWs. We have demonstrated that introduction of additional amounts of contaminant results in a significant shift of the electron plasma density from its resonant value for the initially excited resonant mode. The system can thus be moved out of

  8. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  9. Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya [Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida 201308 (India)

    2016-05-28

    Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.

  10. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor

    Science.gov (United States)

    Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping

    2017-12-01

    Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10‑5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.

  11. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors

    International Nuclear Information System (INIS)

    Lereu, Aude L.

    2017-01-01

    In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those of their metallic counterpart.

  12. Demonstration of a variable plasmonic beam splitter

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Israelsen, Niels Møller; Andersen, Ulrik Lund

    2014-01-01

    In this contribution, we excite surface plasmon polaritons propagating along a silver nano-wire by a single nitrogen-vacancy center located in a diamond nano-crystal. By using the tip of an atomic force microscope, a second nano-wire is brought into the evanescent field of the first wire such tha...

  13. [INVITED] Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures

    Science.gov (United States)

    Gupta, Banshi D.; Kant, Ravi

    2018-05-01

    Surface plasmon resonance has established itself as an immensely acclaimed and influential optical sensing tool with quintessential applications in life sciences, environmental monitoring, clinical diagnostics, pharmaceutical developments and ensuring food safety. The implementation of sensing principle of surface plasmon resonance employing an optical fiber as a substrate has concomitantly resulted in the evolution of fiber optic surface plasmon resonance as an exceptionally lucrative scaffold for chemical and biosensing applications. This perspective article outlines the contemporary studies on fiber optic sensors founded on the sensing architecture of propagating as well as localized surface plasmon resonance. An in-depth review of the prevalent analytical and surface chemical tactics involved in configuring the sensing layer over an optical fiber for the detection of various chemical and biological entities is presented. The involvement of nanomaterials as a strategic approach to enhance the sensor sensitivity is furnished concurrently providing an insight into the diverse geometrical blueprints for designing fiber optic sensing probes. Representative examples from the literature are discussed to appreciate the latest advancements in this potentially valuable research avenue. The article concludes by identifying some of the key challenges and exploring the opportunities for expanding the scope and impact of surface plasmon resonance based fiber optic sensors.

  14. Plasmonic Nanostructures for Biosensor Applications

    Science.gov (United States)

    Gadde, Akshitha

    Improving the sensitivity of existing biosensors is an active research topic that cuts across several disciplines, including engineering and biology. Optical biosensors are the one of the most diverse class of biosensors which can be broadly categorized into two types based on the detection scheme: label-based and label-free detection. In label-based detection, the target bio-molecules are labeled with dyes or tags that fluoresce upon excitation, indicating the presence of target molecules. Label-based detection is highly-sensitive, capable of single molecule detection depending on the detector type used. One method of improving the sensitivity of label-based fluorescence detection is by enhancement of the emission of the labels by coupling them with metal nanostructures. This approach is referred as plasmon-enhanced fluorescence (PEF). PEF is achieved by increasing the electric field around the nano metal structures through plasmonics. This increased electric field improves the enhancement from the fluorophores which in turn improves the photon emission from the fluorophores which, in turn, improves the limit of detection. Biosensors taking advantage of the plasmonic properties of metal films and nanostructures have emerged an alternative, low-cost, high sensitivity method for detecting labeled DNA. Localized surface plasmon resonance (LSPR) sensors employing noble metal nanostructures have recently attracted considerable attention as a new class of plasmonic nanosensors. In this work, the design, fabrication and characterization of plasmonic nanostructures is carried out. Finite difference time domain (FDTD) simulations were performed using software from Lumerical Inc. to design a novel LSPR structure that exhibit resonance overlapping with the absorption and emission wavelengths of quantum dots (QD). Simulations of a composite Au/SiO2 nanopillars on silicon substrate were performed using FDTD software to show peak plasmonic enhancement at QD emission wavelength

  15. Improved localized surface plasmon resonance index sensitivity based on chemically-synthesized gold nanoparticles on indium tin oxide surfaces

    Science.gov (United States)

    Zhu, Jin; Li, Xiaolong; Zheng, Wei; Wang, Biao; Tian, Yubo

    2018-02-01

    The results of this reported work indicated that gold nanoparticle arrays self-assembled on indium tin oxide (ITO) glasses can obtain broader localized surface plasmon resonance (LSPR) wavelength range and higher sensitivity than the bare quartz. The results of surface electric field calculated using finite difference time domain showed that the electric field of nanoparticles on ITO glasses is enhanced and the repulsive forces within each particle is weakened. According to the dipolar interaction mechanism, a weakened repulsive forces within each particle lead to a lower resonance frequency and a strong redshift of the LSPR spectra.

