WorldWideScience

Sample records for surface planetary geology

  1. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  2. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces (e.g., Varnes, 1974). Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962 (Hackman, 1962). Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete

  3. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  4. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    Geologic maps present, in an historical context, fundamental syntheses of interpretations of the materials, landforms, structures, and processes that characterize planetary surfaces and shallow subsurfaces. Such maps also provide a contextual framework for summarizing and evaluating thematic research for a given region or body. In planetary exploration, for example, geologic maps are used for specialized investigations such as targeting regions of interest for data collection and for characterizing sites for landed missions. Whereas most modern terrestrial geologic maps are constructed from regional views provided by remote sensing data and supplemented in detail by field-based observations and measurements, planetary maps have been largely based on analyses of orbital photography. For planetary bodies in particular, geologic maps commonly represent a snapshot of a surface, because they are based on available information at a time when new data are still being acquired. Thus the field of planetary geologic mapping has been evolving rapidly to embrace the use of new data and modern technology and to accommodate the growing needs of planetary exploration. Planetary geologic maps have been published by the U.S. Geological Survey (USGS) since 1962. Over this time, numerous maps of several planetary bodies have been prepared at a variety of scales and projections using the best available image and topographic bases. Early geologic map bases commonly consisted of hand-mosaicked photographs or airbrushed shaded-relief views and geologic linework was manually drafted using mylar bases and ink drafting pens. Map publishing required a tedious process of scribing, color peel-coat preparation, typesetting, and photo-laboratory work. Beginning in the 1990s, inexpensive computing, display capability and user-friendly illustration software allowed maps to be drawn using digital tools rather than pen and ink, and mylar bases became obsolete. Terrestrial geologic maps published by

  5. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  6. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    Science.gov (United States)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  7. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    Science.gov (United States)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  8. Planetary Geology and Geophysics Program

    Science.gov (United States)

    McGill, George E.

    2004-01-01

    Geological mapping and topical studies, primarily in the southern Acidalia Planitia/Cydonia Mensae region of Mars is presented. The overall objective was to understand geologic processes and crustal history in the northern lowland in order to assess the probability that an ocean once existed in this region. The major deliverable is a block of 6 1:500,000 scale geologic maps that will be published in 2004 as a single map at 1:1,000,000 scale along with extensive descriptive and interpretive text. A major issue addressed by the mapping was the relative ages of the extensive plains of Acidalia Planitia and the knobs and mesas of Cydonia Mensae. The mapping results clearly favor a younger age for the plains. Topical studies included a preliminary analysis of the very abundant small domes and cones to assess the possibility that their origins could be determined by detailed mapping and remote-sensing analysis. We also tested the validity of putative shorelines by using GIs to co-register full-resolution MOLA altimetry data and Viking images with these shorelines plotted on them. Of the 3 proposed shorelines in this area, one is probably valid, one is definitely not valid, and the third is apparently 2 shorelines closely spaced in elevation. Publications supported entirely or in part by this grant are included.

  9. PSUP: A Planetary SUrface Portal

    Science.gov (United States)

    Poulet, F.; Quantin-Nataf, C.; Ballans, H.; Dassas, K.; Audouard, J.; Carter, J.; Gondet, B.; Lozac'h, L.; Malapert, J.-C.; Marmo, C.; Riu, L.; Séjourné, A.

    2018-01-01

    . It also allows overlapping of these data products on a virtual Martian globe, which can be difficult to use collectively. The architecture of PSUP data management layer and visualization is based on SITools2 (Malapert and Marseille, 2012) and MIZAR (Module for Interactive visualiZation from Astronomical Repositories) respectively, two CNES generic tools developed by a joint effort between the French space agency (CNES) and French scientific laboratories. Future developments include the addition of high level products of Mars (regional geological maps, new global compositional maps…) and tools (spectra extraction from hyperspectral cubes). Ultimately, PSUP will be adapted to other planetary surfaces and space missions in which the French research institutes are involved.

  10. Significant achievements in the Planetary Geology Program, 1981

    International Nuclear Information System (INIS)

    Holt, H.E.

    1981-09-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed

  11. Geologic guide to the island of Hawaii: A field guide for comparative planetary geology

    Science.gov (United States)

    Greeley, R. (Editor)

    1974-01-01

    With geological data available for all inner planets except Venus, we are entering an era of true comparative planetary geology, when knowledge of the differences and similarities for classes of structures (e.g., shield volcanoes) will lead to a better understanding of general geological processes, regardless of planet. Thus, it is imperative that planetologists, particularly those involved in geological mapping and surface feature analysis for terrestrial planets, be familiar with volcanic terrain in terms of its origin, structure, and morphology. One means of gaining this experience is through field trips in volcanic terrains - hence, the Planetology Conference in Hawaii. In addition, discussions with volcanologists at the conference provide an important basis for establishing communications between the two fields that will facilitate comparative studies as more data become available.

  12. Reflection seismology systems for planetary geology : A feasibility study

    NARCIS (Netherlands)

    Batenburg, P.A.W.; Gill, E.K.A.; Drijkoningen, G.G.; Foing, B.H.; Toxopeus, G.

    2009-01-01

    A feasibility study is conducted to determine whether reflection seismology systems can be used for planetary geology research. The focus is on systems with up to 20,000 seismic detectors, such as used today in Earth geological research and energy companies. The study follows a top-down systems

  13. A bibliography of planetary geology principal investigators and their associates, 1976--1978

    International Nuclear Information System (INIS)

    1978-05-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided

  14. Dust Dynamics Near Planetary Surfaces

    Science.gov (United States)

    Colwell, Joshua; Hughes, Anna; Grund, Chris

    Observations of a lunar "horizon glow" by several Surveyor spacecraft in the 1960s opened the study of the dynamics of charged dust particles near planetary surfaces. The surfaces of the Moon and other airless planetary bodies in the solar system (asteroids, and other moons) are directly exposed to the solar wind and ionizing solar ultraviolet radiation, resulting in a time-dependent electric surface potential. Because these same objects are also exposed to bombardment by micrometeoroids, the surfaces are usually characterized by a power-law size distribution of dust that extends to sub-micron-sized particles. Individual particles can acquire a charge different from their surroundings leading to electrostatic levitation. Once levitated, particles may simply return to the surface on nearly ballistic trajectories, escape entirely from the moon or asteroid if the initial velocity is large, or in some cases be stably levitated for extended periods of time. All three outcomes have observable consequences. Furthermore, the behavior of charged dust near the surface has practical implications for planned future manned and unmanned activities on the lunar surface. Charged dust particles also act as sensitive probes of the near-surface plasma environment. Recent numerical modeling of dust levitation and transport show that charged micron-sized dust is likely to accumulate in topographic lows such as craters, providing a mechanism for the creation of dust "ponds" observed on the asteroid 433 Eros. Such deposition can occur when particles are supported by the photoelectron sheath above the dayside and drift over shadowed regions of craters where the surface potential is much smaller. Earlier studies of the lunar horizon glow are consistent with those particles being on simple ballistic trajectories following electrostatic launching from the surface. Smaller particles may be accelerated from the lunar surface to high altitudes consistent with observations of high altitude

  15. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    Science.gov (United States)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary

  16. Planetary biology--paleontological, geological, and molecular histories of life.

    Science.gov (United States)

    Benner, Steven A; Caraco, M Daniel; Thomson, J Michael; Gaucher, Eric A

    2002-05-03

    The history of life on Earth is chronicled in the geological strata, the fossil record, and the genomes of contemporary organisms. When examined together, these records help identify metabolic and regulatory pathways, annotate protein sequences, and identify animal models to develop new drugs, among other features of scientific and biomedical interest. Together, planetary analysis of genome and proteome databases is providing an enhanced understanding of how life interacts with the biosphere and adapts to global change.

  17. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    Science.gov (United States)

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  18. Fluvial geomorphology on Earth-like planetary surfaces: A review

    Science.gov (United States)

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  19. Arecibo Radar Investigations of Planetary and Small-Body Surfaces

    Science.gov (United States)

    Taylor, P. A.

    2016-12-01

    The 305-m William E. Gordon telescope at Arecibo Observatory in Puerto Rico is the most sensitive, most powerful, and most active planetary radar facility in the world. Over the last 50-plus years, the S-band (12.6 cm, 2380 MHz) and P-band (70 cm, 430 MHz) radars at Arecibo have studied solid bodies in the solar system from Mercury to Saturn's rings. Radar provides fine spatial resolution of these bodies surpassed only by dedicated spacecraft while adding the extra dimensions of near-surface, wavelength-scale roughness and penetration to several wavelengths below the surface. For asteroids and comets, this spatial resolution is akin to a spacecraft flyby revealing spin, size, and shape information and geologic features such as ridges, crater-like depressions, and boulders. For planetary bodies, radar can reveal geologic features on the surface such as ancient lava flows or features buried beneath the regolith including lava tubes and water-ice deposits. We will present an overview of how the Arecibo radar systems are utilized in the study of planetary and small-body surfaces and what can be learned without ever leaving the comfort of Earth's surface. The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Mendez-Universidad Metropolitana (UMET) and the Universities Space Research Association (USRA). The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G issued through the Near-Earth Object Observations program and operated by USRA in alliance with SRI International and UMET.

  20. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    Science.gov (United States)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  1. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  2. Examining Volcanic Terrains Using In Situ Geochemical Technologies; Implications for Planetary Field Geology

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Evans, C. A.; Rogers, A. D.; Ito, G.; Arzoumanian, Z.; Gendreau, K.

    2015-01-01

    Regardless of the target destination for the next manned planetary mission, the crew will require technology with which to select samples for return to Earth. The six Apollo lunar surface missions crews had only the tools to enable them to physically pick samples up off the surface or from a boulder and store those samples for return to the Lunar Module and eventually to Earth. Sample characterization was dependent upon visual inspection and relied upon their extensive geology training. In the four decades since Apollo however, great advances have been made in traditionally laboratory-based instrument technologies that enable miniaturization to a field-portable configuration. The implications of these advancements extend past traditional terrestrial field geology and into planetary surface exploration. With tools that will allow for real-time geochemical analysis, an astronaut can better develop a series of working hypotheses that are testable during surface science operations. One such technology is x-ray fluorescence (XRF). Traditionally used in a laboratory configuration, these instruments have now been developed and marketed commercially in a field-portable mode. We examine this technology in the context of geologic sample analysis and discuss current and future plans for instrument deployment. We also discuss the development of the Chromatic Mineral Identification and Surface Texture (CMIST) instrument at the NASA Goddard Space Flight Center (GSFC). Testing is taking place in conjunction with the RIS4E (Remote, In Situ, and Synchrotron Studies for Science and Exploration) SSERVI (Solar System Exploration and Research Virtual Institute) team activities, including field testing at Kilauea Volcano, HI..

  3. The surface of Io - Geologic units, morphology, and tectonics

    Science.gov (United States)

    Schaber, G. G.

    1980-09-01

    The geologic units, morphology and tectonics evident on a preliminary geological map obtained from best-resolution Voyager 1 images and a preliminary pictorial map of the surface of Io are discussed. Nine volcanic units are identified on the surface which are composed of mountain materials, intervent, layered and eroded layered plains, and wall and floor, pit crater flow, shield crater flow, fissure flow and crater cone units associated with volcanic vents, along with seven types of structural features. The cumulative volcanic crater size distribution of 170 Ionian vents with craters greater than 14 km is similar to that of impact craters on other solar system bodies, with a surplus of small craters and a preponderance of volcanic vents in the Io equatorial zone. The observed surface morphologies provide evidence for a mixture of silicates and sulfur as the dominant surface material. Lineaments and grabens are also apparent on the surface, in a common planetary grid pattern.

  4. Electrostatic Dust Control on Planetary Surfaces

    Science.gov (United States)

    Clark, P. E.; Calle, C. I.; Curtis, S. A.; Keller, J. F.; Minetto, F.; Mantovani, J. G.

    2007-01-01

    Successful operation for exploration of planetary regoliths will depend on the capability to keep surfaces free of dust which could compromise performance and to collect dust for characterization. Such study is essential in order to resolve issues in dealing with regolith fines identified during the Apollo missions where dust behaved like abrasive Velcro before returning to the Moon. During Moon landings, locally-induced stirring of the regolith caused dust to be suspended long enough to come into contact with conducting surfaces. Lunar fines, because of their electrostatic charging, were difficult to collect and sparsely sampled: bag seals were broken, samples contaminated and lost. Our objectives here are to describe a multi-faceted electrostatically-based approach and methodology for addressing this issue, as well as to present our preliminary results which confirm the view that the successful strategy will deal with dust dynamics resulting from interaction between mechanical and electrostatic forces. Our device concept combines electron or ion beams, acting as a plasma dust sweeper to control the flow of dust by systematic scanning of the surface with an electrostatically controlled potential. A plate of the opposite potential used to induce dust migration in the presence of an electrical field. Our goal is a compact device of dust for sampling as part of the extended exploration process on extensive areas of exposed impact-generated regolith, on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.

  5. A bibliography of planetary geology principal investigators and their associates, 1981 - 1982

    Science.gov (United States)

    Plescia, J. B. (Compiler)

    1982-01-01

    Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.

  6. Cooperative research in terrestrial planetary geology and geophysics

    Science.gov (United States)

    1994-01-01

    This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.

  7. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  8. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  9. Radiation protection for human interplanetary spaceflight and planetary surface operations

    Energy Technology Data Exchange (ETDEWEB)

    Clark, B.C. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)]|[DLR Inst. of Aerospace Medicine, Cologne (Germany)]|[NASA, Goddard Space Flight Center, Greenbelt, MD (United States)

    1993-12-31

    Radiation protection issues are reviewed for five categories of radiation exposure during human missions to the moon and Mars: trapped radiation belts, galactic cosmic rays, solar flare particle events, planetary surface emissions, and on-board radiation sources. Relative hazards are dependent upon spacecraft and vehicle configurations, flight trajectories, human susceptibility, shielding effectiveness, monitoring and warning systems, and other factors. Crew cabins, interplanetary mission modules, surface habitats, planetary rovers, and extravehicular mobility units (spacesuits) provide various degrees of protection. Countermeasures that may be taken are reviewed relative to added complexity and risks that they could entail, with suggestions for future research and analysis.

  10. Comparing Geologic Data Sets Collected by Planetary Analog Traverses and by Standard Geologic Field Mapping: Desert Rats Data Analysis

    Science.gov (United States)

    Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean

    2014-01-01

    Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.

  11. Abstracts of the annual Planetary Geologic Mappers Meeting, June 18-19, 2001, Albuquerque, New Mexico

    Science.gov (United States)

    Parker, Timothy J.; Tanaka, Kenneth L.; Senske, David A.

    2002-01-01

    The annual Planetary Geologic Mappers Meeting serves two purposes. In addition to giving mappers the opportunity to exchange ideas, experiences, victories, and problems with others, presentations are reviewed by the Geologic Mapping Subcommittee (GeMS) to provide input to the Planetary Geology and Geophysics Mapping Program review panel’s consideration of new proposals and progress reports that include mapping tasks. Funded mappers bring both oral presentation materials (slides or viewgraphs) and map products to post for review by GeMS and fellow mappers. Additionally, the annual meetings typically feature optional field trips offering earth analogs and parallels to planetary mapping problems. The 2001 Mappers Meeting, June 18-19, was convened by Tim Parker, Dave Senske, and Ken Tanaka and was hosted by Larry Crumpler and Jayne Aubele of the New Mexico Museum of Natural History and Science in Albuquerque, New Mexico. Oral presentations were given in the Museum’s Honeywell Auditorium, and maps were posted in the Sandia Room. In addition to active mappers, guests included local science teachers who had successfully competed for the right to attend and listen to the reports. It was a unique pleasure for mappers to have the opportunity to interact with and provide information to teachers responding so enthusiastically to the meeting presentation. On Sunday, June 17, Larry and Jayne conducted an optional pre-meeting field trip. The flanks of Rio Grande Rift, east and west of Albuquerque and Valles Caldera north of town presented tectonic, volcanic, and sedimentary examples of the Rift and adjoining areas analogous to observed features on Mars and Venus. The arid but volcanically and tectonically active environment of New Mexico’s rift valley enables focus on features that appear morphologically young and spectacular in satellite images and digital relief models. The theme of the trip was to see what, at orbiter resolution, "obvious" geologic features look like at

  12. Small reactor power systems for manned planetary surface bases

    Science.gov (United States)

    Bloomfield, Harvey S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  13. Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog

    Science.gov (United States)

    Russell, Patrick S.; Grant, John A.; Williams, Kevin K.; Carter, Lynn M.; Brent Garry, W.; Daubar, Ingrid J.

    2013-09-01

    penetrating radar (GPR) has been a useful geophysical tool in investigating a variety of shallow subsurface geological environments on Earth. Here we investigate the capabilities of GPR to provide useful geologic information in one of the most common geologic settings of planetary surfaces, impact crater ejecta. Three types of ejecta are surveyed with GPR at two wavelengths (400 MHz, 200 MHz) at Meteor Crater, Arizona, with the goal of capturing the GPR signature of the subsurface rock population. In order to "ground truth" the GPR characterization, subsurface rocks are visually counted and measured in preexisting subsurface exposures immediately adjacent to and below the GPR transect. The rock size-frequency distribution from 10 to 50 cm based on visual counts is well described by both power law and exponential functions, the former slightly better, reflecting the control of fragmentation processes during the impact-ejection event. GPR counts are found to overestimate the number of subsurface rocks in the upper meter (by a factor of 2-3x) and underestimate in the second meter of depth (0.6-1.0x), results attributable to the highly scattering nature of blocky ejecta. Overturned ejecta that is fractured yet in which fragments are minimally displaced from their complement fragments produces fewer GPR returns than well-mixed ejecta. The use of two wavelengths and division of results into multiple depth zones provides multiple aspects by which to characterize the ejecta block population. Remote GPR measurement of subsurface ejecta in future planetary situations with no subsurface exposure can be used to characterize those rock populations relative to that of Meteor Crater.

  14. The surface roughness and planetary boundary layer

    Science.gov (United States)

    Telford, James W.

    1980-03-01

    Applications of the entrainment process to layers at the boundary, which meet the self similarity requirements of the logarithmic profile, have been studied. By accepting that turbulence has dominating scales related in scale length to the height above the surface, a layer structure is postulated wherein exchange is rapid enough to keep the layers internally uniform. The diffusion rate is then controlled by entrainment between layers. It has been shown that theoretical relationships derived on the basis of using a single layer of this type give quantitatively correct factors relating the turbulence, wind and shear stress for very rough surface conditions. For less rough surfaces, the surface boundary layer can be divided into several layers interacting by entrainment across each interface. This analysis leads to the following quantitatively correct formula compared to published measurements. 1 24_2004_Article_BF00877766_TeX2GIFE1.gif {σ _w }/{u^* } = ( {2/{9Aa}} )^{{1/4}} ( {1 - 3^{{1/2}{ a/k{d_n }/z{σ _w }/{u^* }z/L} )^{{1/4}} = 1.28(1 - 0.945({{σ _w }/{u^* }}}) {{z/L}})^{{1/4 where u^* = ( {{tau/ρ}}^{{1/2}}, σ w is the standard deviation of the vertical velocity, z is the height and L is the Obukhov scale lenght. The constants a, A, k and d n are the entrainment constant, the turbulence decay constant, Von Karman's constant, and the layer depth derived from the theory. Of these, a and A, are universal constants and not empirically determined for the boundary layer. Thus the turbulence needed for the plume model of convection, which resides above these layers and reaches to the inversion, is determined by the shear stress and the heat flux in the surface layers. This model applies to convection in cool air over a warm sea. The whole field is now determined except for the temperature of the air relative to the water, and the wind, which need a further parameter describing sea surface roughness. As a first stop to describing a surface where roughness elements

  15. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  16. Geodatabase model for global geologic mapping: concept and implementation in planetary sciences

    Science.gov (United States)

    Nass, Andrea

    2017-04-01

    One aim of the NASA Dawn mission is to generate global geologic maps of the asteroid Vesta and the dwarf planet Ceres. To accomplish this, the Dawn Science Team followed the technical recommendations for cartographic basemap production. The geological mapping campaign of Vesta was completed and published, but mapping of the dwarf planet Ceres is still ongoing. The tiling schema for the geological mapping is the same for both planetary bodies and for Ceres it is divided into two parts: four overview quadrangles (Survey Orbit, 415 m/pixel) and 15 more detailed quadrangles (High Altitude Mapping HAMO, 140 m/pixel). The first global geologic map was based on survey images (415 m/pixel). The combine 4 Survey quadrangles completed by HAMO data served as basis for generating a more detailed view of the geologic history and also for defining the chronostratigraphy and time scale of the dwarf planet. The most detailed view can be expected within the 15 mapping quadrangles based on HAMO resolution and completed by the Low Altitude Mapping (LAMO) data with 35 m/pixel. For the interpretative mapping process of each quadrangle one responsible mapper was assigned. Unifying the geological mapping of each quadrangle and bringing this together to regional and global valid statements is already a very time intensive task. However, another challenge that has to be accomplished is to consider how the 15 individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) thus produce a geologically-consistent final map. Our approach this challenge was already discussed for mapping of Vesta. To accommodate the map requirements regarding rules for data storage and database management, the computer-based GIS environment used for the interpretative mapping process must be designed in a way that it can be adjusted to the unique features of the individual investigation areas. Within this contribution the template will be presented that uses standards

  17. Collecting, Managing, and Visualizing Data during Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Graff, T. G.; Bleacher, J. E.; Whelley, P.; Garry, W. B.; Rogers, A. D.; Glotch, T. D.; Coan, D.; Reagan, M.; Evans, C. A.; Garrison, D. H.

    2017-12-01

    While the Apollo lunar surface missions were highly successful in collecting valuable samples to help us understand the history and evolution of the Moon, technological advancements since 1969 point us toward a new generation of planetary surface exploration characterized by large volumes of data being collected and used to inform traverse execution real-time. Specifically, the advent of field portable technologies mean that future planetary explorers will have vast quantities of in situ geochemical and geophysical data that can be used to inform sample collection and curation as well as strategic and tactical decision making that will impact mission planning real-time. The RIS4E SSERVI (Remote, In Situ and Synchrotron Studies for Science and Exploration; Solar System Exploration Research Virtual Institute) team has been working for several years to deploy a variety of in situ instrumentation in relevant analog environments. RIS4E seeks both to determine ideal instrumentation suites for planetary surface exploration as well as to develop a framework for EVA (extravehicular activity) mission planning that incorporates this new generation of technology. Results from the last several field campaigns will be discussed, as will recommendations for how to rapidly mine in situ datasets for tactical and strategic planning. Initial thoughts about autonomy in mining field data will also be presented. The NASA Extreme Environments Mission Operations (NEEMO) missions focus on a combination of Science, Science Operations, and Technology objectives in a planetary analog environment. Recently, the increase of high-fidelity marine science objectives during NEEMO EVAs have led to the ability to evaluate how real-time data collection and visualization can influence tactical and strategic planning for traverse execution and mission planning. Results of the last few NEEMO missions will be discussed in the context of data visualization strategies for real-time operations.

  18. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    Science.gov (United States)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  19. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Tucson, AZ 2007

    Science.gov (United States)

    Gregg, Tracy K.P.; Tanaka, Kenneth L.; Saunders, R. Stephen; Bleamaster, Leslie F.

    2007-01-01

    Introduction Report of the Annual Mappers Meeting Planetary Science Institute Tucson, Arizona June 28 and 29, 2007 Approximately 22 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The 2007 meeting was convened by Tracy Gregg, Les Bleamaster, Steve Saunders, and Ken Tanaka and was hosted by David Crown and Les Bleamaster of the Planetary Science Institute (PSI) in Tucson, Arizona. Oral presentations and poster discussions took place on Thursday, June 28 and Friday, June 29. This year's meeting also included a unique opportunity to visit the operations centers of two active Mars missions; field trips to the University of Arizona took place on Thursday and Friday afternoons. Outgoing Geologic Mapping Subcommittee (GEMS) chairperson, Tracy Gregg, commenced the meeting with an introduction and David Crown followed with a discussion of logistics and the PSI facility; Steve Saunders (Planetary Geology and Geophysics Discipline Scientist) then provided a brief program update. Science presentations kicked off with Venus mapper Vicki Hansen and graduate students Eric Tharalson and Bhairavi Shankar of the University of Minnesota, Duluth, showing a 3-D animation of the global distribution of tesserae and discussing the implications, a progress report for V-45 quadrangle mapping, and a brief discussion of circular lows. Les Bleamaster (PSI) followed with a progress report on mapping of the V-50 quadrangle and the 1:10M Helen Planitia quadrangle. David Crown (PSI) concluded the Venus presentations with a discussion of progress made on the V-30 quadrangle. The remainder of Thursday's presentations jumped around the Solar System including Mars, Io, and Earth. Ken Tanaka of the U.S. Geological Survey (USGS) began the afternoon with a general discussion of the status of the planetary mapping program at USGS. Buck Janes (University of Arizona) provided background information about the Mars Odyssey Gamma Ray Spectrometer (GRS) and

  20. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Nampa, Idaho 2006

    Science.gov (United States)

    Gregg, Tracy K. P.; Tanaka, Kenneth L.; Saunders, R. Stephen

    2006-01-01

    Approximately 18 people attended this year's mappers meeting, and many more submitted abstracts and maps in absentia. The meeting was held on the campus of Northwest Nazarene University (NNU), and was graciously hosted by NNU's School of Health and Science. Planetary mapper Dr. Jim Zimbelman is an alumnus of NNU, and he was pivotal in organizing the meeting at this location. Oral and poster presentations were given on Friday, June 30. Drs. Bill Bonnichsen and Marty Godchaux led field excursions on July 1 and 2. USGS Astrogeology Team Chief Scientist Lisa Gaddis led the meeting with a brief discussion of the status of the planetary mapping program at USGS, and a more detailed description of the Lunar Mapping Program. She indicated that there is now a functioning website (http://astrogeology.usgs.gov/Projects/PlanetaryMapping/Lunar/) which shows which lunar quadrangles are available to be mapped. Like other USGS-published maps, proposals to complete a lunar geologic map must be submitted to the regular Planetary Geology & Geophysics (PGG) program for peer review. Jim Skinner (USGS) later presented the progress of the 1:2.5M-scale map of the lunar Copernicus quadrangle, and demonstrated the wide range of data that are available to support these maps. Gaddis and Skinner encouraged the community to submit proposals for generating lunar geologic maps, and reminded us that, as for all planetary maps, the project must be science-driven. Venus mapper Jim Zimbelman of the Smithsonian Institution (SI) presented the progress for his V-15 and V-16 quadrangles; Vicki Hansen (University of Minnesota Duluth) showed her preliminary work on V-45. Zimbelman addressed an issue that has been plaguing the community: 'delinquent Venus mappers'. In short, there were a number of Venus maps funded in the early 1990s under the Venus Data Analysis Program (VDAP). Unfortunately, funding for this program was cut before many Venus maps could be completed, resulting in about 10 Venus maps that

  1. In-situ analysis of planetary surfaces by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Klingelhoefer, G.

    1998-01-01

    Iron is one of the key elements in the evolution of the solar system and is highly abundant in terrestrial planets. Its oxidation state reflects the history of the oxidation-reduction reactions on planetary surfaces. The identification of iron mineralogies and the relative abundance of iron oxidation states (2+ and 3+) will contribute to a much deeper understanding of the evolution of planetary bodies and their surfaces. Miniaturized Moessbauer spectrometers are under development primarily for missions to the planet Mars and the Moon, but there is also an interest on using such an instrument for space missions to the planet Venus, comets and asteroids. The instrument MIMOS II developed at TU Darmstadt meets the requirements for space application as low mass (about 500 g), small volume, and low power consumption (about 1 W). The instrument has been tested extensively in the laboratory but also recently in the field mounted on the robotic arm of a prototype Martian Rover under development at JPL/NASA, United States

  2. The effect of surface roughness on the transmission of microwave radiation through a planetary surface

    Science.gov (United States)

    Golden, L. M.

    1979-01-01

    To account for surface roughness, the transmission of microwave radiation through a planetary surface to an observer is treated by a Monte Carlo technique. Sizable effects are found near the limb of the planet, and they should be included in analyses of high-resolution observations and high-precision integrated disk observations.

  3. Computer Modeling of Planetary Surface Temperatures in Introductory Astronomy Courses

    Science.gov (United States)

    Barker, Timothy; Goodman, J.

    2013-01-01

    Barker, T., and Goodman, J. C., Wheaton College, Norton, MA Computer modeling is an essential part of astronomical research, and so it is important that students be exposed to its powers and limitations in the first (and, perhaps, only) astronomy course they take in college. Building on the ideas of Walter Robinson (“Modeling Dynamic Systems,” Springer, 2002) we have found that STELLA software (ISEE Systems) allows introductory astronomy students to do sophisticated modeling by the end of two classes of instruction, with no previous experience in computer programming or calculus. STELLA’s graphical interface allows students to visualize systems in terms of “flows” in and out of “stocks,” avoiding the need to invoke differential equations. Linking flows and stocks allows feedback systems to be constructed. Students begin by building an easily understood system: a leaky bucket. This is a simple negative feedback system in which the volume in the bucket (a “stock”) depends on a fixed inflow rate and an outflow that increases in proportion to the volume in the bucket. Students explore how changing inflow rate and feedback parameters affect the steady-state volume and equilibration time of the system. This model is completed within a 50-minute class meeting. In the next class, students are given an analogous but more sophisticated problem: modeling a planetary surface temperature (“stock”) that depends on the “flow” of energy from the Sun, the planetary albedo, the outgoing flow of infrared radiation from the planet’s surface, and the infrared return from the atmosphere. Students then compare their STELLA model equilibrium temperatures to observed planetary temperatures, which agree with model ones for worlds without atmospheres, but give underestimates for planets with atmospheres, thus introducing students to the concept of greenhouse warming. We find that if we give the students part of this model at the start of a 50-minute class they are

  4. Tools and Technologies Needed for Conducting Planetary Field Geology While On EVA: Insights from the 2010 Desert RATS Geologist Crewmembers

    Science.gov (United States)

    Young, Kelsey; Hurtado, Jose M., Jr.; Bleacher, Jacob E.; Garry, W. Brent; Bleisath, Scott; Buffington, Jesse; Rice, James W., Jr.

    2011-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  5. Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    Science.gov (United States)

    Young, Kelsey E.; Bleacher, J. E.; Hurtado, J. M., Jr.; Rice, J.; Garry, W. B.; Eppler, D.

    2011-01-01

    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts.

  6. Interactions of planetary magnetospheres with icy satellite surfaces

    International Nuclear Information System (INIS)

    Cheng, A.F.; Haff, P.K.; Johnson, R.E.; Lanzerotti, L.J.

    1986-01-01

    When natural satellites and ring particles are embedded within magnetospheric plasmas, the charged particles interact with the surfaces of these solid bodies. These interactions have important implications for the surface, the atmosphere of the parent body, and the magnetosphere as a whole. Significant erosion of the surface by sputtering, as well as redeposition of sputter ejecta, can occur over geologic time. The surface can also be chemically modified. Sputter ejecta can make important contributions to the atmosphere; sputtering provides a lower limit to the atmospheric column density even for arbitrarily cold satellite surfaces. Sputter ejecta escaping from the parent body can form extensive neutral clouds within the magnetosphere. Ionization and dissociation within these neutral clouds can be dominant sources of low-energy plasma. The importance of these processes is discussed for the satellites and magnetospheres of Jupiter, Saturn and Uranus

  7. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  8. Geologic Interpretation of Data Sets Collected by Planetary Analog Geology Traverses and by Standard Geologic Field Mapping. Part 1; A Comparison Study

    Science.gov (United States)

    Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara

    2013-01-01

    Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively

  9. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  10. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  11. Ceres' deformational surface features compared to other planetary bodies.

    Science.gov (United States)

    von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.

    2016-04-01

    On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on

  12. Field/Lab Training Workshops in Planetary Geology and Astrobiology for Secondary School Teachers

    Science.gov (United States)

    Treiman, A.; Newsom, H.; Hoehler, T.; Tsairides, C.; Karlstrom, K.; Crossey, L.; Kiefer, W.; Kadel, S.; Garcia-Pichel, F.; Aubele, J.; Crumpler, L.

    2003-12-01

    Thematic field-lab-classroom workshops can be successful in training secondary teachers in planetary geology and astrobiology, from the LPI's 4 years experience. A typical workshop includes ˜4 days of field study and ˜3 days of related classroom/lab lectures and exercises. Up to 30 teachers have participated at once, and the staff averages 5 researchers and educators. The 2003 workshop, The Great Desert, focused on geology and life in the Colorado Plateau as analogs for Mars. Specific emphases were on geologic processes exemplified in the Grand Canyon, Sunset Crater and Meteor Crater, and on biotic communities in desert soils and hot springs. The classroom portion, hosted by UNM, included lectures, lab work, and teaching exercises keyed to the field experience and its extensions to Mars. Formal followups: non-directive exit questionnaires; email list-serves for participants; websites with images, presentations, and exercises from the workshop, and links to related materials (e.g., http://www.lpi.usra.edu/education/EPO/yellowstone2002/index.html); and interviews for six-month retrospective. Graduate and continuing education credit are available. Past workshops, all relevant to Mars, have targeted: geology and extremophiles of Yellowstone NP, geology of the Cascade volcanos; and giant floods and lava flows of central Washington. The greatest benefit of this workshop format is the teachers' intense, deep experience, emphasizing scientific content. They learn from field, classroom, and laboratory perspectives, and work with PhD level researchers who contribute their excitement, demonstrate and teach critical thought processes, and provide authoritative background and answers. The small group size permits personal interactions (among teachers and presenters) that complement each other's understanding and appreciation of the subject. They log ˜65 contact hours with the staff, in small groups or one-on-one. Teachers return to the classroom with personal experiences

  13. Planetary surface exploration MESUR/autonomous lunar rover

    Science.gov (United States)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.

  14. Planetary surface exploration: MESUR/autonomous lunar rover

    Science.gov (United States)

    Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston

    1992-06-01

    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.

  15. Microtel: A TV Microscope for planetary field geology and resource evaluation

    Science.gov (United States)

    Jakes, Petr

    1997-01-01

    To obtain "mineralogical and morphologic" information "in situ" on planetary surfaces we have designed, constructed and undertaken preliminary tests of a Microtel, compact TV-microscope imaging system that allows us to image an area of several square centimeters and/or millimeters of planetary surface (regolith or rock samples). The Microtel has been constructed with a minimum of moving parts. Because of its simplicity it could be part of a robotic probe or could be used by an astronaut as a hand-held lens. The microscope (or hand held lens equivalent) uses a photosensitive device (e.g., CCD chip) combined with the microscopic lenses, mirrors, internal light and/or fiber optics to image the area in visible, UV or NIR. The size of the monitored area translated to magnification could be easily changed, depending on needs, by varying the optics. The other modes of magnification, i.e., false electronic magnification, through dense CCD chips could be used as well. Microscope lenses with a short working distance between the optic system and the "eye" (CCD) are used. Magnification of 10 to 1000 times (using a TV screen) were explored. The best results were obtained with magnifications of 10 times to about 100 times at the TV screen. Good images were provided with sufficient depth of focus and good resolution (better than 5 microns). Different apertures are used to vary the depth of the focus. The device is connected by cable to a signal processing unit and to a TV monitor, videoprinter, videorecorder or PC. The equipment camera and illumination with focusing system is small and lightweight (50 x 50 x 20 millimeters, or tube of 100 mm long and 20 mm in diameter) and less than 250g. The Microtel has its own light source and is easily transportable, allowing the imaging of normally inaccessible areas.

  16. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  17. Simultaneous Localization and Mapping for Planetary Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  18. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  19. Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.

    2014-01-01

    Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.

  20. The U.S. Geological Survey Flagstaff Science Campus—Providing expertise on planetary science, ecology, water resources, geologic processes, and human interactions with the Earth

    Science.gov (United States)

    Hart, Robert J.; Vaughan, R. Greg; McDougall, Kristin; Wojtowicz, Todd; Thenkenbail, Prasad

    2017-06-29

    The U.S. Geological Survey’s Flagstaff Science Campus is focused on interdisciplinary study of the Earth and solar system, and has the scientific expertise to detect early environmental changes and provide strategies to minimize possible adverse effects on humanity. The Flagstaff Science Campus (FSC) is located in Flagstaff, Arizona, which is situated in the northern part of the State, home to a wide variety of landscapes and natural resources, including (1) young volcanoes in the San Francisco Volcanic Field, (2) the seven ecological life zones of the San Francisco Peaks, (3) the extensive geologic record of the Colorado Plateau and Grand Canyon, (4) the Colorado River and its perennial, ephemeral, and intermittent tributaries, and (5) a multitude of canyons, mountains, arroyos, and plains. More than 200 scientists, technicians, and support staff provide research, monitoring, and technical advancements in planetary geology and mapping, biology and ecology, Earth-based geology, hydrology, and changing climate and landscapes. Scientists at the FSC work in collaboration with multiple State, Federal, Tribal, municipal, and academic partners to address regional, national, and global environmental issues, and provide scientific outreach to the general public.

  1. Modeling pN2through Geological Time: Implications for Planetary Climates and Atmospheric Biosignatures.

    Science.gov (United States)

    Stüeken, E E; Kipp, M A; Koehler, M C; Schwieterman, E W; Johnson, B; Buick, R

    2016-12-01

    Nitrogen is a major nutrient for all life on Earth and could plausibly play a similar role in extraterrestrial biospheres. The major reservoir of nitrogen at Earth's surface is atmospheric N 2 , but recent studies have proposed that the size of this reservoir may have fluctuated significantly over the course of Earth's history with particularly low levels in the Neoarchean-presumably as a result of biological activity. We used a biogeochemical box model to test which conditions are necessary to cause large swings in atmospheric N 2 pressure. Parameters for our model are constrained by observations of modern Earth and reconstructions of biomass burial and oxidative weathering in deep time. A 1-D climate model was used to model potential effects on atmospheric climate. In a second set of tests, we perturbed our box model to investigate which parameters have the greatest impact on the evolution of atmospheric pN 2 and consider possible implications for nitrogen cycling on other planets. Our results suggest that (a) a high rate of biomass burial would have been needed in the Archean to draw down atmospheric pN 2 to less than half modern levels, (b) the resulting effect on temperature could probably have been compensated by increasing solar luminosity and a mild increase in pCO 2 , and (c) atmospheric oxygenation could have initiated a stepwise pN 2 rebound through oxidative weathering. In general, life appears to be necessary for significant atmospheric pN 2 swings on Earth-like planets. Our results further support the idea that an exoplanetary atmosphere rich in both N 2 and O 2 is a signature of an oxygen-producing biosphere. Key Words: Biosignatures-Early Earth-Planetary atmospheres. Astrobiology 16, 949-963.

  2. Near-surface temperature gradients and their effects on thermal-infrared emission spectra of particulate planetary surfaces

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1993-01-01

    The infrared energy emitted from a planetary surface is generated within a finite depth determined by the material's absorption skin depth. This parameter varies significantly with wavelength in the infrared but has an average value of around 50 microns for most geologic materials. In solid rock, heat transfer is efficient enough so that this 50 micron zone of the near surface from which the radiation emanates will be more or less isothermal. In particulate materials, however, heat transfer is more complicated and occurs via a combination of mechanisms, including solid conduction within grains and across grain contacts, conduction through the interstitial gas, and thermal radiation within individual particles and across the void spaces in between grains. On planets with substantial atmospheres, the gas component dominates the heat transfer and tends to mitigate near-surface thermal gradients. However, on airless bodies, the gas component is absent and heat transfer occurs via solid conductions and radiation. If the particles are small relative to the average absorption skin depth, then the top 50-100 microns or so of the surface will be cooled by radiation to space allowing the creation of significant near-surface thermal gradients. In those regions of the spectrum where the absorption coefficient is low, the emission will come from the deeper, warmer parts of the medium, whereas in regions of high absorption, the emission will emanate from shallower, cooler parts of the medium. The resulting emission spectrum will show non-compositional features as a result of the thermal structure in the material. We have modeled the heat transfer in a particulate medium in order to determine the magnitude of near-surface thermal gradients for surfaces on airless bodies and on Mars. We use the calculated thermal structure to determine the effects it has on the infrared emission spectrum of the surface.

  3. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    Science.gov (United States)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  4. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A

    1965-01-01

    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  5. Determination of planetary surfaces elemental composition by gamma and neutron spectroscopy

    International Nuclear Information System (INIS)

    Diez, B.

    2009-06-01

    Measuring the neutron and gamma ray fluxes produced by the interaction of galactic cosmic rays with planetary surfaces allow constraining the chemical composition of the upper tens of centimeters of material. Two different angles are proposed to study neutron and gamma spectroscopy: data processing and data interpretation. The present work is in line with two experiments, the Mars Odyssey Neutron Spectrometer (MONS) and the Selene Gamma Ray Spectrometer. A review of the processing operations applied to the MONS dataset is proposed. The resulting dataset is used to determine the depth of the hydrogen deposits below the Martian surface. In water depleted regions, neutron data allow constraining the concentration in elements likely to interact with neutrons. The confrontation of these results to those issued from the Gamma Ray Spectrometer onboard Mars Odyssey provides interesting insight on the geologic context of the Central Elysium Planitia region. These martian questions are followed by the study of the Selene gamma ray data. Although only preliminary processing has been done to date, qualitative lunar maps of major elements (Fe, Ca, Si, Ti, Mg, K, Th, U) have already been realized. (author)

  6. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to

  7. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  8. The Variation of Planetary Surfaces' Structure and Size Distribution with Depth

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2014-12-01

    The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.

  9. BASALT A: Basaltic Terrains in Idaho and Hawaii as Planetary Analogs for Mars Geology and Astrobiology

    Science.gov (United States)

    Hughes, Scott S.; Haberle, Christopher W.; Nawotniak, Shannon E. Kobs; Sehlke, Alexander; Garry, W. Brent; Elphic, Richard C.; Payler, Sam J.; Stevens, Adam H.; Cockell, Charles S.; Brady, Allyson L.; hide

    2018-01-01

    Assessments of field research target regions are described within two notably basaltic geologic provinces as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawaii, USA, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provide rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho; and (3) Mauna Ulu low shield, (4) Kilauea Iki lava lake and (5) Kilauea caldera in the Kilauea Volcano summit region and the East Rift Zone of Hawaii. Our evaluation of compositional and textural differences, as well as the effects of syn- and post-eruptive rock alteration, shows that the basaltic terrains in Idaho and Hawaii provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.

  10. Laser-based mass spectrometry for in situ chemical composition analysis of planetary surfaces

    Science.gov (United States)

    Frey, Samira; Neuland, Maike B.; Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Mass spectrometry is an important analytical technique in space research. The chemical composition of planetary surface material is a key scientific question on every space mission to a planet, moon or asteroid. Chemical composition measurements of rocky material on the surface are of great importance to understand the origin and evolution of the planetary body.[1] A miniature laser ablation/ionisation reflectron- type time-of-flight mass spectrometer (instrument name LMS) was designed and built at the University of Bern for planetary research.[2] Despite its small size and light weight, the LMS instrument still maintains the same capabilities as large laboratory systems, which makes it suitable for its application on planetary space missions.[3-5] The high dynamic range of about eight orders of magnitude, high lateral (μm-level) and vertical (sub-nm level) resolution and high detection sensitivity for almost all elements (10 ppb, atomic fraction) make LMS a versatile instrument for various applications. LMS is a suitable instrument for in situ measurements of elemental and isotope composition with high precision and accuracy. Measurements of Pb- isotope abundances can be used for dating of planetary material. Measurements of bio-relevant elements allow searching for past or present life on a planetary surface. The high spatial resolution, both in lateral and vertical direction, is of considerable interest, e.g. for analysis of inhomogeneous, extraterrestrial samples as well as weathering processes of planetary material. References [1] P. Wurz, D. Abplanalp, M. Tulej, M. Iakovleva, V.A. Fernandes, A. Chumikov, and G. Managadze, "Mass Spectrometric Analysis in Planetary Science: Investigation of the Surface and the Atmosphere", Sol. Sys. Res., 2012, 46, 408. [2] U. Rohner, J.A. Whitby, P. Wurz, "A miniature laser ablation time of flight mass spectrometer for in situ planetary exploration" Meas. Sci. Tch., 2003, 14, 2159. [3] M. Tulej, A. Riedo, M.B. Neuland, S

  11. Change of Surface Roughness and Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1978-01-01

    The ratio between upstream and far downstream surface friction velocities relative to a change in surface roughness is given on the basis of results from surface Rossby number similarity theory. By simple theories for the internal boundary layer, which are found to compare quite well with recent ...

  12. Neodymium diffusion in orthopyroxene: Experimental studies and applications to geological and planetary problems

    Science.gov (United States)

    Sano, Jennifer; Ganguly, Jibamitra; Hervig, Richard; Dohmen, Ralf; Zhang, Xiaoyu

    2011-08-01

    We have determined the Nd 3+ diffusion kinetics in natural enstatite crystals as a function of temperature, f(O 2) and crystallographic direction at 1 bar pressure and applied these data to several terrestrial and planetary problems. The diffusion is found to be anisotropic with the diffusion parallel to the c-axial direction being significantly greater than that parallel to a- and b-axis. Also, D(// a) is likely to be somewhat greater than D(// b). Diffusion experiments parallel to the b-axial direction as a function of f(O 2) do not show a significant dependence of D(Nd 3+) on f(O 2) within the range defined by the IW buffer and 1.5 log unit above the WM buffer. The observed diffusion anisotropy and weak f(O 2) effect on D(Nd 3+) may be understood by considering the crystal structure of enstatite and the likely diffusion pathways. Using the experimental data for D(Nd 3+), we calculated the closure temperature of the Sm-Nd geochronological system in enstatite during cooling as a function of cooling rate, grain size and geometry, initial (peak) temperature and diffusion direction. We have also evaluated the approximate domain of validity of closure temperatures calculated on the basis of an infinite plane sheet model for finite plane sheets showing anisotropic diffusion. These results provide a quantitative framework for the interpretation of Sm-Nd mineral ages of orthopyroxene in planetary samples. We discuss the implications of our experimental data to the problems of melting and subsolidus cooling of mantle rocks, and the resetting of Sm-Nd mineral ages in mesosiderites. It is found that a cooling model proposed earlier [Ganguly J., Yang H., Ghose S., 1994. Thermal history of mesosiderites: Quantitative constraints from compositional zoning and Fe-Mg ordering in orthopyroxene. Geochim. Cosmochim. Acta 58, 2711-2723] could lead to the observed ˜90 Ma difference between the U-Pb age and Sm-Nd mineral age for mesosiderites, thus obviating the need for a model of

  13. Empirical recurrence rates for ground motion signals on planetary surfaces

    Science.gov (United States)

    Lorenz, Ralph D.; Panning, Mark

    2018-03-01

    We determine the recurrence rates of ground motion events as a function of sensed velocity amplitude at several terrestrial locations, and make a first interplanetary comparison with measurements on the Moon, Mars, Venus and Titan. This empirical approach gives an intuitive order-of-magnitude guide to the observed ground motion (including both tectonic and ocean- and atmosphere-forced signals) of these locations as a guide to instrument expectations on future missions, without invoking interior models and specific sources: for example a Venera-14 observation of possible ground motion indicates a microseismic environment mid-way between noisy and quiet terrestrial locations. Quiet terrestrial regions see a peak velocity amplitude in mm/s roughly equal to 0.3*N(-0.7), where N is the number of "events" (half-hour intervals in which a given peak ground motion is exceeded) observed per year. The Apollo data show endogenous seismic signals for a given recurrence rate that are typically about 10,000 times smaller in amplitude than a quiet site on Earth, although local thermally-induced moonquakes are much more common. Viking data masked for low-wind periods appear comparable with a quiet terrestrial site, whereas a Venera observation of microseisms suggests ground motion more similar to a more active terrestrial location. Recurrence rate plots from in-situ measurements provide a context for seismic instrumentation on future planetary missions, e.g. to guide formulation of data compression schemes. While even small geophones can discriminate terrestrial activity rates, observations with guidance accelerometers are typically too insensitive to provide meaningful constraints (i.e. a non-zero number of "events") on actual ground motion observations unless operated for very long periods.

  14. A far-ultraviolet photometer for planetary surface analysis

    International Nuclear Information System (INIS)

    Henry, R.C.; Fastie, W.G.; Lucke, R.L.; Hapke, B.W.

    1976-01-01

    The measurement of local variations in the far-ultraviolet albedo is explored as a means of detecting changes in the refractive index of rocks and dust on the surface of atmosphereless planets and satellites. Far-ultraviolet spectrophotometric measurements of the lunar surface which were obtained on the Apollo 17 orbital mission are presented to demonstrate that significant albedo variations occur in the spectral range 120 to 170 nm. These data also confirm the hypothesis that the albedo variations represent refractive index differences in the surface materials. A three-band photometer is described which, when put in orbit around a solar system object, is capable of providing refractive index maps with a sensitivity of 1 part in the second decimal place and with kilometer resolution. Comparative surface composition and surface history analyses based on such maps are discussed

  15. Planetary-scale surface water detection from space

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.

    2017-12-01

    Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.

  16. Measuring the surface roughness of geological rock surfaces in SAR data using fractal geometry

    Science.gov (United States)

    Ghafouri, Ali; Amini, Jalal; Dehmollaian, Mojtaba; Kavoosi, Mohammad Ali

    2017-05-01

    Determining surface morphology using synthetic aperture radar (SAR) data requires accurate topographic and microtopographic models. To distinguish different surface geometric patterns and to differentiate the formation of geological rock surfaces, it is necessary to model the smoothness and roughness of surfaces based on radar signal backscattering. Euclidean geometry is less able than fractal geometry to describe natural phenomena; however, in application to radar backscattering models, fractal geometry has never fully replaced Euclidean geometry. Using fractal geometry only, this paper attempts to improve the backscattering simulation generated by an Integral Equation Model to improve the description of geological rock surfaces. As the application of radar signal backscattering is a rarity in the domain of geology, the paper also discusses the efficiency of the method in improving the results of conventional geological mapping methods. The proposed method is applied to the Anaran geological formation (between Dehloran and Ilam in IRAN) using TerraSAR-X SAR data and in situ roughness measurements on pure sites with rough, intermediate, and smooth morphologies. This implementation shows fractal and diffractal behavior of geological morphologies under various conditions.

  17. Near-surface thermal gradients and their effects on mid-infrared emission spectra of planetary surfaces

    Science.gov (United States)

    Henderson, B. G.; Jakosky, B. M.

    1994-01-01

    We model the heat transfer by radiation and conduction in the top few millimeters of a planetary surface to determine the magnitude of near-surface (approximately 100 micrometers) thermal gradients and their effects on mid-infrared emission spectra for a number of planetary environments. The model is one-dimensional and uses a finite difference scheme for approximately 10 micrometers layers. Calculations are peformed for samples heated at the base and from above by sunlight. Our results indicate that near-surface radiative cooling creates significant thermal gradients in the top few hundred microns of surfaces in which radiation is an importamnt heat transfer mechanism. The effect is maximized in evacuated, underdense particulate media with sufficiently high temperatures. Near-surface thermal gradients will be significant in fine-grained particulate surfaces on the Moon (40-60 K/100 micrometers) and Mercury (approximately 80 K/100 micrometers), increasing spectral contrast and creating emission maxima in the transparent regions of the spectra. They will be of lesser importance on the surface of Mars, with a maximum value of around 5 k/100 micrometers in areas of low thermal inertia, and will be negligible on planets with more substantial atmospheres (less than 1 K/100 micrometers). We conclude that the effects that thermal gradients have on mid-IR emission spectra are predictable and do not negate the utility of emission spectroscopy for remote determination of planetary surface composition.

  18. Application of VRML to dynamic display of three dimension geologic surface

    Energy Technology Data Exchange (ETDEWEB)

    Rui, X.; Yu, Z.; Xu, Y. [China University of Mining and Technology, Xuzhou (China). College of Resource and Environment Technology

    2001-06-01

    The basic concept of Virtual Reality and VRML is introduced. According to the actual condition of the geologic surface, the virtual space to display dynamically the three-dimensional geologic surface is constructed by using GRID file and Elevation Grid node. The application of this method to coalfield geologic surface has achieved very good visual effect. 7 refs., 1 fig.

  19. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis.

    Science.gov (United States)

    Shaukat, Affan; Blacker, Peter C; Spiteri, Conrad; Gao, Yang

    2016-11-20

    In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR). LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  20. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis

    Directory of Open Access Journals (Sweden)

    Affan Shaukat

    2016-11-01

    Full Text Available In recent decades, terrain modelling and reconstruction techniques have increased research interest in precise short and long distance autonomous navigation, localisation and mapping within field robotics. One of the most challenging applications is in relation to autonomous planetary exploration using mobile robots. Rovers deployed to explore extraterrestrial surfaces are required to perceive and model the environment with little or no intervention from the ground station. Up to date, stereopsis represents the state-of-the art method and can achieve short-distance planetary surface modelling. However, future space missions will require scene reconstruction at greater distance, fidelity and feature complexity, potentially using other sensors like Light Detection And Ranging (LIDAR. LIDAR has been extensively exploited for target detection, identification, and depth estimation in terrestrial robotics, but is still under development to become a viable technology for space robotics. This paper will first review current methods for scene reconstruction and terrain modelling using cameras in planetary robotics and LIDARs in terrestrial robotics; then we will propose camera-LIDAR fusion as a feasible technique to overcome the limitations of either of these individual sensors for planetary exploration. A comprehensive analysis will be presented to demonstrate the advantages of camera-LIDAR fusion in terms of range, fidelity, accuracy and computation.

  1. Disharmony of the spheres: Recent trends in planetary surface nomenclature

    Science.gov (United States)

    Pike, R.J.

    1976-01-01

    Inadvisable departures from tradition in naming newly mapped features on Mars, Mercury, and the Moon have been implemented and proposed since 1970. Functional need for place names also has become confused with cartographic convenience. Much of the resulting new nomenclature is neither unique, efficient, nor imaginative. The longstanding classical orientation in Solar System geography needs to be firmly reasserted. The Ma??dler scheme for designating smaller craters on the Moon should be retained and extended to the farside. Names of surface features on other bodies might best reflect the traditional connotations of planet and satellite names: for example, most crates on Mars would be named for mythical heroes and military personalities in ancient history, craters on Mercury might commemorate explorers or commercial luminaries, and features on Venus would bear the names of famous women. ?? 1976.

  2. In Situ Instrumentation for Sub-Surface Planetary Geochemistry

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    Novel instrumentation is under development at NASA's Goddard Space Flight Center, building upon earth-based techniques for hostile environments, to infer geochemical processes important to formation and evolution of solid bodies in our Solar System. A prototype instrument, the Pulsed Neutron Generator Gamma Ray and Neutron Detectors (PNG-GRAND), has a 14 MeV pulsed neutron generator coupled with gamma ray and neutron detectors to measure quantitative elemental concentrations and bulk densities of a number of major, minor and trace elements at or below the surfaces with approximately a meter-sized spatial resolution down to depths of about 50 cm without the need to drill. PNG-GRAND's in situ a meter-scale measurements and adaptability to a variety of extreme space environments will complement orbital kilometer-scale and in-situ millimeter scale elemental and mineralogical measurements to provide a more complete picture of the geochemistry of planets, moons, asteroids and comets.

  3. A photometric function of planetary surfaces for gourmets

    Science.gov (United States)

    Shkuratov, Yuriy; Korokhin, Viktor; Shevchenko, Vasilij; Mikhalchenko, Olga; Belskaya, Irina; Kaydash, Vadym; Videen, Gorden; Zubko, Evgenij; Velikodsky, Yuriy

    2018-03-01

    A new photometric model with small number of parameters is presented. The model is based on an assumption that there exist such surfaces for which spatial brightness variations caused by small topography undulations can be reproduced exactly by corresponding spatial variations of albedo. This indistinguishability results in a differential equation suggesting a new photometric function that generalizes, in particular, the Akimov disk-function. Our model provides excellent fits in a wide phase-angle range for integral observations of asteroids of different albedos. We also carried out fitting to integral observations of the Moon and Mercury, confirming difficulties in describing Mercury's phase function at large phase angles, which were also found for the Hapke model. Comparisons of global latitude and longitude trends with our model calculations have shown good coincidence for the Moon. To retrieve the lunar trends, we use the phase-ratio technique, applying it to our telescope observations. Mapping the model parameters using LROC WAC data were carried out for a region comprising the Reiner Gamma formation. This mapping allows us to calculate phase-ratio images of the region, showing at large phase angles systematically steeper phase curves of young craters and smaller steepness for the very Reiner Gamma formation.

  4. Betsy Pugel, Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfaces

    OpenAIRE

    Schriml, Lynn

    2017-01-01

    Betsy Pugel, National Aeronautics and Space Administration Tiny houses: Planetary protection-focused materials selection for spaceflight hardware surfacesOn October 10-12th, 2017 the Alfred P. Sloan Foundation and The National Academies of Sciences, Engineering and Medicine co-hosting MoBE 2017 (Microbiology of the Built Environment Research and Applications Symposium) at the National Academy of Sciences Building to present the current state-of-the-science in understanding the formation and ...

  5. Multifunctional Interface Facility for Receiving and Processing Planetary Surface Materials for Science Investigation and Resource Evaluation at the Deep Space Gateway

    Science.gov (United States)

    Sibille, L.; Mantovani, J. G.; Townsend, I. I.; Mueller, R. P.

    2018-02-01

    The concepts describe hardware and instrumentation for the study of planetary surface materials at the Deep Space Gateway as a progressive evolution of capabilities for eliminating the need for special handling and Planetary Protection (PP) protocols inside the habitats.

  6. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  7. Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces

    Science.gov (United States)

    Shakun, Alexey; Korablev, Oleg; Moshkin, Boris; Grigoriev, Alexey; Ignatiev, Nikolay; Maslov, Igor; Sazonov, Oleg; Patsaev, Dmitry; Kungurov, Andrey; Santos-Skripko, Alexander; Zharkov, Alexander; Stupin, Igor; Merzlyakov, Dmitry; Makarov, Vladislav; Martinovich, Fedor; Nikolskiy, Yuri; Shashkin, Victor

    2017-12-01

    In planetary research, Fourier transform infrared spectrometers (FTIR) solve a number of important scientific goals related both to the atmosphere and to the surface sounding. For remote orbital measurements, these goals are the thermal sounding of the atmosphere using, in particular, the 15-µm CO2 band, sensitive detections of minor gaseous species and aerosol characterization. FTIR can address similar atmospheric science goals when observing from a planetary surface allowing for better-resolved boundary layer and achieving greater accuracy (longer integration) for minor species detection. For studies of planetary surfaces, characterization of mineralogical composition in a wide IR range including sensitive measurements of hydration of the soil on airless bodies can be done. We outline a family of FTIR instruments dedicated to studies of Mars and the Moon. TIRVIM is a channel of ACS on ExoMars TGO (in orbit around Mars since October 2016). It is a 2-inch interferometer for nadir and solar occultation measurements of Mars' atmosphere. It covers a spectral range of 1.7-17 µm with spectral resolution up to 0.13 cm-1. LUMIS is a similar instrument for Luna-Resource Orbiter (Luna-26) Roscosmos mission dedicated to the search for hydration of the lunar regolith in the 6-µm band. The spectral range of LUMIS is broad (1.7-17 µm), but its sensitivity is optimized for the 4-8 µm region. The spectral resolution is 50 cm-1. We also describe recent developments focused on technical solutions for miniaturized FTIR instruments with a very high spectral resolution (0.05 cm-1 and higher). The prototype targets measurements of minor atmospheric species from the surface of Mars using the Sun tracking. One important task is to provide a high precision of interferometer's mirror movement. Another task is the development of a precise two-coordinate mechanism to seek for and follow the Sun.

  8. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  9. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  10. Development of a Linear Ion Trap Mass Spectrometer (LITMS) Investigation for Future Planetary Surface Missions

    Science.gov (United States)

    Brinckerhoff, W.; Danell, R.; Van Ameron, F.; Pinnick, V.; Li, X.; Arevalo, R.; Glavin, D.; Getty, S.; Mahaffy, P.; Chu, P.; hide

    2014-01-01

    Future surface missions to Mars and other planetary bodies will benefit from continued advances in miniature sensor and sample handling technologies that enable high-performance chemical analyses of natural samples. Fine-scale (approx.1 mm and below) analyses of rock surfaces and interiors, such as exposed on a drill core, will permit (1) the detection of habitability markers including complex organics in association with their original depositional environment, and (2) the characterization of successive layers and gradients that can reveal the time-evolution of those environments. In particular, if broad-based and highly-sensitive mass spectrometry techniques could be brought to such scales, the resulting planetary science capability would be truly powerful. The Linear Ion Trap Mass Spectrometer (LITMS) investigation is designed to conduct fine-scale organic and inorganic analyses of short (approx.5-10 cm) rock cores such as could be acquired by a planetary lander or rover arm-based drill. LITMS combines both pyrolysis/gas chromatograph mass spectrometry (GCMS) of sub-sampled core fines, and laser desorption mass spectrometry (LDMS) of the intact core surface, using a common mass analyzer, enhanced from the design used in the Mars Organic Molecule Analyzer (MOMA) instrument on the 2018 ExoMars rover. LITMS additionally features developments based on the Sample Analysis at Mars (SAM) investigation on MSL and recent NASA-funded prototype efforts in laser mass spectrometry, pyrolysis, and precision subsampling. LITMS brings these combined capabilities to achieve its four measurement objectives: (1) Organics: Broad Survey Detect organic molecules over a wide range of molecular weight, volatility, electronegativity, concentration, and host mineralogy. (2) Organic: Molecular Structure Characterize internal molecular structure to identify individual compounds, and reveal functionalization and processing. (3) Inorganic Host Environment Assess the local chemical

  11. Aerial Vehicle Surveys of Other Planetary Atmospheres and Surfaces: Imaging, Remote-Sensing, and Autonomy Technology Requirements

    Science.gov (United States)

    2005-01-01

    of convenience. The surfaces of planetary bodies such as Mars, Venus, and Titan § Quoted from Buzz ... Aldrin , Apollo 11, with reference to observing the lunar surface prior to setting foot on the surface, as the second man in history to do so

  12. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  13. Gamma-ray and neutron spectroscopy of planetary surfaces and atmospheres

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1987-01-01

    The neutrons and gamma rays escaping from a planet can be used to map the concentrations of various elements in its surface. In a planet, the high-energy particles in the galactic cosmic rays induce a cascade of particles that includes many neutrons. The γ rays are made by the decay of the naturally-occurring radioelements and by nuclear excitations induced by cosmic-ray particles and their secondaries (especially neutron capture or inelastic scattering reactions). After a short history of planetary γ-ray and neutron spectroscopy, the γ-ray spectrometer and active neutron detection system planned for the Mars Observer Mission are presented. The results of laboratory experiments that simulate the cosmic-ray bombardments of planetary surfaces and the status of the theoretical calculations for the processes that make and transport neutrons and γ rays will be reviewed. Studies of Mars, including its atmosphere, are emphasized, as are new ideas, concepts, and problems that have arisen over the last decade, such as Doppler broadening and peaks from neutron scattering with germanium nuclei in a γ-ray spectrometer. 23 refs., 1 fig

  14. Development, Deployment, and Assessment of Dynamic Geological and Geophysical Models Using the Google Earth APP and API: Implications for Undergraduate Education in the Earth and Planetary Sciences

    Science.gov (United States)

    de Paor, D. G.; Whitmeyer, S. J.; Gobert, J.

    2009-12-01

    We previously reported on innovative techniques for presenting data on virtual globes such as Google Earth using emergent Collada models that reveal subsurface geology and geophysics. We here present several new and enhanced models and linked lesson plans to aid deployment in undergraduate geoscience courses, along with preliminary results from our assessment of their effectiveness. The new Collada models are created with Google SketchUp, Bonzai3D, and MeshLab software, and are grouped to cover (i) small scale field mapping areas; (ii) regional scale studies of the North Atlantic Ocean Basin, the Appalachian Orogen, and the Pacific Ring of Fire; and (iii) global scale studies of terrestrial planets, moons, and asteroids. Enhancements include emergent block models with three-dimensional surface topography; models that conserve structural orientation data; interactive virtual specimens; models that animate plate movements on the virtual globe; exploded 3-D views of planetary mantles and cores; and server-generated dynamic KML. We tested volunteer students and professors using Silverback monitoring software, think-aloud verbalizations, and questionnaires designed to assess their understanding of the underlying geo-scientific phenomena. With the aid of a cohort of instructors across the U.S., we are continuing to assess areas in which users encounter difficulties with both the software and geoscientific concepts. Preliminary results suggest that it is easy to overestimate the computer expertise of novice users even when they are content knowledge experts (i.e., instructors), and that a detailed introduction to virtual globe manipulation is essential before moving on to geoscience applications. Tasks that seem trivial to developers may present barriers to non-technical users and technicalities that challenge instructors may block adoption in the classroom. We have developed new models using the Google Earth API which permits enhanced interaction and dynamic feedback and

  15. MAPPING OF PLANETARY SURFACE AGE BASED ON CRATER STATISTICS OBTAINED BY AN AUTOMATIC DETECTION ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. L. Salih

    2016-06-01

    Full Text Available The analysis of the impact crater size-frequency distribution (CSFD is a well-established approach to the determination of the age of planetary surfaces. Classically, estimation of the CSFD is achieved by manual crater counting and size determination in spacecraft images, which, however, becomes very time-consuming for large surface areas and/or high image resolution. With increasing availability of high-resolution (nearly global image mosaics of planetary surfaces, a variety of automated methods for the detection of craters based on image data and/or topographic data have been developed. In this contribution a template-based crater detection algorithm is used which analyses image data acquired under known illumination conditions. Its results are used to establish the CSFD for the examined area, which is then used to estimate the absolute model age of the surface. The detection threshold of the automatic crater detection algorithm is calibrated based on a region with available manually determined CSFD such that the age inferred from the manual crater counts corresponds to the age inferred from the automatic crater detection results. With this detection threshold, the automatic crater detection algorithm can be applied to a much larger surface region around the calibration area. The proposed age estimation method is demonstrated for a Kaguya Terrain Camera image mosaic of 7.4 m per pixel resolution of the floor region of the lunar crater Tsiolkovsky, which consists of dark and flat mare basalt and has an area of nearly 10,000 km2. The region used for calibration, for which manual crater counts are available, has an area of 100 km2. In order to obtain a spatially resolved age map, CSFDs and surface ages are computed for overlapping quadratic regions of about 4.4 x 4.4 km2 size offset by a step width of 74 m. Our constructed surface age map of the floor of Tsiolkovsky shows age values of typically 3.2-3.3 Ga, while for small regions lower (down to

  16. Gazetteer of planetary nomenclature 1994

    Science.gov (United States)

    Batson, Raymond M.; Russell, Joel F.

    1995-01-01

    Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be easily located, described, and discussed. This volume contains detailed information about all names of topographic and albedo features on planets and satellites (and some planetary ring and ring-gap systems) that the International Astronomical Union has named and approved from its founding in 1919 through its triennial meeting in 1994.This edition of the Gazetteer of Planetary Nomenclature supersedes an earlier informal volume distributed by the U.S. Geological Survey in 1986 as Open-File Report 84-692 (Masursky and others, 1986). Named features are depicted on maps of the Moon published first by the U.S. Defense Mapping Agency or the Aeronautical Chart and Information Center and more recently by the U.S. Geological Survey; on maps of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, and Uranus published by the U.S. Geological Survey; and on maps of the Moon, Venus, and Mars produced by the U.S.S.R.Although we have attempted to check the accuracy of all data in this volume, we realize that some errors will remain in a work of this size. Readers noting errors or omissions are urged to communicate them to the U.S. Geological Survey, Branch of Astrogeology, Rm. 409, 2255 N. Gemini Drive, Flagstaff, AZ 86001.

  17. Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada

    Science.gov (United States)

    Antonenko, I.; Osinski, G. R.; Battler, M.; Beauchamp, M.; Cupelli, L.; Chanou, A.; Francis, R.; Mader, M. M.; Marion, C.; McCullough, E.; Pickersgill, A. E.; Preston, L. J.; Shankar, B.; Unrau, T.; Veillette, D.

    2013-07-01

    Remote robotic data provides different information than that obtained from immersion in the field. This significantly affects the geological situational awareness experienced by members of a mission control science team. In order to optimize science return from planetary robotic missions, these limitations must be understood and their effects mitigated to fully leverage the field experience of scientists at mission control.Results from a 13-day analogue deployment at the Mistastin Lake impact structure in Labrador, Canada suggest that scale, relief, geological detail, and time are intertwined issues that impact the mission control science team's effectiveness in interpreting the geology of an area. These issues are evaluated and several mitigation options are suggested. Scale was found to be difficult to interpret without the reference of known objects, even when numerical scale data were available. For this reason, embedding intuitive scale-indicating features into image data is recommended. Since relief is not conveyed in 2D images, both 3D data and observations from multiple angles are required. Furthermore, the 3D data must be observed in animation or as anaglyphs, since without such assistance much of the relief information in 3D data is not communicated. Geological detail may also be missed due to the time required to collect, analyze, and request data.We also suggest that these issues can be addressed, in part, by an improved understanding of the operational time costs and benefits of scientific data collection. Robotic activities operate on inherently slow time-scales. This fact needs to be embraced and accommodated. Instead of focusing too quickly on the details of a target of interest, thereby potentially minimizing science return, time should be allocated at first to more broad data collection at that target, including preliminary surveys, multiple observations from various vantage points, and progressively smaller scale of focus. This operational model

  18. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  19. PLANETARY PERMO-СARBONIFEROUS ICE AGE – BANK OF PALEONTOLOGICAL AND GEOLOGICAL FACTS FOR DISPROVING THE GLACIAL THEORY

    Directory of Open Access Journals (Sweden)

    V. G. Chuvardinsky

    2017-09-01

    the subglacial geological-topographic surface.

  20. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2015-01-01

    We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields...... between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations...... of the planetary-scale circulation and find that electromagnetic core-mantle coupling is not the main mechanism for angular momentum exchanges on decadal time scales if mantle conductance is 3 × 108 S or lower....

  1. Near infrared imager for spectral and polarization analysis of planetary surfaces

    Science.gov (United States)

    Belyaev, D. A.; Yushkov, K. B.; Anikin, S. P.; Evdokimova, N. A.; Potanin, S. A.; Dobrolenskiy, Y. S.; Korablev, O. I.; Molchanov, V. Ya; Mantsevich, S. N.

    2017-09-01

    We propose a concept of an imaging near-IR spectrometer for sensing of planetary surfaces. This instrument is intended to analyze mineralogical and, in some cases, petrographic composition of the upper surface layer in the planetary regolith; to identify and monitor OH/H2O bearing minerals and water adsorption in this layer. The scheme of the spectrometer was designed on a basis of an acousto-optic tunable filter (AOTF) that allows imaging of samples in two orthogonal polarization planes simultaneously. Images are registered as a light (e.g. solar one) reflected and scattered from an observed target in the near infrared spectral range. The AOTF's electrical tuning provides fast and flexible spectral scanning of an image through whole the range analyzed - potentially, ten microseconds per a spectral point. Thus, it is possible to explore reflectance spectra of specified areas on a sample and to detect its minerals composition and microstructure variations. In parallel, one can estimate polarization contrast at different wavelengths thanks to the AOTF's birefringence properties. In this paper we report design and performance of a laboratory prototype for the near-IR spectro-polarimeteric imaging AOTF system operating in the spectral range from 0.8 to 1.75 μm. Reflectance spectra of some minerals were measured with the spectral resolution of 100 cm-1 (passband 10 nm at 1 μm). When imaging samples the spatial resolution as high as 0.5 mm was reached at the target distance of one meter. It corresponds to 100 by 100 resolving elements on the CCD matrix for each of two polarizations of the reflected light. Such a concept is also being designed for the spectral range from 1.7 to 3.5 μm.

  2. Quantitative roughness characterization of geological surfaces and implications for radar signature analysis

    DEFF Research Database (Denmark)

    Dierking, Wolfgang

    1999-01-01

    Stochastic surface models are useful for analyzing in situ roughness profiles and synthetic aperture radar (SAR) images of geological terrain. In this paper, two different surface models are discussed: surfaces with a stationary random roughness (conventional model) and surfaces with a power...

  3. Fault type predictions from stress distributions on planetary surfaces - Importance of fault initiation depth

    Science.gov (United States)

    Golombek, M. P.