  16. Ultra high phase sensitive surface plasmon resonance biosensor

    Science.gov (United States)

    Li, Ying-Chang; Chou, Chien

    2009-02-01

    This study demonstrates a novel phase-sensitive surface plasman resonance biosensor (PS-SPRB) which is able to convert the phase modulation into amplitude modulation analytically via a differential amplifier. PS-SPRB is able to measure biomolecule interactions at ultra-low concentration relying on the properties of phase sensitive detection at shot-noise detection in a real-time. The common-phase noise-rejection mode is provided in PS-SPRB to be able to immune the background phase noise efficiently. The experimental results confirm the detection sensitivity of 0.00001 wt % concentration of sucrose solution and 10 fg/ml mouse IgG interaction with anti IgG in real time.

  17. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  18. Gap and channeled plasmons in tapered grooves: a review

    DEFF Research Database (Denmark)

    Smith, C. L. C.; Stenger, Nicolas; Kristensen, Anders

    2015-01-01

    Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs) that are......Tapered metallic grooves have been shown to support plasmons - electromagnetically coupled oscillations of free electrons at metal-dielectric interfaces - across a variety of configurations and V-like profiles. Such plasmons may be divided into two categories: gap-surface plasmons (GSPs......) that are confined laterally between the tapered groove sidewalls and propagate either along the groove axis or normal to the planar surface, and channeled plasmon polaritons (CPPs) that occupy the tapered groove profile and propagate exclusively along the groove axis. Both GSPs and CPPs exhibit an assortment...... platform to explore the fundamental science of plasmon excitations and their interactions. In this Review, we provide a research status update of plasmons in tapered grooves, starting with a presentation of the theory and important features of GSPs and CPPs, and follow with an overview of the broad range...

  19. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response.

    Science.gov (United States)

    Laurinavichyute, Veronika K; Nizamov, Shavkat; Mirsky, Vladimir M

    2017-06-20

    Surface plasmon resonance, being widely used in bioanalytics and biotechnology, is influenced by the electrical potential of the resonant gold layer. To evaluate the mechanism of this effect, we have studied it in solutions of various inorganic electrolytes. The magnitude of the effect decreases according to the series: KBr>KCl>KF>NaClO 4 . The data were treated by using different models of the interface. A quantitative description was obtained for the model, which takes into account the local dielectric function of gold being affected by the free electron charge, diffuse ionic layer near the gold/water interface, and specific adsorption of halides to the gold surface with partial charge transfer. Taking into account that most biological experiments are performed in chloride-containing solutions, detailed analysis of the model at these conditions was performed. The results indicate that the chloride adsorption is the main mechanism for the influence of potential on the surface plasmon resonance. The dependencies of surface concentration and residual charge of chloride on the applied potential were determined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  1. Optical sensing characteristics of nanostructures supporting multiple localized surface plasmon resonances

    Science.gov (United States)

    Nehru, Neha; Hastings, J. Todd

    2013-02-01

    Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to traditional propagating surface plasmon based sensors, LSPR sensors offer extensive wavelength tunability, greater electric field enhancement and sensing in reduced volumes. However, these sensors also suffer from a major disadvantage - LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index changes and non-specific binding as well as specific binding of the target analyte. These interactions can compromise the measurement of the target analyte in a complex unknown media and hence limit the applicability and impact of the sensor. Despite the extensive amount of work done in this field, there has been an absence of optical techniques that make these sensors immune to interfering effects. Recently, our group experimentally demonstrated a multi-mode LSPR sensor that exploits three resonances of a U-shaped gold nanostructure to differentiate the target interaction from bulk and surface interfering effects. In this paper, we provide a comprehensive description of the electric field profiles of the three resonances of the U-shaped nanostructure. We will also evaluate the sensitivities of the nanostructure to the various bulk and surface interactions using numerical simulations.

  2. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  3. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  4. Graphene plasmonic heterostructures for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Ryzhii, Victor; Boubanga Tombet, Stephane Albon; Watanabe, Takayuki; Satou, Akira; Ryzhii, Maxim; Dubinov, Alexander; Aleshkin, Vladimir Y.; Popov, Vyacheslav; Mitin, Vladimir; Shur, Michael

    2014-09-01

    This paper reviews recent advances in graphene plasmonic heterostructures for new types of terahertz lasers. We theoretically discovered and experimentally manifested that the excitation of surface plasmons in population-inverted graphene by the terahertz photons results in propagating surface plasmon polaritons with a giant gain in a wide terahertz range. Furthermore, double graphene layer heterostructures consisting of a tunnel barrier insulator sandwiched with a pair of gated graphene monolayers are introduced. Photoemission-assisted quantum-mechanical resonant tunneling can be electrically tuned to meet a desired photon energy for lasing, resulting in enormous enhancement of the terahertz gain. Current injection structures are also addressed.