    1985-01-01

    The prediction of fault type on planetary surfaces from model stresses calculated at depth is discussed. These fault-type predictions yield different faults than those predicted using the surface criteria commonly employed in geophysical models. For elastic-plate flexure models of mascon loading on the moon, stresses calculated at the surface predict the occurrence of strike-slip faulting at the radial distance where grabens are found. Normal faults bounding lunar grabens and thrust faults responsible for wrinkle ridges are analyzed. It is found that the former initiate at the mechanical discontinuity that separates the breccia of the megaregolith from in situ fractured rock and that the latter initiate at the mechanical discontinuity between basalt layers and the underlying basin floor. The difference between elastic constants for the outer few kilometers of brecciated megaregolith and the underlying lunar lithosphere are evaluated. Superposing nonisotropic stresses resulting from the weight of overburden to the depth of the relevant mechanical discontinuity yield stresses that predict wrinkle ridges in the basin centers and grabens outside the basin margin, and eliminate the predicted zone of strike-slip faults.

  4. The design of long wavelength planetary SAR sensor and its applications for monitoring shallow sub-surface of Moon and planets.

    Science.gov (United States)

    Kim, K.

    2015-12-01

    SAR observations over planetary surface have been conducted mainly in two ways. The first is the subsurface sounding, for example Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD), using ground penetration capability of long wavelength electromagnetic waves. On the other hand, imaging SAR sensors using burst mode design have been employed to acquire surface observations in the presence of opaque atmospheres such as in the case of Venus and Titan. We propose a lightweight SAR imaging system with P/L band wavelength to cover the vertical observation gap of these planetary radar observation schemes. The sensor is for investigating prominent surface and near-subsurface geological structures and physical characteristics. Such measurements will support landers and rover missions as well as future manned missions. We evaluate required power consumption, and estimate mass and horizontal resolution, which can be as good as 3-7 meters. Initial specifications for P/L dual band SARs for the lunar case at 130 km orbital altitude were designed already based on a assumptions that sufficient size antenna (>3m width diameter or width about 3m and >10kg weight) can be equipped. Useful science measurements to be obtained include: (1) derivation of subsurface regolith depth; 2) Surface and shallow subsurface radar imaging, together with radar ranging techniques such as radargrammetry and inteferometry. The concepts in this study can be used as an important technical basis for the future solid plant/satellite missions and already proposed for the 2018 Korean Lunar mission.

  5. Mathematical Modeling of Electrodynamics Near the Surface of Earth and Planetary Water Worlds

    Science.gov (United States)

    Tyler, Robert H.

    2017-01-01

    An interesting feature of planetary bodies with hydrospheres is the presence of an electrically conducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock, ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur, as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical formulations describing the behavior of these electric currents as well as their associated electric and magnetic fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrodynamics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this mathematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also Europa and other satellites with suspected oceans.

  6. Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration

    Science.gov (United States)

    Klein, Richard C.; Fusaro, Robert L.; Dimofte, Florin

    2012-01-01

    NASA s initiative for Lunar and Martian exploration will require long lived, robust drive systems for manned vehicles that must operate in hostile environments. The operation of these mechanical drives will pose a problem because of the existing extreme operating conditions. Some of these extreme conditions include operating at a very high or very cold temperature, operating over a wide range of temperatures, operating in very dusty environments, operating in a very high radiation environment, and operating in possibly corrosive environments. Current drive systems use gears with various configurations of teeth. These gears must be lubricated with oil (or grease) and must have some sort of a lubricant resupply system. For drive systems, oil poses problems such as evaporation, becoming too viscous and eventually freezing at cold temperatures, being too thin to lubricate at high temperatures, being degraded by the radiation environment, being contaminated by the regolith (soil), and if vaporized (and not sealed), it will contaminate the regolith. Thus, it may not be advisable or even possible to use oil because of these limitations. An oil-less, compact traction vehicle drive is a drive designed for use in hostile environments like those that will be encountered on planetary surfaces. Initially, traction roller tests in vacuum were conducted to obtain traction and endurance data needed for designing the drives. From that data, a traction drive was designed that would fit into a prototype lunar rover vehicle, and this design data was used to construct several traction drives. These drives were then tested in air to determine their performance characteristics, and if any final corrections to the designs were necessary. A limitation with current speed reducer systems such as planetary gears and harmonic drives is the high-contact stresses that occur at tooth engagement and in the harmonic drive wave generator interface. These high stresses induce high wear of solid

  7. Novel 3D imaging techniques for improved understanding of planetary surface geomorphology.

    Science.gov (United States)

    Muller, Jan-Peter

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the past decade for Mars and the Moon, especially in 3D imaging of surface shape (down to resolutions of 75cm) and subsequent correction for terrain relief of imagery from orbiting and co-registration of lander and rover robotic images. We present some of the recent highlights including 3D modelling of surface shape from the ESA Mars Express HRSC (High Resolution Stereo Camera), see [1], [2] at 30-100m grid-spacing; and then co-registered to HRSC using a resolution cascade of 20m DTMs from NASA MRO stereo-CTX and 0.75m DTMs from MRO stereo-HiRISE [3]. This has opened our eyes to the formation mechanisms of megaflooding events, such as the formation of Iani Vallis and the upstream blocky terrain, to crater lakes and receding valley cuts [4]. A comparable set of products is now available for the Moon from LROC-WA at 100m [5] and LROC-NA at 1m [6]. Recently, a very novel technique for the super-resolution restoration (SRR) of stacks of images has been developed at UCL [7]. First examples shown will be of the entire MER-A Spirit rover traverse taking a stack of 25cm HiRISE to generate a corridor of SRR images along the rover traverse of 5cm imagery of unresolved features such as rocks, created as a consequence of meteoritic bombardment, ridge and valley features. This SRR technique will allow us for ˜400 areas on Mars (where 5 or more HiRISE images have been captured) and similar numbers on the Moon to resolve sub-pixel features. Examples will be shown of how these SRR images can be employed to assist with the better understanding of surface geomorphology. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under PRoViDE grant agreement n° 312377

  8. On the effectiveness of surface assimilation in probabilistic nowcasts of planetary boundary layer profiles

    Science.gov (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua

    2013-04-01

    Surface observations comprise a wide, non-expensive and reliable source of information about the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems have encountered several difficulties in effectively assimilating them, among others due to their local-scale representativeness, the transient coupling between the surface and the atmosphere aloft and the balance constraints usually used. A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that can be employed wherever surface observations are present. Earlier work showed that surface observations can be an important source of information with a single column model (SCM) and an ensemble filter (EF). Here we extend that work to quantify the probabilistic skill of ensemble SCM predictions with a model including added complexity. We adopt a factor separation analysis to quantify the contribution of surface assimilation relative to that of selected model components (parameterized radiation and externally imposed horizontal advection) to the probabilistic skill of the system, and of any beneficial or detrimental interactions between them. To assess the real utility of the flow-dependent covariances estimated with the EF and of the SCM of the PBL we compare the skill of the SCM/EF system to that of a reference one based on climatological covariances and a 30-min persistence model. It consists of a dressing technique, whereby a deterministic 3D mesoscale forecast (e.g. from WRF model) is adjusted and dressed with uncertainty using a seasonal sample of mesoscale forecasts and surface forecast errors. Results show that assimilation of surface observations can improve deterministic and probabilistic profile predictions more significantly than major model improvements. Flow-dependent covariances estimated with the SCM/EF show clear advantage over the use of climatological covariances when the flow is characterized by wide variability, when

  9. Elemental analysis of planetary surfaces via orbital gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1979-01-01

    Orbital gamma-ray spectroscopy can determine the chemical composition of planets with little or no atmosphere and provides valuable clues to the planet's origin and evolution. The strongest gamma-ray lines emitted from a planetary surface include those from the decay of the natural radioelements potassium, uranium, and thorium and those from nonelastic-scattering and neutron-capture reactions by cosmic-ray particles. The distributions of potassium, thorium, iron, magnesium, and titanium for 20% of the moon were mapped by NaI(Tl) spectrometers flown on the Apollo 15 and Apollo 16 missions. Backgrounds in the Apollo spectra included cosmic gamma rays, radioactivity in the spacecraft and detector, electron bremsstrahlung, and nuclear reactions in the matter surrounding the detector. Only about 15% of the photons from the lunar surface were gamma-ray lines that had not undergone interactions; the remainder formed a continuum that had to be determined and removed from a lunar spectrum before the discrete line spectrum could be unfolded. Solid-state gamma-ray spectrometers of high-purity germanium are proposed for future orbiters to Mars and the moon. 3 figures

  10. Planetary cartography in the next decade (1984 - 1994)

    Science.gov (United States)

    1984-01-01

    The cartographic products required to support science and planetary exploration during the next 10 years were assessed. Only major map series or first order maps needed to characterize the surface physiography of a planet or satellite were considered. Included in these considerations are maps needed as bases for plotting geologic, geophysical, and atmospheric phenomena and for planning future planetary exploration. These products consist of three types of maps: controlled photomosaics, shaded relief maps, and topographic contour maps.

  11. Section-constrained local geological interface dynamic updating method based on the HRBF surface

    Science.gov (United States)

    Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan

    2018-02-01

    Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are

  12. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  13. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  14. Measurement of planetary surface composition by gamma-ray and neutron spectrometry - Preparatory studies for Mars and for the Moon by numerical simulations

    International Nuclear Information System (INIS)

    Gasnault, O.

    1999-01-01

    Gamma-ray and neutron spectrometry sets up a powerful tool of geological and geochemical characterization of planetary surfaces. This method allows to tackle some critical planet science questions: crustal and mantle compositions; ices; volcanism; alteration processes... Most of the neutrons and gamma photons result from the interactions of galactic cosmic rays with matter. The first chapter introduces the physics of these nuclear interactions in planetary soils and in detectors. Our work aims at optimizing the observations by specifying instrumental performances, and by highlighting relations between soil composition and neutron fluxes. Numerical simulations using the GEANT code from CERN support our analysis. The second chapter estimates the performances of the Germanium gamma-ray spectrometer for MARS SURVEYOR 2001. The result of simulations is compared to calibration measurements; then performances are calculated in flight configuration. The background at Mars is estimated to about 160 c/s. The instrument offers a fine sensitivity to: Fe, Mg, K, Si, Th, Cl and O. It will also be possible to measure U, Ti, H, C, S, Ca and Al. The emission lobes at the surface are calculated too. These measurements shall permit a better understanding of the Martian surface. The last chapter deals with fast neutrons [500 keV; 10 MeV] emitted by the Moon. The strong influence of oxygen is underlined. As observed by LUNAR PROSPECTOR, the integrated flux shows a pronounced dependence with regolith content in iron and titanium, allowing the mapping. The influence of the other chemical elements is quantified. A simple mathematical formula is suggested to estimate the integrated neutron flux according to soil composition. At last, a study of hydrogen effects on fast neutron flux is carried out; we examine the possibilities to quantify its abundance in the soil by this method. (author)

  15. Design and Dynamics Analysis of a Bio-Inspired Intermittent Hopping Robot for Planetary Surface Exploration

    Directory of Open Access Journals (Sweden)

    Long Bai

    2012-10-01

    Full Text Available A small, bio-inspired and minimally actuated intermittent hopping robot for planetary surface exploration is proposed in this paper. The robot uses a combined-geared six-bar linkage/spring mechanism, which has a possible rich trajectory and metamorphic characteristics and, due to this, the robot is able to recharge, lock/release and jump by using just a micro-power motor as the actuator. Since the robotic system has a closed-chain structure and employs underactuated redundant motion, the constrained multi-body dynamics are derived with time-varying driving parameters and ground unilateral constraint both taken into consideration. In addition, the established dynamics equations, mixed of higher order differential and algebraic expressions, are solved by the immediate integration algorithm. A prototype is implemented and experiments are carried out. The results show that the robot, using a micro-power motor as the actuator and solar cells as the power supply, can achieve a biomimetic multi-body hopping stance and a nonlinearly increasing driving force. Typically, the robot can jump a horizontal distance of about 1 m and a vertical height of about 0.3 m, with its trunk and foot moving stably during takeoff. In addition, the computational and experimental results are consistent as regards the hopping performance of the robot, which suggests that the proposed dynamics model and its solution have general applicability to motion prediction and the performance analysis of intermittent hopping robots.

  16. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  17. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  18. Planetary geodetic control using satellite imaging. [equations for determination of control points from surface television-imagery

    Science.gov (United States)

    Duxbury, T. C.

    1979-01-01

    A new data type for planetary geodetic control using natural satellite imaging is presented. Spacecraft images of natural satellites against the planet give a direct tie between inertial space and surface features surrounding the satellite image. This technique is expected to offer a factor of 3-10 improvement in accuracy over present geodetic reduction for Mars. A specific example using Viking imaging of Phobos against Mars is given.

  19. Adaptive Bio-Inspired Wireless Network Routing for Planetary Surface Exploration

    Science.gov (United States)

    Alena, Richard I.; Lee, Charles

    2004-01-01

    Wireless mobile networks suffer connectivity loss when used in a terrain that has hills, and valleys when line of sight is interrupted or range is exceeded. To resolve this problem and achieve acceptable network performance, we have designed an adaptive, configurable, hybrid system to automatically route network packets along the best path between multiple geographically dispersed modules. This is very useful in planetary surface exploration, especially for ad-hoc mobile networks, where computational devices take an active part in creating a network infrastructure, and can actually be used to route data dynamically and even store data for later transmission between networks. Using inspiration from biological systems, this research proposes to use ant trail algorithms with multi-layered information maps (topographic maps, RF coverage maps) to determine the best route through ad-hoc network at real time. The determination of best route is a complex one, and requires research into the appropriate metrics, best method to identify the best path, optimizing traffic capacity, network performance, reliability, processing capabilities and cost. Real ants are capable of finding the shortest path from their nest to a food source without visual sensing through the use of pheromones. They are also able to adapt to changes in the environment using subtle clues. To use ant trail algorithms, we need to define the probability function. The artificial ant is, in this case, a software agent that moves from node to node on a network graph. The function to calculate the fitness (evaluate the better path) includes: length of the network edge, the coverage index, topology graph index, and pheromone trail left behind by other ant agents. Each agent modifies the environment in two different ways: 1) Local trail updating: As the ant moves between nodes it updates the amount of pheromone on the edge; and 2) Global trail updating: When all ants have completed a tour the ant that found the

  20. Study on geological environment in the Tono area. An approach to surface-based investigation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  1. Impact cratering – fundamental process in geoscience and planetary ...

    Indian Academy of Sciences (India)

    Impact cratering is a geological process characterized by ultra-fast strain rates, which generates extreme shock pressure and shock temperature conditions on and just below planetary surfaces. Despite initial skepticism, this catastrophic process has now been widely accepted by geoscientists with respect to its importance ...

  2. Integrating GPR and RIP Methods for Water Surface Detection of Geological Structures

    Directory of Open Access Journals (Sweden)

    Chieh-Hou Yang

    2006-01-01

    Full Text Available Geophysical surveying in water-covered and swampy areas is particularly challenging. This paper presents a new survey strategy for such surveying that integrates ground penetrating radar (GPR and resistivity image profiling (RIP methods at the water surface to investigate geologic structures beneath rivers, ponds, and swamps.

  3. Planetary maps - Passports for the mind

    International Nuclear Information System (INIS)

    Anderson, C.M.

    1990-01-01

    The various types of planetary maps are reviewed. Included are basic descriptions of planimetric, topographic, geologic, and digital maps. It is noted that planimetric maps are pictorial representations of a planet's round surface flattened into a plane, such as controlled photomosaic maps and shaded relief maps. Topographic maps, those usually made with data from altimeters and stereoscopic images, have contour lines indicating the shapes and elevations of landforms. Geologic maps carry additional information about landforms, such as rock types, the processes that formed them, and their relative ages. The International Astronomical Union nomenclature system is briefly discussed, pointing out that the Union often assigns themes to areas to be mapped

  4. From Planetary Mapping to Map Production: Planetary Cartography as integral discipline in Planetary Sciences

    Science.gov (United States)

    Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos

    2016-04-01

    Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been

  5. Design and Testing of a Prototype Lunar or Planetary Surface Landing Research Vehicle (LPSLRV)

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    This handbook describes a two-semester senior design course sponsored by the NASA Office of Education, the Exploration Systems Mission Directorate (ESMD), and the NASA Space Grant Consortium. The course was developed and implemented by the Mechanical and Aerospace Engineering Department (MAE) at Utah State University. The course final outcome is a packaged senior design course that can be readily incorporated into the instructional curriculum at universities across the country. The course materials adhere to the standards of the Accreditation Board for Engineering and Technology (ABET), and is constructed to be relevant to key research areas identified by ESMD. The design project challenged students to apply systems engineering concepts to define research and training requirements for a terrestrial-based lunar landing simulator. This project developed a flying prototype for a Lunar or Planetary Surface Landing Research Vehicle (LPSRV). Per NASA specifications the concept accounts for reduced lunar gravity, and allows the terminal stage of lunar descent to be flown either by remote pilot or autonomously. This free-flying platform was designed to be sufficiently-flexible to allow both sensor evaluation and pilot training. This handbook outlines the course materials, describes the systems engineering processes developed to facilitate design fabrication, integration, and testing. This handbook presents sufficient details of the final design configuration to allow an independent group to reproduce the design. The design evolution and details regarding the verification testing used to characterize the system are presented in a separate project final design report. Details of the experimental apparatus used for system characterization may be found in Appendix F, G, and I of that report. A brief summary of the ground testing and systems verification is also included in Appendix A of this report. Details of the flight tests will be documented in a separate flight test

  6. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. VR-Planets : a 3D immersive application for real-time flythrough images of planetary surfaces

    Science.gov (United States)

    Civet, François; Le Mouélic, Stéphane

    2015-04-01

    During the last two decades, a fleet of planetary probes has acquired several hundred gigabytes of images of planetary surfaces. Mars has been particularly well covered thanks to the Mars Global Surveyor, Mars Express and Mars Reconnaissance Orbiter spacecrafts. HRSC, CTX, HiRISE instruments allowed the computation of Digital Elevation Models with a resolution from hundreds of meters up to 1 meter per pixel, and corresponding orthoimages with a resolution from few hundred of meters up to 25 centimeters per pixel. The integration of such huge data sets into a system allowing user-friendly manipulation either for scientific investigation or for public outreach can represent a real challenge. We are investigating how innovative tools can be used to freely fly over reconstructed landscapes in real time, using technologies derived from the game industry and virtual reality. We have developed an application based on a game engine, using planetary data, to immerse users in real martian landscapes. The user can freely navigate in each scene at full spatial resolution using a game controller. The actual rendering is compatible with several visualization devices such as 3D active screen, virtual reality headsets (Oculus Rift), and android devices.

  8. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  9. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-01-01

    The age of nuclear waste - the length of time between its removal from the reactor cores and its emplacement in a repository - is a significant factor in determining the thermal loading of a repository. The surface cooling period as well as the density and sequence of waste emplacement affects both the near-field repository structure and the far-field geologic environment. To investigate these issues, a comprehensive review was made of the available literature pertaining to thermal effects and thermal properties of mined geologic repositories. This included a careful evaluation of the effects of different surface cooling periods of the wastes, which is important for understanding the optimal thermal loading of a repository. The results led to a clearer understanding of the importance of surface cooling in evaluating the overall thermal effects of a radioactive waste repository. The principal findings from these investigations are summarized in this paper

  10. Developing Science Operations Concepts for the Future of Planetary Surface Exploration

    Science.gov (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, A. D.; McAdam, A.; Evans, C. A.; Graff, T. G.; Garry, W. B.; Whelley,; Scheidt, S.; Carter, L.; hide

    2017-01-01

    Through fly-by, orbiter, rover, and even crewed missions, National Aeronautics and Space Administration (NASA) has been extremely successful in exploring planetary bodies throughout our Solar System. The focus on increasingly complex Mars orbiter and rover missions has helped us understand how Mars has evolved over time and whether life has ever existed on the red planet. However, large strategic knowledge gaps (SKGs) still exist in our understanding of the evolution of the Solar System (e.g. the Lunar Exploration Analysis Group, Small Bodies Analysis Group, and Mars Exploration Program Analysis Group). Sending humans to these bodies is a critical part of addressing these SKGs in order to transition to a new era of planetary exploration by 2050.

  11. Two-step Laser Time-of-Flight Mass Spectrometry to Elucidate Organic Diversity in Planetary Surface Materials.

    Science.gov (United States)

    Getty, Stephanie A.; Brinckerhoff, William B.; Cornish, Timothy; Li, Xiang; Floyd, Melissa; Arevalo, Ricardo Jr.; Cook, Jamie Elsila; Callahan, Michael P.

    2013-01-01

    Laser desorption/ionization time-of-flight mass spectrometry (LD-TOF-MS) holds promise to be a low-mass, compact in situ analytical capability for future landed missions to planetary surfaces. The ability to analyze a solid sample for both mineralogical and preserved organic content with laser ionization could be compelling as part of a scientific mission pay-load that must be prepared for unanticipated discoveries. Targeted missions for this instrument capability include Mars, Europa, Enceladus, and small icy bodies, such as asteroids and comets.

  12. Exploration Consequences of Particle Radiation Environments at Airless Planetary Surfaces: Lessons Learned at the Moon by LRO/CRaTER and Scaling to Other Solar System Objects

    Science.gov (United States)

    Spence, H. E.

    2017-12-01

    We examine and compare the energetic particle ionizing radiation environments at airless planetary surfaces throughout the solar system. Energetic charged particles fill interplanetary space and bathe the environments of planetary objects with a ceaseless source of sometimes powerful yet ever-present ionizing radiation. In turn, these charged particles interact with planetary bodies in various ways, depending upon the properties of the body as well as upon the nature of the charged particles themselves. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaisance Orbiter (LRO), launched in 2009, continues to provide new insights into the ways by which the lunar surface is influenced by these energetic particles. In this presentation, we briefly review some of these mechanisms and how they operate at the Moon, and then compare and contrast the radiation environments at other atmospherereless planetary objects within our solar system that are potential future human exploration targets. In particular, we explore two primary sources of ionizing radiation, galactic cosmic rays (GCR) and solar energetic particles (SEP), in the environments of planetary objects that have weak or absent atmospheres and intrinsic magnetic fields. We motivate the use of simplified scaling relationships with heliocentric distance to estimate their intensity, which then serves as a basis for estimating the relative importance of various energetic particle and planetary surface physical interactions, in the context of humankind's expanding explorations beyond low-Earth orbit.

  13. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  14. Planetary engineering

    Science.gov (United States)

    Pollack, James B.; Sagan, Carl

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  15. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  16. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  17. Global geologic context for rock types and surface alteration on Mars

    Science.gov (United States)

    Wyatt, M.B.; McSween, H.Y.; Tanaka, K.L.; Head, J. W.

    2004-01-01

    Petrologic interpretations of thermal emission spectra from Mars orbiting spacecraft indicate the widespread occurrence of surfaces having basaltic and either andesitic or partly altered basalt compositions. Global concentration of ice-rich mantle deposits and near-surface ice at middle to high latitudes and their spatial correlation with andesitic or partly altered basalt materials favor the alteration hypothesis. We propose the formation of these units through limited chemical weathering from basalt interactions with icy mantles deposited during periods of high obliquity. Alteration of sediments in the northern lowlands depocenter may have been enhanced by temporary standing bodies of water and ice. ?? 2004 Geological Society of America.

  18. Interoperability in planetary research for geospatial data analysis

    Science.gov (United States)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  19. Some unique surface patterns on ignimbrites on Earth: A "bird's eye" view as a guide for planetary mappers

    Science.gov (United States)

    de Silva, Shanaka L.; Bailey, John E.

    2017-08-01

    Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.

  20. Gazetteer of Planetary Nomenclature

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary nomenclature, like terrestrial nomenclature, is used to uniquely identify a feature on the surface of a planet or satellite so that the feature can be...

  1. Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake

    Science.gov (United States)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Meng, Xianhong; Ao, Yinhuan

    2017-08-01

    The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.

  2. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  3. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool

    Science.gov (United States)

    Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.

    2018-01-01

    The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.

  4. Relationship Between the Surface Area to Volume Ratio and Temperature across Geologic Time in Ostracods

    Science.gov (United States)

    Jackson, C.; Zaroff, S.; Heim, N. A.; Payne, J.

    2014-12-01

    In 1877 Joseph Allen proposed that endothermic terrestrial organisms would have lower surface area to volume ratios (SAVR) in colder climates and higher SAVRs in warmer climates. With a smaller surface area compared to volume, organisms can retain more heat in cold climates. We tested to see if this principle applied to ostracods, a type of ectothermic marine invertebrate. We hypothesised that Allen's rule applies to ostracods, as Allen's rule has been demonstrated in frogs (Alho 2011), which are also ectotherms . We used the linear dimensions of the three major carapace axes of ostracod holotypes to estimate the SAVR. We compared ostracod SAVRs with paleotemperatures from Royer et al. (2004). We found that there was a correlation between surface area and temperature; it is a small, but statistically significant correlation (adj. R2=0.0167). This means that as temperature increased, the SAVR also increased. We also found a negative correlation between ostracod SAVR to geologic time(adj. R2=0.0114), which shows us that as time has gone on, ostracod SAVR has decreased. We then plotted the correlation coefficient of SAVR to temperature over geologic time to explore trends in the strength of Allen's rule. For most of time there was no relationship but during the Devonian, Allen's Rule did explain the trend. In short, temperature does explain some of the correlation between the SAVR and temperature, but it is likely there were other environmental factors affecting this relationship.

  5. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  6. Adhesion of CO2 on hydrated mineral surfaces and its implications to geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Clarens, A. F.; Tao, Z.; Persily, S. M.

    2013-12-01

    Most mineral surfaces are water wetting, which has important implications for the transport of non-aqueous phase liquids, such as CO2, through porous media. In this work, contact angle experiments were carried out wherein unusual wetting behavior was observed between mineral surfaces and liquid or supercritical CO2 under certain geochemical conditions. This behavior can be understood in the context of adhesion between the CO2 and the mineral surface. When adhesion occurs, the wettability characteristics of the surfaces are significantly altered. More importantly, the CO2 exhibits a strong affinity for the surface and is highly resistant to shear forces in the aqueous phase. A static pendant drop method was used on a variety of polished mineral surfaces to measure contact angles. The composition of the aqueous phase (e.g., pH, ionic strength) and the characteristics of the mineral surface (e.g., composition, roughness), were evaluated to understand their impact on the prevalence of adhesion. Pressure and temperature conditions were selected to represent those that would be prevalent in geologic carbon sequestration (GCS) or during leakage from target repositories. Adhesion was widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nanometers. CO2 exhibited no adhesion on mineral surfaces with higher roughness (e.g., quartz). On smoother surfaces, the CO2 is thought to have more effective contact area with the mineral, enabling the weak van der Waals forces that drive most adhesion processes. Brine chemistry also had an important role in controlling CO2 adhesion. Increases in CO2 partial pressure and ionic strength both increased the incidence of adhesion. The addition of strong acid or strong base permanently inhibited the development of adhesion. These results suggest that the development of adhesion between the CO2 and the mineral surface is dependent on the integrity and thickness of the hydration layer between the CO2

  7. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  8. The Impact and Oxidation Survival of Selected Meteoritic Compounds: Signatures of Asteroid Organic Material on Planetary Surfaces

    Science.gov (United States)

    Cooper, George; Horz, Fred; Oleary, Alanna; Chang, Sherwood

    2013-01-01

    Polar, non-volatile organic compounds may be present on the surfaces (or near surfaces) of multiple Solar System bodies. If found, by current or future missions, it would be desirable to determine the origin(s) of such compounds, e.g., asteroidal or in situ. To test the possible survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to relatively high impact-shock pressures and/or to varying oxidizing/corrosive conditions. Tested compounds include sulfonic and phosphonic acids (S&P), polyaromatic hydrocarbons (PAHs) amino acids, keto acids, dicarboxylic acids, deoxy sugar acids, and hydroxy tricarboxylic acids (Table 1). Meteoritic sulfonic acids were found to be relatively abundant in the Murchison meteorite and to possess unusual S-33 isotope anomalies (non mass-dependent isotope fractionations). Combined with distinctive C-S and C-P bonds, the S&P are potential signatures of asteroidal organic material.

  9. Developing a Planetary Spatial Data Infrastructure for Evaluating Landing Sites and Performing Surface Operations for the Mars 2020 Lander

    Science.gov (United States)

    Fergason, R. L.; Laura, J.; Hare, T. M.; Otero, R.; Edgar, L. A.

    2017-12-01

    A Spatial Data Infrastructure (SDI) is a robust framework for data and data products, metadata, data access mechanisms, standards, policy, and a user community that helps to define and standardize the data necessary to meet some specified goal. The primary objective of an SDI is to improve communication, to enhance data access, and to aid in identifying gaps in knowledge. We are developing an SDI that describes the foundational data sets and accuracy requirements to evaluate landing site safety, facilitate the successful operation of Terrain Relative Navigation (TRN), and assist in the operation of the rover once it has successfully landed on Mars. Thru current development efforts, an implicit SDI exists for the Mars 2020 mission. An explicit SDI will allow us to identify any potential gaps in knowledge, facilitate communication between the different institutions involved in landing site evaluation and TRN development, and help ensure a smooth transition from landing to surface operations. This SDI is currently relevant to the Mars 2020 rover mission, but can also serve as a means to document current requirements for foundational data products and standards for future landed missions to Mars and other planetary bodies. To generate a Mars 2020-specific SDI, we must first document and rationalize data set and accuracy requirements for evaluating landing sites, performing surface operations, and inventorying Mars 2020 mission needs in terms of an SDI framework. This step will allow us to 1) evaluate and define what is needed for the acquisition of data and the generation and validation of data products, 2) articulate the accuracy and co-registration requirements, and 3) identify needs for data access (and eventual archiving). This SDI document will serve as a means to communicate the existing foundational products, standards that were followed in producing these products, and where and how these products can be accessed by the planetary community. This SDI will also

  10. Planetary nebulae

    International Nuclear Information System (INIS)

    Amnuehl', P.R.

    1985-01-01

    The history of planetary nebulae discovery and their origin and evolution studies is discussed in a popular way. The problem of planetary nebulae central star is considered. The connection between the white-draft star and the planetary nebulae formulation is shown. The experimental data available acknowledge the hypothesis of red giant - planetary nebula nucleus - white-draft star transition process. Masses of planetary nebulae white-draft stars and central stars are distributed practically similarly: the medium mass is close to 0.6Msub(Sun) (Msub(Sun) - is the mass of the Sun)

  11. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    Science.gov (United States)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  12. Smart Multifunction Antenna for Lunar/Planetary Surface Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is planning a series of human and robotic missions to explore the Moon and later Mars. According to NASA SBIR topic O1.10, surface networks are needed for these...

  13. Comparison of dynamic isotope power systems for distributed planetary surface applications

    International Nuclear Information System (INIS)

    Bents, D.J.; McKissock, B.I.; Withrow, C.A.; Hanlon, J.C.; Schmitz, P.C.

    1991-01-01

    To support the Space Exploration Initiative, a study was performed to investigate and characterize dynamic isotope power system (DIPS) alternatives for the surface mission elements associated with a lunar base and subsequent manned Mars expedition

  14. Improving surface stability of elevated spoil landforms using natural landform analogy and geological information

    Science.gov (United States)

    Emmerton, Bevan; Burgess, Jon; Esterle, Joan; Erskine, Peter; Baumgartl, Thomas

    2017-04-01

    Large-scale open cut mining in the Bowen Basin, Queensland, Australia has undergone an evolutionary process over the period of a few decades, transitioning from shallow mining depths, limited spoil elevation and pasture based rehabilitation to increased mining depths, escalating pre-stripping, elevated mesa-like landforms and native woody species rehabilitation. As a consequence of this development, the stabilisation of recent constructed landforms has to be assured through means other than the establishment of vegetative cover. Recent developments are the specific selection and partitioning of resilient fragmental spoil types for the construction of final landform surface. They can also be used as cladding resources for stabilizing steep erosive batters and this has been identified as a practical methodology that has the potential to significantly improve rehabilitation outcomes. Examples of improvements are an increase of the surface rock cover, roughness and infiltration and reducing inherent erodibility and runoff and velocity of surface flow. However, a thorough understanding of the properties and behavior of individual spoil materials disturbed during mining is required. Relevant information from published literature on the geological origins, lithology and weathering characteristics of individual strata within the Bowen Basin Coal Measures located in Queensland, Australia (and younger overlying weathered strata) has been studied, and related both to natural landforms and to the surface stability of major strata types when disturbed by mining. The resulting spoil classification developed from this study is based primarily on inherent geological characteristics and weathering behaviour of identifiable lithologic components, and as such describes the expected fragmental resilience likely within disturbed materials at Bowen Basin coal mines. The proposed classification system allows the allocation of spoil types to use categories which have application in pre

  15. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations

    Science.gov (United States)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, V.; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina L.; Quiñones, John

    2018-03-01

    We present reflectance and polarization phase curve measurements of highly reflective planetary regolith analogues having physical characteristics expected on atmosphereless solar system bodies (ASSBs) such as a eucritic asteroids or icy satellites. We used a goniometric photopolarimeter (GPP) of novel design to study thirteen well-sorted particle size fractions of aluminum oxide (Al2O3). The sample suite included particle sizes larger than, approximately equal to, and smaller than the wavelength of the incident monochromatic radiation (λ = 635 nm). The observed phase angle, α, was 0.056 o ∼95%). The incident radiation has a very high probability of being multiply scattered before being backscattered toward the incident direction or ultimately absorbed. The five smallest particle sizes exhibited extremely high void space (> ∼95%). The reflectance phase curves for all particle size fractions show a pronounced non-linear reflectance increase with decreasing phase angle at α∼ ∼1 we detect no polarization. This polarization behavior is distinct from that observed in low albedo solar system objects such as the Moon and asteroids and for absorbing materials in the laboratory. We suggest this behavior arises because photons that are backscattered have a high probability of having interacted with two or more particles, thus giving rise to the CB process. These results may explain the unusual negative polarization behavior observed near small phase angles reported for several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina and the Galilean satellites Io, Europa and Ganymede. Our results suggest these ASSB regoliths scatter electromagnetic radiation as if they were extremely fine grained with void space > ∼95%, and grain sizes of the order field of terrestrial geo-engineering, particularly to suggestions that earth's radiation balance can be modified by injecting Al2O3 particulates into the stratosphere thereby offsetting the effect

  16. RIS4E at Kilauea's December 1974 Flow: Assessing the Integration of Portable Infrared Multispectral Imaging into Planetary Surface Exploration

    Science.gov (United States)

    Ito, G.; Rogers, D.; Bleacher, J. E.; Young, K. E.; Edwards, C. S.; Glotch, T. D.

    2015-12-01

    Portable, hand-held geochemical and mineralogical instruments are potentially valuable tools to be used in sample collection and site documentation activities during future human missions to planetary bodies. The main purpose of these instruments is to allow fast in situ analyses of rocks and soils so that astronauts can quickly document sample characteristics and context, and make strategic decisions on sample selection in the context of predefined scientific objectives. As part of the Remote, In Situ, and Synchrotron Studies for Science and Exploration (RIS4E) investigation, we test the performance of candidate instruments and operational procedures through fieldwork expeditions that simulate lunar and asteroid environments on Earth. Our field site, Kilauea Volcano in Hawaii, is a lava field with landscape and mineralogy that represent a reasonable analog to the Moon and some differentiated asteroids. In this paper, we focus on one of the candidate instruments, the infrared multispectral imager. During field expeditions in 2014 and 2015, we explored the applicability of the multispectral imager in manned surface operations. From these expeditions, our instrument calibration techniques and data collection procedures matured. Current work focuses on assessment of data product usefulness, through comparison with detailed laboratory chemical and spectral measurements, and field descriptions of surface textures. Our field expeditions will continue in other analog locations to obtain improved understanding of the multispectral imager and its role in sampling workflow so that science return can be maximized in future human missions.

  17. Overview of physiological principles to support thermal balance and comfort of astronauts in open space and on planetary surfaces

    Science.gov (United States)

    Koscheyev, Victor S.; Coca, Aitor; Leon, Gloria R.

    2007-02-01

    Although specialists have attempted to improve the space suit to provide better protection in open space or on planetary surfaces, there has been a relative lack of attention to features of human thermoregulatory processes that influence comfort and therefore have an impact on the effectiveness of protective equipment. Our findings showed that different body tissues transfer heat in/out of the body in a different manner. There are also individual differences in thermal transfer through body areas with different proportions of tissues; therefore, data on the thermal profile of each astronaut needs to be used to estimate the optimal body areas for heat/cold transfer in and out of the body in an individually tailored cooling/warming garment. Principles for supporting thermal comfort in space were formulated based on a series of studies to evaluate the human body's response to uniform/nonuniform thermal conditions on the body surface. We conclude that future space suit design and comfort support of astronauts can be easier and more effective if these principles are incorporated.

  18. Mobile Geochemistry Instrument Package Facility (MGIPF) for In Situ Mineralogical and Chemical Analysis of Planetary Surface Material

    Science.gov (United States)

    Klingelhöfer, G.; Romstedt, J.; Henkel, H.; Michaelis, H.; Brückner, J.; D'Uston, C.

    A first order requirement for any spacecraft mission to land on a solid planetary or moon surface is instrumentation for in-situ mineralogical and chemical analysis 2 Such analysis provide data needed for primary classification and characterization of surface materials present We will discuss a mobile instrument package we have developed for in-situ investigations under harsh environmental conditions like on Mercury or Mars This Geochemistry Instrument Package Facility is a compact box also called payload cab containing three small advanced geochemistry mineralogy instruments the chemical spectrometer APXS the mineralogical M o ssbauer spectrometer MIMOS II 3 and a textural imager close-up camera The payload cab is equipped with two actuating arms with two degrees of freedom permitting precision placement of all instruments at a chosen sample This payload cab is the central part of the small rover Nanokhod which has the size of a shoebox 1 The Nanokhod rover is a tethered system with a typical operational range of sim 100 m Of course the payload cab itself can be attached by means of its arms to any deployment device of any other rover or deployment device 1 Andre Schiele Jens Romstedt Chris Lee Sabine Klinkner Rudi Rieder Ralf Gellert G o star Klingelh o fer Bodo Bernhardt Harald Michaelis The new NANOKHOD Engineeering model for extreme cold environments 8th International symposium on Artificial Intelligence Robotics and Automation in Space 5 - 9 September 2005

  19. Planetary Landscape Geography

    Science.gov (United States)

    Hargitai, H.

    INTRODUCTION Landscape is one of the most often used category in physical ge- ography. The term "landshap" was introduced by Dutch painters in the 15-16th cen- tury. [1] The elements that build up a landscape (or environment) on Earth consists of natural (biogenic and abiogenic - lithologic, atmospheric, hydrologic) and artificial (antropogenic) factors. Landscape is a complex system of these different elements. The same lithology makes different landscapes under different climatic conditions. If the same conditions are present, the same landscape type will appear. Landscapes build up a hierarchic system and cover the whole surface. On Earth, landscapes can be classified and qualified according to their characteristics: relief forms (morphology), and its potential economic value. Aesthetic and subjective parameters can also be considered. Using the data from landers and data from orbiters we can now classify planetary landscapes (these can be used as geologic mapping units as well). By looking at a unknown landscape, we can determine the processes that created it and its development history. This was the case in the Pathfinder/Sojourner panoramas. [2]. DISCUSSION Planetary landscape evolution. We can draw a raw landscape develop- ment history by adding the different landscape building elements to each other. This has a strong connection with the planet's thermal evolution (age of the planet or the present surface materials) and with orbital parameters (distance from the central star, orbit excentricity etc). This way we can build a complex system in which we use differ- ent evolutional stages of lithologic, atmospheric, hydrologic and biogenic conditions which determine the given - Solar System or exoplanetary - landscape. Landscape elements. "Simple" landscapes can be found on asteroids: no linear horizon is present (not differentiated body, only impact structures), no atmosphere (therefore no atmospheric scattering - black sky as part of the landscape) and no

  20. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Directory of Open Access Journals (Sweden)

    P. Sahu

    2009-07-01

    Full Text Available This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW – a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also

  1. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    Science.gov (United States)

    Sikdar, P. K.; Sahu, P.

    2009-07-01

    This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore

  2. Evolution of the lower planetary boundary layer over strongly contrasting surfaces

    International Nuclear Information System (INIS)

    Coulter, R.L.; Gao, W.; Martin, T.J.; Shannon, J.D.; Doran, J.C.; Hubbe, J.M.; Shaw, W.M.

    1992-01-01

    In a multilaboratory field study held near Boardman in northeastern Oregon in June 1991, various properties of the surface and lower atmospheric boundary layer over heavily irrigated cropland and adjacent desert steppe were investigated in the initial campaign of the Atmospheric Radiation Measurement (ARM) program. The locale was selected because its disparate characteristics over various spatial scales stress the ability of general circulation models (GCMS) to describe lower boundary conditions, particularly across the discontinuity between desert (in which turbulent flux of heat must be primarily as sensible heat) and large irrigated tracts (in which turbulent flux of latent heat should be the larger term). This campaign of ARM seeks to increase knowledge in three critical areas: (1) determination of the relationships between surface heat fluxes measured over multiple scales and the controlling surface parameters within each scale, (2) integration of local and nearly local heat flux estimates to produce estimates appropriate for GCM grid cells of 100-200 km horizontal dimension, and (3) characterization of the growth and development of the atmospheric boundary layer near transitions between surfaces with strongly contrasting moisture availabilities

  3. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  4. Quaternary Geology and Surface Faulting Hazard: Active and Capable Faults in Central Apennines, Italy

    Science.gov (United States)

    Falcucci, E.; Gori, S.

    2015-12-01

    The 2009 L'Aquila earthquake (Mw 6.1), in central Italy, raised the issue of surface faulting hazard in Italy, since large urban areas were affected by surface displacement along the causative structure, the Paganica fault. Since then, guidelines for microzonation were drew up that take into consideration the problem of surface faulting in Italy, and laying the bases for future regulations about related hazard, similarly to other countries (e.g. USA). More specific guidelines on the management of areas affected by active and capable faults (i.e. able to produce surface faulting) are going to be released by National Department of Civil Protection; these would define zonation of areas affected by active and capable faults, with prescriptions for land use planning. As such, the guidelines arise the problem of the time interval and general operational criteria to asses fault capability for the Italian territory. As for the chronology, the review of the international literature and regulatory allowed Galadini et al. (2012) to propose different time intervals depending on the ongoing tectonic regime - compressive or extensional - which encompass the Quaternary. As for the operational criteria, the detailed analysis of the large amount of works dealing with active faulting in Italy shows that investigations exclusively based on surface morphological features (e.g. fault planes exposition) or on indirect investigations (geophysical data), are not sufficient or even unreliable to define the presence of an active and capable fault; instead, more accurate geological information on the Quaternary space-time evolution of the areas affected by such tectonic structures is needed. A test area for which active and capable faults can be first mapped based on such a classical but still effective methodological approach can be the central Apennines. Reference Galadini F., Falcucci E., Galli P., Giaccio B., Gori S., Messina P., Moro M., Saroli M., Scardia G., Sposato A. (2012). Time

  5. Solid-State Thermionic Nuclear Power for Megawatt Propulsion, Planetary Surface and Commercial Power Project

    Science.gov (United States)

    George, Jeffrey

    2014-01-01

    Thermionic (TI) power conversion is a promising technology first investigated for power conversion in the 1960's, and of renewed interest due to modern advances in nanotechnology, MEMS, materials and manufacturing. Benefits include high conversion efficiency (20%), static operation with no moving parts and potential for high reliability, greatly reduced plant complexity, and the potential for reduced development costs. Thermionic emission, credited to Edison in 1880, forms the basis of vacuum tubes and much of 20th century electronics. Heat can be converted into electricity when electrons emitted from a hot surface are collected across a small gap. For example, two "small" (6 kWe) Thermionic Space Reactors were flown by the USSR in 1987-88 for ocean radar reconnaissance. Higher powered Nuclear-Thermionic power systems driving Electric Propulsion (Q-thruster, VASIMR, etc.) may offer the breakthrough necessary for human Mars missions of Power generation on Earth could benefit from simpler, moe economical nuclear plants, and "topping" of more fuel and emission efficient fossil-fuel plants.

  6. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  7. Boundary|Time|Surface: Art and Geology Meet in Gros Morne National Park, NL, Canada

    Science.gov (United States)

    Lancaster, Sydney; Waldron, John

    2015-04-01

    Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, more ephemeral site-specific installations constructed of materials from the local environment. Despite this range of intervention, however, these works all share in a tradition of art making that situates the artwork in direct response to the surrounding landscape. Andy Goldsworthy and Richard Long, for example, both favour methods that combine elements of both sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographic, text-based, or video documentation as the only lasting indication of the works' existence. Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. For example, in Earth science, the periods of the geologic timescale - Cambrian, Ordovician, Silurian, etc. - were established by 19th century pioneers of geology at a time when they were believed to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have attempted to resolve ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland. Boundary|Time|Surface was an ephemeral sculptural installation work constructed in June 2014. The main installation work was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at Green Point in Newfoundland. The fence extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was constructed by hand (with volunteer assistance) on June 22, as the wave-cut platform was exposed by the falling tide. During the remainder of the tidal cycle

  8. Near-surface test facility. Phase I. Geologic site characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Moak, D.J.; Wintczak, T.M.

    1980-08-01

    The report is a description of the geology and characterization of the rock mass of the area in which the Phase I qualification tests at the Near-Surface Test Facility (NSTF) are being performed. The NSTF is located on Gable Mountain within the Hanford Site near Richland, Washington. It is located in the entablature of the Pomona Member, an upper flow in the Columbia River Basalt Group, and is approximately 150 feet (47.5 meters) below the surface. Core logging from the instrument boreholes coupled with joint mapping, statistics, and other test data provided the basis for a detailed characterization of the 16-foot x 20-foot x 28-foot (5-meter x 6-meter x 9-meter) rock masses surrounding Full-Scale Heater Tests No. 1 and No. 2. The Pomona entablature contains three joint sets delineated by their degree of dip, each with apertures averaging 0.25 millimeter and having no preferred strike orientation. Although joint frequencies in the study area exceed 4 joints per foot (13 per meter), the rock-mass classification rating is good.

  9. From the repository to the deep geological repository - and back to the Terrain surface?

    International Nuclear Information System (INIS)

    Lahodynsky, R.

    2011-01-01

    How deep is 'safe'? How long is long-term? How and for how long will something be isolated? Which rock, which formation and which location are suitable? A repository constructed for the safekeeping of radioactive or highly toxic wastes can be erected either on the surface, near the surface or underground. Radioactive waste is currently often stored at near-surface locations. The storage usually takes place nearby of a nuclear power plant in pits or concrete tombs (vaults). However, repositories can also be found in restricted areas, e.g. near nuclear weapon production or reprocessing plants (WAA) or nuclear weapons test sites (including Tomsk, Russia, Hanford and Nevada desert, USA), or in extremely low rainfall regions (South Africa). In addition there are disused mines which are now used as underground repositories. Low-level and medium-active (SMA) but also high-level waste (HAA) are stored at these types of sites (NPP, WAA, test areas, former mines). In Russia (Tomsk, Siberia) liquid radioactive waste has been injected into deep geological formations for some time (Minatom, 2001). However, all these locations are not the result of a systematic, scientific search or a holistic process for finding a location, but the result of political decisions, sometimes ignoring scientific findings. Why underground storage is given preference over high-security landfill sites (HSD) often has economic reasons. While a low safety standard can significantly reduce the cost of an above-ground high-security landfill as a waste disposal depot, spending remains high, especially due to the need for capital formation to cover operating expenses after filling the HSD. In the case of underground storage, on the other hand, no additional expenses are required for the period after backfilling. The assumption of lower costs for a deep repository runs through the past decades and coincides with the assumption that the desired ideal underground conditions actually exist and will

  10. Final Report: Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye [Univ. of Wyoming, Laramie, WY (United States)

    2018-01-17

    The critical component of a risk assessment study in evaluating GCS is an analysis of uncertainty in CO2 modeling. In such analyses, direct numerical simulation of CO2 flow and leakage requires many time-consuming model runs. Alternatively, analytical methods have been developed which allow fast and efficient estimation of CO2 storage and leakage, although restrictive assumptions on formation rock and fluid properties are employed. In this study, an intermediate approach is proposed based on the Design of Experiment and Response Surface methodology, which consists of using a limited number of numerical simulations to estimate a prediction outcome as a combination of the most influential uncertain site properties. The methodology can be implemented within a Monte Carlo framework to efficiently assess parameter and prediction uncertainty while honoring the accuracy of numerical simulations. The choice of the uncertain properties is flexible and can include geologic parameters that influence reservoir heterogeneity, engineering parameters that influence gas trapping and migration, and reactive parameters that influence the extent of fluid/rock reactions. The method was tested and verified on modeling long-term CO2 flow, non-isothermal heat transport, and CO2 dissolution storage by coupling two-phase flow with explicit miscibility calculation using an accurate equation of state that gives rise to convective mixing of formation brine variably saturated with CO2. All simulations were performed using three-dimensional high-resolution models including a target deep saline aquifer, overlying caprock, and a shallow aquifer. To evaluate the uncertainty in representing reservoir permeability, sediment hierarchy of a heterogeneous digital stratigraphy was mapped to create multiple irregularly shape stratigraphic models of decreasing geologic resolutions: heterogeneous (reference), lithofacies, depositional environment, and a (homogeneous) geologic formation. To ensure model

  11. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  12. Impact cratering on high-porosity planetary bodies

    Science.gov (United States)

    Collins, Gareth

    2017-06-01

    Porous materials abound in the Solar System. Primordial solids accreted gently from dust into high-porosity aggregates; many asteroids appear to be loosely-bound rubble piles; and the crusts of airless planetary surfaces are heavily fractured from prolonged bombardment of asteroids. High porosity attenuates shock propagation and localizes shock heating, which has several important implications for the evolution of planetary surfaces. Most studies of impact cratering have focused on targets composed of common geologic materials, such as soils and rock, thought to be reasonable proxies for the surfaces of the terrestrial planets. However, it has become clear that those materials are not good analogues for the minor bodies of the Solar System. Here we present numerical and experimental results of impact cratering in high porosity materials that elucidate the compaction regime of planetary cratering: where crater growth is dominated by impactor penetration and compaction, while rapid shock attenuation and extensive collapse limit the volume and speed of ejected material. Understanding these effects is a crucial step in using crater populations to estimate impactor flux, date planetary surfaces and infer subsurface properties, as well as deflecting hazardous near-Earth asteroids. In collaboration with: Kevin Housen, The Boeing Co.

  13. Planetary Magnetism

    Science.gov (United States)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  14. Geology Before Pluto: Pre-encounter Considerations

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Pluto, its large satellite Charon, and its four small known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique, lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been significant to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, these putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observation. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto system's landscapes. In this talk, we begin with a brief discussion of the planned observations by the New Horizons cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate on the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration), and the work of wind. I will conclude with an assessment of the

  15. Geology Before Pluto: Pre-Encounter Considerations

    Science.gov (United States)

    Moore, Jeffrey M.

    2014-01-01

    Pluto, its large satellite Charon, and its four known satellites represent the first trans-Neptunian Kuiper Belt objects populating the outer-most solar system beyond the gas giant planets to be studied in detail from a spacecraft (New Horizons). A complete picture of the solar nebula, and solar system formation cannot be confidently formulated until representatives of this group of bodies at the edge of solar space have been examined. The Pluto system is composed of unique lunar- and intermediate-sized objects that can tell us much about how objects with volatile icy compositions evolve. Modeling of the interior suggests that geologic activity may have been to some degree, and observations of frost on the surface could imply the need for a geologic reservoir for the replenishment of these phases. However, the putative indicators of Pluto's geologic history are inconclusive and unspecific. Detailed examination of Pluto's geologic record is the only plausible means of bridging the gap between theory and observations. In this talk I will examine the potential importance of these tentative indications of geologic activity and how specific spacecraft observations have been designed and used to constrain the Pluto system's geologic history. The cameras of New Horizons will provide robust data sets that should be immanently amenable to geological analysis of the Pluto System's landscapes. In this talk, we begin with a brief discussion of the planned observations by New Horizons' cameras that will bear most directly on geological interpretability. Then I will broadly review major geological processes that could potentially operate of the surfaces of Pluto and its moons. I will first survey exogenic processes (i.e., those for which energy for surface modification is supplied externally to the planetary surface): impact cratering, sedimentary processes (including volatile migration) and the work of wind. I will conclude with an assessment of prospects for endogenic activity

  16. DOTS: A High Resolution Orbitrap Mass Spectrometer for In Situ Analysis of the surface samples of Airless Planetary Bodies

    Science.gov (United States)

    Briois, Christelle; Thissen, Roland; Engrand, Cécile; Altwegg, Kathrin; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chapuis, Claude; Cottin, Hervé; Grün, Eberhard; Grand, Noel; Henkel, Hartmut; Kempf, Sascha; Lebreton, Jean-Pierre; Makarov, Alexander A.; Postber, Frank; Srama, Ralf; Schmidt, Jürgen; Szopa, Cyril; Thirkell, Laurent; Tobie, Gabriel; Wurz, Peter; Zolotov, Mikhail Yu

    2013-04-01

    The dust detectors on board the Ulysses and Galileo spacecraft have shown that the Galilean satellites are surrounded by clouds of sub-micrometer size grains generated by impacts of interplanetary (micro-) meteoroids [1, 2]. In situ chemical analysis from orbit of these ballistic grains ejected from the surface of airless bodies provides a unique opportunity to remotely access the chemical composition of the Jovian moons' surface and subsurface. For Saturn, in situ identification by the Cassini Dust Analyzer (CDA) of sodium in icy grains in the E-Ring and in Enceladus plumes have proven a subsurface liquid water reservoir inside Enceladus [3, 4]. Noticeably, this was not accessible to other in situ or traditional remote sensing techniques. In situ measurements, either during a flyby or from orbit, of grains ejected from the surface, or emerging from the subsurface, of an airless body is a powerful tool to remotely study its surface composition and the nature of its geological activity. Crucial constraints on habitability can thus be determined. Our consortium of laboratories, in collaboration with Thermo Fischer Scientific [5, 6], is currently developing a high mass resolution Fourier Transform (FT) Orbitrap-based mass spectrometer optimized for in situ analysis of dust and icy grains in the environment of Solar System airless bodies. This new generation of dust mass spectrometer was studied in the framework of the Europa Jupiter System Mission (EJSM) instrument study in 2010-2012 and proposed in response to ESA's AO for the JUpiter ICy moons Explorer (JUICE) mission [7]. This mass analyser can provide very high mass resolution analysis (M/ΔM reaching 50 000 at m/z 50 Da). DOTS would allow identification of elemental and molecular species with excellent accuracy, in the 20-1000 Da mass range. In the context of the JUICE mission, DOTS would provide decisive information on the surface composition and on the putative liquid oceans in the subsurface of Ganymede

  17. The African upper mantle and its relationship to tectonics and surface geology

    Science.gov (United States)

    Priestley, Keith; McKenzie, Dan; Debayle, Eric; Pilidou, Sylvana

    2008-12-01

    This paper focuses on the upper-mantle velocity structure of the African continent and its relationship to the surface geology. The distribution of seismographs and earthquakes providing seismograms for this study results in good fundamental and higher mode path coverage by a large number of relatively short propagation paths, allowing us to image the SV-wave speed structure, with a horizontal resolution of several hundred kilometres and a vertical resolution of ~50 km, to a depth of about 400 km. The difference in mantle structure between the Archean and Pan-African terranes is apparent in our African upper-mantle shear wave model. High-velocity (4-7 per cent) roots exist beneath the cratons. Below the West African, Congo and Tanzanian Cratons, these extend to 225-250 km depth, but beneath the Kalahari Craton, the high wave speed root extends to only ~170 km. With the exception of the Damara Belt that separates the Congo and Kalahari Cratons, any high-speed upper-mantle lid below the Pan-African terranes is too thin to be resolved by our long-period surface wave technique. The Damara Belt is underlain by higher wave speeds, similar to those observed beneath the Kalahari Craton. Extremely low SV-wave speeds occur to the bottom of our model beneath the Afar region. The temperature of the African upper mantle is determined from the SV-wave speed model. Large temperature variations occur at 125 km depth with low temperatures beneath west Africa and all of southern Africa and warm mantle beneath the Pan-African terrane of northern Africa. At 175 km depth, cool upper mantle occurs below the West African, Congo, Tanzanian and Kalahari Cratons and anomalously warm mantle occurs below a zone in northcentral Africa and beneath the region surrounding the Red Sea. All of the African volcanic centres are located above regions of warm upper mantle. The temperature profiles were fit to a geotherm to determine the thickness of the African lithosphere. Thick lithosphere exists

  18. Lunar Science Conference, 8th, Houston, Tex., March 14-18, 1977, Proceedings. Volume 1 - The moon and the inner solar system. Volume 2 - Petrogenetic studies of mare and highland rocks. Volume 3 - Planetary and lunar surfaces

    Science.gov (United States)

    Merril, R. B.

    1977-01-01

    Solar system processes are considered along with the origin and evolution of the moon, planetary geophysics, lunar basins and crustal layering, lunar magnetism, the lunar surface as a planetary probe, remote observations of lunar and planetary surfaces, earth-based measurements, integrated studies, physical properties of lunar materials, and asteroids, meteorites, and the early solar system. Attention is also given to studies of mare basalts, the kinetics of basalt crystallization, topical studies of mare basalts, highland rocks, experimental studies of highland rocks, geochemical studies of highland rocks, studies of materials of KREEP composition, a consortium study of lunar breccia 73215, topical studies on highland rocks, Venus, and regional studies of the moon. Studies of surface processes, are reported, taking into account cratering mechanics and fresh crater morphology, crater statistics and surface dating, effects of exposure and gardening, and the chemistry of surfaces.

  19. Planetary Rings

    Science.gov (United States)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  20. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Mastin, Mark C.

    2016-02-19

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.

  1. Planetary Society

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  2. Planetary atomspheres

    International Nuclear Information System (INIS)

    Lal, D.; Rao, M.N.

    1986-01-01

    Salient features of the atmosheres of Venus and Mars are described and compared with those of the earth. Their temperature profiles are given. Degassing of planetary interiors by volcanic and plate tectonic processes is described. Noble gas abundances in the atmospheres of these planets are compared. Information provided by Pioneer, Venera space probes and the Viking-landers on Mars is studied. (B.G.W.)

  3. Geology and Habitability of Terrestrial Planets

    CERN Document Server

    Fishbaugh, Kathryn E; Raulin, François; Marais, David J; Korablev, Oleg

    2007-01-01

    Given the fundamental importance of and universal interest in whether extraterrestrial life has developed or could eventually develop in our solar system and beyond, it is vital that an examination of planetary habitability goes beyond simple assumptions such as, "Where there is water, there is life." This book has resulted from a workshop at the International Space Science Institute (ISSI) in Bern, Switzerland (5-9 September 2005) that brought together planetary geologists, geophysicists, atmospheric scientists, and biologists to discuss the multi-faceted problem of how the habitability of a planet co-evolves with the geology of the surface and interior, the atmosphere, and the magnetosphere. Each of the six chapters has been written by authors with a range of expertise so that each chapter is itself multi-disciplinary, comprehensive, and accessible to scientists in all disciplines. These chapters delve into what life needs to exist and ultimately to thrive, the early environments of the young terrestrial pl...

  4. Geologic Mapping Results for Ceres from NASA's Dawn Mission

    Science.gov (United States)

    Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.

  5. A Fiber Raman Spectrometer for Field Detecting Geological Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High throughput, fast detection and characterization of geological materials have become important challenge for future lunar robotic rover exploration and planetary...

  6. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  7. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    Science.gov (United States)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  8. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  9. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  10. Hydrochemical characteristic of surface and groundwater Lisichansk and Almazno-Marevske geological and industrial districts Nnorth-Eastern Donbas

    Directory of Open Access Journals (Sweden)

    Udalov Y.V.

    2014-12-01

    Full Text Available Incorporates a complex of problems accompanying the operation of coal deposits of Donbass. See hydrochemical characteristics of surface and groundwater Lisichansk and Almazno-Maryevskogo geological and industrial areas of the North-Eastern Donbass. Identified the main hydrochemical features of the waste mine waters of the enterprises of the coal industry on the territory of the studies. It is established that the surface waters of the study area exposed to intensive anthropogenic influence. Set content of basic elements-pollutants in surface waters. It is revealed that this pollution is of a complex nature. Identifies key elements contained in the effluent of industrial enterprises. Analyzed that a change of the chemical composition of groundwater has led to increased hardness and mineralization of water in the main water intakes of the research area. Identifies key elements-contaminants in groundwater. It was found that as a result of mine dewatering groundwater level fell over an area of 200km2, far exceeding the area of coal mining. This operational reserves fresh underground waters in the groundwater runoff module 1.2 dm3 / sec. km2 decreased by 200 - 300 m3 / day. Within funnel depression hydraulic connection is created not only a few confined aquifers, but also located near the mine fields. For example, in the area of Stakhanov the Luhansk region in general depression funnel width of about 25 km and a depth of 600-800m were 8 mine ("Central Irmino", "Maximovska" Ilyich, named after I.V. Chesnokov, "Krivoy Rog", 11-RAD "Brjankovsky" and "Dzerzhinsk". The purpose of research is general hydrochemical characteristics and identification of key elements polluting surface and groundwater Lisichanskiy and diamond-Marevskogo geological and industrial areas of the North-East Donbas.

  11. Updating the planetary time scale: focus on Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Quantin-Nataf, Cathy

    2013-01-01

    Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.

  12. Shaping of planetary nebulae

    International Nuclear Information System (INIS)

    Balick, B.

    1987-01-01

    The phases of stellar evolution and the development of planetary nebulae are examined. The relation between planetary nebulae and red giants is studied. Spherical and nonspherical cases of shaping planetaries with stellar winds are described. CCD images of nebulae are analyzed, and it is determined that the shape of planetary nebulae depends on ionization levels. Consideration is given to calculating the distances of planetaries using radio images, and molecular hydrogen envelopes which support the wind-shaping model of planetary nebulae

  13. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    Naturally occurring geologic heterogeneity is an important, but often overlooked, aspect of seismic wave propagation. This dissertation presents a strategy for modeling the effects of heterogeneity using a combination of geostatistics and Finite Difference simulation. In the first chapter, I discuss my motivations for studying geologic heterogeneity and seis- mic wave propagation. Models based upon fractal statistics are powerful tools in geophysics for modeling heterogeneity. The important features of these fractal models are illustrated using borehole log data from an oil well and geomorphological observations from a site in Death Valley, California. A large part of the computational work presented in this disserta- tion was completed using the Finite Difference Code E3D. I discuss the Python-based user interface for E3D and the computational strategies for working with heterogeneous models developed over the course of this research. The second chapter explores a phenomenon observed for wave propagation in heteroge- neous media - the generation of unexpected shear wave phases in the near-source region. In spite of their popularity amongst seismic researchers, approximate methods for modeling wave propagation in these media, such as the Born and Rytov methods or Radiative Trans- fer Theory, are incapable of explaining these shear waves. This is primarily due to these method's assumptions regarding the coupling of near-source terms with the heterogeneities and mode conversion. To determine the source of these shear waves, I generate a suite of 3D synthetic heterogeneous fractal geologic models and use E3D to simulate the wave propaga- tion for a vertical point force on the surface of the models. I also present a methodology for calculating the effective source radiation patterns from the models. The numerical results show that, due to a combination of mode conversion and coupling with near-source hetero- geneity, shear wave energy on the order of 10% of the

  14. Planetary compositions

    International Nuclear Information System (INIS)

    Taylor, S.R.

    1988-01-01

    The present study of the density, major-element and trace-element compositions, oxygen isotopes, and noble gases of the metal, sulfide, and silicate components of meteorites shows that these properties do not match those of the terrestrial planets, and thereby suggests that there was not much lateral mixing in the solar nebula during planetary accretion. The planets would then have accumulated from narrow concentric zones, and the current zonal structure of the asteroid belt may be analogous to the structure of the inner portions of the solar nebula during the terrestrial planets' accretion. Localized heating during the material's infall to the median plane of the nebula is suggested to have occurred. 64 references

  15. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2016-07-21

    We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulence length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.

  16. Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model

    Science.gov (United States)

    Yang, Ben; Qian, Yun; Berg, Larry K.; Ma, Po-Lun; Wharton, Sonia; Bulaevskaya, Vera; Yan, Huiping; Hou, Zhangshuan; Shaw, William J.

    2017-01-01

    We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor-Yamada-Nakanishi-Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. The parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.

  17. Spectral and morphological properties of various geological types of Titan’s surface with Cassini VIMS and RADAR

    Science.gov (United States)

    Solomonidou, Anezina; Coustenis, Athena; Lopes, Rosaly M.; Hirtzig, Mathieu; Rodriguez, Sebastien; Malaska, Michael; Drossart, Pierre; Sotin, Christophe; Bratsolis, Emmanuel; Matsoukas, Chris; Brown, Robert; Maltagliati, Luca

    2015-08-01

    Cassini’s VIMS and the RADAR have been investigating Titan’s surface since 2004. Both instruments unveiled the dynamic and complex surface expressions of this Saturnian moon, suggesting exogenic and endogenic processes [1;2;3]. In order to evaluate the atmospheric contribution and thereafter extract surface information, a Radiative transfer code is used to analyse different regions and to monitor their spectral behaviour over time [4;5;7]. We furthermore use RADAR despeckled SAR images to infer information on the morphology [6]. We find that temporal variations of surface albedo occur for some areas, but that their origin may differ from one region to the other. Tui Regio and Sotra Patera change with time becoming darker and brighter respectively in terms of surface albedo. In contrast, we find that the undifferentiated plains and the suggested evaporitic areas in the equatorial regions do not present any significant change [5]. This observation supports the hypothesis that Titan is surface brightening of Sotra supports a possible internal rather than an exogenic origin. This observation supports the hypothesis that Titan is a cryovolcanic world due to the presence of local complex volcanic-like geomorphology [1] and indications of surface albedo changes [4,5]. Potential sources of the energy for cryovolcanism include tidal heating, possible internal convection, and ice tectonics, is believed to be a pre-requisite of a habitable planetary body as it allows the recycling of minerals and potential nutrients and provides localized energy sources. A recent study has shown that tidal forces are a constant and significant source of internal deformation on Titan and the interior liquid water ocean can be relatively warm for reasonable amounts of ammonia concentrations [8].[1] Lopes, R.M.C., et al. JGR, 118, 2013 [2] Solomonidou, A., et al. PSS, 70, 2013 [3] Moore, J.M. GRL, 37, 2010 [4] Solomonidou, A., et al. JGR, 119, 2014 [5] Solomonidou, A., et al. submitted [6

  18. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    Science.gov (United States)

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  19. Mars geologic mapping program: Review and highlights

    Science.gov (United States)

    Scott, David H.

    1991-06-01

    The Mars Geologic Mapping (MGM) Program was introduced by NASA in 1987 as a new initiative in the Planetary Geology and Geophysics (PGG) Program. The overall purpose of the program is to support research on topical science problems that address specific questions. Among the objectives of the project are: (1) to produce highly detailed geologic maps that will greatly increase the knowledge of the materials and processes that have contributed to the evolutionary history of Mars; (2) to define areas of special interest for possible future investigation by planned missions (Mars Observer, Mars Sample Return); and (3) to maintain the interest of the planetary community in the development of new concepts and the re-evaluation of Martian geology as new data in usable form become available. Some interesting highlights of the geologic mapping indicate that multiple flood episodes occurred at different times during the Hesperian Period in both Kasei and Maja Valles. Studies of small channels in the Memnonia, Mangala, and Tharsis regions show that fluvial events appear to have occurred during the Amazonian Period at equatorial latitudes. Flood waters occurred during the Amazonian Period at equatorial latitudes. Flood waters from Mangala Valles may have seeped into surficial materials with the subsequent development of numerous sapping channels and debris flows; this suggests that the ancient highland terrain consists of relatively unconsolidated materials. Multiple layers were observed for the first time in the ridged plains lava flows covering large areas of Lunae Planum; some wrinkle ridges in this area are associated with grabens and collapse volcanic units at Hadriaca and Tyrrhena Paterae indicates that the units may have been emplaced by gravity-driven pyroclastic flows. Unlike the north polar layered deposits, those in the south polar region show no angular unconformities or evidence of faulting and folding. Water ice in the south polar layered deposits may be protected

  20. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    Science.gov (United States)

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Geologic mapping of near-surface sediments in the northern Mississippi Embayment, McCracken County, KY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Joshua L [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Greb, s F [Univ of KY, KY Geological Survey

    2006-04-01

    POSTER: The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments near the northern margin of the Mississippi Embayment. Within this region is the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies have provided subsurface lithologic data from hundreds of monitoring wells and borings. Despite preliminary efforts by various contractors, these data have not been utilized to develop detailed stratigraphic correlations of sedimentary units across the study area. In addition, sedimentary exposures along streams in the vicinityof PGDP have not been systematically described beyond the relatively simple geologic quadrangle maps published by the US Geological Survey in 1966-67. This study integrates lithologic logs, other previous site investigation data, and outcrop mapping to provide a compilation of near-surface lithologic and stratigraphic data for the PGDP area. A database of borehole data compiled during this study has been provided to PGDP for future research and archival.

  2. Low-energy Planetary Excavator (LPE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic...

  3. Low-energy Planetary Excavator (LPE), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC is developing an innovative Low-energy Planetary Excavator (LPE) to excavate in situ regolith, ice-regolith mixes, and a variety of other geologic materials...

  4. Planetary Laser Raman Spectroscopy for Surface Exploration on C/D-Type Asteroids — A Case Study

    Science.gov (United States)

    Kong, W. G.; Wang, A.

    2010-03-01

    A laser Raman spectroscopic study on Murchison and Allende meteorites provide detailed information on major, minor, and trace minerals information. This study demonstrates the feasibility of LR for surface exploration missions to C/D-type asteroids.

  5. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  6. Implementation of cartographic symbols for planetary mapping in geographic information systems

    Science.gov (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  7. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  8. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  9. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  10. VERITAS: a Discovery-Class Venus Surface Geology and Geophysics Mission

    Science.gov (United States)

    Freeman, Anthony; Smrekar, Suzanne E.; Hensley, Scott; Wallace, Mark; Sotin, Christophe; Darrach, Murray; Xaypraseuth, Peter; Helbert, Joern; Mazarico, Erwan

    2016-01-01

    Our understanding of solar system evolution is limited by a great unanswered question: How Earthlike is Venus? We know that these "twin" planets formed with similar bulk composition and size. Yet the evolutionary path Venus followed has diverged from Earth's, in losing its surface water and becoming hotter than Mercury. What led to this? The answer has profound implications for how terrestrial planets become habitable and the potential for life in the universe.

  11. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  12. Micrometer-sized Water Ice Particles for Planetary Science Experiments: Influence of Surface Structure on Collisional Properties

    Energy Technology Data Exchange (ETDEWEB)

    Gärtner, S.; Fraser, H. J. [School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Gundlach, B.; Ratte, J.; Blum, J. [Institut für Geophysik und extraterrestrische Physik, TU Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany); Headen, T. F.; Youngs, T. G. A.; Bowron, D. T. [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Oesert, J.; Gorb, S. N., E-mail: sabrina.gaertner@stfc.ac.uk, E-mail: helen.fraser@open.ac.uk [Zoologisches Institut, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, D-24118 Kiel (Germany)

    2017-10-20

    Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet formation, which therefore is subject to many laboratory studies. However, the pressure–temperature gradients in protoplanetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in protoplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above ≈210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from ≈10 to ≈30 Å (≈2.5 to 12 bilayers) proves increased molecular mobility at temperatures above ≈210 K. Because none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure–temperature environment, may have a larger influence on collision outcomes than previously thought.

  13. Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-06-17

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO

  14. Surface optical properties of geological materials: a new look at the regolith of the Moon, Mercury and asteroids

    Science.gov (United States)

    Souchon, Audrey; Pinet, Patrick; Chevrel, Serge; Daydou, Yves; Josset, Jean-Luc; Beauvivre, Stephane

    2010-05-01

    remotely observed surfaces, as these techniques give access to complementary information. To date, few multiangular orbital datasets are available, with the additional difficulties that phase angles larger than 100° and less than 20° are more difficult to acquire than in laboratory experiments. In addition, high resolution topographic information is requested for this type of investigation. A study of multiangular imaging observations of the lunar crater Lavoisier recently made by the AMIE camera onboard the European spacecraft SMART-1 has been undertaken, with phase angles ranging from 26° to 83°. Despite this limited phase coverage, a first-order photometric survey has been carried out. Dark patches believed to be pyroclastic deposits [Gaddis, Icarus, 2003] show similar photometric behaviour (backward scattering, high surface roughness); another dark region within Lavoisier F crater appears to display an even higher surface roughness, associated with a less pronounced backward scattering. The fact that both the modelled phase curves match well the observation and the retrieved parameters are physically plausible, suggests that Hapke's model not only can be applied to laboratory data, but also to orbital imaging datasets. As more complete sets will be produced from ongoing or soon-to-come observations (e.g., Kaguya/Selene, Chandra'yaan, LRO for the Moon, Messenger, Bepi-Colombo for Mercury, Dawn for Vesta and Ceres, …), a more precise characterization of planetary surfaces should be achieved.