  5. Combining surface plasmonic and light extraction enhancement on InGaN quantum-well light-emitters

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    and internal quantum efficiency enhancement for InGaN/GaN quantum-well light-emitters. By fabricating dielectric nano-rod pattern on the GaN surface, an optical coating that improves the light extraction is obtained, and furthermore has a low refractive index which blue-shifts the plasmonic resonance of Ag NPs......Surface plasmon coupling with light-emitters and surface nano-patterning have widely been used separately to improve low efficiency InGaN light-emitting diodes. We demonstrate a method where dielectric nano-patterning and Ag nanoparticles (NPs) are combined to provide both light extraction...

  6. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety.

    Science.gov (United States)

    Onodera, Takeshi; Toko, Kiyoshi

    2014-09-05

    This review describes an "electronic dog nose" based on a surface plasmon resonance (SPR) sensor and an antigen-antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  7. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety

    Directory of Open Access Journals (Sweden)

    Takeshi Onodera

    2014-09-01

    Full Text Available This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol, dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  8. Highly Sensitive Local Surface Plasmon Resonance in Anisotropic Au Nanoparticles Deposited on Nanofibers

    Directory of Open Access Journals (Sweden)

    Masanari Saigusa

    2015-01-01

    Full Text Available This paper reports the facile and high-throughput fabrication method of anisotropic Au nanoparticles with a highly sensitive local surface plasmon resonance (LPR using cylindrical nanofibers as substrates. The substrates consisting of nanofibers were prepared by the electrospinning of poly(vinylidene fluoride (PVDF. The Au nanoparticles were deposited on the surface of electrospun nanofibers by vacuum evaporation. Scanning electron microscopy revealed the formation of a curved Au island structure on the surface of cylindrical nanofibers. Polarized UV-visible extinction spectroscopy showed anisotropy in their LPR arising from the high surface curvature of the nanofiber. The LPR of the Au nanoparticles on the thinnest nanofiber with a diameter of ~100 nm showed maximum refractive index (RI sensitivity over 500 nm/RI unit (RIU. The close correlation between the fiber diameter dependence of the RI sensitivity and polarization dependence of the LPR suggests that anisotropic Au nanoparticles improve RI sensitivity.

  9. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hearty, Stephen; Frøkiær, Hanne

    2007-01-01

    This paper describes a biosensor-based method for detection of fungal spores using Surface Plasmon Resonance (SPR). The approach involves the use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free detection of urediniospores from the model organism Puccinia striiformis f.......sp. tritici (Pst). In the subtractive inhibition assay, urediniospores and Pst mAb8 were mixed, urediniospore-bound Pst mAb8 removed by centrifugation and the remaining Pst mAb8 quantified using the SPR sensor. Assay conditions were optimised and a detection limit of 3.1 x 105 urediniospores/ml was achieved...

  10. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface.

    Science.gov (United States)

    Kubo, Atsushi; Pontius, Niko; Petek, Hrvoje

    2007-02-01

    A movie of the dispersive and dissipative propagation of surface plasmon polariton (SPP) wave packets at a silver/vacuum interface is recorded by the interferometric time-resolved photoemission electron microscopy with 60 nm spatial resolution and 330 as frame interval. The evolution of SPP wave packets is imaged through a two-path interference created by a pair of 10 fs phase correlated pump-probe light pulses at 400 nm. The wave packet evolution is simulated using the complex dielectric function of silver.

  11. Surface plasmon resonance study on HIV-1 integrase strand transfer activity

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Snášel, Jan; Špringer, Tomáš; Šípová, Hana; Rosenberg, Ivan; Štěpánek, J.; Homola, Jiří

    2009-01-01

    Roč. 393, č. 4 (2009), s. 1165-1172 ISSN 1618-2642 R&D Projects: GA ČR GA202/05/0628; GA AV ČR KAN200670701; GA ČR GP203/05/P557 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40550506 Keywords : HIV -1 intergrase * surface plasmon resonance * label-free monitoring * ds- DNA Subject RIV: CC - Organic Chemistry Impact factor: 3.480, year: 2009

  12. Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing

    Czech Academy of Sciences Publication Activity Database

    Lu, H. B.; Homola, Jiří; Campbell, C. T.; Nenninger, G. G.; Yee, S. S.; Ratner, B. D.