  15. The Global Geology of Titan from Cassini RADAR data

    Science.gov (United States)

    Lopes, Rosaly; Malaska, Michael J.

    The variety of geological processes on Titan is rivaled in our Solar System only on Earth. Results from the Cassini-Huygens mission obtained so far have revealed a wide range of geologic and climatological processes. We use data obtained by Cassini’s Titan Radar Mapper (13.78 GHz, lambda=2.17 cm) to analyze the distribution of different types of geologic processes occurring on Titan’s surface, both endogenic and exogenic, and to derive temporal relationships between these processes, at least at local scales. The distribution and interplay of geologic processes is important to provide constraints on models of the interior and of surface-atmosphere interactions. We mapped the SAR images in terms of characteristic morphology of geological features and their radar backscatter in order to determine possible emplacement sequences and the overall distribution of geologic processes. All the major planetary geologic processes - volcanism, tectonism, impact cratering and erosion - appear to have played a role in shaping Titan’s complex surface. This paper will review the distribution and relative ages of different geomorphologic units. While some units (craters, dunes, mountains, channels, lakes and seas) are well established in the literature, the presence of cryovolcanic features is still somewhat controversial, and the origin of undifferentiated plains (known as blandlands) is still mysterious. We now have over half of Titan’s surface imaged by SAR and the interpretation of these and other terrains is better constrained. The results from our latest analyses suggest that a sedimentary origin for the undifferentiated plains is the most likely. Cryovolcanism appears to have occurred on Titan, but it is not ubiquitous, and the major cryovolcanic area appears to be old, now partly covered by dunes. Titan’s surface shows a complex interaction between the surface and atmosphere, with erosional processes being driven by wind, liquids and dissolution.

  16. Ascertaining Grain Scale Effects Of Seismic Or Aseismic Stimulation Upon Strength Of Near Surface Geological Materials

    Directory of Open Access Journals (Sweden)

    Bilal Hassan

    2017-02-01

    Full Text Available Certain peculiarities of inelastic nonlinearity of unconsolidated near surface periodically stressed granular media contributed at micro- scale are investigated to ascertain possible anomalous time dependent strength behavior macro-effects with geotechnicalgeo-environmental implications. Comparative examination of ultrasonic P- and S-wave repeatable displacement response wave-forms in time records and spectra of pulse stimulated both confined dry and fully saturated ceramic grains analogue endorsable by pertinent theory is performed. Examination is primarily aimed at both understanding connectivity of louder response generated by seemingly unobtrusive quieter seismic and aseismic events in granular sediments. Secondarily results impart an enhanced conceptual substantiation of some previously disseminated andor published results. The results hint certain persistive time and frequency restricted occurrences vouching vital insights. It could be unambiguously clarified that subtle acoustic emission andor stick-slip type micro events in stimulated i.e. seismic or aseismic unconsolidated granular sediments do occur. When spread over time andor space their cumulated effect may be capable of altering granular material macro strength behavior. It is clearly deducible from resonant type spectral results that material fragmentation or force chain formation type phenomenon occurs possibly due to macro-scale friction mobilization by grain-scale events. It is further speculated that invisible high frequency events may irreversibly alter grain-scale surface properties andor intergranular friction as pseudo enhanced elasticity type effect more elusive with saturation. An assessment of an examined temporal distribution of grain-scale stick-slip type events when stimulated by P- and S-wave modes is posited to be non-identical. The former as if is retardation associated while the latter relaxation type in a characteristic sense. Presented result forms combined not

  17. Study and validation of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces: application to a mission to the planet Mercury

    International Nuclear Information System (INIS)

    Pirard, B.

    2006-12-01

    This work deals with the design of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces and was performed in the frame of a mission scenario to explore the planet Mercury. The research studies consisted first in characterizing the detection performances of a gamma-ray spectrometer using a high-purity germanium crystal cooled actively at cryogenic temperatures. The high energy resolution of the detector allows an accurate measurement of the chemical composition for the main elements from oxygen to uranium. Thereafter the studies dealt with the critical issues addressed for the use of such a detector onboard a mission to the inner solar system. The radiation damage caused by solar protons in germanium crystals was investigated by experimental and numerical means. It has been shown that the detector resolution begins getting damaged for proton fluences over 5*10 8 p/cm 2 . An annealing session where the crystal is heated up to 80 C degrees for a 4-day period allows the detector to get back a sufficient resolution. Annealing over 100 C degrees gives back the detector its initial resolution. Finally, a numerical thermal model of the instrument as well as some tests on a thermal mockup were performed to validate the thermal design of the instrument

  18. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  19. Surface and Downhole Prospecting Tools for Planetary Exploration: Tests of Neutron and Gamma Ray Probes - Research Paper

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Elphic; P. Chu; S. Hahn; M. R. James; D. J. Lawrence; T. H. Prettyman; J. B. Johnson; R. K. Podgorney

    2008-06-01

    The ability to locate and characterize icy deposits and other hydrogenous materials on the Moon and Mars will help us understand the distribution of water and, therefore, possible habitats at Mars, and may help us locate primitive prebiotic compounds at the Moon’s poles. We have developed a rover-borne neutron probe that localizes a near-surface icy deposit and provides information about its burial depth and abundance. We have also developed a borehole neutron probe to determine the stratigraphy of hydrogenous subsurface layers while operating within a drill string segment. In our field tests, we have used a neutron source to “illuminate” surrounding materials and gauge the instruments’ efficacy, and we can simulate accurately the observed instrument responses using a Monte Carlo nuclear transport code (MCNPX). An active neutron source would not be needed for lunar or martian near-surface exploration: cosmic-ray interactions provide sufficient neutron flux to depths of several meters and yield better depth and abundance sensitivity than an active source. However, for deep drilling (>10 m depth), a source is required. We also present initial tests of a borehole gamma ray lithodensity tool and demonstrate its utility in determining soil or rock densities and composition.

  20. Dielectric properties of analogs of icy planetary surfaces in the mm-submm domain: review, new results and implications for the submillimeter sounding of Jovian satellites subsurfaces.

    Science.gov (United States)

    Brouet, Y.; Jacob, K.; Murk, A.; Cerubini, R.; Pommerol, A.; Thomas, N.

    2017-12-01

    Passive microwave radiometers are instruments which can sense thermal radiation coming from the subsurface (millimeters to centimeters) of an observed area. The penetration depth depends on the dielectric properties of the material, as they constrain the radiative transfer occurring below the surface. In order to interpret the data in terms of physical properties, the dielectric properties of material analogs as a function of several parameters (i.e., frequency, temperature, composition, porosity) have to be taken into account. Interpretations of radiometers data are limited by the few laboratory measurements developed in the millimeter domain, regarding measurements performed with rocky materials, planetary regolith simulants or volcanic ashes (Campbell and Ulrichs, 1969; Bertrand, 2004; Brouet et al., 2015). Furthermore, in preparation to the exploration of the Jupiter's icy moons with the JUICE mission and the Europa mission, Pettinelli et al. (2015) pointed out the lack of laboratory measurements in the microwave domain relevant for icy planetary subsurface observations. Firstly, we will review the existing data obtained with laboratory experiments operating in the millimeter-submillimeter domain relevant for radiometers aiming to determine subsurface properties of Solar System objects. Secondly, we will present an experimental set-up dedicated to the measurements of the dielectric properties of icy and dry samples in the millimeter-submillimeter domain, the sample preparation procedures and the first results. The measurements are based on a free-space reflection method and can be performed with sample temperatures below 200 K, as well as under dry air environment. First measurements have been performed in the 150 - 210 GHz range on a pure water ice sample and a pure hydrated sulfate (epsomite) sample, as well as on water ice/epsomite mixtures, which represent unique data in the mm-smm domain. Finally, we will discuss about the implications for the

  1. Calcrete and near-surface geology of Kuwait City and suburbs, Kuwait, Arabian Gulf

    Science.gov (United States)

    Al-Sulaimi, Jawad S.

    1988-01-01

    Near-surface accumulation of pedogenic carbonate (calcrete) is a common and characteristic feature of the landscape of Kuwait City and its suburbs. The principal host material for these calcretes is a thick sequence of unconsolidated quartzose sand. A typical fully developed soil profile can be divided into five zones: in descending order these are (1) a top calcareous aeolian soil; (2) a zone of friable sand with powdery or tightly cemented calcrete lumps (nodules); (3) a massive calcrete zone; (4) a mottled calcrete zone; and (5) unaltered parent material. Episodic formation of calcrete is indicated by the occurrence of multiple profiles in which zones are repeated. Calcrete ooids and pseudo-ooids of accretionary origin are characteristic of the upper calcrete zone. The carbonate fraction in the upper calcrete zone consists dominantly of low-Mg calcite with minor amounts of dolomite. Replacement was a major process in formation of the massive calcrete and the dominant cementing material is largely low-Mg calcite and/or microcrystalline dolomite. Aeolian dust is considered to be the major source of ions for calcrete formation in Kuwait City and suburbs. An earlier-introduced model* is applied to explain the mechanisms of formation and precipitation of low-Mg calcite and dolomite. The calcrete thickness in the study area is explained by episodic deposition of fluviatile sand and calcrete formation during the Oligocene through Lower Miocene period.

  2. Long-Life, Oil-Free, Light-Weight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A multi-roller "oil free" traction drive is under development for use on vehicles used in hostile environments like those that will be encountered on planetary...

  3. Desert Rats 2011 Mission Simulation: Effects of Microgravity Operational Modes on Fields Geology Capabilities

    Science.gov (United States)

    Bleacher, Jacob E.; Hurtado, J. M., Jr.; Meyer, J. A.

    2012-01-01

    Desert Research and Technology Studies (DRATS) is a multi-year series of NASA tests that deploy planetary surface hardware and exercise mission and science operations in difficult conditions to advance human and robotic exploration capabilities. DRATS 2011 (Aug. 30-Sept. 9, 2011) tested strategies for human exploration of microgravity targets such as near-Earth asteroids (NEAs). Here we report the crew perspective on the impact of simulated microgravity operations on our capability to conduct field geology.

  4. Europa Clipper Mission Concept Preliminary Planetary Protection Approach

    Science.gov (United States)

    Jones, Melissa; Schubert, Wayne; Newlin, Laura; Cooper, Moogega; Chen, Fei; Kazarians, Gayane; Ellyin, Raymond; Vaishampayan, Parag; Crum, Ray

    2016-07-01

    The science objectives of the proposed Europa Clipper mission consist of remotely characterizing any water within and beneath Europa's ice shell, investigating the chemistry of the surface and ocean, and evaluating geological processes that may permit Europa's ocean to possess the chemical energy necessary for life. The selected payload supporting the science objectives includes: Plasma Instrument for Magnetic Sounding (PIMS), Interior Characterization of Europa using Magnetometry (ICEMAG), Mapping Imaging Spectrometer for Europa (MISE), Europa Imaging System (EIS), Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON), Europa Thermal Emission Imaging System (E-THEMIS), MAss SPectrometer for Planetary EXploration/Europa (MASPEX), Ultraviolet Spectrograph/Europa (UVS), and SUrface DUst Mass Analyzer (SUDA). Launch is currently baselined as 2022. Pending the yet to be selected launch vehicle, the spacecraft would either arrive to the Jovian system on a direct trajectory in 2025 or an Earth-Venus-Earth-Earth gravity assist interplanetary trajectory arriving in 2030. The operational concept consists of multiple low-altitude flybys of Europa to obtain globally distributed regional coverage of the Europan surface. According to COSPAR Policy, it is currently anticipated that the Europa Clipper mission would be classified as a Category III mission. That is, the mission is to a body "of significant interest relative to the process of chemical evolution and/or the origin of life or for which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment." Therefore, the expected driving planetary protection requirement for the mission is that the probability of inadvertent contamination of an ocean or other liquid water body shall be less than 1x10-4 per mission. This requirement applies until final disposition of the spacecraft, however in practice, would only apply until the spacecraft is

  5. Planetary Data System (PDS)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Planetary Data System (PDS) is an archive of data products from NASA planetary missions, which is sponsored by NASA's Science Mission Directorate. We actively...

  6. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  7. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  8. Human-Automation Collaboration: Support for Lunar and Planetary Exploration

    National Research Council Canada - National Science Library

    Marquez, Jessica J

    2007-01-01

    .... This thesis investigates the appropriate balance between humans and automation for geospatial path problem solving within the high-risk domain of human planetary surface exploration, where decisions...

  9. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  10. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  11. Introduction to the special issue: Planetary geomorphology

    Science.gov (United States)

    Burr, Devon M.; Howard, Alan D.

    2015-07-01

    Planetary geomorphology is the study of extraterrestrial landscapes. In recognition of the promise for productive interaction between terrestrial and planetary geomorphologists, the 45th annual Binghamton Geomorphology Symposium (BGS) focused on Planetary Geomorphology. The aim of the symposium was to bring planetary and terrestrial geomorphologists together for symbiotic and synthetic interactions that would enrich both subdisciplines. In acknowledgment of the crucial role of terrestrial field work in planetary geomorphology and of the BGS tradition, the symposium began with a field trip to the Appalachian Mountains, followed by a dinner talk of recent results from the Mars Surface Laboratory. On Saturday and Sunday, the symposium was organized around major themes in planetary geomorphology, starting with the geomorphic processes that are most common in our Solar System-impact cratering, tectonism, volcanism-to set the stage for other geomorphic processes, including aeolian, fluvial, lacustrine, and glacial/polar. On Saturday evening, the banquet talk provided an historical overview of planetary geomorphology, including its roots in the terrestrial geosciences. The symposium concluded with a full-afternoon tutorial on planetary geomorphologic datasets. This special issue of Geomorphology consists of papers by invited authors from the 2014 BGS, and this introduction provides some context for these papers.

  12. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  13. Planetary heat flow measurements.

    Science.gov (United States)

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  14. An online planetary exploration tool: ;Country Movers;

    Science.gov (United States)

    Gede, Mátyás; Hargitai, Henrik

    2017-08-01

    Results in astrogeologic investigations are rarely communicated towards the general public by maps despite the new advances in planetary spatial informatics and new spatial datasets in high resolution and more complete coverage. Planetary maps are typically produced by astrogeologists for other professionals, and not by cartographers for the general public. We report on an application designed for students, which uses cartography as framework to aid the virtual exploration of other planets and moons, using the concepts of size comparison and travel time calculation. We also describe educational activities that build on geographic knowledge and expand it to planetary surfaces.

  15. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  16. Proto-planetary nebulae

    International Nuclear Information System (INIS)

    Zuckerman, B.

    1978-01-01

    A 'proto-planetary nebula' or a 'planetary nebula progenitor' is the term used to describe those objects that are losing mass at a rate >approximately 10 -5 Msolar masses/year (i.e. comparable to mass loss rates in planetary nebulae with ionized masses >approximately 0.2 Msolar masses) and which, it is believed, will become planetary nebulae themselves within 5 years. It is shown that most proto-planetary nebulae appear as very red objects although a few have been 'caught' near the middle of the Hertzsprung-Russell diagram. The precursors of these proto-planetaries are the general red giant population, more specifically probably Mira and semi-regular variables. (Auth.)end

  17. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  18. Quantitative Outline-based Shape Analysis and Classification of Planetary Craterforms using Supervised Learning Models

    Science.gov (United States)

    Slezak, Thomas Joseph; Radebaugh, Jani; Christiansen, Eric

    2017-10-01

    The shapes of craterform morphology on planetary surfaces provides rich information about their origins and evolution. While morphologic information provides rich visual clues to geologic processes and properties, the ability to quantitatively communicate this information is less easily accomplished. This study examines the morphology of craterforms using the quantitative outline-based shape methods of geometric morphometrics, commonly used in biology and paleontology. We examine and compare landforms on planetary surfaces using shape, a property of morphology that is invariant to translation, rotation, and size. We quantify the shapes of paterae on Io, martian calderas, terrestrial basaltic shield calderas, terrestrial ash-flow calderas, and lunar impact craters using elliptic Fourier analysis (EFA) and the Zahn and Roskies (Z-R) shape function, or tangent angle approach to produce multivariate shape descriptors. These shape descriptors are subjected to multivariate statistical analysis including canonical variate analysis (CVA), a multiple-comparison variant of discriminant analysis, to investigate the link between craterform shape and classification. Paterae on Io are most similar in shape to terrestrial ash-flow calderas and the shapes of terrestrial basaltic shield volcanoes are most similar to martian calderas. The shapes of lunar impact craters, including simple, transitional, and complex morphology, are classified with a 100% rate of success in all models. Multiple CVA models effectively predict and classify different craterforms using shape-based identification and demonstrate significant potential for use in the analysis of planetary surfaces.

  19. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Science.gov (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  20. The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle

    Science.gov (United States)

    Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.

    2010-01-01

    The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).

  1. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    Science.gov (United States)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  2. Escape from planetary neighbourhoods

    NARCIS (Netherlands)

    Waalkens, H.; Burbanks, A.; Wiggins, S.

    2005-01-01

    In this paper we use recently developed phase-space transport theory coupled with a so-called classical spectral theorem to develop a dynamically exact and computationally efficient procedure for studying escape from a planetary neighbourhood. The ‘planetary neighbourhood’ is a bounded region of

  3. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    Science.gov (United States)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  4. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  5. Planetary Atmospheric Electricity

    CERN Document Server

    Leblanc, F; Yair, Y; Harrison, R. G; Lebreton, J. P; Blanc, M

    2008-01-01

    This volume presents our contemporary understanding of atmospheric electricity at Earth and in other solar system atmospheres. It is written by experts in terrestrial atmospheric electricity and planetary scientists. Many of the key issues related to planetary atmospheric electricity are discussed. The physics presented in this book includes ionisation processes in planetary atmospheres, charge generation and separation, and a discussion of electromagnetic signatures of atmospheric discharges. The measurement of thunderstorms and lightning, including its effects and hazards, is highlighted by articles on ground and space based instrumentation, and new missions.Theory and modelling of planetary atmospheric electricity complete this review of the research that is undertaken in this exciting field of space science. This book is an essential research tool for space scientists and geoscientists interested in electrical effects in atmospheres and planetary systems. Graduate students and researchers who are new to t...

  6. Gender Diversity in Planetary Volcanology: Encouraging Equality

    Science.gov (United States)

    Gregg, T. K.; Lopes, R. M.

    2004-12-01

    We have brought together a group of respected and well-known female planetary volcanologists to create a book designed to encourage young women to pursue scientific careers. The book, entitled "Volcanic Worlds: Exploring the Solar System's Volcanoes," published by Praxis, is written for undergraduates who may have no background in geology or planetary sciences. Each chapter covers a different Solar System body or volcanic process, and is authored by a woman who is an expert in her field. Subjects covered include: the relation of plate tectonics to volcanism on Earth; the study of Mars' volcanoes from space and using rovers; geysers on Neptune's moon Triton and on Earth; eruptions on Io; and studying submarine lava flows from a submarine. Each chapter is written in a comfortable, readily accessible tone, with authors presenting not only science, but also some of the unique challenges faced by women conducting volcanological research today-and how these are overcome. Although not intended to be a textbook, this work could easily form the basis of an undergraduate geology seminar, honors course, or as a valuable accessory to an introductory geology course. In addition, it could be used in courses that would be cross-listed between geology departments and sociology departments. We will present more information on the book, and suggestions of how it could be used in the classroom to enhance gender diversity in the Earth and Space Sciences.

  7. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    Science.gov (United States)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  8. U.S. Geological Survey: Surface-Water Historical Instantaneous Data for the Nation: Build Time Series

    Data.gov (United States)

    U.S. Environmental Protection Agency — The USGS historical data base contains historical surface water discharge volume data for all 16,658 surface water sites that have current conditions. This dataset...

  9. Geology and photometric variation of solar system bodies with minor atmospheres: implications for solid exoplanets.

    Science.gov (United States)

    Fujii, Yuka; Kimura, Jun; Dohm, James; Ohtake, Makiko

    2014-09-01

    A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in the UV/visible/near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities, interaction with surrounding energetic particles, and distribution of grained materials. Some indications of these processes are provided by the amplitude and wavelength dependence of variation in combinations of the time-averaged spectra. We also estimate the photometric precision needed to detect their spin rotation rates through periodogram analysis. Our survey illustrates realistic possibilities for inferring the detailed properties of solid exoplanets with future direct imaging observations. Key Words: Planetary environments-Planetary geology-Solar System-Extrasolar terrestrial planets.

  10. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation

    OpenAIRE

    Smith, Andrew B; Stockley, Bruce

    2005-01-01

    The origins and geological history of the modern fauna of deep-sea echinoids is explored using a combination of palaeontological and molecular data. We demonstrate that, whereas generalist omnivores have migrated into the deep sea in low numbers over the past 200 Myr, there was a short time-interval between approximately 75 and 55 Myr when the majority of specialist detritivore clades independently migrated off-shelf. This coincides with a marked increase in seasonality, continental run-off a...

  11. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  12. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  13. Automatic Feature Extraction from Planetary Images

    Science.gov (United States)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  14. Statistical analysis of the Martian surface

    Science.gov (United States)

    Landais, F.; Schmidt, F.; Lovejoy, S.

    2015-10-01

    We investigate the scaling properties of the topography of Mars [10]. Planetary topographic fields are well known to exhibit (mono)fractal behavior. Indeed, fractal formalism is efficient to reproduce the variability observed in topography. Still, a single fractal dimension is not enough to explain the huge variability and intermittency. Previous study have shown that fractal dimensions might be different from a region to another, excluding a general description at the planetary scale. In this project, we are analyzing the Martian topographic data with a multifractal formalism to study the scaling intermittency. In the multifractal paradigm, the local variation of the fractal dimension is interpreted as a statistical property of multifractal fields. The results suggest a multifractal behaviour from planetary scale down to 10 km. From 10 km to 600 m, the topography seems to be simple monofractal. This transition indicates a significant in the geological processes governing the Red Planet's surface.

  15. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    Science.gov (United States)

    Marvin Herndon, J.

    2014-05-01

    removed, pressure began to build in the compressed rocky kernel of Earth and eventually the rigid crust began to crack. The major energy source for planetary decompression and for heat emplacement at the base of the crust is the stored energy of protoplanetary compression. In response to decompression-driven volume increases, cracks form to increase surface area and fold-mountain ranges form to accommodate changes in curvature. One of the most profound mysteries of modern planetary science is this: As the terrestrial planets are more-or-less of common chondritic composition, how does one account for the marked differences in their surface dynamics? Differences among the inner planets are principally due to the degree of compression experienced. Planetocentric georeactor nuclear fission, responsible for magnetic field generation and concomitant heat production, is applicable to compressed and non-compressed planets and large moons. The internal composition of Mercury is calculated based upon an analogy with the deep-Earth mass ratio relationships. The origin and implication of Mercurian hydrogen geysers is described. Besides Earth, only Venus appears to have sustained protoplanetary compression; the degree of which might eventually be estimated from understanding Venetian surface geology. A basis is provided for understanding that Mars essentially lacks a 'geothermal gradient' which implies potentially greater subsurface water reservoir capacity than previously expected. Resources at NuclearPlanet.com .

  16. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    Directory of Open Access Journals (Sweden)

    J.S Ojo

    2011-06-01

    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  17. Surface-water data and statistics from U.S. Geological Survey data-collection networks in New Jersey on the World Wide Web

    Science.gov (United States)

    Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.

  18. An Improved Instrument for Angular Scattering Measurements of Candidate Planetary Surface Regolith Materials at Extremely Small Phase Angles: Relevance to the Outer Solar System

    Science.gov (United States)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K.; Kroner, D. O.; Smythe, W. D.

    2014-12-01

    The reflection variation and the polarization change with phase angle of radiation scattered from particulate materials has been studied for a century in efforts to understand the nature of clouds, aerosols, planetary ring systems and planetary regolith materials. The increase in reflectance as phase angle decreases, the 'Opposition Effect', has been well documented in astronomical observations and laboratory studies. Variations in linear polarization near small phase angles have also been well studied (e.g. Shkuratov et al.,2002, Rosenbush et al. 2015). While the phenomena have been well documented, a generally accepted physical explanation is still lacking despite many excellent theoretical modeling efforts. We have undertaken a reductionist approach in deconstructing the process. We have fabricated a goniometer which permits us to present samples with discrete wavelengths of monochromatic light that is linearly polarized in and perpendicular to the scattering plane. We also can illuminate our samples with both right handed and left handed circular polarization senses. Silicon Avalanche Photodiodes record the reflected radiation from the sample after it has passed through linear and circular polarizing analyzers(Kroner et al.). This reductionist approach permits us to measure the reflectance and polarization phase curves and the change in linear and circular polarization ratio (LPR and CPR) with phase angle between 0.056 and 17 degrees. LPR and CPR are found to be important indicators of the amount of multiple scattering in the medium (Hapke, 1990, Nelson et al, 1998, 2000;Hapke, 2012). This approach provides a way to distinguish between suggested models and to gain greater insight into the process of the scattering of electromagnetic radiation in a variety of media. This work was supported by NASA's Cassini Science Program Hapke, B. (1990), Icarus, 88, 407-217. Hapke, B. (2012). Theory of Reflectance and Emittance Spectroscopy, Cambridge U. Press, New York

  19. Planetary rovers robotic exploration of the solar system

    CERN Document Server

    Ellery, Alex

    2016-01-01

    The increasing adoption of terrain mobility – planetary rovers – for the investigation of planetary surfaces emphasises their central importance in space exploration. This imposes a completely new set of technologies and methodologies to the design of such spacecraft – and planetary rovers are indeed, first and foremost, spacecraft. This introduces vehicle engineering, mechatronics, robotics, artificial intelligence and associated technologies to the spacecraft engineer’s repertoire of skills. Planetary Rovers is the only book that comprehensively covers these aspects of planetary rover engineering and more. The book: • discusses relevant planetary environments to rover missions, stressing the Moon and Mars; • includes a brief survey of previous rover missions; • covers rover mobility, traction and control systems; • stresses the importance of robotic vision in rovers for both navigation and science; • comprehensively covers autonomous navigation, path planning and multi-rover formations on ...

  20. Permo-Carboniferous sedimentary basins related to the distribution of planetary cryptoblemes

    Science.gov (United States)

    Windolph, J.F.

    1997-01-01

    Massive/high velocity solar, galactic, and cosmic debris impacting the Earths surface may account for the enormous energy required for the formation of Permo-Carboniferous sedimentary basins and related mountain building orogenies. Analysis of satellite immagry, sea floor sonar, geophysical data, and geotectonic fabrics show a strong correlation throughout geologic time between sedimentary basin origin and planetary cryptoblemes. Cryptoblemes are subtile, multi-ringed, radial centric impact shock signatures covering the entire terrestrial surface and ocean floors, having a geometry and distribution strikingly similar to the surfaces of the lunar planetary bodies in the solar system. Investigations of Permo-Carboniferous basins show an intensely overprinted pattern of cryptoblemes coinciding with partial obliteration and elliptical compression of pre-existing basins and accompanying shock patterns. Large distorted cryptoblemes may incorporate thin skin deformation, localized sediment diagenesis, regional metamorphism, and juxtaposed exotic terrains. These data, related to basin morphogenic symmetry, suggest that large episodic impact events are the primary cause of tectonogenic features, geologic boundary formation and mass extinction episodes on the planet Earth. Plate tectonics may be only a slow moving, low energy secondary effect defined and set in motion by megacosmic accretion events. Permo-Carboniferous sediments of note are preserved or accumulated in relatively small rectangular to arcuate rift valleys and synclinal down warps, such as the Narraganset basin of Massachusetts, USA, and Paganzo basin in Argentina, S.A. These deposits and depocenters may originate from dynamic reinforcement/cancellation impact effects, as can be seen in the Basin Range of Nevada and Utah, USA. Large circular to oval sedimentary basins commonly include internal ring structures indicating post depositional subsidence and rebound adjustments with growth faulting, notable in the

  1. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  2. Planetary Simulation Chambers bring Mars to laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Mateo-Marti, E.

    2016-07-01

    Although space missions provide fundamental and unique knowledge for planetary exploration, they are always costly and extremely time-consuming. Due to the obvious technical and economical limitations of in-situ planetary exploration, laboratory simulations are among the most feasible research options for making advances in planetary exploration. Therefore, laboratory simulations of planetary environments are a necessary and complementary option to expensive space missions. Simulation chambers are economical, more versatile, and allow for a higher number of experiments than space missions. Laboratory-based facilities are able to mimic the conditions found in the atmospheres and on the surfaces of a majority of planetary objects. Number of relevant applications in Mars planetary exploration will be described in order to provide an understanding about the potential and flexibility of planetary simulation chambers systems: mainly, stability and presence of certain minerals on Mars surface; and microorganisms potential habitability under planetary environmental conditions would be studied. Therefore, simulation chambers will be a promising tools and necessary platform to design future planetary space mission and to validate in-situ measurements from orbital or rover observations. (Author)

  3. Structural Geology and Map Interpretation

    Science.gov (United States)

    Helper, Mark A.

    1998-06-01

    Geological maps lay flat the three-dimensional architecture of a region's rock record. In doing so, they reveal and document geometrical relationships and geological histories that would otherwise be difficult, if not impossible, to visualize. They are a primary data source for a wide range of practical applications, from civil engineering, mining, and energy resource exploration to urban planning and geologic hazard mitigation, and are literally the "ground truth" for understanding environments and processes of the Earth's past. Their utility resides not only in a plan-view portrayal of surface geology, but in the geometrical information they contain that allows projection of surface geology to the subsurface, or into regions where surface control is lacking. Understanding this predictive capacity and being able to read and truly appreciate a geological map's three-dimensional character are among the most unique and important skills a geologist masters. These same skills are unfortunately among the most difficult for students to learn.

  4. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  5. Building a viable decollement geometry for the Central Nepal Himalaya through integrating surface geology, thermochronology and data from the 2015 Gorkha Earthquake

    Science.gov (United States)

    Ghoshal, S.; McQuarrie, N.; Robinson, D. M.; Olree, E.; Valentino, C.; Olsen, J.

    2017-12-01

    Recent field mapping in the Central Himalaya revealed a marked change in the location and orientation of exposed Greater Himalayan rocks around the epicenter of the April 2015 Gorkha earthquake, arguing for a lateral structure in the Main Himalayan Thrust (MHT). The earthquake provided new insight into the geometry of the MHT, but left the position and depth of the mid-crustal ramp in dispute. Combining new field data with existing thermochronometric data from the region emphasizes that both the mapped geology and young cooling ages step abruptly southward from east to west, immediately adjacent to the earthquake epicenter. The distribution of cooling ages is strongly influenced by the location of ramps in the decollement surface, as the vertical component of uplift concentrates exhumation over the ramp, producing the youngest ages there. We propose that the existence and location of frontal and lateral ramps can be evaluated using the regional distribution of thermochronometric ages. Sequentially deformed cross-sections present a model of how structurally induced uplift varies in time and space, as well as a predicted geometry of the active, modern fault. We created new balanced cross-sections, constrained by surface geology and the proposed decollement geometries. For an accurate representation of the subsurface, the geometries must reproduce cooling ages measured at the surface. Each cross section was sequentially deformed, allowing for flexure and erosion. The resulting displacement field was used to predict cooling ages for muscovite 40Ar/39Ar, zircon (U-Th)/He, and apatite fission-track, using the thermokinematic model Pecube. The different closure temperatures for these systems allow them to represent different times and locations of exhumation driven by evolving fault geometries. The modeled cooling ages are the cumulative effect of the entire deformational sequence. However, the ages are particularly sensitive to the modern active decollement fault

  6. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  7. Planetary Geophysics and Tectonics

    Science.gov (United States)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  8. Non-planetary Science from Planetary Missions

    Science.gov (United States)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or

  9. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block

  10. Planetary nebulae and the interstellar magnetic field

    International Nuclear Information System (INIS)

    Heiligman, G.M.

    1980-01-01

    Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)

  11. Mission Implementation Constraints on Planetary Muon Radiography

    Science.gov (United States)

    Jones, Cathleen E.; Kedar, Sharon; Naudet, Charles; Webb, Frank

    2011-01-01

    Cost: Use heritage hardware, especially use a tested landing system to reduce cost (Phoenix or MSL EDL stage). The sky crane technology delivers higher mass to the surface and enables reaching targets at higher elevation, but at a higher mission cost. Rover vs. Stationary Lander: Rover-mounted instrument enables tomography, but the increased weight of the rover reduces the allowable payload weight. Mass is the critical design constraint for an instrument for a planetary mission. Many factors that are minor factors or do not enter into design considerations for terrestrial operation are important for a planetary application. (Landing site, diurnal temperature variation, instrument portability, shock/vibration)

  12. Planetary Image Geometry Library

    Science.gov (United States)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  13. The Role of Geologic Mapping in NASA PDSI Planning

    Science.gov (United States)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  14. Airships for Planetary Exploration

    Science.gov (United States)

    Colozza, Anthony

    2004-01-01

    The feasibility of utilizing an airship for planetary atmospheric exploration was assessed. The environmental conditions of the planets and moons within our solar system were evaluated to determine their applicability for airship flight. A station-keeping mission of 50 days in length was used as the baseline mission. Airship sizing was performed utilizing both solar power and isotope power to meet the baseline mission goal at the selected planetary location. The results show that an isotope-powered airship is feasible within the lower atmosphere of Venus and Saturn s moon Titan.

  15. Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers

    DEFF Research Database (Denmark)

    Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.

    2014-01-01

    current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay...... disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...

  16. Fourier transform spectroscopy for future planetary missions

    Science.gov (United States)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  17. SPEX: the Spectropolarimeter for Planetary Exploration

    Science.gov (United States)

    Rietjens, J. H. H.; Snik, F.; Stam, D. M.; Smit, J. M.; van Harten, G.; Keller, C. U.; Verlaan, A. L.; Laan, E. C.; ter Horst, R.; Navarro, R.; Wielinga, K.; Moon, S. G.; Voors, R.

    2017-11-01

    We present SPEX, the Spectropolarimeter for Planetary Exploration, which is a compact, robust and low-mass spectropolarimeter designed to operate from an orbiting or in situ platform. Its purpose is to simultaneously measure the radiance and the state (degree and angle) of linear polarization of sunlight that has been scattered in a planetary atmosphere and/or reflected by a planetary surface with high accuracy. The degree of linear polarization is extremely sensitive to the microphysical properties of atmospheric or surface particles (such as size, shape, and composition), and to the vertical distribution of atmospheric particles, such as cloud top altitudes. Measurements as those performed by SPEX are therefore crucial and often the only tool for disentangling the many parameters that describe planetary atmospheres and surfaces. SPEX uses a novel, passive method for its radiance and polarization observations that is based on a carefully selected combination of polarization optics. This method, called spectral modulation, is the modulation of the radiance spectrum in both amplitude and phase by the degree and angle of linear polarization, respectively. The polarization optics consists of an achromatic quarter-wave retarder, an athermal multiple-order retarder, and a polarizing beam splitter. We will show first results obtained with the recently developed prototype of the SPEX instrument, and present a performance analysis based on a dedicated vector radiative transport model together with a recently developed SPEX instrument simulator.

  18. Influence of the geologic and geomorphologic characteristics and of crab burrows on the interrelation between surface water and groundwater in an estuarine coastal wetland

    Science.gov (United States)

    Carol, Eleonora S.; Kruse, Eduardo E.; Pousa, Jorge L.

    2011-06-01

    SummaryThe interrelation between surface water and groundwater in intertidal flats is often studied through mathematical models. In many cases these models need to be supported by an integral analysis of the geologic, geomorphologic, hydrologic and biological characteristics of the environment that are to be obtained from field surveys. The marshy environment of the River Ajo in the Samborombon Bay wetland, Argentina, is a typical example of an estuarine coastal zone. Geologic and geomorphologic surveys were carried out, as well as measurements of surface water and groundwater level changes as a response of the aquifer to tidal forcing. The banks of the River Ajo are either scarped with storm flats, or mildly sloped with intertidal flats and numerous crab burrows. Sediments are mainly silty-clayey with low permeability, and lie over silty-sandy layers. At the erosion scarps the tidal wave enters the aquifer as a sub-horizontal flow through the pore space of the sediments. The tidal range in the aquifer depends on the lithological characteristics of the sediments and on the side changes of their hydraulic conductivity. The rise of the water table at high water and its subsequent fall are nearly sinusoidal, with a period similar to that of the tide at the river. At the intertidal flats, instead, the tidal wave enters the aquifer mainly as a sub-vertical flow through the crab burrows. As the crab burrows are not interconnected, they are not distinct pathways for preferential flow. Therefore, the groundwater flux into the river is very slow during low water, and the recovery of the water table takes a long time. The tidal influence upon the water table on both kinds of banks affects only a narrow strip of the aquifer. Not only are the characteristics of the marshy environment of the River Ajo representative of most of the Samborombon Bay wetland; they can also be extended to other similar coastal wetlands to help preserve these invaluable environments.

  19. Developing a Relationship Between LIBS Ablation and Pit Volume for In Situ Dating of Geologic Samples

    Science.gov (United States)

    Devismes, D.; Cohen, B. A.; Gillot, P.-Y.

    2015-01-01

    In planetary exploration, in situ absolute geochronology is an important measurement. Thus far, on Mars, the age of the surface has largely been determined by crater density counting, which gives relative ages. These ages can have significant uncertainty as they depend on many poorly constrained parameters. More than that, the curves must be tied to absolute ages to relate geologic timescales on Mars to the rest of the solar system. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible (Reference Farley here) and should be strongly encouraged for future flight.

  20. Geologic investigations of Australian earthquakes: Paleoseismicity and the recurrence of surface faulting in the stable regions of continents

    Science.gov (United States)

    Machette, Michael; Crone, Anthony

    1993-01-01

    Earthquakes that occur in the stable regions of continents are very rare compared to those that occur along plate margins, such as the San Andreas fault system of western California. Worldwide, only 11 historic earthquakes in stable continental regions are known to have produced surface ruptures. Five of these have occurred in Australia since 1968 (see map, next page).

  1. Adaptive bio-inspired navigation for planetary exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface exploration of planetary environments with current robotic technologies relies heavily on human control and power-hungry active sensors to perform even the...

  2. Beam-hardening correction by a surface fitting and phase classification by a least square support vector machine approach for tomography images of geological samples

    Science.gov (United States)

    Khan, F.; Enzmann, F.; Kersten, M.

    2015-12-01

    In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.

  3. A method and example of seismically imaging near‐surface fault zones in geologically complex areas using Vp, Vs, and their ratios

    Science.gov (United States)

    Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.

    2014-01-01

    The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000  m/s), low S‐wave velocities (∼150–600  m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.

  4. New and misclassified planetary nebulae

    International Nuclear Information System (INIS)

    Kohoutek, L.

    1978-01-01

    Since the 'Catalogue of Galactic Planetary Nebulae' 226 new objects have been classified as planetary nebulae. They are summarized in the form of designations, names, coordinates and the references to the discovery. Further 9 new objects have been added and called 'proto-planetary nebulae', but their status is still uncertain. Only 34 objects have been included in the present list of misclassified planetary nebulae although the number of doubtful cases is much larger. (Auth.)

  5. Visualization of Kepler’s laws of planetary motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-03-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler’s laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler’s laws of planetary motion to be visualized and will contribute to improving the manipulative ability of middle school students and the accessibility of classroom education.

  6. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1978-01-01

    The author's review concentrates on theoretical aspects of dust in planetary nebulae (PN). He considers the questions: how much dust is there is PN; what is its composition; what effects does it have on the ionization structure, on the dynamics of the nebula. (Auth.)

  7. On Aryabhata's Planetary Constants

    OpenAIRE

    Kak, Subhash

    2001-01-01

    This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.

  8. The planetary scientist's companion

    CERN Document Server

    Lodders, Katharina

    1998-01-01

    A comprehensive and practical book of facts and data about the Sun, planets, asteroids, comets, meteorites, the Kuiper belt and Centaur objects in our solar system. Also covered are properties of nearby stars, the interstellar medium, and extra-solar planetary systems.

  9. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  10. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  11. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  12. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  13. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  14. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  15. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  16. On the Geological History of Venus

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.

    2008-09-01

    is very similar to those identified by [7, 8]; this allows us to return to that model of regional and global stratigraphy of Venus (Figure 3). This figure is almost identical to Figure 22 in [8] and differs only in the estimate of absolute age of the boundary between the Fortunian and Guineverian periods (1.2T here vs. 1.4T in [8]). The question of the estimation of absolute ages of geologic units is difficult for Venus because the atmosphere is too massive to allow craters smaller than a few kilometers in diameter to be formed on its surface. As a result, the total number of impact craters on Venus is only about 1,000, and this makes it possible to estimate more or less reliably only the mean surface age of Venus, and less reliably the mean ages of several large globally observed geologic units such as pwr, tt or pl. Crater count techniques used for other planetary bodies, which permits absolute dating and time correlations of units occupying relatively small areas, can not be used in this way on Venus. The existing estimates of mean absolute ages of the larger Venusian geologic units, such as pwr, tt or pl [e.g., 13-15], were obtained by counting craters on areally separated outcrops of these units and normalizing sums of crater numbers by the total areas of the unit outcrops. Although the results of such an approach were consistent with stratigraphies based on geologic analysis [e.g., 13-15] this was keeping in mind the possibility that in different part of the planet absolute ages of the same units may be significantly different. Now with the completion of the global geologic mapping of Venus, such inconsistencies are excluded. Another problem in crater-count-based estimations of absolute ages of the geological formations on Venus is related to uncertainties of a number of parameters crucial for reliable modeling to transition from number of craters to millions and billions of years: e.g., 1) the meteoroid flux in the vicinity of the planet Venus, 2) the physics

  17. Structural Geology

    Science.gov (United States)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  18. Geology and physical properties of the near-surface rocks of Mesita de los Alamos, Los Alamos County, New Mexico

    Science.gov (United States)

    Purtymun, W.D.

    1967-01-01

    The surface of Mesita de los Alamos is formed by units 2b and 3 of the Tshirege Member of the Bandelier Tuff. These units dip gently east-southeastward at 3 to 6 degrees. The units are faulted near the center of the mesa by a north-south trending normal strike slip fault, that is downthrown about 14 feet to the east. The units east of the fault have moved about 14 feet south relative to the units on the west side of the fault. Units 2b and 3 have bulk density values ranging from 80 to 120 pounds per cubic foot. The moisture content of the tuff below the soil zone and near surface tuff was less than 5 percent by volume in five of the 25 test holes drilled during a foundation investigation for the Meson Facility. The temperature of the tuff in the bottom of three test holes (depth 16 to 43 feet) varied from 50?F to 54?F. Temperature variations were a function of density and amount of solar radiation.

  19. Detection of transient events on planetary bodies .

    Science.gov (United States)

    Di Martino, M.; Carbognani, A.

    Transient phenomena on planetary bodies are defined as luminous events of different intensities, which occur in planetary atmospheres and surfaces, their duration spans from about 0.1 s to some hours. They consist of meteors, bolides, lightning, impact flashes on solid surfaces, auroras, etc. So far, the study of these phenomena has been very limited, due to the lack of an ad hoc instrumentation, and their detection has been performed mainly on a serendipitous basis. Recently, ESA has issued an announcement of opportunity for the development of systems devoted to the detection of transient events in the Earth atmosphere and/or on the dark side of other planetary objects. One of such a detector as been designed and a prototype (\\textit{Smart Panoramic Optical Sensor Head}, SPOSH) has been constructed at Galileo Avionica S.p.A (Florence, Italy). For sake of clarity, in what follows, we classify the transient phenomena in ``Earth phenomena'' and ``Planetary phenomena'', even though some of them originate in a similar physical context.

  20. A working environment for digital planetary data processing and mapping using ISIS and GRASS GIS

    Science.gov (United States)

    Frigeri, A.; Hare, T.; Neteler, M.; Coradini, A.; Federico, C.; Orosei, R.

    2011-01-01

    Since the beginning of planetary exploration, mapping has been fundamental to summarize observations returned by scientific missions. Sensor-based mapping has been used to highlight specific features from the planetary surfaces by means of processing. Interpretative mapping makes use of instrumental observations to produce thematic maps that summarize observations of actual data into a specific theme. Geologic maps, for example, are thematic interpretative maps that focus on the representation of materials and processes and their relative timing. The advancements in technology of the last 30 years have allowed us to develop specialized systems where the mapping process can be made entirely in the digital domain. The spread of networked computers on a global scale allowed the rapid propagation of software and digital data such that every researcher can now access digital mapping facilities on his desktop. The efforts to maintain planetary missions data accessible to the scientific community have led to the creation of standardized digital archives that facilitate the access to different datasets by software capable of processing these data from the raw level to the map projected one. Geographic Information Systems (GIS) have been developed to optimize the storage, the analysis, and the retrieval of spatially referenced Earth based environmental geodata; since the last decade these computer programs have become popular among the planetary science community, and recent mission data start to be distributed in formats compatible with these systems. Among all the systems developed for the analysis of planetary and spatially referenced data, we have created a working environment combining two software suites that have similar characteristics in their modular design, their development history, their policy of distribution and their support system. The first, the Integrated Software for Imagers and Spectrometers (ISIS) developed by the United States Geological Survey

  1. UNIFIED REPRESENTATION FOR COLLABORATIVE VISUALIZATION OF PLANETARY TERRAIN DATA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to apply to planetary terrain mapping an alternative, multiresolution method, subdivision surfaces (subdivs), in place of conventional digital elevation...

  2. High Fidelity Modeling of Plume-Induced Soil Erosion During Lunar and Planetary Landing

    Data.gov (United States)

    National Aeronautics and Space Administration — During lunar and planetary landings, rocket plumes interact with the surface, ejecting soil and other particles into the surrounding environment. These particles,...

  3. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    Science.gov (United States)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  4. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  5. Planetary seismology and interiors

    Science.gov (United States)

    Toksoz, M. N.

    1979-01-01

    This report briefly summarizes knowledge gained in the area of planetary seismology in the period 1969-1979. Attention is given to the seismic instruments, the seismic environment (noise, characteristics of seismic wave propagation, etc.), and the seismicity of the moon and Mars as determined by the Apollo missions and Viking Lander experiments, respectively. The models of internal structures of the terrestrial planets are discussed, with the earth used for reference.

  6. Galactic planetary science.

    Science.gov (United States)

    Tinetti, Giovanna

    2014-04-28

    Planetary science beyond the boundaries of our Solar System is today in its infancy. Until a couple of decades ago, the detailed investigation of the planetary properties was restricted to objects orbiting inside the Kuiper Belt. Today, we cannot ignore that the number of known planets has increased by two orders of magnitude nor that these planets resemble anything but the objects present in our own Solar System. Whether this fact is the result of a selection bias induced by the kind of techniques used to discover new planets--mainly radial velocity and transit--or simply the proof that the Solar System is a rarity in the Milky Way, we do not know yet. What is clear, though, is that the Solar System has failed to be the paradigm not only in our Galaxy but even 'just' in the solar neighbourhood. This finding, although unsettling, forces us to reconsider our knowledge of planets under a different light and perhaps question a few of the theoretical pillars on which we base our current 'understanding'. The next decade will be critical to advance in what we should perhaps call Galactic planetary science. In this paper, I review highlights and pitfalls of our current knowledge of this topic and elaborate on how this knowledge might arguably evolve in the next decade. More critically, I identify what should be the mandatory scientific and technical steps to be taken in this fascinating journey of remote exploration of planets in our Galaxy.

  7. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  8. EFFECT OF TOPOGRAPHIC AND GEOLOGIC HETEROGENEITIES ...

    African Journals Online (AJOL)

    Geologic heterogeneities and topographic variations in relation to aquifer distribution ad occurrence in Akwa Ibom State have been assessed based on geologic and geophysical studies sixty-six sounding points together with electric log responses of representative wells together with surface geologic data have been ...

  9. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  10. Geology Fulbrights

    Science.gov (United States)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  11. Synthesis of thirty years of surface water quality and aquatic biota data in Shenandoah National Park: Collaboration between the US Geological Survey and the National Park Service

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.; Wofford, John E.B.; Schaberl, James P.

    2014-01-01

    The eastern United States has been the recipient of acidic atmospheric deposition (hereinafter, “acid rain”) for many decades. Deleterious effects of acid rain on natural resources have been well documented for surface water (e.g., Likens et al. 1996; Stoddard et al. 2001), soils (Bailey et al. 2005), forest health (Long et al. 2009), and habitat suitability for stream biota (Baker et al. 1993). Shenandoah National Park (SNP) is located in northern and central Virginia and consists of a long, narrow strip of land straddling the Blue Ridge Mountains (Figure 1). The park’s elevated topography and location downwind of the Ohio River valley, where many acidic emissions to the atmosphere are generated (NSTC 2005), have made it a target for acid rain. Characterizing the link between air quality and water quality as related to acid rain, contaminants, soil conditions, and forest health is a high priority for research and monitoring in SNP. The US Geological Survey (USGS) and SNP have had a long history of collaboration on documenting acid rain effects on the park’s natural resources, starting in 1985 and continuing to the present (Lynch and Dise 1985; Rice et al. 2001, 2004, 2005, 2007; Deviney et al. 2006, 2012; Jastram et al. 2013).

  12. Mass Wasting In Planetary Environments: Implications For Seismicity

    Science.gov (United States)

    Weber, R. C.; Nahm, A. L.; Schmerr, N.

    2015-01-01

    On Earth, mass wasting events such as rock falls and landslides are well known conse-quences of seismic activity. Through a variety of re-mote sensing techniques, tectonic faults have been pos-itively identified on all four of the inner planets, Earth's Moon, several outer planet satellites, and aster-oids. High-resolution imaging has furthermore ena-bled positive identification of mass wasting events on many of these bodies. On Mars, it has been suggested that fallen boulders may be indicative of pale-omarsquakes. On the Moon, meteor impacts and moonquakes have likewise been suggested as potential triggering mechanisms for mass wasting. Indeed, we know from the Apollo era that the Moon experienc-es a wide variety of seismicity. Seismicity estimates play an important role in creat-ing regional geological characterizations, which are useful not only for understanding a planet's formation and evolution, but also of key importance to site selec-tion for landed missions. Here we investigate the re-gional effects of seismicity in planetary environments with the goal of determining whether surface features such as landslides and boulder trails on the Moon, Mars, and Mercury could be triggered by fault motion. We attempt to quantify the amount of near-source ground shaking necessary to mobilize the mate-rial observed in various instances of mass wasting.

  13. Horizontal stresses induced by vertical processes in planetary lithospheres

    Science.gov (United States)

    Banerdt, W. B.

    1993-01-01

    Understanding the state of stress in the elastic lithosphere is of fundamental importance for planetary geophysics, as it is the link between the observed geologic structures on the surface and the processes which form and modify these structures. As such, it can provide valuable constraints for the difficult problem of determining interior structure and processes. On the Earth, most large scale, organized deformation can be related to lateral tectonics associated with plate dynamics; however, the tectonics on many extraterrestrial bodies (such as the Moon, Mars, and most of the outer-planet satellites) appears to be primarily vertical in nature, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. The largest stress contributions from vertical loading come from the flexure of the lithosphere, which induces both bending moments and membrane stresses. We are concerned here only with nonflexural changes in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. It is also of interest for providing a reference state of stress for interpreting stress measurements in the crust of the Earth.

  14. Horizontal stress in planetary lithospheres from vertical processes

    Science.gov (United States)

    Banerdt, W. B.

    1991-01-01

    Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.

  15. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  16. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  17. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  18. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  19. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  20. Vesta: A Geological Overview

    Science.gov (United States)

    Jaumann, R.

    2012-04-01

    Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated

  1. High-Resolution and Analytical TEM Investigation of Space Radiation Processing Effects in Primitive Solar System Materials and Airless Planetary Surface Environments

    Science.gov (United States)

    Christoffersen, R.; Rahman, Z.; Keller, L. P.; Dukes, C.; Baragiola, R.

    2012-01-01

    Energetic ions present in the diverse plasma conditions in space play a significant role in the formation and modification of solid phases found in environments ranging from the interstellar medium (ISM) to the surfaces of airless bodies such as asteroids and the Moon. These effects are often referred to as space radiation processing, a term that encompasses changes induced in natural space-exposed materials that may be only structural, such as in radiation-induced amorphization, or may involve ion-induced nanoscale to microscale chemical changes, as occurs in preferential sputtering and ion-beam mixing. Ion sputtering in general may also be responsible for partial or complete erosion of space exposed materials, in some instances possibly bringing about the complete destruction of free-floating solid grains in the ISM or in circumstellar nebular dust clouds. We report here on two examples of the application of high-resolution and analytical transmission electron microscopy (TEM) to problems in space radiation processing. The first problem concerns the role of space radiation processing in controlling the overall fate of Fe sulfides as hosts for sulfur in the ISM. The second problem concerns the known, but as yet poorly quantified, role of space radiation processing in lunar space weathering.

  2. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    Science.gov (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  3. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    Science.gov (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  4. Interdisciplinary Research Produces Results in the Understanding of Planetary Dunes

    Science.gov (United States)

    Titus, Timothy N.; Hayward, Rosalyn Kay; Bourke, Mary C.

    2010-08-01

    Second International Planetary Dunes Workshop: Planetary Analogs—Integrating Models, Remote Sensing, and Field Data; Alamosa, Colorado, 18-21 May 2010; Dunes and other eolian bed forms are prominent on several planetary bodies in our solar system. Despite 4 decades of study, many questions remain regarding the composition, age, and origins of these features, as well as the climatic conditions under which they formed. Recently acquired data from orbiters and rovers, together with terrestrial analogs and numerical models, are providing new insights into Martian sand dunes, as well as eolian bed forms on other terrestrial planetary bodies (e.g., Titan). As a means of bringing together terrestrial and planetary researchers from diverse backgrounds with the goal of fostering collaborative interdisciplinary research, the U.S. Geological Survey (USGS), the Carl Sagan Center for the Study of Life in the Universe, the Desert Research Institute, and the U.S. National Park Service held a workshop in Colorado. The small group setting facilitated intensive discussion of problems and issues associated with eolian processes on Earth, Mars, and Titan.

  5. Changes on Titan's surface

    Science.gov (United States)

    Solomonidou, A.; Lopes, R. M. C.; Coustenis, A.; Malaska, M. J.; Sotin, C.; Rodriguez, S.; Janssen, M. A.; Drossart, P.; Lawrence, K. J.; Matsoukas, C. K.; Hirtzig, M.; Le Mouelic, S.; Jaumann, R.; Brown, R. H.; Bratsolis, E.

    2015-12-01

    Cassini's Visual and Infrared Mapping Spectrometer (VIMS) and the Titan Radar Mapper have investigated Titan's surface since 2004, unveiling a complex, dynamic and Earth-like surface. Understanding the distribution and interplay of geologic processes is important for constraining models of its interior, surface-atmospheric interactions, and climate evolution. We focus on understanding the origin of the major geomorphological units identified by Lopes et al. (2010, 2015) [1,2], Malaska et al. (2015) [3] and regions we studied in Solomonidou et al. (2014; 2015) [4,5]. Here, we investigate the nature of: Undifferentiated Plains, Hummocky/Mountainous terrains, candidate cryovolcanic sites, Labyrinth, and Dunes in terms of surface albedo behavior and spectral evolution with time to identify possible changes. Using a radiative transfer code, we find that temporal variations of surface albedo occur for some areas. Tui Regio and Sotra Patera, both candidate cryovolcanic regions, change with time, becoming darker and brighter respectively in surface albedo. In contrast, we find that the Undifferentiated Plains and the suggested evaporitic areas [6] in the equatorial regions do not present any significant changes. We are able to report the differences and similarities among the various regions and provide constraints on their chemical composition and specific processes of origin. Our results support the hypothesis that both endogenic and exogenic processes have played important roles in shaping Titan's geologic evolution. Such a variety of geologic processes and their relationship to the methane cycle make Titan important for astrobiology and habitability studies and particularly significant in solar system studies. [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Lopes, R.M.C., et al.: JGR, 118, 416-435, 2013; [3] Malaska, M., et al : Icarus, submitted, 2015;[4] Solomonidou et al.: JGR, 119, 1729-1747, 2014; [5] Solomonidou, A., et al.: In press, 2015; [6] Barnes

  6. Application of numerical methods to planetary radiowave scattering

    Science.gov (United States)

    Simpson, Richard A.; Tyler, G. Leonard

    1987-01-01

    Existing numerical techniques for the solution of scattering problems were investigated to determine those which might be applicable to planetary surface studies, with the goal of improving the interpretation of radar data from Venus, Mars, the Moon, and icy satellites. The general characteristics of the models are described along with computational concerns. In particular, the Numerical Electrogmatics Code (NEC) developed at the Lawrence Livermore Laboratory is discussed. Though not developed for random rough surfaces, the NEC contains elements which may be generalized and which could be valuable in the study of scattering by planetary surfaces.

  7. Documentation of a restart option for the U.S. Geological Survey coupled Groundwater and Surface-Water Flow (GSFLOW) model

    Science.gov (United States)

    Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.

    2015-10-02

    A new option to write and read antecedent conditions (also referred to as initial conditions) has been developed for the U.S. Geological Survey (USGS) Groundwater and Surface-Water Flow (GSFLOW) numerical, hydrologic simulation code. GSFLOW is an integration of the USGS Precipitation-Runoff Modeling System (PRMS) and USGS Modular Groundwater-Flow Model (MODFLOW), and provides three simulation modes: MODFLOW-only, PRMS-only, and GSFLOW (or coupled). The new capability, referred to as the restart option, can be used for all three simulation modes, such that the results from a pair (or set) of spin-up and restart simulations are nearly identical to results produced from a continuous simulation for the same time period. The restart option writes all results to files at the end of a spin-up simulation that are required to initialize a subsequent restart simulation. Previous versions of GSFLOW have had some capability to save model results for use as antecedent condiitions in subsequent simulations; however, the existing capabilities were not comprehensive or easy to use. The new restart option supersedes the previous methods. The restart option was developed in collaboration with the National Oceanic and Atmospheric Administration, National Weather Service as part of the Integrated Water Resources Science and Services Partnership. The primary focus for the development of the restart option was to support medium-range (7- to 14-day) forecasts of low streamflow conditions made by the National Weather Service for critical water-supply basins in which groundwater plays an important role.

  8. Planetary Sciences and Exploration Programme

    Indian Academy of Sciences (India)

    The Indian Space Research Organisation (ISRO) has taken a number of initiatives to plan for a National. Research Programme in the area of planetary science and exploration. This announcement solicits proposals in the field of planetary science. Universities, research and educational institutions may submit proposals ...

  9. The U.S. Geological Survey Astrogeology Science Center

    Science.gov (United States)

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  10. Relation between radius and expansion velocity in planetary nebulae

    International Nuclear Information System (INIS)

    Chu, Y.H.; Kwitter, K.B.; Kaler, J.B.

    1984-01-01

    The expansion velocity-radius (R-V) relation for planetary nebulae is examined using the existing measurements of expansion velocities and recent calculations of radii. It is found that some of the previously alleged R-V relations for PN are not convincingly established. The scatter in the R-V plots may be due largely to stratification of ions in individual nebulae and to heterogeneity in the planetary nebula population. In addition, from new echelle/CCD observations of planetary nebulae, it is found that spatial information is essential in deriving the internal kinematic properties. Future investigations of R-V relations should be pursued separately for groups of planetaries with similar physical properties, and they should employ observations of appropriate low excitation lines in order to measure the expansion velocity at the surface of the nebula. 26 references

  11. Ultra-Compact Raman Spectrometer for Planetary Explorations

    Science.gov (United States)

    Davis, Derek; Hornef, James; Lucas, John; Elsayed-Ali, Hani; Abedin, M. Nurul

    2016-01-01

    To develop a compact Raman spectroscopy system with features that will make it suitable for future space missions which require surface landing. Specifically, this system will be appropriate for any mission in which planetary surface samples need to be measured and analyzed.

  12. Downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere Cálculo do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea

    Directory of Open Access Journals (Sweden)

    Marcos Pimenta de Abreu

    2008-03-01

    Full Text Available We describe an efficient computational scheme for downward surface flux computations in a vertically inhomogeneous grey planetary atmosphere for different values of solar zenith angle. We start with the basic equations of a recently developed discrete ordinates spectral nodal method, and we derive suitable bidirectional functions whose diffuse components do not depend on the solar zenith angle. We then make use of these bidirectional functions to construct an efficient scheme for computing the downward surface fluxes in a given model atmosphere for a number of solar zenith angles. We illustrate the merit of the computational scheme described here with downward surface flux computations in a three-layer grey model atmosphere for four values of solar zenith angle, and we conclude this article with general remarks and directions for future work.Este artigo descreve um esquema computacional baseado em desenvolvimentos recentes do método espectro-nodal de ordenadas discretas para o cálculo eficiente do fluxo radiativo superficial em uma atmosfera planetária cinza e verticalmente não-homogênea para valores distintos do ângulo zenital solar. A partir das equações básicas do método espectro-nodal de ordenadas discretas, são obtidas funções bidirecionais discretas cujas componentes difusas não dependem do ângulo zenital solar. Com essas funções bidirecionais discretas, é construído um esquema computacional para calcular eficientemente fluxos radiativos superficiais em uma dada atmosfera-modelo para vários ângulos zenitais solares. O mérito computacional do esquema resultante é ilustrado com resultados numéricos para os fluxos radiativos superficiais em uma atmosfera-modelo cinza com três camadas para quatro valores distintos do ângulo zenital solar. Este artigo é finalizado com observações gerais e indicações de trabalhos futuros.

  13. Technology under Planetary Protection Research (PPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Planetary protection involves preventing biological contamination on both outbound and sample return missions to other planetary bodies. Numerous areas of research...

  14. Solar planetary systems stardust to terrestrial and extraterrestrial planetary sciences

    CERN Document Server

    Bhattacharya, Asit B

    2017-01-01

    The authors have put forth great efforts in gathering present day knowledge about different objects within our solar system and universe. This book features the most current information on the subject with information acquired from noted scientists in this area. The main objective is to convey the importance of the subject and provide detailed information on the physical makeup of our planetary system and technologies used for research. Information on educational projects has also been included in the Radio Astronomy chapters.This information is a real plus for students and educators considering a career in Planetary Science or for increasing their knowledge about our planetary system

  15. The geologic records of dust in the Quaternary

    Science.gov (United States)

    Muhs, Daniel R.

    2013-01-01

    Study of geologic records of dust composition, sources and deposition rates is important for understanding the role of dust in the overall planetary radiation balance, fertilization of organisms in the world’s oceans, nutrient additions to the terrestrial biosphere and soils, and for paleoclimatic reconstructions. Both glacial and non-glacial processes produce fine-grained particles that can be transported by the wind. Geologic records of dust flux occur in a number of depositional archives for sediments: (1) loess deposits; (2) lake sediments; (3) soils; (4) deep-ocean basins; and (5) ice sheets and smaller glaciers. These archives have several characteristics that make them highly suitable for understanding the dynamics of dust entrainment, transport, and deposition. First, they are often distributed over wide geographic areas, which permits reconstruction of spatial variation of dust flux. Second, a number of dating methods can be applied to sediment archives, which allows identification of specific periods of greater or lesser dust flux. Third, aeolian sediment particle size and composition can be determined so that dust source areas can be ascertained and dust transport pathways can be reconstructed. Over much of the Earth’s surface, dust deposition rates were greater during the last glacial period than during the present interglacial period. A dustier Earth during glacial periods is likely due to increased source areas, greater aridity, less vegetation, lower soil moisture, possibly stronger winds, a decreased intensity of the hydrologic cycle, and greater production of dust-sized particles from expanded ice sheets and glaciers.

  16. Testing geoscience data visualization systems for geological mapping and training

    Science.gov (United States)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed

  17. Lay and Expert Perceptions of Planetary Protection

    Science.gov (United States)

    Race, Margaret S.; MacGregor, Donald G.; Slovic, Paul

    2000-01-01

    As space scientists and engineers plan new missions to Mars and other planets in our solar system, they will face critical questions about the potential for biological contamination of planetary surfaces. In a society that places ever-increasing importance on the role of public involvement in science and technology policy, questions about risks of biological contamination will be examined and debated in the media, and will lead to the formation of public perceptions of planetary-contamination risks. These perceptions will, over time, form an important input to the development of space policy. Previous research in public and expert perceptions of technological risks and hazards has shown that many of the problems faced by risk-management organizations are the result of differing perceptions of risk (and risk management) between the general public and scientific and technical experts. These differences manifest themselves both as disagreements about the definition (and level) of risk associated with a scientific, technological or industrial enterprise, and as distrust about the ability of risk-management organizations (both public and private) to adequately protect people's health and safety. This report presents the results of a set of survey studies designed to reveal perceptions of planetary exploration and protection from a wide range of respondents, including both members of the general public and experts in the life sciences. The potential value of this research lies in what it reveals about perceptions of risk and benefit that could improve risk-management policies and practices. For example, efforts to communicate with the public about Mars sample return missions could benefit from an understanding of the specific concerns that nonscientists have about such a mission by suggesting areas of potential improvement in public education and information. Assessment of both public and expert perceptions of risk can also be used to provide an advanced signal of

  18. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  19. Two-Dimensional Planetary Surface Landers

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new landing approach that significantly reduces development time and obviates the most complicated, most expensive and highest-risk phase of...

  20. Annual review of earth and planetary sciences. Volume 16

    Science.gov (United States)

    Wetherill, George W.; Albee, Arden L.; Stehli, Francis G.

    Various papers on earth and planetary science topics are presented. The subjects addressed include: role and status of earth science field work; phase relations of prealuminous granitic rocks and their petrogenetic implications; chondritic meteorites and the solar nebula; volcanic winters; mass wasting on continental margins; earthquake ground motions; ore deposits as guides to geologic history of the earth; geology of high-level nuclear waste disposal; and tectonic evolution of the Caribbean. Also discussed are: the earth's rotation; the geophysics of a restless caldera (Long Valley, California); observations of cometary nuclei; geology of Venus; seismic stratigraphy; in situ-produced cosmogenic isotopes in terrestrial rocks; time variations of the earth's magnetic field; deep slabs, geochemical heterogeneity, and the large-scale structure of mantle convection; early proterozoic assembly and growth of Laurentia; concepts and methods of high-resolution event stratigraphy.

  1. Simulating dynamics of (delta){sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of (delta){sup 13}C and thus the global (delta){sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to (delta){sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of (delta){sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The (delta){sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on (delta){sup 13}C of CO{sub 2} dynamics in PBL

  2. Simulating dynamics of {delta}{sup 13}C of CO{sub 2} in the planetary boundary layer a boreal forest region: covariation between surface fluxes and atmospheric mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baozhang; Chen, Jing M. [Univ. of Toronto, ON (Canada). Dept. of Geography; Tans, Pieter P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Earth System Research Lab.; Huang, Lin [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate

    2006-11-15

    Stable isotopes of CO{sub 2} contain unique information on the biological and physical processes that exchange CO{sub 2} between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of {delta}{sup 13}C and thus the global {delta}{sup 13}C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of {sup 13}CO{sub 2} in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49 deg 52 min 29.9 sec N, 81 deg 34 min 12.3 sec W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to {delta}{sup 13}C on diurnal and seasonal scales. The simulated annual mean vertical gradient of {delta}{sup 13}C in the PBL in the vicinity of the FRD tower was about 0.025% in 1999. The {delta}{sup 13}C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO{sub 2}. Most of the vertical gradient (96.5% {+-}) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%{+-}) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on {delta}{sup 13}C of CO{sub 2} dynamics in PBL

  3. Degassing of reduced carbon from planetary basalts.

    Science.gov (United States)

    Wetzel, Diane T; Rutherford, Malcolm J; Jacobsen, Steven D; Hauri, Erik H; Saal, Alberto E

    2013-05-14

    Degassing of planetary interiors through surface volcanism plays an important role in the evolution of planetary bodies and atmospheres. On Earth, carbon dioxide and water are the primary volatile species in magmas. However, little is known about the speciation and degassing of carbon in magmas formed on other planets (i.e., Moon, Mars, Mercury), where the mantle oxidation state [oxygen fugacity (fO2)] is different from that of the Earth. Using experiments on a lunar basalt composition, we confirm that carbon dissolves as carbonate at an fO2 higher than -0.55 relative to the iron wustite oxygen buffer (IW-0.55), whereas at a lower fO2, we discover that carbon is present mainly as iron pentacarbonyl and in smaller amounts as methane in the melt. The transition of carbon speciation in mantle-derived melts at fO2 less than IW-0.55 is associated with a decrease in carbon solubility by a factor of 2. Thus, the fO2 controls carbon speciation and solubility in mantle-derived melts even more than previous data indicate, and the degassing of reduced carbon from Fe-rich basalts on planetary bodies would produce methane-bearing, CO-rich early atmospheres with a strong greenhouse potential.

  4. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  5. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  6. Planetary Protection Constraints For Planetary Exploration and Exobiology

    Science.gov (United States)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  7. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  8. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  9. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Department of Resources — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  10. Kinematics of galactic planetary nebulae

    International Nuclear Information System (INIS)

    Kiosa, M.I.; Khromov, G.S.

    1979-01-01

    The classical method of determining the components of the solar motion relative to the centroid of the system of planetary nebulae with known radial velocities is investigated. It is shown that this method is insensitive to random errors in the radial velocities and that low accuracy in determining the coordinates of the solar apex and motion results from the insufficient number of planetaries with measured radial velocities. The planetary nebulae are found not to satisfy well the law of differential galactic rotation with circular orbits. This is attributed to the elongation of their galactic orbits. A method for obtaining the statistical parallax of planetary nebulae is considered, and the parallax calculated from the tau components of their proper motion is shown to be the most reliable

  11. In Situ Planetary Geochronology Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — This project's purpose was to determine whether a Pulsed Neutron Generator (PNG) could be used in an instrument that could perform in situ age dating of planetary...

  12. Can planetary nebulae rotate

    International Nuclear Information System (INIS)

    Grinin, V.P.

    1982-01-01

    It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

  13. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  14. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  15. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  16. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  17. NASA Planetary Visualization Tool

    Science.gov (United States)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  18. The OpenPlanetary initiative

    Science.gov (United States)

    Manaud, Nicolas; Rossi, Angelo Pio; Hare, Trent; Aye, Michael; Galluzzi, Valentina; van Gasselt, Stephan; Martinez, Santa; McAuliffe, Jonathan; Million, Chase; Nass, Andrea; Zinzi, Angelo

    2016-10-01

    "Open" has become attached to several concepts: science, data, and software are some of the most obvious. It is already common practice within the planetary science community to share spacecraft missions data freely and openly [1]. However, this is not historically the case for software tools, source code, and derived data sets, which are often reproduced independently by multiple individuals and groups. Sharing data, tools and overall knowledge would increase scientific return and benefits [e.g. 2], and recent projects and initiatives are helping toward this goal [e.g. 3,4,5,6].OpenPlanetary is a bottom-up initiative to address the need of the planetary science community for sharing ideas and collaborating on common planetary research and data analysis problems, new challenges, and opportunities. It started from an initial participants effort to stay connected and share information related to and beyond the ESA's first Planetary GIS Workshop [7]. It then continued during the 2nd (US) Planetary Data Workshop [8], and aggregated more people.Our objective is to build an online distributed framework enabling open collaborations within the planetary science community. We aim to co-create, curate and publish resource materials and data sets; to organise online events, to support community-based projects development; and to offer a real-time communication channel at and between conferences and workshops.We will present our current framework and resources, developing projects and ideas, and solicit for feedback and participation. OpenPlanetary is intended for research and education professionals: scientists, engineers, designers, teachers and students, as well as the general public that includes enthusiasts and citizen scientists. All are welcome to join and contribute at openplanetary.co[1] International Planetary Data Alliance, planetarydata.org. [2] Nosek et al (2015), dx.doi.org/10.1126/science.aab2374. [3] Erard S. et al. (2016), EGU2016-17527. [4] Proposal for a PDS

  19. Planetary Transmission Diagnostics

    Science.gov (United States)

    Lewicki, David G. (Technical Monitor); Samuel, Paul D.; Conroy, Joseph K.; Pines, Darryll J.