    B74, 1/3 (2001), s. 91-99 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  13. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  14. Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    George, David; Lowell, David; Mao, Michelle; Hassan, Safaa; Philipose, Usha [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Li, Li; Jiang, Yan; Cui, Jingbiao [Department of Physics and Materials Science, University of Memphis, Memphis, Tennessee 38152 (United States); Ding, Jun; Zhang, Hualiang [Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Lin, Yuankun [Department of Physics and Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76203 (United States); Department of Electrical Engineering, University of North Texas, Denton, Texas 76203 (United States)

    2016-07-28

    In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.

  15. A type of all-optical logic gate based on graphene surface plasmon polaritons

    Science.gov (United States)

    Wu, Xiaoting; Tian, Jinping; Yang, Rongcao

    2017-11-01

    In this paper, a novel type of all-optical logic device based on graphene surface plasmon polaritons (GSP) is proposed. By utilizing linear interference between the GSP waves propagating in the different channels, this new structure can realize six different basic logic gates including OR, XOR, NOT, AND, NOR, and NAND. The state of ;ON/OFF; of each input channel can be well controlled by tuning the optical conductivity of graphene sheets, which can be further controlled by changing the external gate voltage. This type of logic gate is compact in geometrical sizes and is a potential block in the integration of nanophotonic devices.

  16. A surface plasmon resonance-based immunosensors for sensitive detection of heroin

    International Nuclear Information System (INIS)

    Wu Zhongcheng; Wang Lianchao; Ge Yu; Yu Chengduan; Fang Tingjian; Chen Wenge

    2000-01-01

    A simple technique for sensitive detection of heroine based on surface-plasmon resonance has been theoretically and experimentally investigated. The experiment was realized by using an anti-MO monoclonal antibody and a morphine (MO)-bovine serum albumin (MO-BSA) conjugate (antigen). The reason for using MO-BSA in the detection of heroine was also discussed. MO-BSA was immobilized on a gold thin film of SPR sensor chip by physical adsorption. The configuration of the device is allowed to be further miniaturized, which is required for the construction of a portable SPR device in the application of in-situ analysis

  17. Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules.

    Science.gov (United States)

    Zhang, D G; Moh, K J; Yuan, X-C

    2010-06-07

    Surface plasmon-coupled emission from shaped PMMA films doped with randomly oriented fluorescence molecules was investigated. Experimental results show that for different shapes, such as triangle or circular structures, the SPCE ring displays different intensity patterns. For a given shape, it was observed that the relative position and polarization of an incident laser spot on the shaped PMMA can be used to adjust the fluorescence intensity distribution of the SPCE ring. The proposed method enables controlling the fluorescence emission in azimuthal direction in addition to the radial angle controlled by common SPCE, which will further enhances the fluorescence collection efficiency and has applications in fluorescence sensing, imaging and so on.

  18. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Zítová, Alice; Lachmanová, Markéta; Štepánek, J.; Králíková, Šárka; Liboska, Radek; Rejman, Dominik; Rosenberg, Ivan; Homola, Jiří

    2006-01-01

    Roč. 82, č. 4 (2006), s. 394-398 ISSN 0006-3525. [European Conference on the Spectroscopy of Biological Molecules - ECSBM 2005 /11./. Aschaffenburg, 03.09.2005-08.09.2005] R&D Projects: GA ČR(CZ) GA303/03/0249; GA ČR(CZ) GA102/03/0633; GA ČR(CZ) GA202/05/0628 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40550506 Keywords : surface plasmon resonance * biosensors * optical sensors Subject RIV: BO - Biophysics Impact factor: 2.480, year: 2006

  19. Mapping surface plasmon polariton propagation via counter-propagating light pulses

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Jauernik, Stephan

    2012-01-01

    interface recorded in a counter-propagating pump-probe geometry. In comparison to former work this approach provides a very intuitive real-time access to the SPP wave packet. The quantitative analysis of the PEEM data enables us to determine in a rather direct manner the propagation characteristics......In an interferometric time-resolved photoemission electron microscopy (ITR-PEEM) experiment, the near-field associated with surface plasmon polaritons (SPP) can be locally sensed via interference with ultrashort laser pulses. Here, we present ITR-PEEM data of SPP propagation at a gold vacuum...

  20. Modelling of the surface plasmon resonance waveguide sensor with Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří; Abdelmalek, F.; Ecke, W.; Usbeck, K.

    1999-01-01

    Roč. 31, 9/10 (1999), s. 927-941 ISSN 0306-8919. [Optical waveguide theory and numerical modelling. Hagen, 18.09.1998-19.09.1998] R&D Projects: GA ČR GA102/96/1561 Grant - others:EU COST(XE) OC 240.10; EU COST(XE) OC 268.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : Bragg gratings * optical waveguide theory * surface plasmon resonance * optical sensors * optical waveguides Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.876, year: 1999