    2004-01-01

    This report presents a methodology for detecting and diagnosing gear faults in the planetary stage of a helicopter transmission. This diagnostic technique is based on the constrained adaptive lifting algorithm. The lifting scheme, developed by Wim Sweldens of Bell Labs, is a time domain, prediction-error realization of the wavelet transform that allows for greater flexibility in the construction of wavelet bases. Classic lifting analyzes a given signal using wavelets derived from a single fundamental basis function. A number of researchers have proposed techniques for adding adaptivity to the lifting scheme, allowing the transform to choose from a set of fundamental bases the basis that best fits the signal. This characteristic is desirable for gear diagnostics as it allows the technique to tailor itself to a specific transmission by selecting a set of wavelets that best represent vibration signals obtained while the gearbox is operating under healthy-state conditions. However, constraints on certain basis characteristics are necessary to enhance the detection of local wave-form changes caused by certain types of gear damage. The proposed methodology analyzes individual tooth-mesh waveforms from a healthy-state gearbox vibration signal that was generated using the vibration separation (synchronous signal-averaging) algorithm. Each waveform is separated into analysis domains using zeros of its slope and curvature. The bases selected in each analysis domain are chosen to minimize the prediction error, and constrained to have the same-sign local slope and curvature as the original signal. The resulting set of bases is used to analyze future-state vibration signals and the lifting prediction error is inspected. The constraints allow the transform to effectively adapt to global amplitude changes, yielding small prediction errors. However, local wave-form changes associated with certain types of gear damage are poorly adapted, causing a significant change in the

  20. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  1. Adaptive multisensor fusion for planetary exploration rovers

    Science.gov (United States)

    Collin, Marie-France; Kumar, Krishen; Pampagnin, Luc-Henri

    1992-01-01

    The purpose of the adaptive multisensor fusion system currently being designed at NASA/Johnson Space Center is to provide a robotic rover with assured vision and safe navigation capabilities during robotic missions on planetary surfaces. Our approach consists of using multispectral sensing devices ranging from visible to microwave wavelengths to fulfill the needs of perception for space robotics. Based on the illumination conditions and the sensors capabilities knowledge, the designed perception system should automatically select the best subset of sensors and their sensing modalities that will allow the perception and interpretation of the environment. Then, based on reflectance and emittance theoretical models, the sensor data are fused to extract the physical and geometrical surface properties of the environment surface slope, dielectric constant, temperature and roughness. The theoretical concepts, the design and first results of the multisensor perception system are presented.

  2. Geologic mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  3. Geologic Mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; hide

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  4. Study on a Suspension of a Planetary Exploration Rover to Improve Driving Performance During Overcoming Obstacles

    Directory of Open Access Journals (Sweden)

    We-Sub Eom

    2012-12-01

    Full Text Available The planetary exploration rover executes various missions after moving to the target point in an unknown environment in the shortest distance. Such missions include the researches for geological and climatic conditions as well as the existence of water or living creatures. If there is any obstacle on the way, it is detected by such sensors as ultrasonic sensor, infrared light sensor, stereo vision, and laser ranger finder. After the obtained data is transferred to the main controller of the rover, decisions can be made to either overcome or avoid the obstacle on the way based on the operating algorithm of the rover. All the planetary exploration rovers which have been developed until now receive the information of the height or width of the obstacle from such sensors before analyzing it in order to find out whether it is possible to overcome the obstacle or not. If it is decided to be better to overcome the obstacle in terms of the operating safety and the electric consumption of the rover, it is generally made to overcome it. Therefore, for the purpose of carrying out the planetary exploration task, it is necessary to design the proper suspension system of the rover which enables it to safely overcome any obstacle on the way on the surface in any unknown environment. This study focuses on the design of the new double 4-bar linkage type of suspension system applied to the Korea Aerospace Research Institute rover (a tentatively name that is currently in the process of development by our institute in order to develop the planetary exploration rover which absolutely requires the capacity of overcoming any obstacle. Throughout this study, the negative moment which harms the capacity of the rover for overcoming an obstacle was induced through the dynamical modeling process for the rocker-bogie applied to the Mars exploration rover of the US and the improved version of rocker-bogie as well as the suggested double 4-bar linkage type of suspension

  5. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  6. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  7. Planetary skin games

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Reedy, R.C.

    1988-01-01

    An informal review of techniques for analysis of meteorites and materials from the lunar surface is presented. Attention is given to problems associated with the production rates of cosmogenic nuclides

  8. The role of biology in planetary evolution: cyanobacterial primary production in low‐oxygen Proterozoic oceans

    Science.gov (United States)

    Bryant, Donald A.; Macalady, Jennifer L.

    2016-01-01

    Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic

  9. Impact cratering – fundamental process in geoscience and planetary ...

    Indian Academy of Sciences (India)

    several planetary objects were mapped, and with the Apollo 11 landing on the Moon, Solar System- wide exploration and scientific analysis had begun. Figure 2. Heavily cratered, ancient highland terrane typ- ical for nearly 85 per cent of the Moon's surface. Photo- graph by the Apollo 16 crew on their flight back to Earth.

  10. The fragility of planetary systems

    Science.gov (United States)

    Portegies Zwart, S. F.; Jílková, Lucie

    2015-07-01

    We specify the range to which perturbations penetrate a planetesimal system. Such perturbations can originate from massive planets or from encounters with other stars. The latter can have an origin in the star cluster in which the planetary system was born, or from random encounters once the planetary system has escaped its parental cluster. The probability of a random encounter, either in a star cluster or in the Galactic field depends on the local stellar density, the velocity dispersion and the time spend in that environment. By adopting order of magnitude estimates, we argue that the majority of planetary systems born in open clusters will have a Parking zone, in which planetesimals are affected by encounters in their parental star cluster but remain unperturbed after the star has left the cluster. Objects found in this range of semimajor axis and eccentricity preserve the memory of the encounter that last affected their orbits, and they can therefore be used to reconstruct this encounter. Planetary systems born in a denser environment, such as in a globular cluster are unlikely to have a Parking zone. We further argue that some planetary systems may have a Frozen zone, in which orbits are not affected either by the more inner massive planets or by external influences. Objects discovered in this zone will have preserved information about their formation in their orbital parameters.

  11. Characterization of Near-Surface Geology and Possible Voids Using Resistivity and Electromagnetic Methods at the Gran Quivira Unit of Salinas Pueblo Missions National Monument, Central New Mexico, June 2005

    Science.gov (United States)

    Ball, Lyndsay B.; Lucius, Jeffrey E.; Land, Lewis A.; Teeple, Andrew

    2006-01-01

    At the Gran Quivira Unit of Salinas Pueblo Missions National Monument in central New Mexico, a partially excavated pueblo known as Mound 7 has recently become architecturally unstable. Historical National Park Service records indicate both natural caves and artificial tunnels may be present in the area. Knowledge of the local near-surface geology and possible locations of voids would aid in preservation of the ruins. Time-domain and frequency-domain electromagnetic as well as direct-current resistivity methods were used to characterize the electrical structure of the near-surface geology and to identify discrete electrical features that may be associated with voids. Time-domain electromagnetic soundings indicate three major electrical layers; however, correlation of these layers to geologic units was difficult because of the variability of lithologic data from existing test holes. Although resistivity forward modeling was unable to conclusively determine the presence or absence of voids in most cases, the high-resistivity values (greater than 5,000 ohm-meters) in the direct-current resistivity data indicate that voids may exist in the upper 50 meters. Underneath Mound 7, there is a possibility of large voids below a depth of 20 meters, but there is no indication of substantial voids in the upper 20 meters. Gridded lines and profiled inversions of frequency-domain electromagnetic data showed excellent correlation to resistivity features in the upper 5 meters of the direct-current resistivity data. This technique showed potential as a reconnaissance tool for detecting voids in the very near surface.

  12. Improved Data Reduction Algorithm for the Needle Probe Method Applied to In-Situ Thermal Conductivity Measurements of Lunar and Planetary Regoliths

    Science.gov (United States)

    Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P. T.

    2013-01-01

    volumetric heat capacity of the probe) can be measured and the other (the volumetric heat capacity of the regolith/stimulant) may be estimated from the surface geologic observation and temperature measurements. Therefore, overall, the new data reduction scheme would make in-situ thermal conductivity measurement more practical on planetary missions.

  13. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  14. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  15. Application of high explosion cratering data to planetary problems

    Science.gov (United States)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  16. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    Science.gov (United States)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  17. Influence of Planetary Protection Guidelines on Waste Management Operations

    Science.gov (United States)

    Hogan, John A.; Fisher, John W.; Levri, Julie A.; Wignarajah, Kanapathipi; Race, Margaret S.; Stabekis, Perry D.; Rummel, John D.

    2005-01-01

    Newly outlined missions in the Space Exploration Initiative include extended human habitation on Mars. During these missions, large amounts of waste materials will be generated in solid, liquid and gaseous form. Returning these wastes to Earth will be extremely costly, and will therefore likely remain on Mars. Untreated, these wastes are a reservoir of live/dead organisms and molecules considered to be "biomarkers" i.e., indicators of life). If released to the planetary surface, these materials can potentially confound exobiology experiments and disrupt Martian ecology indefinitely (if existent). Waste management systems must therefore be specifically designed to control release of problematic materials both during the active phase of the mission, and for any specified post-mission duration. To effectively develop waste management requirements for Mars missions, planetary protection guidelines must first be established. While previous policies for Apollo lunar missions exist, it is anticipated that the increased probability of finding evidence of life on Mars, as well as the lengthy mission durations will initially lead to more conservative planetary protection measures. To facilitate the development of overall requirements for both waste management and planetary protection for future missions, a workshop was conducted to identify how these two areas interface, and to establish a preliminary set of planetary protection guidelines that address waste management operations. This paper provides background regarding past and current planetary protection and waste management issues, and their interactions. A summary of the recommended planetary protection guidelines, anticipated ramifications and research needs for waste management system design for both forward (Mars) and backward (Earth) contamination is also provided.

  18. Report on surface geology and groundwater investigations of Mortons and Green Valley Well Fields. Final technical report, November 1980-May 1982. [Proposed WyCoalGas Project, Converse County, Wyoming; site evaluation

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The general region of investigation of this report is in the southern part of the Powder River Basin near the Town of Douglas, Wyoming. Two specific areas within this region were investigated to determine the groundwater potential with drilling and testing programs during the years 1973 to 1975. One area of investigation is located approximately 12 miles west of Douglas in T32 and 33N, R73 and 74W, and is known as the Green Valley Well Field. This area is situated in the foothills of the north end of the Laramie Range and encompasses approximately 25 square miles. In this area the Madison Formation limestone and the Flathead Formation sandstone are the aquifers of interest for groundwater production. The second area is located approximately 13 miles north of Douglas in T34 and 35N, R70 and 71W, and is known as the Mortons Well Field. This area encompasses about 30 square miles. In this area, the Lance Formation and Fox Hills Formation sandstones are the aquifers of interest. Contained within the body of this report are two geologic studies prepared by consulting geologists, Dr. Peter Huntoon and Henry Richter. These studies define the pertinent structural and groundwater geologic features in and in the vicinities of the Mortons and Green Valley Well Fields. A relatively complex structural geology was encountered in the Green Valley area. The study of the Mortons area suggests that the geology of this area is relatively uniform. Inventories of the water users in the vicinities of the two study areas are included at the back of this report in Appendix B. These inventories are comprised of water appropriations as recognized by the Wyoming State Engineer's Office. Both groundwater and surface water appropriations are inventoried within the Green Valley study area. Only groundwater appropriations are inventoried within the Mortons study area.

  19. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  20. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  1. New opportunities in planetary geomorphology: an assessment of the capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on The Exomars Trace Gas Orbiter through Image Simulation.

    Science.gov (United States)

    Tornabene, Livio Leonardo; Seelos, Frank; Pommerol, Antoine; Thomas, Nick; Caudill, Christy; Conway, Susan J.

    2017-04-01

    single-band images, or when missed by the HiRISE colour swath. Another result based on our colour analysis includes, excellent separation of ferrous- and ferric-bearing surface materials provided by band ratio colour composite images utilizing the two NIR bands of CaSSIS (3RED, 4NIR). These images will be particularly useful for associating CaSSIS colour units with spectral units defined by orbiting spectrometers (e.g., CRISM), and thereby extend spectral mapping to CaSSIS spatial scales. This will particularly be beneficial for landing sites where it is difficult to achieve continuous colour coverage with HiRISE. Our analysis shows that dune movement can be detected at the scale of CaSSIS, given a long enough baseline. Other results include resolving: 1) larger individual or sets of Recurring Slope Lineae (RSL), 2) small impacts (including ice excavators), and 3) surface changes associated with landers/rovers (NOTE: lander/rovers and their tracks are not resolvable). References: [1] Thomas N. et al. (2016), submitted to SSR. [2] Tornabene L. et al. (2017), submitted to SSR. [3] Tornabene L. et al. (2016) LPSC 47, Abstract #2695. [4] Vago J. et al. (2015) SSR, 49 518-528. [5] Cremonese G. et al. (2017) LPSC 48. [6] Seelos F. et al. (2011) AGU Fall, vol. 23, Abstract #1714. [7] Delamere A. et al. (2010), Icarus, 205, 38-52. Acknowledgements: The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no.I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona Lunar and Planetary Laboratory, and NASA are also gratefully acknowledged. The lead author also acknowledges personal Canadian

  2. OneGeology - Access to geoscience for all

    Science.gov (United States)

    Komac, Marko; Lee, Kathryn; Robida, Francois

    2014-05-01

    OneGeology is an initiative of Geological Survey Organisations (GSO) around the globe that dates back to Brighton, UK in 2007. Since then OneGeology has been a leader in developing geological online map data using a new international standard - a geological exchange language known as 'GeoSciML'. Increased use of this new language allows geological data to be shared and integrated across the planet with other organisations. One of very important goals of OneGeology was a transfer of valuable know-how to the developing world, hence shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making its structure more official, its operability more flexible and its membership more open where in addition to GSO also to other type of organisations that manage geoscientific data can join and contribute. The next stage of the OneGeology initiative will hence be focused into increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource on the rocks beneath our feet. Authoritative information on hazards and minerals will help to prevent natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale. With this new stage also renewed OneGeology objectives were defined and these are 1) to be the provider of geoscience data globally, 2) to ensure exchange of know-how and skills so all can participate, and 3) to use the global profile of 1G to increase awareness of the geosciences and their relevance among professional and general public. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscientific data and OneGeology Portal (portal.onegeology.org) is the place to find them.

  3. Planetary exploration. Chapter 7

    International Nuclear Information System (INIS)

    Hunt, G.E.

    1980-01-01

    Recent knowledge of the planets, particularly that gained through spacecraft missions, is discussed. Sections are headed: Mercury; Venus (atmospheric composition, surface properties, meteorology, atmospheric structure); Mars (atmospheric properties, meteorology, climate change, Phobos and Deimos); Jupiter (magnetosphere and environment, atmospheric properties, meteorology, ring properties, inner satellites). (U.K.)

  4. Galactic planetary nebulae and evolution of their nuclei

    International Nuclear Information System (INIS)

    Khromov, G.S.

    1980-01-01

    The galactic system of planetary nebulae is investigated using previously constructed distance scale and kinematics data. A strong effect of observational selection is established, which has the consequence that with increasing distance, ever brighter and younger objects are observed. More accurate determinations of the spatial and surface densities of the planetary nebulae system are obtained as well as a new estimate of their total number in the Galaxy, which is approximately 200,000. New estimates are also made of the masses of the nebulae, the absolute magnitudes of the nebulae and their nuclei, and other physical parameters of these objects. The spatial and kinematic characteristics of the planetary nebulae indicate that they are objects of the old type I population. It is possible that their remote ancestors are main sequence stars of the type B8-A5-F or as yet unidentified objects of the same galactic subsystem

  5. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    Energy Technology Data Exchange (ETDEWEB)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.

  6. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  7. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  8. Next Generation Gamma/Neutron Detectors for Planetary Science., Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Gamma-ray and neutron spectroscopy are well established techniques for determining the chemical composition of planetary surfaces, and small cosmic bodies such as...

  9. Geologic map of Io

    Science.gov (United States)

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis

  10. Summary and abstracts of the Planetary Data Workshop, June 2012

    Science.gov (United States)

    Gaddis, Lisa R.; Hare, Trent; Beyer, Ross

    2014-01-01

    The recent boom in the volume of digital data returned by international planetary science missions continues to both delight and confound users of those data. In just the past decade, the Planetary Data System (PDS), NASA’s official archive of scientific results from U.S. planetary missions, has seen a nearly 50-fold increase in the amount of data and now serves nearly half a petabyte. In only a handful of years, this volume is expected to approach 1 petabyte (1,000 terabytes or 1 quadrillion bytes). Although data providers, archivists, users, and developers have done a creditable job of providing search functions, download capabilities, and analysis and visualization tools, the new wealth of data necessitates more frequent and extensive discussion among users and developers about their current capabilities and their needs for improved and new tools. A workshop to address these and other topics, “Planetary Data: A Workshop for Users and Planetary Software Developers,” was held June 25–29, 2012, at Northern Arizona University (NAU) in Flagstaff, Arizona. A goal of the workshop was to present a summary of currently available tools, along with hands-on training and how-to guides, for acquiring, processing and working with a variety of digital planetary data. The meeting emphasized presentations by data users and mission providers during days 1 and 2, and developers had the floor on days 4 and 5 using an “unconference” format for day 5. Day 3 featured keynote talks by Laurence Soderblom (U.S. Geological Survey, USGS) and Dan Crichton (Jet Propulsion Laboratory, JPL) followed by a panel discussion, and then research and technical discussions about tools and capabilities under recent or current development. Software and tool demonstrations were held in break-out sessions in parallel with the oral session. Nearly 150 data users and developers from across the globe attended, and 22 National Aeronautics and space Administration (NASA) and non-NASA data providers

  11. SPEX: The spectropolarimeter for planetary EXploration

    NARCIS (Netherlands)

    Snik, F.; Rietjens, J.H.H.; Harten, G. van; Stam, D.M.; Keller, C.U.; Smit, J.M.; Laan, E.C.; Verlaan, A.L.; Horst, R. ter; Navarro, R.; Wielinga, K.; Moon, S.G.; Voors, R.

    2010-01-01

    SPEX (Spectropolarimeter for Planetary EXploration) is an innovative, compact instrument for spectropolarimetry, and in particular for detecting and characterizing aerosols in planetary atmospheres. With its ∼1-liter volume it is capable of full linear spectropolarimetry, without moving parts. The

  12. Red giants as precursors of planetary nebulae

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    It is generally accepted that Planetary Nebulae are produced by asymptotic giant-branch stars. Therefore, several properties of planetary nebulae are discussed in the framework of the current theory of stellar evolution. (Auth.)

  13. Study and validation of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces: application to a mission to the planet Mercury; Etude et validation d'un spectrometre gamma pour la mesure de la composition chimique des surfaces planetaires

    Energy Technology Data Exchange (ETDEWEB)

    Pirard, B

    2006-12-15

    This work deals with the design of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces and was performed in the frame of a mission scenario to explore the planet Mercury. The research studies consisted first in characterizing the detection performances of a gamma-ray spectrometer using a high-purity germanium crystal cooled actively at cryogenic temperatures. The high energy resolution of the detector allows an accurate measurement of the chemical composition for the main elements from oxygen to uranium. Thereafter the studies dealt with the critical issues addressed for the use of such a detector onboard a mission to the inner solar system. The radiation damage caused by solar protons in germanium crystals was investigated by experimental and numerical means. It has been shown that the detector resolution begins getting damaged for proton fluences over 5*10{sup 8} p/cm{sup 2}. An annealing session where the crystal is heated up to 80 C degrees for a 4-day period allows the detector to get back a sufficient resolution. Annealing over 100 C degrees gives back the detector its initial resolution. Finally, a numerical thermal model of the instrument as well as some tests on a thermal mockup were performed to validate the thermal design of the instrument.

  14. GTR Component of Planetary Precession

    Indian Academy of Sciences (India)

    detection of gravitational waves has only augmented their en- thusiasm about the General Theory of Relativity ... the GTR advance of the perihelion of planetary motion about the sun. 1. Introduction. When you throw an ... cury's orbit was estimated to advance by about 565 seconds of an arc per Earth-century. It is also now ...

  15. Chemistry of Planetary Atmospheres: Insights and Prospects

    Science.gov (United States)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  16. Planetary imaging with amateur astronomical instruments

    Science.gov (United States)

    Papathanasopoulos, k.; Giannaris, G.

    2017-09-01

    Planetary imaging can be varied by the types and size of instruments and processing. With basic amateur telescopes and software, can be captured images of our planetary system, mainly Jupiter, Saturn and Mars, but also solar eclipses, solar flares, and many more. Planetary photos can be useful for professional astronomers, and how amateur astronomers can play a role on that field.

  17. OneGeology- A Global Geoscience Data Platform

    Science.gov (United States)

    Harrison, M.; Komac, M.; Duffy, T.; Robida, F.; Allison, M. L.

    2014-12-01

    OneGeology (1G) is an initiative of Geological Survey Organisations (GSOs) around the globe that dates back to 2007. Since then, OneGeology has been a leader in developing geological online map data using GeoSciML- an international interoperability standard for the exchange of geological data. Increased use of this new standard allows geological data to be shared and integrated across the planet among organisations. One of the goals of OneGeology is an exchange of know-how with the developing world, shortening the digital learning curve. In autumn 2013 OneGeology was transformed into a Consortium with a clearly defined governance structure, making it more transparent, its operation more sustainable and its membership more open where in addition to GSOs, other types of organisations that create and use geoscience data can join and contribute. The next stage of the OneGeology initiative is focused on increasing the openness and richness of that data from individual countries to create a multi-thematic global geological data resource about the rocks beneath our feet. Authoritative geoscience information will help to mitigate natural disasters, explore for resources (water, minerals and energy) and identify risks to human health on a planetary scale with the aim of 1G to increase awareness of the geosciences and their relevance among professionals and general public- to be part of the solution. We live in a digital world that enables prompt access to vast amounts of open access data. Understanding our world, the geology beneath our feet and environmental challenges related to geology calls for accessibility of geoscience data and the OneGeology Portal (portal.onegeology.org) is the place to find them.

  18. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  19. Geophysics & Geology Inspected.

    Science.gov (United States)

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  20. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  1. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  2. Geologic map of the Galaxias quadrangle (MTM 35217) of Mars

    Science.gov (United States)

    De Hon, Rene A.; Mouginis-Mark, Peter J.; Brick, Eugene E.

    1999-01-01

    The Galaxias region (MTM 35217) is one of a series of 1:500,000-scale science study areas on Mars sponsored by NASA's Planetary Geology and Geophysics Program. Situated near the northern limit of lava flows associated with Elysium Mons, this region includes a mixture of volcanic and nonvolcanic terrains. The region is also of interest for the fluvial systems that originate along the distal margins of the Elysium lava flows. Resolution of Viking Orbiter images used to prepare the base map ranges from 40 to 160 m/pixel. High-resolution frames (40 to 80 m/pixel) are found in the southeastern part of the map area and along the north edge of the quadrangle, but over half the quadrangle is included in medium-resolution frames (150 m/pixel). Two 8 m/pixel, very high resolution scenes are available (see fig. 1). Interpretation is complicated by variable resolution and sun angles that vary from east to west illumination on different images. Mapping methods and principles are adapted from those developed for lunar photogeologic mapping by Shoemaker and Hackman (1962), refined by Wilhelms (1972), and successfully applied by many workers to a variety of planetary surfaces. Mapping units are distinguished by topography and texture and are ranked by relative age on the basis of superposition and transection relations. Material units are assigned to time-stratigraphic systems defined by Scott and Carr (1978) and Tanaka (1986). This area is included within earlier maps that used Mariner 9 images at 1:5,000,000 scale (Elston, 1979) and globally at 1:25,000,000 scale (Scott and Carr, 1978). Regional maps based on the much higher resolutions of Viking Orbiter allowed more detailed discrimination of materials by Greeley and Guest (1987) at 1:15,000,000 scale and Tanaka and others (1992) at 1:5,000,000 scale. Some map units on this 1:500,000-scale map correspond to, or are partially equivalent to, units on the larger scale maps of Greeley and Guest (1987) and Tanaka and others (1992

  3. The Anthropocene: A Planetary Perspective

    Science.gov (United States)

    Anbar, A. D.; Hartnett, H. E.; York, A.; Selin, C.

    2016-12-01

    The Anthropocene is a new planetary epoch defined by the emergence of human activity as one of the most important driving forces on Earth, rivaling and also stressing the other systems that govern the planet's habitability. Public discussions and debates about the challenges of this epoch tend to be polarized. One extreme denies that humans have a planetary-scale impact, while the other wishes that this impact could disappear. The tension between these perspectives is often paralyzing. Effective adaptation and mitigation requires a new perspective that reframes the conversation. We propose a planetary perspective according to which this epoch is the result of a recent major innovation in the 4 ­billion ­year history of life on Earth: the emergence of an energy-intensive planetary civilization. The rate of human energy use is already within an order of magnitude of that of the rest of the biosphere, and rising rapidly, and so this innovation is second only to the evolution of photosynthesis in terms of energy capture and utilization by living systems. Such energy use has and will continue to affect Earth at planetary scale. This reality cannot be denied nor wished away. From this pragmatic perspective, the Anthropocene is not an unnatural event that can be reversed, as though humanity is separate from the Earth systems with which we are co-evolving. Rather, it is an evolutionary transition to be managed. This is the challenge of turning a carelessly altered planet into a carefully designed and managed world, maintaining a "safe operating space" for human civilization (Steffen et al., 2011). To do so, we need an integrated approach to Earth systems science that considers humans as a natural and integral component of Earth's systems. Insights drawn from the humanities and the social sciences must be integrated with the natural sciences in order to thrive in this new epoch. This type of integrated perspective is relatively uncontroversial on personal, local, and even

  4. Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions

    Science.gov (United States)

    vanGasselt, Stephan; Nass, A.

    2010-01-01

    Planetary geologic mapping has become complex in terms of merging and co-registering a variety of different datasets for analysis and mapping. But it has also become more convenient when it comes to conducting actual (geoscientific) mapping with the help of desktop Geographic Information Systems (GIS). The complexity and variety of data, however, are major issues that need to be taken care of in order to provide mappers with a consistent and easy-to-use mapping basis. Furthermore, a high degree of functionality and interoperability of various commercial and open-source GIS and remote sensing applications allow mappers to organize map data, map components and attribute data in a more sophisticated and intuitional way when compared to workflows 15 years ago. Integration of mapping results of different groups becomes an awkward task as each mapper follows his/her own style, especially if mapping conduct is not coordinated and organized programmatically. Problems of data homogenization start with various interpretations and implementations of planetary map projections and reference systems which form the core component of any mapping and analysis work. If the data basis is inconsistent, mapping results in terms of objects georeference become hard to integrate. Apart from data organization and referencing issues, which are important on the mapping as well as the data-processing side of every project, the organization of planetary geologic map units and attributes, as well as their representation within a common GIS environment, are key components that need to be taken care of in a consistent and persistent way.

  5. The planetary biology of cytochrome P450 aromatases.

    Science.gov (United States)

    Gaucher, Eric A; Graddy, Logan G; Li, Tang; Simmen, Rosalia C M; Simmen, Frank A; Schreiber, David R; Liberles, David A; Janis, Christine M; Benner, Steven A

    2004-08-17

    Joining a model for the molecular evolution of a protein family to the paleontological and geological records (geobiology), and then to the chemical structures of substrates, products, and protein folds, is emerging as a broad strategy for generating hypotheses concerning function in a post-genomic world. This strategy expands systems biology to a planetary context, necessary for a notion of fitness to underlie (as it must) any discussion of function within a biomolecular system. Here, we report an example of such an expansion, where tools from planetary biology were used to analyze three genes from the pig Sus scrofa that encode cytochrome P450 aromatases-enzymes that convert androgens into estrogens. The evolutionary history of the vertebrate aromatase gene family was reconstructed. Transition redundant exchange silent substitution metrics were used to interpolate dates for the divergence of family members, the paleontological record was consulted to identify changes in physiology that correlated in time with the change in molecular behavior, and new aromatase sequences from peccary were obtained. Metrics that detect changing function in proteins were then applied, including KA/KS values and those that exploit structural biology. These identified specific amino acid replacements that were associated with changing substrate and product specificity during the time of presumed adaptive change. The combined analysis suggests that aromatase paralogs arose in pigs as a result of selection for Suoidea with larger litters than their ancestors, and permitted the Suoidea to survive the global climatic trauma that began in the Eocene. This combination of bioinformatics analysis, molecular evolution, paleontology, cladistics, global climatology, structural biology, and organic chemistry serves as a paradigm in planetary biology. As the geological, paleontological, and genomic records improve, this approach should become widely useful to make systems biology statements about

  6. The planetary biology of cytochrome P450 aromatases

    Directory of Open Access Journals (Sweden)

    Gaucher Eric A

    2004-08-01

    Full Text Available Abstract Background Joining a model for the molecular evolution of a protein family to the paleontological and geological records (geobiology, and then to the chemical structures of substrates, products, and protein folds, is emerging as a broad strategy for generating hypotheses concerning function in a post-genomic world. This strategy expands systems biology to a planetary context, necessary for a notion of fitness to underlie (as it must any discussion of function within a biomolecular system. Results Here, we report an example of such an expansion, where tools from planetary biology were used to analyze three genes from the pig Sus scrofa that encode cytochrome P450 aromatases–enzymes that convert androgens into estrogens. The evolutionary history of the vertebrate aromatase gene family was reconstructed. Transition redundant exchange silent substitution metrics were used to interpolate dates for the divergence of family members, the paleontological record was consulted to identify changes in physiology that correlated in time with the change in molecular behavior, and new aromatase sequences from peccary were obtained. Metrics that detect changing function in proteins were then applied, including KA/KS values and those that exploit structural biology. These identified specific amino acid replacements that were associated with changing substrate and product specificity during the time of presumed adaptive change. The combined analysis suggests that aromatase paralogs arose in pigs as a result of selection for Suoidea with larger litters than their ancestors, and permitted the Suoidea to survive the global climatic trauma that began in the Eocene. Conclusions This combination of bioinformatics analysis, molecular evolution, paleontology, cladistics, global climatology, structural biology, and organic chemistry serves as a paradigm in planetary biology. As the geological, paleontological, and genomic records improve, this approach should

  7. From red giants to planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The transition from red giants to planetary nebulae is studied by comparing the spectral characteristics of red giant envelopes and planetary nebulae. Observational and theoretical evidence both suggest that remnants of red giant envelopes may still be present in planetary nebula systems and should have significant effects on their formation. The dynamical effects of the interaction of stellar winds from central stars of planetary nebulae with the remnant red giant envelopes are evaluated and the mechanism found to be capable of producing the observed masses and momenta of planetary nebulae. The observed mass-radii relation of planetary nebulae may also be best explained by the interacting winds model. The possibility that red giant mass loss, and therefore the production of planetary nebulae, is different between Population I and II systems is also discussed

  8. Forests: a planetary treasure.

    Science.gov (United States)

    Myers, N

    1996-01-01

    This article explores the real nature of tropical forests and outlines some of the damaging consequences of grand-scale deforestation. Forests are the main home of Earth's species. They cover only 6% of the planet's land surface, and 50% of them are tropical forests inhabited by possibly 70% and conceivably 90% of all species. Aside from their being a habitat, these forests contain plants that have been known to contribute to our health. Analgesics, antibiotics, contraceptives are some of the few byproducts of plants in tropical forests. In addition, tropical forests contribute environmental services even more valuable than the material goods they produce. Most significant of these are watershed services, wherein deforestation of upland catchments can lead to disruption of hydrological systems, causing year-round water flows in downstream areas to give way to flood-and-drought regimes. Moreover, forests have a role in carbon sinking and hence in mitigating global warming. Depletion of forests through deforestation as well as forest fires could lead to an increased rate of die-off in remaining forests in other parts of the world, plus a decline of biomass in other ecological zones such as grasslands.

  9. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    Science.gov (United States)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    The important role of extensive brittle faults and related structures in the development of reservoirs has already been demonstrated, notably in initially low-porosity rocks such as basement rocks. Large varieties of deep-seated resources (e.g. water, hydrocarbons, geothermal energy) are recognized in fractured basement reservoirs. Brittle faults and fracture networks can develop sufficient volumes to allow storage and transfer of large amounts of fluids. Development of hydraulic model with dual-porosity implies the structural and petrophysical characterization of the basement. Drain porosity is located within the larger fault zones, which are the main fluid transfer channels. The storage porosity corresponds both to the matrix porosity and to the volume produced by the different fractures networks (e.g. tectonic, primary), which affect the whole reservoir rocks. Multi-scale genetic and geometric relationships between these deformation features support different orders of structural domains in a reservoir, from several tens of kilometers to few tens of meters. In subsurface, 3D seismic data in basement can be sufficient to characterize the largest first order of structural domains and bounding fault zones (thickness, main orientation, internal architecture, …). However, lower order structural blocks and fracture networks are harder to define. The only available data are 1D borehole electric imaging and are used to characterize the lowest order. Analog outcrop studies of basement rocks fill up this resolution gap and help the understanding of brittle deformation, definition of reservoir geometries and acquirement of reservoir properties. These geological outcrop studies give information about structural blocks of second and third order, getting close to the field scale. This allows to understand relationships between brittle structures geometry and factors controlling their development, such as the structural inheritance or the lithology (e.g. schistosity, primary

  10. The role of impact cratering in planetary environmental change and implications for the search for life in the solar system (Invited)

    Science.gov (United States)

    Osinski, G. R.

    2013-12-01

    Beginning in the late 18th century with the work of James Hutton, uniformitarianism emerged as a central tenet of the natural sciences and remained so well into the 20th century. Central to the idea of uniformitarianism is the concept of gradualism whereby processes throughout time occur at the same, or similar rates. In the 20th century, the idea that asteroids and comets have struck, and continue to strike, planetary bodies throughout geological time, has revolutionized our understanding of Solar System history and evolution. Indeed, it is now widely recognized that impact cratering is one of the most important and fundamental geological process in the Solar System. It is also now apparent that impact events have profoundly affected the origin and evolution of Earth, its environment, and the habitability of our planet. The extreme physical conditions (e.g., 10's of thousands of K and 100's of GPa), the concentrated nature of the energy release at a single point on a planetary surface, and the virtually instantaneous nature of the impact process sets apart impact events from all other geological processes. It should not be surprising then that such a rapid geological process can cause rapid environmental change. The destructive geological, environmental, and biological effects of meteorite impact events are well studied and well known. This is largely due to the discovery of the ~180 km diameter Chicxulub impact structure, Mexico, and its link to the mass extinction event that marks the end of the Cretaceous Period 65 Myr. ago. While the main driver for this mass extinction event remains debated, a long list of possible causes of environmental change have been proposed, including: heat from the impact explosion, tsunamis, earthquakes, global forest fires, dust injection in the upper atmosphere, production of vast quantities of N2O, and release of CO2 and sulfur species from the target rocks. Any one of these effects could potentially cause the annihilation of a

  11. Planetary Nomenclature: An Overview and Update for 2017

    Science.gov (United States)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature

  12. Lunar and Planetary Science XXXV: Concerning Chondrites

    Science.gov (United States)

    2004-01-01

    The Lunar and Planetary Science XXXV session entitled "Concerning Chondrites" includes the following topics: 1) Petrology and Raman Spectroscopy of Shocked Phases in the Gujba CB Chondrite and the Shock History of the CB Parent Body; 2) The Relationship Between CK and CV Chondrites: A Single Parent Body Source? 3) Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites; 4) Composition and Origin of SiO2-rich Objects in Carbonaceous and Ordinary Chondrites; 5) Re-Os Systematics and HSE distribution in Tieschitz (H3.6); Two Isochrons for One Meteorite; 6) Loss of Chromium from Olivine During the Metamorphism of Chondrites; 7) Very Short Delivery Times of Meteorites After the L-Chondrite Parent Body Break-Up 480 Myr Ago; and 8) The Complex Exposure History of a Very Large L/LL5 Chondrite Shower: Queen Alexandra Range 90201.

  13. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  14. Teaching, Learning, and Planetary Exploration

    Science.gov (United States)

    Brown, Robert A.

    2002-01-01

    This is the final report of a program that examined the fundamentals of education associated with space activities, promoted educational policy development in appropriate forums, and developed pathfinder products and services to demonstrate the utility of advanced communication technologies for space-based education. Our focus was on space astrophysics and planetary exploration, with a special emphasis on the themes of the Origins Program, with which the Principal Investigator (PI) had been involved from the outset. Teaching, Learning, and Planetary Exploration was also the core funding of the Space Telescope Science Institute's (ST ScI) Special Studies Office (SSO), and as such had provided basic support for such important NASA studies as the fix for Hubble Space Telescope (HST) spherical aberration, scientific conception of the HST Advanced Camera, specification of the Next-Generation Space Telescope (NGST), and the strategic plan for the second decade of the HST science program.

  15. The PSA: Planetary Science Archive

    Science.gov (United States)

    Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J. L.; Arviset, C.; Osuna, P.; PSA development Team

    2012-04-01

    Scientific and engineering data from ESA's planetary missions are made accessible to the world-wide scientific community via the Planetary Science Archive (PSA). The PSA consists of online services incorporating search, preview, download, notification and delivery basket functionality. Besides data from the GIOTTO spacecraft and several ground-based cometary observations, the PSA contains data from the Mars Express, Venus Express, Rosetta, SMART-1 and Huygens missions. The focus of the PSA activities is on the long-term preservation of data and knowledge from ESA's planetary missions. Scientific users can access the data online using several interfaces: - The Advanced Search Interface allows complex parameter based queries, providing the end user with a facility to complete very specific searches on meta-data and geometrical parameters. By nature, this interface requires careful use and heavy interaction with the end-user to input and control the relevant search parameters. - The Map-based Interface is currently operational only for Mars Express HRCS and OMEGA data. This interface allows an end-user to specify a region-of-interest by dragging a box onto a base map of Mars. From this interface, it is possible to directly visualize query results. The Map-based and Advanced interfaces are linked and cross-compatible. If a user defines a region-of-interest in the Map-based interface, the results can be refined by entering more detailed search parameters in the Advanced interface. - The FTP Browser Interface is designed for more experienced users, and allows for direct browsing and access of the data set content through ftp-tree search. Each dataset contains documentation and calibration information in addition to the scientific or engineering data. All data are prepared by the corresponding instrument teams, mostly located in Europe. PSA supports the instrument teams in the full archiving process, from the definition of the data products, meta-data and product labels

  16. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  17. The Geology of Titan

    Science.gov (United States)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  18. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  19. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  20. Planetary rovers and data fusion

    OpenAIRE

    Masuku, Anthony Dumisani

    2012-01-01

    This research will investigate the problem of position estimation for planetary rovers. Diverse algorithmic filters are available for collecting input data and transforming that data to useful information for the purpose of position estimation process. The terrain has sandy soil which might cause slipping of the robot, and small stones and pebbles which can affect trajectory. The Kalman Filter, a state estimation algorithm was used for fusing the sensor data to improve the p...

  1. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented

  2. Considerations in the Design of Future Planetary Laser Altimeters

    Science.gov (United States)

    Smith, D. E.; Neumann, G. A.; Mazarico, E.; Zuber, M. T.; Sun, X.

    2017-12-01

    Planetary laser altimeters have generally been designed to provide high accuracy measurements of the nadir range to an uncooperative surface for deriving the shape of the target body, and sometimes specifically for identifying and characterizing potential landing sites. However, experience has shown that in addition to the range measurement, other valuable observations can be acquired, including surface reflectance and surface roughness, despite not being given high priority in the original altimeter design or even anticipated. After nearly 2 decades of planetary laser altimeter design, the requirements are evolving and additional capabilities are becoming equally important. The target bodies, once the terrestrial planets, are now equally asteroids and moons that in many cases do not permit simple orbital operations due to their small mass, radiation issues, or spacecraft fuel limitations. In addition, for a number of reasons, it has become necessary to perform shape determination from a much greater range, even thousands of kilometers, and thus ranging is becoming as important as nadir altimetry. Reflectance measurements have also proved important for assessing the presence of ice, water or CO2, and laser pulse spreading informed knowledge of surface roughness; all indicating a need for improved instrument capability. Recently, the need to obtain accurate range measurement to laser reflectors on landers or on a planetary surface is presenting new science opportunities but for which current designs are far from optimal. These changes to classic laser altimetry have consequences for many instrument functions and capabilities, including beam divergence, laser power, number of beams and detectors, pixelation, energy measurements, pointing stability, polarization, laser wavelengths, and laser pulse rate dependent range. We will discuss how a new consideration of these trades will help make lidars key instruments to execute innovative science in future planetary

  3. The planetary spatial data infrastructure for the OSIRIS-REx mission

    Science.gov (United States)

    DellaGiustina, D. N.; Selznick, S.; Nolan, M. C.; Enos, H. L.; Lauretta, D. S.

    2017-12-01

    The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of carbonaceous material from primitive asteroid (101955) Bennu. Understanding the geospatial context of Bennu is critical to choosing a sample-site and also linking the nature of the sample to the global properties of Bennu and the broader asteroid population. We established a planetary spatial data infrastructure (PSDI) support the primary objective of OSIRIS-REx. OSIRIS-REx is unique among planetary missions in that all remote sensing is performed to support the sample return objective. Prior to sampling, OSIRIS-REx will survey Bennu for nearly two years to select and document the most valuable primary and backup sample sites. During this period, the mission will combine coordinated observations from five science instruments into four thematic maps: deliverability, safety, sampleability, and scientific value. The deliverability map assesses the probability that the flight dynamics team can deliver the spacecraft to the desired location. The safety map indicates the probability that physical hazards are present at the sample-site. The sampleability map quantifies the probability that a sample can be successfully collected from the surface. Finally, the scientific value map shows the probability that the collected sample contains organics and volatiles and also places the sample site in a definitive geological context relative to Bennu's history. The OSIRIS-REx Science Processing and Operations Center (SPOC) serves as the operational PSDI for the mission. The SPOC is tasked with intake of all data from the spacecraft and other ground sources and assimilating these data into a single comprehensive system for processing and presentation. The SPOC centralizes all geographic data of Bennu in a relational database and ensures that standardization and provenance are maintained throughout proximity

  4. Maps of geologically informative Pb isotope parameters

    Science.gov (United States)

    Albarede, F.; Delile, H.; Bouchet, R. A.; Blichert-Toft, J.

    2013-12-01

    The development of large seismic arrays and the large throughput of MC-ICP-MS are providing new impetus to the integration of seismic tomography data (VP, VS, attenuation, shear-wave splitting), geophysical maps (heat flow), and geochemical maps with geology. Synoptic representation of geochemical data started nearly 50 years ago with Hurley and others, who demonstrated that time-integrated parent/daughter ratios (Rb/Sr, U/Pb, Sm/Nd) and apparent crustal residence times inferred from the isotope compositions of radiogenic elements in felsic magmas and metamorphic rocks could be used to identify tectonic provinces. Geochemical parameters derived from such long-lived radioactive isotopic systems are far less noisy than raw trace element ratios in the same rocks: for example, measured uranium concentrations are severely biased by the transit of samples through the water table during erosive exhumation. The U-Th-Pb isotope system is particularly powerful. However, georeferenced geochemical databases are still incomplete. We recently began to map at the continental scale the Pb isotope compositions into axes with geologically informative content: the two-stage Pb model age, which dates the closure of the U-Pb chronometer, and the time-integrated U/Pb (mu) and Th/U (kappa) ratios of the Pb source [1]. Maps of model ages essentially depict the maximum extension of the ~600°C isotherm. Because rocks from granulite facies terranes tend to have Th/U higher than the planetary value of 3.88, maps of kappa ratios track the rise of lower crustal material and its melts. We compiled maps of the above-mentioned Pb parameters from the archeological OXALID database (Western Europe) [2] and localized its samples and from Mamani et al.'s [3] database for the Central Andes. For the Western US, we used NAVDAT (http://www.navdat.org/) for Cenozoic continental felsic igneous rocks and added ore data from the literature (Bouchet et al., this meeting). In all cases, we found that the

  5. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  6. Statistical-likelihood Exo-Planetary Habitability Index (SEPHI)

    Science.gov (United States)

    Rodríguez-Mozos, J. M.; Moya, A.

    2017-11-01

    A new index, the Statistical-likelihood Exo-Planetary Habitability Index (SEPHI), is presented. It has been developed to cover the current and future features required for a classification scheme disentangling whether any exoplanet discovered is potentially habitable compared with life on Earth. SEPHI uses likelihood functions to estimate the habitability potential. It is defined as the geometric mean of four sub-indexes related to four comparison criteria: Is the planet telluric? Does it have an atmosphere dense enough and a gravity compatible with life? Does it have liquid water on its surface? Does it have a magnetic field shielding its surface from harmful radiation and stellar winds? SEPHI can be estimated with only seven physical characteristics: planetary mass, planetary radius, planetary orbital period, stellar mass, stellar radius, stellar effective temperature and planetary system age. We have applied SEPHI to all the planets in the Exoplanet Encyclopaedia using a Monte Carlo method. Kepler-1229b, Kepler-186f and Kepler-442b have the largest SEPHI values assuming certain physical descriptions. Kepler-1229b is the most unexpected planet in this privileged position since no previous study pointed to this planet as a potentially interesting and habitable one. In addition, most of the tidally locked Earth-like planets present a weak magnetic field, incompatible with habitability potential. We must stress that our results are linked to the physics used in this study. Any change in the physics used implies only an updating of the likelihood functions. We have developed a web application allowing the online estimation of SEPHI (http://sephi.azurewebsites.net/).

  7. JMARS - A Planetary GIS

    Science.gov (United States)

    Christensen, P. R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M.

    2009-12-01

    JMARS is a cross-platform software application for working with raster, vector, and hyper-spectral data. It was developed by the Mars Space Flight Facility to provide mission planning and data analysis tools to NASA's orbiters, instrument team members, students of all ages, and the general public. It began with a focus on Mars but is branching out to work with data for the Earth and Moon. It is free and open source. JMARS has several strategies for providing users with efficient and easy access to data products. Commonly-used data products are integrated, alleviating concerns about downloading, projecting, and converting data in advance, but users may still import their own data products. JMARS can load and process raw numeric rasters. Rasters may be stretched and colorized on the fly. Contour maps may be created. Groups of layers can be composed by transparency blending or building an HSV/RGB composite. Plots may be created by drawing multi-segment lines on the map, making it easy to sample elevation, thermal inertia, or other surface properties in an area of interest. JMARS can load and process vector data in several common formats. Vector data can be edited on the map or in a table. Vector processing tools can calculate properties like line bearing or polygonal area. An SQL-like scripting language provides a powerful transformation and filtering feature. JMARS provides access to many Mars data products: image footprints and rasters from the THEMIS, MOC, CTX, HiRISE, Viking, HRSC, CRISM, and Omega missions; mosaics from THEMIS, Viking, and CTX; topography from MGS MOLA; compositional maps from TES and GRS/HEND; albedo and thermal inertia from TES and Viking; spectral data from TES; the USGS Dune Database; and many more. Products are available in both graphic and numeric form where applicable. JMARS is used by the Mars Odyssey and Mars Reconnaissance Orbiter, and Lunar Reconnaissance Orbiter missions for planning and analyzing images. Mission planners decide how

  8. Documentation for the U.S. Geological Survey Public-Supply Database (PSDB): A database of permitted public-supply wells, surface-water intakes, and systems in the United States

    Science.gov (United States)

    Price, Curtis V.; Maupin, Molly A.

    2014-01-01

    The U.S. Geological Survey (USGS) has developed a database containing information about wells, surface-water intakes, and distribution systems that are part of public water systems across the United States, its territories, and possessions. Programs of the USGS such as the National Water Census, the National Water Use Information Program, and the National Water-Quality Assessment Program all require a complete and current inventory of public water systems, the sources of water used by those systems, and the size of populations served by the systems across the Nation. Although the U.S. Environmental Protection Agency’s Safe Drinking Water Information System (SDWIS) database already exists as the primary national Federal database for information on public water systems, the Public-Supply Database (PSDB) was developed to add value to SDWIS data with enhanced location and ancillary information, and to provide links to other databases, including the USGS’s National Water Information System (NWIS) database.

  9. Collisional stripping of planetary crusts

    Science.gov (United States)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  10. Homo Sapiens as Geological Agents

    Science.gov (United States)

    Holloway, T.; Bedsworth, L. W.; Caldeira, K.; Rosenzweig, C.; Kelley, G.; Rosenzweig, C.; Caldeira, K.; Bedsworth, L. W.; Holloway, T.; Purdy, J. S.; Vince, G.; Syvitski, J. A.; Bondre, N. R.; Kelly, J.; Vince, G.; Seto, K. C.; Steffen, W.; Oreskes, N.

    2015-12-01

    In the 18th and 19th centuries, earth scientists came to understand the magnitude and power of geological and geophysical processes. In comparison, the activities of humans seemed paltry if not insignificant. With the development of radiometric dating in the 20th century, scientists realized that human history was but a miniscule part of Earth history. Metaphors to this effect abounded, and filled textbooks: If Earth history were a 24-hour day, human history would not occupy even the final second. If Earth history were a yardstick, the human portion would not even be visible to the naked eye. Generations of scientists were taught that one of the principal contributions of geology, qua science, was the demonstration of our insignificance. The Anthropocene concept disrupts this. To affirms its existence is to insist that human activities compete in scale and significance with other Earth processes, and may threaten to overwhelm them. It also inverts our relation to normative claims. For more than a century earth scientists and evolutionary biologists insisted that their theories were descriptive and not normative—that there was no moral conclusion to be drawn from either planetary or human evolution. Now, we confront the suggestion that there is a moral component to our new paradigm: we can scarcely claim that humans are disrupting the climate, destroying biodiversity, and acidifying the oceans without implying that there is something troubling about these developments. Thus, the Anthropocene concept suggests both a radical redefinition of the scope of Earth science, and a radical reconsideration of the place of normative judgments in scientific work.

  11. Fitting the curve in Excel® : Systematic curve fitting of laboratory and remotely sensed planetary spectra

    NARCIS (Netherlands)

    McCraig, M.A.; Osinski, G.R.; Cloutis, E.A.; Flemming, R.L.; Izawa, M.R.M.; Reddy, V.; Fieber-Beyer, S.K.; Pompilio, L.; van der Meer, F.D.; Berger, J.A.; Bramble, M.S.; Applin, D.M.

    2017-01-01

    Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to

  12. Nutrient and pesticide contamination bias estimated from field blanks collected at surface-water sites in U.S. Geological Survey Water-Quality Networks, 2002–12

    Science.gov (United States)

    Medalie, Laura; Martin, Jeffrey D.

    2017-08-14

    Potential contamination bias was estimated for 8 nutrient analytes and 40 pesticides in stream water collected by the U.S. Geological Survey at 147 stream sites from across the United States, and representing a variety of hydrologic conditions and site types, for water years 2002–12. This study updates previous U.S. Geological Survey evaluations of potential contamination bias for nutrients and pesticides. Contamination is potentially introduced to water samples by exposure to airborne gases and particulates, from inadequate cleaning of sampling or analytic equipment, and from inadvertent sources during sample collection, field processing, shipment, and laboratory analysis. Potential contamination bias, based on frequency and magnitude of detections in field blanks, is used to determine whether or under what conditions environmental data might need to be qualified for the interpretation of results in the context of comparisons with background levels, drinking-water standards, aquatic-life criteria or benchmarks, or human-health benchmarks. Environmental samples for which contamination bias as determined in this report applies are those from historical U.S. Geological Survey water-quality networks or programs that were collected during the same time frame and according to the same protocols and that were analyzed in the same laboratory as field blanks described in this report.Results from field blanks for ammonia, nitrite, nitrite plus nitrate, orthophosphate, and total phosphorus were partitioned by analytical method; results from the most commonly used analytical method for total phosphorus were further partitioned by date. Depending on the analytical method, 3.8, 9.2, or 26.9 percent of environmental samples, the last of these percentages pertaining to all results from 2007 through 2012, were potentially affected by ammonia contamination. Nitrite contamination potentially affected up to 2.6 percent of environmental samples collected between 2002 and 2006 and

  13. Concept selection for a planetary reflection-seismology system with multiple end-user requirements and mission constraints

    NARCIS (Netherlands)

    Batenburg, P.A.W.; Gill, E.K.A.; Drijkoningen, G.G.; Toxopeus, G.J.

    2010-01-01

    A study was performed to determine the feasibility of reflection seismology for planetary geology taking into account present-day technology advances. An approach based on end-user requirements was applied to assure the scientific usefulness of the results. Thirty applications of a

  14. Machine vision for space telerobotics and planetary rovers

    Science.gov (United States)

    Wilcox, Brian H.

    1988-01-01

    Machine vision allows a non-contact means of determining the three-dimensional shape of objects in the environment, enabling the control of contact forces when manipulation by a telerobot or traversal by a vehicle is desired. Telerobotic manipulation in Earth orbit requires a system that can recognize known objects in spite of harsh lighting conditions and highly specular or absorptive surfaces. Planetary surface traversal requires a system that can recognize the surface shape and properties of an unknown and arbitrary terrain. Research on these two rather disparate types of vision systems is described.

  15. The geology and geophysics of Mars

    Science.gov (United States)

    Saunders, R. S.

    1976-01-01

    The current state of knowledge concerning the regional geology and geophysics of Mars is summarized. Telescopic observations of the planet are reviewed, pre-Mariner models of its interior are discussed, and progress achieved with the Mariner flybys, especially that of Mariner 9, is noted. A map of the Martian geological provinces is presented to provide a summary of the surface geology and morphology. The contrast between the northern and southern hemispheres is pointed out, and the characteristic features of the surface are described in detail. The global topography of the planet is examined along with its gravitational field, gravity anomalies, and moment of inertia. The general sequence of events in Martian geological history is briefly outlined.

  16. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  17. PROC: a new Planetary Radars Operating Centre

    Science.gov (United States)

    Catallo, C.; Alberti, G.; Flamini, E.; Olivieri, A.; Orosei, R.

    2009-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Actually three important experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are operating in the frame of an extended missions : MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the starting of the missions in order In order to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and

  18. An enhanced Planetary Radar Operating Centre (PROC)

    Science.gov (United States)

    Catallo, C.

    2010-12-01

    Planetary exploration by means of radar systems, mainly using GPRs is an important role of Italy and numerous scientific international space programs are carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three experiments under Italian leadership ( designed and manufactured by the Italian industry) provided by ASI within a NASA/ESA/ASI joint venture framework are successfully operating: MARSIS on-board MEX, SHARAD on-board MRO and CASSINI Radar on-board Cassini spacecraft: the missions have been further extended . Three dedicated operational centers, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD are operating from the missions beginning to support all the scientific communities, institutional customers and experiment teams operation Each center is dedicated to a single instrument management and control, data processing and distribution and even if they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). In order to harmonize operations either from logistics point of view and from HW/SW capabilities point of view PROC is designed and developed for offering improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. PROC is, therefore, conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs, such as Europa-Jupiter System Mission (EJSM) The paper describes how the new PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation aiding scientists to increase their knowledge in the field of surface

  19. Planetary Atmospheres and Evolution of Complex Life

    Science.gov (United States)

    Catling, D.

    2014-04-01

    Let us define "complex life" as actively mobile organisms exceeding tens of centimeter size scale with specialized, differentiated anatomy comparable to advanced metazoans. Such organisms on any planet will need considerable energy for growth and metabolism, and an atmosphere is likely to play a key role. The history of life on Earth suggests that there were at least two major hurdles to overcome before complex life developed. The first was biological. Large, three-dimensional multicellular animals and plants are made only of eukaryotic cells, which are the only type that can develop into a large, diverse range of cell types unlike the cells of microbes. Exactly how eukaryotes allow 3D multicellularity and how they originated are matters of debate. But the internal structure and bigger and more modular genomes of eukaryotes are important factors. The second obstacle for complex life was having sufficient free, diatomic oxygen (O2). Aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism, so anaerobes don't grow multicellular beyond filaments because of prohibitive growth efficiencies. A precursor to a 2.4 Ga rise of oxygen was the evolution of water-splitting, oxygen-producing photosynthesis. But although the atmosphere became oxidizing at 2.4 Ga, sufficient atmospheric O2 did not occur until about 0.6 Ga. Earth-system factors were involved including planetary outgassing (as affected by size and composition), hydrogen escape, and processing of organic carbon. An atmosphere rich in O2 provides the largest feasible energy source per electron transfer in the Periodic Table, which suggests that O2 would be important for complex life on exoplanets. But plentiful O2 is unusual in a planetary atmosphere because O2 is easily consumed in chemical reactions with reducing gases or surface materials. Even with aerobic metabolism, the partial pressure of O2 (pO2) must exceed 10^3 Pa to allow organisms that rely on

  20. The distribution of mass in the planetary system and solar nebulae

    International Nuclear Information System (INIS)

    Weidenschilling, S.J.

    1977-01-01

    A model 'solar nebula' is constructed by adding the solar complement of light elements to each planet, using recent models of planetary compositions. Uncertainties in this approach are estimated. The computed surface density varies approximately as rsup(-3/2). Mercury, Mars and the asteroid belt are anomalously low in mass, but processes exist which would preferentially remove matter from these regions. Planetary masses and compositions are generally consistent with a monotonic density distribution in the primordial solar nebula. (Auth.)

  1. Reassessment of planetary protection requirements for Venus missions

    Science.gov (United States)

    Szostak, J.; Riemer, R.; Smith, D.; Rummel, J.

    In 2005 the US Space Studies Board SSB was asked by NASA to reexamine the planetary protection requirements for spacecraft missions to Venus In particular the SSB was tasked to 1 Assess the surface and atmospheric environments of Venus with respect to their ability to support the survival and growth of Earth-origin microbial contamination by future spacecraft missions and 2 Provide recommendations related to planetary protection issues associated with the return to Earth of samples from Venus The task group established by the SSB to address these issues assessed the known aspects of the present-day environment of Venus and the ability of Earth organisms to survive in the physical and chemical conditions found on the planet s surface or in the clouds in the planet s atmosphere As a result of its deliberations the task group found compelling evidence against there being significant dangers of forward or reverse biological contamination as a result of contact between a spacecraft and the surface of Venus or the clouds in the atmosphere of Venus regardless of the current unknowns The task group did however conclude that Venus is a body of interest relative to the process of chemical evolution and the origin of life As a result the task group endorses NASA s current policy of subjecting missions to Venus to the requirements imposed by planetary protection Category II rather than the less restrictive Category I recommended by COSPAR

  2. Geology, geochemistry, and geophysics of the Moon: Status of current understanding

    Science.gov (United States)

    Jaumann, R.; Hiesinger, H.; Anand, M.; Crawford, I. A.; Wagner, R.; Sohl, F.; Jolliff, B. L.; Scholten, F.; Knapmeyer, M.; Hoffmann, H.; Hussmann, H.; Grott, M.; Hempel, S.; Köhler, U.; Krohn, K.; Schmitz, N.; Carpenter, J.; Wieczorek, M.; Spohn, T.; Robinson, M. S.; Oberst, J.

    2012-12-01

    The Moon is key to understanding both Earth and our Solar System in terms of planetary processes and has been a witness of the Solar System history for more than 4.5 Ga. Building on earlier telescopic observations, our knowledge about the Moon was transformed by the wealth of information provided by Apollo and other space missions. These demonstrated the value of the Moon for understanding the fundamental processes that drive planetary formation and evolution. The Moon was understood as an inert body with its geology mainly restricted to impact and volcanism with associated tectonics, and a relative simple composition. Unlike Earth, an absence of plate tectonics has preserved a well-defined accretion and geological evolution record. However recent missions to the Moon show that this traditional view of the lunar surface is certainly an over simplification. For example, although it has long been suspected that ice might be preserved in cold traps at the lunar poles, recent results also indicate the formation and retention of OH- and H2O outside of polar regions. These volatiles are likely to be formed as a result of hydration processes operating at the lunar surface including the production of H2O and OH by solar wind protons interacting with oxygen-rich rock surfaces produced during micrometeorite impact on lunar soil particles. Moreover, on the basis of Lunar Prospector gamma-ray data, the lunar crust and underlying mantle has been found to be divided into distinct terranes that possess unique geochemical, geophysical, and geological characteristics. The concentration of heat producing elements on the nearside hemisphere of the Moon in the Procellarum KREEP Terrane has apparently led to the nearside being more volcanically active than the farside. Recent dating of basalts has shown that lunar volcanism was active for almost 3 Ga, starting at about 3.9-4.0 Ga and ceasing at ˜1.2 Ga. A recent re-processing of the seismic data supports the presence of a partially

  3. Teaching, learning, and planetary exploration

    Science.gov (United States)

    Brown, Robert A.

    1992-01-01

    The progress accomplished in the first five months of the three-year grant period of Teaching, Learning, and Planetary Exploration is presented. The objectives of this project are to discover new education products and services based on space science, particularly planetary exploration. An Exploration in Education is the umbrella name for the education projects as they are seen by teachers and the interested public. As described in the proposal, our approach consists of: (1) increasing practical understanding of the potential role and capabilities of the research community to contribute to basic education using new discoveries; (2) developing an intellectual framework for these contributions by supplying criteria and templates for the teacher's stories; (3) attracting astronomers, engineers, and technical staff to the project and helping them form productive education partnerships for the future, (4) exploring relevant technologies and networks for authoring and communicating the teacher's stories; (5) enlisting the participation of potential user's of the teacher's stories in defining the products; (6) actually producing and delivering many educationally useful teacher's stories; and (7) reporting the pilot study results with critical evaluation. Technical progress was made by assembling our electronic publishing stations, designing electronic publications based on space science, and developing distribution approaches for electronic products. Progress was made addressing critical issues by developing policies and procedures for securing intellectual property rights and assembling a focus group of teachers to test our ideas and assure the quality of our products. The following useful materials are being produced: the TOPS report; three electronic 'PictureBooks'; one 'ElectronicArticle'; three 'ElectronicReports'; ten 'PrinterPosters'; and the 'FaxForum' with an initial complement of printed materials. We have coordinated with planetary scientists and astronomers

  4. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  5. Sealed Planetary Return Canister (SPRC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  6. Polarimetry of stars and planetary systems

    National Research Council Canada - National Science Library

    Kolokolova, Ludmilla; Hough, James; Levasseur-Regourd, Anny-Chantal

    2015-01-01

    ... fields of polarimetric exploration, including proto-planetary and debris discs, icy satellites, transneptunian objects, exoplanets and the search for extraterrestrial life -- unique results produced...

  7. Sealed Planetary Return Canister (SPRC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample return missions have primary importance in future planetary missions. A basic requirement is that samples be returned in pristine, uncontaminated condition,...

  8. Public Participation in Planetary Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    In the past several years The Planetary Society has created several innovative opportunities for general public participation in the exploration of the solar system and the search for extraterrestrial life. The conduct of such exploration has traditionally been the province of a few thousand, at most, of professionally involved scientists and engineers. Yet the rationale for spending resources required by broad and far-reaching exploration involves a greater societal interest - it frequently being noted that the rationale cannot rely on science alone. This paper reports on the more notable of the opportunities for general public participation, in particular: 1) Visions of Mars: a CD containing the works of science fiction about Mars, designed to be placed on Mars as the first library to be found by eventual human explorers; 2) MAPEX: a Microelectronics And Photonics Experiment, measuring the radiation environment for future human explorers of Mars, and containing a electron beam lithograph of names of all the members of The Planetary Society at a particular time; 3) Naming of spacecraft: Involvement in the naming of spacecraft: Magellan, Sojourner; 4) The Mars Microphone: the first privately funded instrument to be sent to another world; 5) Red Rover Goes to Mars: the first commercial-education partnership on a planetary mission; 6) Student designed nanoexperiments: to fly on a Mars lander; and 7) SETI@home: a tool permitting millions to contribute to research and data processing in the search for extraterrestrial intelligence. A brief description of each of the projects will be given, and the opportunity it provided for public participation described. The evolving complexity of these projects suggest that more opportunities will be found, and that the role of public participation can increase at the same time as making substantive contributions to the flight missions. It will be suggested that these projects presage the day that planetary exploration will be truly

  9. Mars: The evolutionary history of the northern lowlands based on crater counting and geologic mapping

    Science.gov (United States)

    Werner, S. C.; Tanaka, K. L.; Skinner, J. A.

    2011-09-01

    The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions. The highland-lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are ˜ 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally >3km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga). All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or older. The formation ages of

  10. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  11. Coupled laboratory and numerical studies of impacts into planetary regolith

    Science.gov (United States)

    Dove, A.; Li, Y.; Curtis, J.; Colwell, J. E.

    2014-12-01

    We present the initial results from coupled experimental and numerical study of the response of particles to low-velocity impacts. In this study, laboratory experiments are used to validate and tune a new DEM capable of handling complex particle shapes for simulation of the behavior of planetary regolith. These studies have fundamental applications to granular material science, as well as broader applications to the response to low-energy impacts of surface layers on other planetary bodies, including planetesimals, asteroids, small moons, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, the plasma environment, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. Our laboratory experiments consist of impacting a spherical impactor into a bed of particles and tracking the subsequent mass loss and trajectories of the ejected particles. We begin with spherical particles and then we will expand to elongated rods, flake-like particles, and well-characterized aggregates. Complementary discrete element method (DEM) simulations are validated by these experimental studies; in the DEM simulations, the non-spherical nature of these particles will be described using a glued-sphere approach. An initial comparison between the particle ejection velocities observed in the experiments and simulations for spherical particles is shown in the figure. Discrepancies at low velocities are due to the fact that the trajectories of particles with such low ejection speeds are not observable in this setup. The simulations will then be used to gain physical insight and to evaluate a broader range of scenarios than can be easily explored experimentally, such as conditions similar to

  12. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    Science.gov (United States)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  13. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  14. Origins of the Lunar and Planetary Laboratory, University of Arizona

    Science.gov (United States)

    Cruikshank, Dale P.; Hartmann, William K.

    2014-11-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  15. Geology of Maxwell Montes, Venus

    Science.gov (United States)

    Head, J. W.; Campbell, D. B.; Peterfreund, A. R.; Zisk, S. A.

    1984-01-01

    Maxwell Montes represent the most distinctive topography on the surface of Venus, rising some 11 km above mean planetary radius. The multiple data sets of the Pioneer missing and Earth based radar observations to characterize Maxwell Montes are analyzed. Maxwell Montes is a porkchop shaped feature located at the eastern end of Lakshmi Planum. The main massif trends about North 20 deg West for approximately 1000 km and the narrow handle extends several hundred km West South-West WSW from the north end of the main massif, descending down toward Lakshmi Planum. The main massif is rectilinear and approximately 500 km wide. The southern and northern edges of Maxwell Montes coincide with major topographic boundaries defining the edge of Ishtar Terra.

  16. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    Science.gov (United States)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  17. Preliminary Mariner 9 report on the geology of Mars.

    Science.gov (United States)

    Mccauley, J. F.; Carr, M. H.; Masursky, H.; Milton, D. J.; Wilhelms, D. E.; Cutts, J. A.; Hartmann, W. K.; Sharp, R. P.

    1972-01-01

    Mariner 9 results indicate that Mars is geologically far more heterogeneous than previously suspected from earlier flyby missions; the surface has been shaped by volcanic, tectonic, erosional, and depositional activity. The equatorial region between 30 deg N and 30 deg S latitude is depicted in four geologic sketch maps, and seventeen geologic units are defined on the basis of their textural characteristics. The maps and the brief descriptions of geological units portrayed are followed by a series of more interpretive discussions dealing with topical problems and a summary geologic history. Topics covered include cratering, circular basins, volcanism, canyons, chaotic terrain, channels, and eolian activity.

  18. Interactive investigations into planetary interiors

    Science.gov (United States)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  19. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  20. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  1. Geology of the seashore

    OpenAIRE

    Institute, Marine

    2013-01-01

    There are many different types of beaches around Ireland. By looking at the geology of the seashore, students can study its rocks, soil, and minerals and learn about its origins. The geology of the seashore also offers a natural environment for many species and plants to live.

  2. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  3. A high performance neutron spectrometer for planetary hydrogen measurement

    Science.gov (United States)

    Naito, Masayuki; Hasebe, Nobuyuki; Nagaoka, Hiroshi; Ishii, Junya; Aoki, Daisuke; Shibamura, Eido; Kim, Kyeong J.; Matias-Lopes, José A.; Martínez-Frías, Jesús

    2017-08-01

    The elemental composition and its distribution on planetary surface provide important constraints on the origin and evolution of the planetary body. The nuclear spectrometer consisting of a neutron spectrometer and a gamma-ray spectrometer obtains elemental compositions by remote sensing. Especially, the neutron spectrometer is able to determine the hydrogen concentration, a piece of information that plays an important role in thermal history of the planets. In this work, numerical and experimental studies on the neutron spectrometer for micro-satellite application were conducted. It is found that background count rate of neutron produced from micro-satellite is very small, which enables to obtain successful results in short time observation. The neutron spectrometer combining a lithium-6 glass scintillator with a boron loaded plastic scintillator was used to be able to detect neutrons in different energy ranges. It was experimentally confirmed that the neutron signals from these scintillators were successfully discriminated by the difference of scintillation decay time between two detectors. The measurement of neutron count rates of two scintillators is found to determine hydrogen concentration on the planetary surfaces in the future missions.

  4. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  5. Interoperability in the Planetary Science Archive (PSA)

    Science.gov (United States)

    Rios Diaz, C.

    2017-09-01

    The protocols and standards currently being supported by the recently released new version of the Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet- Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. We explore these protocols in more detail providing scientifically useful examples of their usage within the PSA.

  6. Optical observations of southern planetary nebula candidates

    NARCIS (Netherlands)

    VandeSteene, GC; Sahu, KC; Pottasch, [No Value

    1996-01-01

    We present H alpha+[NII] images and low resolution spectra of 16 IRAS-selected, southern planetary nebula candidates previously detected in the radio continuum. The H alpha+[NII] images are presented as finding charts. Contour plots are shown for the resolved planetary nebulae. From these images

  7. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    Energy Technology Data Exchange (ETDEWEB)

    R. C. O' Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  8. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  9. Regolith Derived Heat Shield for a Planetary Body Entry and Descent System with In-Situ Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-mass planetary surface access is one of NASA’s Grand Challenges involving entry, descent and landing (EDL). During the entry and descent phase,...

  10. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    Science.gov (United States)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  11. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  12. Planetary CubeSats Come of Age

    Science.gov (United States)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  13. Shining a light on planetary processes using synchrotron techniques

    Science.gov (United States)

    Brand, H. E. A.; Kimpton, J. A.

    2017-12-01

    The Australian Synchrotron is a world-class national research facility that uses accelerator technology to produce X-rays and infrared for research. It is available for researchers from all institutions and disciplines. This contribution is intended to inform the community of the current capabilities at the facility using examples drawn from planetary research across the beamlines. Examples will include: formation of jarosite minerals with a view to Mars; studies of Micrometeorites; and large volume CT imaging of geological samples. A suite of new beamlines has been proposed for the growth of the facility and one of these, ADS, the Advanced Diffraction and Scattering beamline, is intended to be a high energy X-ray diffraction beamline capable of reaching extreme conditions and carrying out challenging in situ experiments. There is an opportunity to develop complex new sample environments which could be of relevance to shock metamorphic processes and this will form part of the discussion.

  14. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    Science.gov (United States)

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  15. Volcanic Degassing and the Atmosphere of Planetary Suites

    Science.gov (United States)

    Gaillard, F.; Scaillet, B.

    2012-12-01

    How unique the Earth is requires an urgent definition in front of the myriad of spatial observations revealing extra solar planets with variable spectral signatures. In the close solar system, high water abundance, atmospheric pressure at 1 bar and an O2-rich atmosphere constitute the main features of the Earth surface. This contrasts with dry Venus and its nearly 100 bar of reduced atmosphere dominated by CO2. This also contrasts with Mars, once flowed by water, today dominated by sulphate deposits, with 0.01 bar of atmospheric pressure and its oxidized surface. Such diversity in the physic and chemistry of planetary surfaces constitutes our most robust observation and benchmark for deciphering the remote exoplanets and defining the possible development of clement conditions for extra-terrestrial life. Volcanic degassing is a fundamental planetary process that conveys igneous volatiles species regulating important physical and chemical features of the exosphere. Understanding the planetary chemical fix supplied by volcanoes and how it can vary is therefore critical for a better definition of systems favorable to life emergence. We show that the atmospheric pressure, defining the minimum pressure of volcanic degassing, is the chief parameter controlling the composition of volcanic gases. On Venus, volcanic degassing occurring at minimum pressure of 100 bar can only be composed of CO2, whereas water and sulfur remain dissolved in the lavas. This explains the dry Venusian atmosphere. Degassing at 1 bar (minimum) on Earth produces mixtures dominated by water, explaining the Earth's wet surface. On Mars, gases produced at less than 0.05 bar contain more sulfur than water and Jupiter moon, Io, emits, in vacuum, gases that are dominated by sulfite. The composition of volcanic gases is therefore merely regulated by the atmospheric pressure. The latter is, in turn, mainly controlled by the size of the planet, even if little certitude exists about the most influential

  16. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  17. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  18. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  19. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    Science.gov (United States)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypo