WorldWideScience

Sample records for surface phenomena including

  1. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  2. Electrostatic Phenomena on Planetary Surfaces

    Science.gov (United States)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  3. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  4. Collective phenomena in volume and surface barrier discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  5. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  6. Nanophenomena at surfaces fundamentals of exotic condensed matter phenomena

    CERN Document Server

    Michailov, Michail

    2011-01-01

    This book presents the state of the art in nanoscale surface physics. It outlines contemporary trends in the field covering a wide range of topical areas: atomic structure of surfaces and interfaces, molecular films and polymer adsorption, biologically inspired nanophysics, surface design and pattern formation, and computer modeling of interfacial phenomena. Bridging 'classical' and 'nano' concepts, the present volume brings attention to the physical background of exotic condensed-matter properties. The book is devoted to Iwan Stranski and Rostislaw Kaischew, remarkable scientists, who played

  7. Damage phenomena at target surface by small leak

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Jeong, J. Y.; Kim, B. H.; Kim, T. J.; Choi, J. H.

    2001-04-01

    Design of the steam generator should be considered the safety about the sodium-water reaction occurred by water leak in heat transfer tube. Water leak mainly occurred from welding defect at the process of tube connection, the vibration of heat transfer tube bundle in steam generating system, fretting, and pin hole in original tube manufacturing. The classification of water leak divided to two parts, roughly, in case of the water leak studies. One is small leak phenomena analysis, and the other is it of large leak which was mainly treated to the evaluation on pressure increasing from hydrogen gas formed by sodium-water reaction in sodium system. In small water leak, the leak propagation phenomena and the development of leak detecting system at initial stage of small water leak were studied, mainly. In this study, the corrosion phenomena on the target tube surface appeared by sodium-water reaction was analyzed through the small water leak experiments, and, also, the jet phenomena formed by N 2 gas injection through the leak nozzle under water medium was observed

  8. Experimental and Theoretical Investigations of Glass Surface Charging Phenomena

    Science.gov (United States)

    Agnello, Gabriel

    Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing

  9. Spontaneous De-Icing Phenomena on Extremely Cold Surfaces

    Science.gov (United States)

    Song, Dong; Choi, Chang-Hwan

    2017-11-01

    Freezing of droplets on cold surfaces is universal phenomenon, while the mechanisms are still inadequately understood. Here we report spontaneous de-icing phenomena of an impacting droplet which occur on extreme cold surfaces. When a droplet impacts on cold surfaces lower than -80°, it takes more than two times longer for the droplet to freeze than the ones at -50°. Moreover, the frozen droplet below -80° breaks up into several large parts spontaneously in the end. When a droplet impacts on the extreme cold surfaces, evaporation and condensation occur immediately as the droplet approaches the substrate. A thick layer of frost forms between the droplet and substrate, decreasing the contact area of the droplet with substrate. It leads to impede the heat transfer and hence extends the freezing time significantly. On the extremely cold substrate, the droplet freezes from the center to the edge area, in contrast to a typical case freezing from the bottom to the top. This novel from-center-to-edge freezing process changes the internal tension of the frozen droplet and results in the instantaneous breakup and release eventually, which can be taken advantage of for effective deicing mechanisms.

  10. Surface Phenomena at Silver Nanoparticles in the Context of Toxicology

    DEFF Research Database (Denmark)

    Miclaus, Teodora

    2015-01-01

    Nanoparticle research and applications are rapidly expanding areas and large scale production and use of nanomaterials has prompted concern regarding their safety for humans and the environment. Nanotoxicology aims to offer answers to issues that may arise in regards to potential harmful effects...... associated with engineered nanomaterials. Among these materials, silver nanoparticles are some of the most widely employed and thus represent a major point of focus in nanotoxicology and the topic of this PhD thesis. While nanoparticles have, upon synthesis, well-defined characteristics, specific...... of nanotoxicology. The main aim of this PhD research is to investigate these phenomena at the surface of silver nanoparticles under conditions that are relevant for in vitro studies in order to understand their implications for nano-silver toxicity. Upon contact with biological fluids, particles get coated...

  11. Simulating atomic-scale phenomena on surfaces of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian [Niels Bohr Institute (Denmark); Choubey, Peayush; Hirschfeld, Peter [Univ. of Florida (United States); Berlijn, Tom [CNMS and CSMD, Oak Ridge National Laboratory (United States)

    2016-07-01

    Interest in atomic scale effects in superconductors has increased because of two general developments: First, the discovery of new materials as the cuprate superconductors, heavy fermion and Fe-based superconductors where the coherence length of the cooper pairs is as small to be comparable to the lattice constant, rendering small scale effects important. Second, the experimental ability to image sub-atomic features using scanning-tunneling microscopy which allows to unravel numerous physical properties of the homogeneous system such as the quasi particle excitation spectra or various types of competing order as well as properties of local disorder. On the theoretical side, the available methods are based on lattice models restricting the spatial resolution of such calculations. In the present project we combine lattice calculations using the Bogoliubov-de Gennes equations describing the superconductor with wave function information containing sub-atomic resolution obtained from ab initio approaches. This allows us to calculate phenomena on surfaces of superconductors as directly measured in scanning tunneling experiments and therefore opens the possibility to identify underlying properties of these materials and explain observed features of disorder. It will be shown how this method applies to the cuprate material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and a Fe based superconductor.

  12. Free surface and hydraulic phenomena in a windowless symmetrical target

    Energy Technology Data Exchange (ETDEWEB)

    Cascone, R.; Salve, M. de; Malandrone, M.; Panella, B. [Politecnico di Torino, Dipt. di Energetica, Torino (Italy)

    2001-07-01

    In the windowless concept for the Accelerator Driven Systems target the liquid flow in the spallation region must be able to remove the volumetric thermal power due to the proton interactions with nuclei. In this paper the hydraulic phenomena of a basic symmetrical windowless target configuration with two concentric cylinders have been studied. The tests were aimed to measure the profile of the free surface of the flow and the liquid velocity field, by using water as hydraulic equivalent to lead-bismuth eutectic fluid. The test section consists of two concentric plexiglass pipes (inner cylinder diameter 200 mm, outer cylinder diameter 290 mm) where the water flows up in the annular region and flows down in the central region. The most important experimental parameters are the fluid level measured from the top edge of the inner cylinder and the imposed flow rate. The experiments have been carried out at room temperature in the following range: flow rate from 2.5 to 20 kg/s; fluid level at zero flow rate from -50 to 186 mm. (authors)

  13. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Laboratory; Oro, David Michael [Los Alamos National Laboratory; Griego, Jeffrey Randall [Los Alamos National Laboratory; Turchi, Peter John [Los Alamos National Laboratory; Reinovsky, Robert Emil [Los Alamos National Laboratory; Bradley, Joseph Thomas [Los Alamos National Laboratory; Cheng, Baolian [Los Alamos National Laboratory; Freeman, Matthew Stouten [Los Alamos National Laboratory; Patten, Austin Randall [Los Alamos National Laboratory

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.

  14. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  15. Surface energy and crystallization phenomena of ammonium dinitramide

    Energy Technology Data Exchange (ETDEWEB)

    Teipel, Ulrich; Heintz, Thomas [Fraunhofer-Institut fuer Chemische Technologie (ICT), PO Box 1240, D-76318 Pfinztal (Germany)

    2005-12-01

    Ammonium dinitramide (ADN) was characterized during recrystallization from the melt. The surface tension of molten ADN at 97 C was measured to be 89 mN/m. The wetting angles between molten ADN and different solid surfaces (polytetrafluoroethylene, glass, steel, and aluminum) were determined. The wettability depends on the surface tension of molten ADN, the free surface energy of the solid surfaces and the interfacial tension between the solid and liquid. Observations of the recrystallization behavior of molten ADN showed that nucleation does not occur, even at super cooling rates of 70 K. Crystallization can be initiated by the application of seed crystals. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  16. Critical phenomena at perfect and non-perfect surfaces

    International Nuclear Information System (INIS)

    Pleimling, M

    2004-01-01

    In the past, perfect surfaces have been shown to yield local critical behaviour that differs from bulk critical behaviour. On the other hand, surface defects, whether they are of natural origin or created artificially, are known to modify local quantities. It is therefore important to clarify whether these defects are relevant or irrelevant for the surface critical behaviour. The purpose of this review is two-fold. In the first part we summarize some of the important results on surface criticality at perfect surfaces. Special attention is thereby paid to new developments such as for example the study of the surface critical behaviour in systems with competing interactions or of surface critical dynamics. In the second part the effect of surface defects (presence of edges, steps, quenched randomness, lines of adatoms, regular geometric patterns) on local critical behaviour in semi-infinite systems and in thin films is discussed in detail. Whereas most of the defects commonly encountered are shown to be irrelevant, some notable exceptions are highlighted. It is shown furthermore that under certain circumstances non-universal local critical behaviour may be observed at surfaces. (topical review)

  17. Evolution of the transfer function characterization of surface scatter phenomena

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus    o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log   o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.

  18. Geometrical critical phenomena on a random surface of arbitrary genus

    International Nuclear Information System (INIS)

    Duplantier, B.; Kostov, I.K.

    1990-01-01

    The statistical mechanics of self-avoiding walks (SAW) or of the O(n)-loop model on a two-dimensional random surface are shown to be exactly solvable. The partition functions of SAW and surface configurations (possibly in the presence of vacuum loops) are calculated by planar diagram enumeration techniques. Two critical regimes are found: a dense phase where the infinite walks and loops fill the infinite surface, the non-filled part staying finite, and a dilute phase where the infinite surface singularity on the one hand, and walk and loop singularities on the other, merge together. The configuration critical exponents of self-avoiding networks of any fixed topology G, on a surface with arbitrary genus H, are calculated as universal functions of G and H. For self-avoiding walks, the exponents are built from an infinite set of basic conformal dimensions associated with central charges c = -2 (dense phase) and c = 0 (dilute phase). The conformal spectrum Δ L , L ≥ 1 associated with L-leg star polymers is calculated exactly, for c = -2 and c = 0. This is generalized to the set of L-line 'watermelon' exponents Δ L of the O(n) model on a random surface. The divergences of the partition functions of self-avoiding networks on the random surface, possibly in the presence of vacuum loops, are shown to satisfy a factorization theorem over the vertices of the network. This provides a proof, in the presence of a fluctuating metric, of a result conjectured earlier in the standard plane. From this, the value of the string susceptibility γ str (H,c) is extracted for a random surface of arbitrary genus H, bearing a field theory of central charge c, or equivalently, embedded in d=c dimensions. Lastly, by enumerating spanning trees on a random lattice, we solve the similar problem of hamiltonian walks on the (fluctuating) Manhattan covering lattice. We also obtain new results for dilute trees on a random surface. (orig./HSI)

  19. Static phenomena at the charged surface of liquid hydrogen

    International Nuclear Information System (INIS)

    Levchenko, A.A.; Kolmakov, G.V.; Mezhov-Deglin, L.P.; Mikhjlov, M.G.; Trusov, A.B.

    1999-01-01

    The shape evolution of the equipotentially charged surface of liquid hydrogen layer covering the lower plate of a horizontally arranged diode in external electric fields has been studied experimentally for the first time. A reconstruction phenomenon (the formation of a stationary hump) at the flat charged surface at voltages higher than a certain critical U c1 was observed under the conditions of total compensation of the electric field in the bulk liquid by a surface charge. It is shown that the transition of the flat charged surface into the reconstructed state is a phase transition closed to the second order phase transition. The height of the hump increased with increasing the voltage and at U c2 > 1,2 U c1 the reconstructed surface lost the stability, and a stream discharge pulse was observed. The shape evolution of a changed droplet of constant volume suspended at the upper plate of the diode when the stretching electric field and gravity forces act in the same direction was studied as the voltage was increased up to the discharge

  20. Unraveling surface enabled magnetic phenomena in low dimensional systems

    Science.gov (United States)

    Baljozovic, Milos; Girovsky, Jan; Nowakowski, Jan; Ali, Md Ehesan; Rossmann, Harald; Nijs, Thomas; Aeby, Elise; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; WäCkerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M.; Jung, Thomas A.; Ballav, Nirmalya

    Molecular spin systems with controllable interactions are of both fundamental and applied importance. These systems help us to better understand the fundamental origins of the interactions involved in low dimensional magnetic systems and to put them in the framework of existing models towards their further development. Following our first observation of exchange induced magnetic ordering in paramagnetic porphyrins adsorbed on ferromagnetic Co surface we showed that magnetic properties of such molecules can be controllably altered upon exposure to chemical and physical stimuli. In our most recent work it was shown that a synthetically programmed co-assembly of Fe and Mn phthalocyanines can also be realized on diamagnetic Au(111) surfaces where it induces long-range 2D ferrimagnetic order, at first glance in conflict with the Mermin-Wagner theory. Here we provide evidence for the first direct observation of such ordering from STM/STS and XMCD data and from DFT +U calculations demonstrating key role of the Au(111) surface states in mediating AFM RKKY coupling of the Kondo underscreened magnetic moments.

  1. Optically induced surface relief phenomena in azobenzene polymers

    DEFF Research Database (Denmark)

    Holme, NCR; Nikolova, Ludmila; Hvilsted, Søren

    1999-01-01

    Azobenzene polymers and oligomers show intriguing surface relief features when irradiated with polarized laser light. We show through atomic force microscopic investigation of side-chain azobenzene polymers after irradiation through an amplitude mask that large peaks or trenches result depending...... on the architecture of the polymer. Extensive mass transport over long distances has been observed, paving the way for easy replication of nanostructures. We also show that it is possible to store microscopic images as topographic features in the polymers just through polarized light irradiation. (C) 1999 American...... Institute of Physics....

  2. Surface oxidation phenomena of boride coatings grown on iron

    International Nuclear Information System (INIS)

    Carbucicchio, M.; Palombarini, G.; Sambogna, G.

    1992-01-01

    Very hard boride coatings are grown on various metals using thermochemical as well as chemical vapour deposition techniques. In this way many surface properties, and in particular the wear resistance, can be considerably improved. Usually, also the corrosion behaviour of the treated components is important. In particular, oxidizing atmospheres are involved in many applications where, therefore, coating-environment interactions can play a relevant role. In a previous work, the early stages of the oxidation of iron borides were studied by treating single phase compacted powders in flowing oxygen at low temperatures (300-450deg C). In the present paper, the attention is addressed to the oxidation of both single phase and polyphase boride coatings thermochemically grown on iron. The single phase boride coatings were constituted by Fe 2 B, while the polyphase coatings were constituted by an inner Fe 2 B layer and an outer FeB-base layer. All the boride layers displayed strong (002) preferred crystallographic orientations. (orig.)

  3. Research into Surface Wave Phenomena in Sedimentary Basins.

    Science.gov (United States)

    1981-12-31

    Z 1.0 A (Eocene) - .9 and A (Post-Eocene) - .8 2.4 Golden Seismograms The Pocatello Valley earthquake sequence included a mL - 4.2 foreshock , a 6.0...4.2 foreshock and the 4.7 aftershock as well. The first arrival, at ia30s after the origin time of 1 6h15m6s March 28, is the Pn phase. This is a low

  4. Surface phenomena and the evolution of radiating fluid spheres in general relativity

    International Nuclear Information System (INIS)

    Herrera, L.; Jimenez, J.; Esculpi, M.; Ibanez, J.

    1989-01-01

    A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs

  5. Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting

    Science.gov (United States)

    Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan

    2017-03-01

    Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.

  6. Guidelines for the development of natural phenomena hazards design criteria for surface facilities

    International Nuclear Information System (INIS)

    Nelson, T.A.; Hossain, Q.A.; Murray, R.C.

    1992-01-01

    This paper discusses the rationale behind the guidelines, criteria, and methodologies that are currently used for natural phenomena hazard design and evaluation of DOE nuclear and non-nuclear facilities. The bases for the performance goals and usage categories specified in UCRL-15910 are examined, and the sources of intentional conservatism in the analyses, design, and evaluation methods and criteria are identified. Outlines of recent developments/changes in DOE Orders related to Natural Phenomena hazard mitigation are also presented. Finally, the authors recommend the use of DOE methodologies as embodied in UCRL-15910 for design and evaluation of surface facilities of the high level nuclear waste repository site

  7. Stability analysis on the free surface phenomena of a magnetic fluid for general use

    International Nuclear Information System (INIS)

    Mizuta, Yo

    2011-01-01

    This paper presents an analysis for elucidating a variety of physical processes on the interface (free surface) of magnetic fluid. The present analysis is composed of the magnetic and the fluid analysis, both of which have no limitations concerning the interface elevation or its profile. The magnetic analysis provides rigorous interface magnetic field under arbitrary distributions of applied magnetic field. For the fluid analysis, the equation for interface motion includes all nonlinear effects. Physical quantities such as the interface magnetic field or the interface stresses, obtained first as the wavenumber components, facilitate confirming the relations with those by the conventional theoretical analyses. The nonlinear effect is formulated as the nonlinear mode coupling between the interface profile and the applied magnetic field. The stability of the horizontal interface profile is investigated by the dispersion relation, and summarized as the branch line. Furthermore, the balance among the spectral components of the interface stresses are shown, within the sufficient range of the wavenumber space. - Research Highlights: → General, rigorous but compact analysis for free surface phenomena is shown. → Analysis is applied without limitations on the interface elevation or its profile. → Nonlinear effects are formulated as the nonlinear mode coupling. → Bifurcation of stability is summarized as the branch line. → Balance among the interface stresses are shown in the wavenumber space.

  8. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    International Nuclear Information System (INIS)

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  9. Study of luminous phenomena observed on contaminated metallic surfaces submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Bonin, B.; Luong, M.; Safa, H.; Tan, J.

    1995-01-01

    The RF field emission from a sample subjected to high RF fields in a copper cavity has been investigated. The study is focused on the luminous emissions occurring on the RF surface simultaneously with the electron emission. The optical apparatus attached to the cavity permits to observe the evolution of the emitters and the direct effects of the surface conditioning. Also, the parameters of the emitted radiation (intensity, glowing duration, spectral distribution) may provide additional informations on the field emission phenomena. Some results concerning samples intentionally contaminated with particles (metallic or dielectric) are presented. (K.A.)

  10. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  11. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  12. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  13. Pining phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces

    International Nuclear Information System (INIS)

    Yu, Dong In; Doh, Seung Woo; Park, Hyun Sun; Moriyama Kiyofumia; Kim, Moo Hwan; Kwak, Ho Jae; Ahn, Ho Seon

    2015-01-01

    When the decreased contact angle reaches the receding contact angle, the contact radius is reduced while maintaining a constant contact angle, i.e., this evaporation mode is known as the constant contact angle (CCA) mode. The emphasis of the droplet evaporation is that the transition from CCR to CCA modes is relative with the rate of the droplet evaporation, and it is markedly influenced by the surface wettability. In this study, it is focused on the evaporation mode transition. Especially, the transition from CCR to CCA modes is investigated on the hydrophobic microtextured surfaces. On the basis of the thermodynamics, the transition from CCR to CCA mode is theoretically analyzed. The thermodynamic model is developed to estimate the receding contact angle at the evaporation mode transition. Additionally, to compare between the theoretical model and experimental results, it is shown that the experimental receding contact angle is well estimated by the receding contact angle with the theoretical model. This study was performed to investigate the pinning phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces. The pinning phenomena at the contact line were shown theoretically to be due to the most favorable thermodynamics process that caused the Gibbs free energy to rapidly reach an equilibrium state during droplet evaporation. The evaporation mode underwent a transition when the decrease in the Gibbs free energy was equivalent for the CCR and CCA modes. On the basis of the analysis described here, a theoretical model was developed to estimate the receding contact angle at the mode transition as a function of the surface conditions

  14. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  15. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  16. Monitoring of tritium-contaminated surfaces, including skin

    Energy Technology Data Exchange (ETDEWEB)

    Surette, R A; Wood, M J

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation`s PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55`s susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs.

  17. Monitoring of tritium-contaminated surfaces, including skin

    International Nuclear Information System (INIS)

    Surette, R.A.; Wood, M.J.

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation's PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55's susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs

  18. Nanoparticle technology for treatment of Parkinson's disease: the role of surface phenomena in reaching the brain.

    Science.gov (United States)

    Leyva-Gómez, Gerardo; Cortés, Hernán; Magaña, Jonathan J; Leyva-García, Norberto; Quintanar-Guerrero, David; Florán, Benjamín

    2015-07-01

    The absence of a definitive treatment for Parkinson's disease has driven the emerging investigation in the search for novel therapeutic alternatives. At present, the formulation of different drugs on nanoparticles has represented several advantages over conventional treatments. This type of multifunctional carrier, owing to its size and composition, has different interactions in biological systems that can lead to a decrease in ability to cross the blood-brain barrier. Therefore, this review focuses on the latest advances in obtaining nanoparticles for Parkinson's disease and provides an overview of technical aspects in the design of brain drug delivery of nanoparticles and an analysis of surface phenomena, a key aspect in the development of functional nanoparticles for Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    International Nuclear Information System (INIS)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone; Chorkendorff, Ib

    2012-01-01

    Highlights: ► Impedance spectroscopy of Cu/Pt(1 1 1) near-surface alloy and Pt(1 1 1). ► Presence of oxygen changes little the adsorption dynamics. ► Adsorption dynamics similar on alloy and Pt(1 1 1). ► Electrosorption phenomena on alloy shifted in potential, relative to Pt(1 1 1). - Abstract: The adsorption dynamics of *OH and *O species at Pt(1 1 1) and Cu/Pt(1 1 1) near-surface alloy (NSA) surfaces in oxygen-free and O 2 -saturated 0.1 M HClO 4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(1 1 1) surface resulting in weaker bonding to adsorbates like *OH, *H or *O. This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16 V towards more positive potentials can be clearly monitored in absence of O 2 and under the oxygen reduction reaction (ORR) conditions for the Cu/Pt(1 1 1) NSA. In both cases, for Pt(1 1 1) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when oxygen reduction takes place at the surface. A ∼5-fold improvement in the ORR activity over the Pt(1 1 1) at 0.9 V (RHE) was measured for the Cu/Pt(1 1 1) near-surface alloy.

  20. Identification of astrocytoma associated genes including cell surface markers

    International Nuclear Information System (INIS)

    Boon, Kathy; Edwards, Jennifer B; Eberhart, Charles G; Riggins, Gregory J

    2004-01-01

    Despite intense effort the treatment options for the invasive astrocytic tumors are still limited to surgery and radiation therapy, with chemotherapy showing little or no increase in survival. The generation of Serial Analysis of Gene Expression (SAGE) profiles is expected to aid in the identification of astrocytoma-associated genes and highly expressed cell surface genes as molecular therapeutic targets. SAGE tag counts can be easily added to public expression databases and quickly disseminated to research efforts worldwide. We generated and analyzed the SAGE transcription profiles of 25 primary grade II, III and IV astrocytomas [1]. These profiles were produced as part of the Cancer Genome Anatomy Project's SAGE Genie [2], and were used in an in silico search for candidate therapeutic targets by comparing astrocytoma to normal brain transcription. Real-time PCR and immunohistochemistry were used for the validation of selected candidate target genes in 2 independent sets of primary tumors. A restricted set of tumor-associated genes was identified for each grade that included genes not previously associated with astrocytomas (e.g. VCAM1, SMOC1, and thymidylate synthetase), with a high percentage of cell surface genes. Two genes with available antibodies, Aquaporin 1 and Topoisomerase 2A, showed protein expression consistent with transcript level predictions. This survey of transcription in malignant and normal brain tissues reveals a small subset of human genes that are activated in malignant astrocytomas. In addition to providing insights into pathway biology, we have revealed and quantified expression for a significant portion of cell surface and extra-cellular astrocytoma genes

  1. Basic research on nonlinear instability phenomena of liquid surface. Fiscal year 1996 report on preceding basic engineering field

    International Nuclear Information System (INIS)

    Madarame, Haruki; Okamoto, Koji; Iida, Masao

    1997-03-01

    Various nonlinear behaviors caused by nonlinear boundary conditions have been observed, and it is feared that in large vessels like FBRs, the instability phenomena such as self-exciting sloshing may occur in the free liquid surface of coolant. In this research, the nonlinear instability phenomena in free liquid surface were examined by the basic experiment and the analysis. As to the self-exciting oscillation 'jet flutter' of upward plane jet that collides against liquid surface, in order to know the mechanism of determining the frequency and supplying energy, the amplitude and phase relation of various variable quantities were investigated. The simplified model for calculating the displacement of jet was made, and compared with the experiment. The jet flutter phenomena are explained. The interaction of free liquid surface and turbulent flow, which is important for considering the nonlinearity in free liquid surface, was measured by LDV and visualization, and the turbulent flow phenomena in free liquid surface were investigated. In the experiment, turbulent flow energy was given to the free liquid surfaces of water and polymers, and the effect that the Toms effect exerted to interface turbulent flow was observed. The results of these studies are reported. (K.I.) studies are reported. (K.I.)

  2. Mars atmospheric phenomena during major dust storms, as measured at surface

    International Nuclear Information System (INIS)

    Ryan, J.A.; Henry, R.M.

    1979-01-01

    Meteorological instrumentation aboard the Viking Mars Landers measures wind, temperature, and pressure. Two global dust storms occurred during northern autumn and winter, observed both by the orbiters and by the landers. The meteorological data from the landers has been analyzed for the period just before first storm arrival to just after second storm arrival, with the objectives being definition of meteorological phenomena during the storm period, determination of those associated with storm and dust arrival, and evaluation of effects on synoptic conditions and the general circulation. Times of dust arrival over the sites could be defined fairly closely from optical and pressure (solar tide) data, and dust arrival was also accompanied by changes in diurnal temperature range, temperature maxima, and temperature minima. The arrivals of the storms at VL-1 were accompanied by significant increase in wind speed and pressure. No such changes were observed at VL-2. It is possible that surface material could have been raised locally at VL-1. Throughout the period except following the second dust storm synoptic picture at VL-2 was one of eastward moving cyclonic and anticyclonic systems. These disappeared following the second storm, a phenomenon which may be related to the storm

  3. Exploration Technology Development including Surface Acoustic Wave RFID chips

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on maturing future surface exploration technologies and instrumentation and working towards flight instrumentation and systems to support...

  4. Microimpact phenomena on Australasian microtektites: Implications for ejecta plume characteristics and lunar surface processes

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    . The microimpacts are a consequence of interparticle collisions within the ejecta plume (as suggested by their chemistry) subsequent to a major impact and, therefore, reveal processes inherent in an impact-generated plume. All the impact phenomena observed here have...

  5. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  6. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  7. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  8. Integrated Approach for Understanding Impurity Adsorption on Calcite: Mechanisms for Micro-scale Surface Phenomena

    Science.gov (United States)

    Vinson, M. D.; Arvidson, R. S.; Luttge, A.

    2004-12-01

    A longstanding goal within the field of environmental geochemistry has been the development of a fundamental understanding of the kinetics that governs the interactions of solution-borne impurities with the calcite mineral surface. Recent dissolution experiments using Mg2+, Mn2+, and Sr2+ have shown distinct differences in the interaction of these three impurity ions with the calcite crystal surface. Because the dissolution of carbonate minerals in soils and sediments influences the uptake and migration of groundwater contaminants, a rigorous understanding of the basic processes that occur at the mineral-fluid interface is necessary. We have used vertical scanning interferometry (VSI) coupled with scanning probe microscopy (SPM) to examine calcite crystal dissolution in the presence of Mg2+, Mn2+, and Sr2+, all known dissolution inhibitors and possible groundwater contaminants. We have studied the kinetics of impurity-crystal interactions at a pH 8.8, and in the presence or absence of dissolved inorganic carbon. Our data show that, when individually introduced into undersaturated solutions, Mg2+ and Mn2+ are shown to activate the calcite crystal surface, resulting in enhanced etch pit nucleation rates and step density. Conversely, Sr2+ is shown to cause passivation of the calcite surface. The effect is intensified when solutions are saturated with respect to atmospheric CO2. Results indicate that aqueous CO32- (or HCO3-) may influence how aqueous metal ionic complexes interact with the crystal surface. Furthermore, the influence is differently exhibited, and passivation or activation ultimately depends on the properties of the diffusing metal ion or metal-hydroxide complex. These properties include for example, differences in hydration enthalpy, the effective ionic radius, and electron shell configuration.

  9. Influence of bulk and surface phenomena on the hydrogen permeation through metals

    International Nuclear Information System (INIS)

    Waelbroeck, F.; Wienhold, P.; Winter, J.; Rota, E.; Bauno, T.

    1984-12-01

    We discuss the permeation of hydrogen through metals and alloys such as iron, nickel, steels and Inconel wherein H dissolves endothermically from an H 2 gas. We assume first that trapping centers, surface contamination layers, the saturation of the H surface coverage and the implantation profile - when energetic ions drive the permeation - can be neglected, that a quasi-equilibrium exists between the H atom concentration ν in the adsorbed layer and c in the near surface layers and that the H solubility and diffusivity are homogeneous in the membrane. We evaluate thereafter separately the influence of these various effects and identify the parameter domains where appreciable corrections result. The permeation phenomenon is complex even when these simplifications are made: the penetration rate is proportional to the flux of thermal molecules, atoms or energetic ions - depending upon the case - which strike the surface; the diffusion in the metal is proportional to the gradient of c; the release rate depends on c 2 ; the time-dependent diffusion equation includes a double spatial derivative of c. Permeation can only be fully described when computer codes such as PERI is used. Simple analytical relations are however obtained in several limiting cases. They are the object of this report. Some of them had already been derived by other authors but they were not shown to be part of a single, self consistent permeation model. A comparison of predicted and experimental results shows that the simplified model describes surprisingly accurately the hydrogen exchange between gas and metal solutions. (orig./GSCH)

  10. A Comparison of Numerical Strategies for Modeling the Transport Phenomena in High-Energy Laser Surface Alloying Process

    Directory of Open Access Journals (Sweden)

    Dipankar Chatterjee

    2017-06-01

    Full Text Available A comparative assessment is done on the effectiveness of some developed and reported macroscopic and mesoscopic models deployed for addressing the three-dimensional thermo-fluidic transport during high-power laser surface alloying process. The macroscopic models include the most celebrated k–ε turbulence model and the large eddy simulation (LES model, whereas a kinetic theory-based lattice Boltzmann (LB approach is invoked under the mesoscopic paradigm. The time-dependent Navier–Stokes equations are transformed into the k–ε turbulence model by performing the Reynolds averaging technique, whereas a spatial filtering operation is used to produce the LES model. The models are suitably modified to address the turbulent melt-pool convection by using a modified eddy viscosity expression including a damping factor in the form of square root of the liquid fraction. The LB scheme utilizes three separate distribution functions to monitor the underlying hydrodynamic, thermal and compositional fields. Accordingly, the kinematic viscosity, thermal and mass diffusivities are adjusted independently. A single domain fixed-grid enthalpy-porosity approach is utilized to model the phase change phenomena in conjunction with an appropriate enthalpy updating closure scheme. The performance of these models is recorded by capturing the characteristic nature of the thermo-fluidic transport during the laser material processing. The maximum values of the pertinent parameters in the computational domain obtained from several modeling efforts are compared to assess their capabilities. The comparison shows that the prediction from the k–ε turbulence model is higher than the LES and LB models. In addition, the results from all three models are compared with the available experimental results in the form of dimensionless composition of the alloyed layer along the dimensionless depth of the pool. The comparison reveals that the LB and the LES approaches are better

  11. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    International Nuclear Information System (INIS)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups

  12. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-01-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs

  13. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  14. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts

    Science.gov (United States)

    Torres-García, E.; Canizal, G.; Velumani, S.; Ramírez-Verduzco, L. F.; Murrieta-Guevara, F.; Ascencio, J. A.

    2004-12-01

    Oil refinery related catalysis, particularly hydro desulfurization is viewed as a mature technology, but still we view that more efforts have to be made to boost the efficiency of the existing catalysts. So in this article we report the use of WOx/ZrO2 catalysts for the oxidation of dibenzothiophene (DBT) as a more effective material in nanometer scales. The WOx/ZrO2 samples were prepared by solid impregnation of ZrO2-x(OH)2x with ammonium metatungstate solution maintaining the pH at 10. Detailed structural and surface morphological analyses were carried out using Raman spectroscopy and Atomic force microscopy. In order to understand the catalytic activity which is largely influenced by the surface morphology, an interpretation based on the experimental results is given. The results showed an important correlation between the catalytic efficiency with the morphology of the surface which is identified as arrays of planes with steps of around 10 nm with the structures showing faceting with a preferential angle of 90°. It was established that when the number of W atoms in the surface increase the catalytic efficiency also increases. Thus we conclude that the material efficiency as a catalyst is directly related with the surface structure.

  15. Monte Carlo and molecular dynamics simulations of near-surface phenomena. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Valkealahti, Seppo.

    1987-10-01

    Monte Carlo simulation is used to investigate positron and electron slowing down in solid matter. The description of elastic scattering is based on accurate cross sections of effective crystalline atom potentials. Inelastic processes are described separately for each energby level y Gryzinski's excitation function. Various materials are studied and several electron and positron slowing down parameters and distributions are extracted. The results are used to analyze and interprete a number of recent experiments utilizing keV electron and positron beams. Molecular dynamics simulation methods are used to study (i) damage production in aluminum (110) surfaces due to low-energy argon ion bombardment and (ii) the premelting effects of solid noble gas surfaces. Appropriately constructed pair potentials were assigned between the particles and an electronic friction term proportional to the velocity was used for energetic ions. Of particular interest in (i) are the defect and implanted atom distributions, which are compared against recent experiments. In (ii) the simulations show the equilibrium existence of liquid-like layers on the densely packed surfaces well below the bulk melting temperature. In (i) the mean vacancy concentration depth depends only slightly on the incident angle. The total number of vacancies is almost independent of the incident ion dose for very oblique angles of incidence (0>45 deg C). Vancancy profile is found to have a clear peak in the topmost atomic layers and a broader tail deep in the material. The interstitial and Ar + ion profiles are clearly deeper in the material than the vacancy profile. In (ii), a layer-by-layer premelting of Lennard-Jones (111) surfaces is observed. Also the (100) surfaces premelt, but the disordering mechanism for the loosely packed (110) surfaces is roughening. Furthermore, a general rule seems to be that melting proceeds along the directions of high packing densities

  16. Fundamental Experiments at Liquid Helium Temperatures (Low Temperature Studies of Anomalous Surface Shielding and Related Phenomena).

    Science.gov (United States)

    1984-09-30

    study of the copper surface indicated that the copper oxide layer was approximately 20 Angstroms thick. Hanni and Madey 3 2 have evaluated the...REFERENCES 1. John Bardeen, "Comments on Shielding by Surface States," in Near Zero: New Frontiers of Physics, to be published. 2. R. S. Hanni and...Michel, H. E. Rorschach, and G. T. Trammel, Phys. Rev. 168 (1968), 737. 31. C. Herring, Phys. Rev. 171 (1968), 1361. 32. R. S. Hanni and J.M.J. Madey

  17. On the Concept of Electrode to Discharge Phenomena in Surface Roughness With Reference Strongly Electronegative Gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1986-01-01

    The use of geometrically well-defined protrusions in studies es of the effects of electrode surface roughness upon the insulation strength of strongly electronegative gases is discussed. It is argued that, with respect to the roughness associated with production processes, the dimensions of artif...

  18. Jerky-type phenomena at nanocomposite surfaces : The breakdown of the coulomb friction law

    NARCIS (Netherlands)

    Hosson, Jeff T.M. De; Pei, Yutao; Chen, Changqiang

    This article concentrates on the jerky-type phenomenon of surfaces in relative motion (i.e., a breakdown of the Coulomb friction law) in nanocomposite materials. Physical arguments are provided to understand the dependence of friction on sliding velocity in the sense of self-lubrication. Also

  19. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  20. Influence of Surface Phenomena on Free-Molecule Gas Flow in Fine Channels.

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2007-01-01

    Roč. 34, 7 (2007) , s. 796-800 ISSN 0735-1933 R&D Projects: GA ČR(CZ) GA101/05/2214; GA ČR(CZ) GA101/05/2524 Institutional research plan: CEZ:AV0Z40720504 Keywords : adsorption * surface diffusion * sticking coefficient Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.945, year: 2007

  1. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *O....... This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16V towards more positive potentials can be clearly monitored in absence of O2 and under the oxygen reduction reaction (ORR) conditions...... for the Cu/Pt(111) NSA. In both cases, for Pt(111) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when...

  2. Biphotonic holographic gratings in azobenzene polyesters: Surface relief phenomena and polarization effects

    DEFF Research Database (Denmark)

    Sánchez, C.; Alcalá, R.; Hvilsted, Søren

    2000-01-01

    Biphotonic holographic gratings have been recorded in a side-chain azobenzene liquid crystalline polyester using a blue incoherent source and a He-Ne laser. Intensity gratings and the appearance of surface relief have been observed when two linearly polarized beams from a He-Ne laser are made...... to interfere on a film illuminated with blue light. Polarized holographic gratings are also created with two orthogonally circularly polarized He-Ne beams. All these gratings are stable in darkness but can be erased with blue light. (C) 2000 American Institute of Physics....

  3. Study of surface phenomena in biomaterials: The influence of physical factors

    Energy Technology Data Exchange (ETDEWEB)

    Sachelarie, Liliana, E-mail: lisachero@yahoo.com; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-15

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  4. New pbysical methods used in the study of composition, electronic properties and surface phenomena of solid substances. I. Electronic spectroscopies

    International Nuclear Information System (INIS)

    Toderean, A; Ilonca, Gh.

    1981-01-01

    The discovery of different kinds of interactions between solids and fotonic, respectively electronic and ionic beams, leads to the development of many new, very sensitive, physical methods for the study of solids. This monograph tries to present some of these methods, useful in compositional analysis, in the study of electronic properties and of the surface processes of solid substances. This is done from the point of view both of physical phenomena underlying them and of the information obtainable with such methods. But the whole monograph is limited only to the methods based on the electronic properties of the elements existing in the solid probes studied and this paper presents only those of them in which the detected beam is an electronic one, like: ELS, DAPS, ILS, AES, AEAPS, INS, TSS, XPS and UPS. (authors)

  5. Paranormal phenomena

    Science.gov (United States)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  6. Lineaments of Texas - possible surface expressions of deep-seated phenomena. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, C.M. Jr.; Caran, S.C.

    1984-04-01

    Lineaments were identified on 51 Landsat images covering Texas and parts of adjacent states in Mexico and the United States. A method of identifying lineaments was designed so that the findings would be consistent, uncomplicated, objective, and reproducible. Lineaments denoted on the Landsat images were traced onto 1:250,000-scale work maps and then rendered cartographically on maps representing each of the 51 Landsat images at a scale of 1:500,000. At this stage more than 31,000 lineaments were identified. It included significant areas outside of Texas. In preparing the final lineament map of Texas at 1:1,000,000-scale from the 1:500,000-scale maps, all features that lay outside Texas and repetition among features perceived by individual workers were eliminated. Cultural features were checked for before reducing and cartographically fitting the mosaic of 51 individual map sheets to a single map base. Lineaments that were partly colinear but with different end points were modified into a single lineament trace with the combined length of the two or more colinear lineaments. Each lineament was checked to determine its validity according to our definition. The features were edited again to eliminate processing artifacts within the image itself, as well as representations of cultural features (fencelines, roads, and the like) and geomorphic patterns unrelated to bedrock structure. Thus the more than 31,000 lineaments originally perceived were reduced to the approximately 15,000 presented on the 1:1,000,000 map. Interpretations of the lineaments are presented.

  7. Radiation damages of material surfaces by plasma emission in thermonuclear devices. Methods of study of surface phenomena and simulation effect of thermonuclear plasma

    International Nuclear Information System (INIS)

    Rybalko, V.F.

    1978-01-01

    Phenomena that can introduce a controlling contribution into the erosion of the first wall surface in thermonuclear reactor are reviewed. Considered are the main characteristics of the physical disintegration: dependence of the disintegration coefficient upon the energy and the incidence angle of the bombarding particles, upon the atomic number of the material of the target and the type of bombarding particles. Stressed is the lack of reliable data on the disintegration of materials by light ions, which are of a maximum interest in relation to the controlled thermonuclear synthesis. The chemical disintegration and some regularities of it for the carbon-hydrogen and carbon-oxygen systems are discussed briefly. Listed are the main properties of blistering and its contribution to the erosion of crystalline surfaces

  8. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  9. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  10. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  11. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  12. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  13. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... and roughness. This influences cell behaviour on the surface such as adhesion, proliferation and differentiation of cells as well as the mineralization of the extracellular matrix at the implant surfaces. The aim of the present systematic review was to describe organic molecules used for surface nanocoating...... nanocoatings. The included in vivo studies, showed improvement of bone interface reactions measured as increased Bone-to-Implant Contact length and Bone Mineral Density adjacent to the polysaccharide coated surfaces. Based on existing literature, surface modification with polysaccharide and glycosaminoglycans...

  14. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    Science.gov (United States)

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Light reflection from a rough liquid surface including wind-wave effects in a scattering atmosphere

    International Nuclear Information System (INIS)

    Salinas, Santo V.; Liew, S.C.

    2007-01-01

    Visible and near-IR images of the ocean surface, taken from remote satellites, often contain important information of near-surface or sub-surface processes, which occur on, or over the ocean. Remote measurements of near surface winds, sea surface temperature and salinity, ocean color and underwater bathymetry, all, one way or another, depend on how well we understand sea surface roughness. However, in order to extract useful information from our remote measurements, we need to construct accurate models of the transfer of solar radiation inside the atmosphere as well as, its reflection from the sea surface. To approach this problem, we numerically solve the radiative transfer equation (RTE) by implementing a model for the atmosphere-ocean system. A one-dimensional atmospheric radiation model is solved via the widely known doubling and adding method and the ocean body is treated as a boundary condition to the problem. The ocean surface is modeled as a rough liquid surface which includes wind interaction and wave states, such as wave age. The model can have possible applications to the retrieval of wind and wave states, such as wave age, near a Sun glint region

  16. Surface phenomena associated with thermal cycling of copper and their impact on the service life of particle accelerator structures

    CERN Document Server

    Aicheler, Markus; Theisen, Werner; Sgobba, Stefano

    2010-01-01

    The performance of accelerating structures (AS) in the Compact LInear Collider (CLIC) is sensitive to a variety of parameters, including the surface quality of key elements of the AS. Processes which affect the surface quality are therefore of particular concern. The present work addresses surface modifications associated with thermal cycling during operation. This type of operating condition represents a specific type of fatigue loading. Four fatigue test procedures were used in the present study in order to investigate the fatigue behaviour of oxygen{free{electronic (OFE) copper, the candidate material of the CLIC-AS: conventional fatigue (CVF), ultrasonic swinger (USS), laser fatigue (LAF) and radio{frequency fatigue (RFF). During operation of the accelerator the material of the AS will be subjected to cyclic temperature changes of approx. Delta T = 56 K, from about 40° C to about 100° C. These temperature changes will result in cyclic biaxial strains in the surface of the order of epsilon(biax) = 9.2 x ...

  17. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  18. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  19. Portable instrumentation for quantitatively measuring radioactive surface contaminations, including 90Sr

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-10-01

    In order to measure the effectiveness of decontamination efforts, a quantitative analysis of the radiocontamination is necessary, both before and after decontamination. Since it is desirable to release the decontaminated material for unrestricted use or disposal, the assay equipment must provide adequate sensitivity to measure the radioactivity at or below the release limit. In addition, the instrumentation must be capable of measuring all kinds of radiocontaminants including fission products, activation products, and transuranic materials. Finally, the survey instrumentation must be extremely versatile in order to assay the wide variety of contaminated surfaces in many environments, some of which may be extremely hostile or remote. This communication describes the development and application of portable instrumentation capable of quantitatively measuring most transuranics, activation products, and fission products, including 90 Sr, on almost any contaminated surface in nearly any location

  20. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  1. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  2. A novel technique for including surface tension in PLIC-VOF methods

    Energy Technology Data Exchange (ETDEWEB)

    Meier, M.; Yadigaroglu, G. [Swiss Federal Institute of Technology, Nuclear Engineering Lab. ETH-Zentrum, CLT, Zurich (Switzerland); Smith, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    2002-02-01

    Various versions of Volume-of-Fluid (VOF) methods have been used successfully for the numerical simulation of gas-liquid flows with an explicit tracking of the phase interface. Of these, Piecewise-Linear Interface Construction (PLIC-VOF) appears as a fairly accurate, although somewhat more involved variant. Including effects due to surface tension remains a problem, however. The most prominent methods, Continuum Surface Force (CSF) of Brackbill et al. and the method of Zaleski and co-workers (both referenced later), both induce spurious or 'parasitic' currents, and only moderate accuracy in regards to determining the curvature. We present here a new method to determine curvature accurately using an estimator function, which is tuned with a least-squares-fit against reference data. Furthermore, we show how spurious currents may be drastically reduced using the reconstructed interfaces from the PLIC-VOF method. (authors)

  3. Transport phenomena

    International Nuclear Information System (INIS)

    Kirczenow, G.; Marro, J.

    1974-01-01

    Some simple remarks on the basis of transport theory. - Entropy, dynamics and scattering theory. - Response, relaxation and fluctuation. - Fluctuating hydrodynamics and renormalization of susceptibilities and transport coefficients. - Irreversibility of the transport equations. - Ergodic theory and statistical mechanics. - Correlation functions in Heisenberg magnets. - On the Enskog hard-sphere kinetic eqquation and the transport phenomena of dense simple gases. - What can one learn from Lorentz models. - Conductivity in a magnetic field. - Transport properties in gases in presence of external fields. - Transport properties of dilute gases with internal structure. (orig.) [de

  4. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    Science.gov (United States)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  5. Investigating Surface and Interface Phenomena in LiFeBO3 Electrodes Using Photoelectron Spectroscopy Depth Profiling

    DEFF Research Database (Denmark)

    Maibach, Julia; Younesi, Reza; Schwarzburger, Nele

    2014-01-01

    The formation of surface and interface layers at the electrodes is highly important for the performance and stability of lithium ion batteries. To unravel the surface composition of electrode materials, photoelectron spectroscopy (PES) is highly suitable as it probes chemical surface and interface...... properties with high surface sensitivity. Additionally, by using synchrotron-generated hard x-rays as excitation source, larger probing depths compared to in-house PES can be achieved. Therefore, the combination of in-house soft x-ray photoelectron spectroscopy and hard x-ray photoelectron spectroscopy...

  6. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  7. Experiment and analysis of basic phenomena of gas catching by liquid surface. Observation by visualizing vortex structure and gas catching process

    International Nuclear Information System (INIS)

    Kamemoto, Takashi; Nishiyama, Tadao

    1995-01-01

    Since gravity, viscous force, surface tension and so on are related simultaneously to the inertia force of flow, in gas catching phenomena, it is often difficult to grasp exactly its similarity. At the time of designing actual equipment, careful model test is required, and the validity of the evaluation by model test for applying it to actual machines sometimes becomes a problem. In this research, for the purpose of elucidating the essential mechanism of the gas-catching phenomena by vortices, and obtaining the knowledge useful for the probability of the method of evaluating the limit of gas catching, the knowledge obtained so far on the similarity law and model testing method related to the air catching by vortices was put in order, and vortex structure and basic gas-catching process were observed by water flow visualizing experiment, thus the noteworthy flow characteristics for clarifying the essential mechanism of the phenomena were obtained. The main knowledges on the air catching by vortices obtained so far, the experiment of visualizing vortices using water flow and the experimental results are reported. (K.I.)

  8. Surface enhanced Raman scattering as an in-reactor monitor of phenomena of interest to the Nuclear Power Industry

    International Nuclear Information System (INIS)

    Devine, T.M.

    1994-01-01

    Surface enhanced Raman spectroscopy (SERS) is proposed as a technique for monitoring in situ the passive films and corrosion products that form on the surfaces of alloys of interest in nuclear power plants. The technique is a highly sensitive procedure for detecting even very small quantities of species present on surfaces, in particular the surface of metallic alloys. The data could, for example, identify the constituents in passive films that are less than a monolayer in average thickness. Processes such as 60 Co pick-up could be monitored in real time. In fact, if it is known that incorporation of 60 Co occurs when a particular oxide film forms on the surface of the alloy, then measurement of the SER spectra could indicate when such films are beginning to form and thereby provide an early indication that conditions inside the reactor are now suitable for 60 Co pick-up in the passive films

  9. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  10. Optimization of Gluten-Free Tulumba Dessert Formulation Including Corn Flour: Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Yildiz Önder

    2017-03-01

    Full Text Available Tulumba dessert is widely preferred in Turkey; however, it cannot be consumed by celiac patients because it includes gluten. The diversity of gluten-free products should be expanded so that celiac patients may meet their daily needs regularly. In this study, corn flour (CF / potato starch (PS blend to be used in the gluten-free tulumba dessert formulation was optimized using the Response Surface Methodology (RSM. Increasing ratio of PS in the CF-PS led to a decrease in hardness of the dessert and to an increase in expansion, viscosity, adhesiveness, yield of dessert both with and without syrup (P0.05, additionally these desserts had a much higher sensory score compared to the control sample in terms of the overall quality and pore structure (P<0.05.

  11. Thermoconvective phenomena

    International Nuclear Information System (INIS)

    Bashtovoy, V.G.; Berkovsky, B.M.; Vislovich, A.N.

    1988-01-01

    Nonisothermal flows of magnetic fluids as well as those with free surface, i.e., film flows, are of the greatest interest in the MF dynamics. In the former case, the thermomagnetic convection mechanism is most striking. In the latter, the magnetic field is responsible for the fluid dynamics by affecting the form and stability of its free surface. Both modes of flow are widely used in heat and mass exchangers and are of great practical interest

  12. Surface phenomena during the early stages of sintering in steels modified with Fe–Mn–Si–C master alloys

    Energy Technology Data Exchange (ETDEWEB)

    Oro, Raquel, E-mail: raqueld@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Campos, Mónica, E-mail: campos@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); Hryha, Eduard, E-mail: hryha@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden); Torralba, José Manuel, E-mail: torralba@ing.uc3m.es [Department of Materials Science and Engineering, IAAB, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid (Spain); IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid (Spain); Nyborg, Lars, E-mail: lars.nyborg@chalmers.se [Department of Materials and Manufacturing Technology, Chalmers University of Technology, Rännvägen 2A, SE-41296 Gothenburg (Sweden)

    2013-12-15

    The characteristics of the metallic powder surface play a critical role in the development of strong bonds between particles during sintering, especially when introducing elements with a high affinity for oxygen. In this study, Mn and Si have been combined in a Fe–Mn–Si–C master alloy powder in order to reduce their chemical activity and prevent oxidation during the heating stage of the sintering process. However, when this master alloy powder is mixed with an iron base powder, differences in chemical activity between both components can lead to an oxygen transfer from the iron base powder to the surface of the master alloy particles. The present research is focused on studying the evolution of the master alloy particle surface during the early stages of sintering. Surface characterization by X-ray Photoelectron Spectroscopy (XPS) shows that the master alloy powder surface is mostly covered by a thin easily reducible iron oxide layer (∼ 1 nm). Mn–Si particulate oxides are found as inclusions in specific areas of the surface. Evolution of oxides during sintering was studied on green compacts containing iron powder, graphite and Fe–Mn–Si–C master alloy powder that were heat treated in vacuum (10{sup −6} mbar) at different temperatures (from 400, 600, 800 to 1000 °C) and analyzed by means of XPS. Vacuum sintering provides the necessary conditions to remove manganese and silicon oxides from the powder surface in the range of temperatures between 600 °C and 1000 °C. When sintering in vacuum, since the gaseous products from reduction processes are continuously eliminated, oxidation of master alloy particles due to oxygen transfer through the atmosphere is minimized. - Highlights: • Mn and Si were introduced in sintered steels using a master alloy powder. • Surface of the master alloy is mainly covered by an easily reducible iron oxide. • Temperature ranges for oxidation/reduction are identified. • Vacuum conditions avoid oxygen transfer to

  13. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1961-01-01

    Radioactive stearic acid ( 1 4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs

  14. On the molecular mechanism of surface charge amplification and related phenomena at aqueous polyelectrolyte-graphene interfaces

    Directory of Open Access Journals (Sweden)

    J.M. Simonson

    2011-09-01

    Full Text Available In this communication we illustrate the occurrence of a recently reported new phenomenon of surface-charge amplification, SCA, (originally dubbed overcharging, OC, [Jimenez-Angeles F. and Lozada-Cassou M., J. Phys. Chem. B, 2004, 108, 7286] by means of molecular dynamics simulation of aqueous electrolytes solutions involving multivalent cations in contact with charged graphene walls and the presence of short-chain lithium polystyrene sulfonates where the solvent water is described explicitly with a realistic molecular model. We show that the occurrence of SCA in these systems, in contrast to that observed in primitive models, involves neither contact co-adsorption of the negatively charged macroions nor divalent cations with a large size and charge asymmetry as required in the case of implicit solvents. In fact the SCA phenomenon hinges around the preferential adsorption of water (over the hydrated ions with an average dipolar orientation such that the charges of the water's hydrogen and oxygen sites induce magnification rather than screening of the positive-charged graphene surface, within a limited range of surface-charge density.

  15. Self-healing phenomena on corroding steel in simulated pore water and mortar, substantiated via cyclic voltammetry and surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, D. A.; Breugel, K. van [Delft University of Technology, The Netherlands Faculty of CiTG, Department Materials and Environment, Delf (Netherlands); Hu, J. [School of Materials Science and Engineering, South China University of Technology, Guangzhou (China); Kolev, H. [Bulgarian Academy of Sciences, Institute of Catalysis, Sofia (Bulgaria)

    2013-07-01

    The application of polymeric nano-particles was investigated as an approach to control corrosion and/or self-heal corrosion damage on steel in simulated alkaline medium and reinforced mortar. The “self-healing agent”, present in the closed inner volume of PEO-b-PS vesicles was Ca-based and chosen as such due to the natural predominance of Ca in the investigated system. The vesicles’ concentration was 0.0024 wt.% in the model medium and 0.025 wt.% per cement weight for the case of mortar. Therefore, a “self-repair” or “self-healing” of the steel product layer solely due to the Ca- component is not realistic in view of these minimal concentrations. The most plausible mechanism is the nature of incorporation of the Ca-containing vesicles in the product layer, enhanced chloride binding effects and adsorption on active sites on the steel surface. A more uniform and stable surface layer, initial pitting formation and propagation, but consecutive “healing”, are evidenced by surface analysis and electrochemical response i.e. largely reduced anodic and corrosion currents and no further pit propagation are observed when Ca-containing vesicles are present in the model medium. Corrosion products-free steel/cement paste interface is relevant for the reinforced mortar, containing Ca-rich vesicles in contrast to vesicles-free and empty vesicles-containing matrix. Key words: corrosion; concrete; polymeric nano-particles; CVA; SEM; XRD; XPS.

  16. Adhesion-delamination phenomena at the surfaces and interfaces in microelectronics and MEMS structures and packaged devices

    International Nuclear Information System (INIS)

    Khanna, V K

    2011-01-01

    Physico-chemical mechanisms of adhesion and debonding at the various surfaces and interfaces of semiconductor devices, integrated circuits and microelectromechanical systems are systematically examined, starting from chip manufacturing and traversing the process stages to the ultimate finished product. Sources of intrinsic and thermal stresses in these devices are pointed out. Thin film ohmic contacts to the devices call for careful attention. The role of an adhesion layer in multilayer metallization schemes is highlighted. In packaged devices, sites facing potential risks of delamination are indicated. As MEMS devices incorporate moving parts, there are additional issues due to adhesion of suspended structures to surfaces in the vicinity, both during chip fabrication and their subsequent operation. Proper surface treatments for preventing adhesion together with design considerations for overcoming stiction pave the way to reliable functioning of these devices. Adhesion-delamination issues in microelectronics and MEMS continue to pose significant challenges to both design and process engineers. This paper is an attempt to survey the adhesion characteristics of materials, their compatibilities and limitations and look at future research trends. In addition, it addresses some of the techniques for improved or reduced adhesion, as demanded by the situation. The paper encompasses fundamental aspects to contemporary applications.

  17. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id [Graduate Program at Mechanical Engineering, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia); Deendarlianto,; Kamal, Samsul; Indarto [Mechanical and Industrial Department, Engineering Faculty, Gadjah Mada University, Jl. Grafika No. 2 Yogyakarta 55281 (Indonesia); Centre for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Nuriyadi, M. [Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung (Indonesia)

    2016-06-03

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  18. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  19. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  20. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  1. Bifurcation Phenomena of a Magnetic Island at a Rational Surface in a Magnetic-Shear Control Experiment

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Yoshinuma, M.; Narushima, Y.; Itoh, K.; Kobuchi, T.; Watanabe, K. Y.; Funaba, H.; Sakakibara, S.; Morisaki, T.; LHD Experimental Group

    2008-01-01

    Three states of a magnetic island are observed when the magnetic shear at the rational surface is modified using inductive current associated with the neutral beam current drive in the Large Helical Device. One state is the healed magnetic island with a zero island width. The second state is the saturated magnetic island with partial flattening of the T e profile. The third state is characterized by the global flattening of the T e profile in the core region. As the plasma assumes each of the three states consecutively through a bifurcation process a clear hysteresis in the relation between the size of the magnetic island and the magnetic shear is observed

  2. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  3. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  4. Ion desorption phenomena induced by various types of multiply charged projectiles and by photons on solid surfaces

    International Nuclear Information System (INIS)

    Beyec, Y. Le.

    1991-01-01

    Ion desorption experiments are described in two regions of primary ion velocities corresponding to two distinct classes of interaction mechanism. At low speeds, atomic collisions take place, at higher speeds than the electron velocity, electronic collisions occur. Experiments with fast ions above 0.2 MeV/u are described, using 32 S and 235 U ions obtained in a cyclotron and a linear accelerator. Emission of H + ions from solid surfaces is measured and analyzed, and applied to the determination of the charge state of a fast ion in a solid. Experiments using single atomic and polyatomic, keV ions, and organic and CsI cluster ions as projectiles are also presented. Finally, laser desorption is discussed. (R.P.) 81 refs., 27 figs., 2 tabs

  5. Fundamentals of wave phenomena

    CERN Document Server

    Hirose, Akira

    2010-01-01

    This textbook provides a unified treatment of waves that either occur naturally or can be excited and propagated in various media. This includes both longitudinal and transverse waves. The book covers both mechanical and electrical waves, which are normally covered separately due to their differences in physical phenomena.

  6. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  7. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  8. CHAIRMEN'S FOREWORD: The Seventh International Conference on New Phenomena in Mesoscopic Structures & The Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices

    Science.gov (United States)

    Aoyagi, Yoshinobu; Goodnick, Stephen M.

    2006-05-01

    This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos

  9. Surface wave site characterization at 27 locations near Boston, Massachusetts, including 2 strong-motion stations

    Science.gov (United States)

    Thompson, Eric M.; Carkin, Bradley A.; Baise, Laurie G.; Kayen, Robert E.

    2014-01-01

    The geotechnical properties of the soils in and around Boston, Massachusetts, have been extensively studied. This is partly due to the importance of the Boston Blue Clay and the extent of landfill in the Boston area. Although New England is not a region that is typically associated with seismic hazards, there have been several historical earthquakes that have caused significant ground shaking (for example, see Street and Lacroix, 1979; Ebel, 1996; Ebel, 2006). The possibility of strong ground shaking, along with heightened vulnerability from unreinforced masonry buildings, motivates further investigation of seismic hazards throughout New England. Important studies that are pertinent to seismic hazards in New England include source-parameter studies (Somerville and others, 1987; Boore and others, 2010), wave-propagation studies (Frankel, 1991; Viegas and others, 2010), empirical ground-motion prediction equations (GMPE) for computing ground-motion intensity (Tavakoli and Pezeshk, 2005; Atkinson and Boore, 2006), site-response studies (Hayles and others, 2001; Ebel and Kim, 2006), and liquefaction studies (Brankman and Baise, 2008). The shear-wave velocity (VS) profiles collected for this report are pertinent to the GMPE, site response, and liquefaction aspects of seismic hazards in the greater Boston area. Besides the application of these data for the Boston region, the data may be applicable throughout New England, through correlations with geologic units (similar to Ebel and Kim, 2006) or correlations with topographic slope (Wald and Allen, 2007), because few VS measurements are available in stable tectonic regions.Ebel and Hart (2001) used felt earthquake reports to infer amplification patterns throughout the greater Boston region and noted spatial correspondence with the dominant period and amplification factors obtained from ambient noise (horizontal-to-vertical ratios) by Kummer (1998). Britton (2003) compiled geotechnical borings in the area and produced a

  10. Transport phenomena in environmental engineering

    Science.gov (United States)

    Sander, Aleksandra; Kardum, Jasna Prlić; Matijašić, Gordana; Žižek, Krunoslav

    2018-01-01

    A term transport phenomena arises as a second paradigm at the end of 1950s with high awareness that there was a strong need to improve the scoping of chemical engineering science. At that point, engineers became highly aware that it is extremely important to take step forward from pure empirical description and the concept of unit operations only to understand the specific process using phenomenological equations that rely on three elementary physical processes: momentum, energy and mass transport. This conceptual evolution of chemical engineering was first presented with a well-known book of R. Byron Bird, Warren E. Stewart and Edwin N. Lightfoot, Transport Phenomena, published in 1960 [1]. What transport phenomena are included in environmental engineering? It is hard to divide those phenomena through different engineering disciplines. The core is the same but the focus changes. Intention of the authors here is to present the transport phenomena that are omnipresent in treatment of various process streams. The focus in this chapter is made on the transport phenomena that permanently occur in mechanical macroprocesses of sedimentation and filtration for separation in solid-liquid particulate systems and on the phenomena of the flow through a fixed and a fluidized bed of particles that are immanent in separation processes in packed columns and in environmental catalysis. The fundamental phenomena for each thermal and equilibrium separation process technology are presented as well. Understanding and mathematical description of underlying transport phenomena result in scoping the separation processes in a way that ChEs should act worldwide.

  11. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  12. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    Science.gov (United States)

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  13. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Science.gov (United States)

    2010-07-01

    ... alluvial valley floor exists if it finds that— (i) Unconsolidated streamlaid deposits holding streams are... on areas or adjacent to areas including alluvial valley floors in the arid and semiarid areas west of....19 Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

  14. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  15. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  16. Magnetohydrodynamic flow phenomena

    International Nuclear Information System (INIS)

    Gerbeth, G.; Mutschke, G.; Eckert, S.

    1995-01-01

    The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)

  17. Transport phenomena I essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena I includes viscosity, flow of Newtonian fluids, velocity distribution in laminar flow, velocity distributions with more than one independent variable, thermal con

  18. The use of in situ Fourier-transform infrared spectroscopy for the study of surface phenomena on electrodes in selected lithium battery electrolyte solutions

    Science.gov (United States)

    Aurbach, D.; Chusid, O.

    This paper presents some examples of surface studies of noble metals and Li electrodes in Li battery electrolyte solutions using in situ FT-IR spectroscopic techniques. These examples include the study of a mixture of solvents, the role of the reduction of salt in the build-up of surface films on the electrodes and the impact of contaminants such as traces of oxgen and water. The techniques included multiple and single internal reflectance modes and external reflectance (SNIFTIRS-type) mode. The following conclusions were drawn from this study: (i) salts containing the -SO 2CF 3 group are much more reactive on Li than LiAsF 6. Their reduction dominates the surface chemistry developed on Li in ethereal solutions; (ii) water reduction on Li in wet 1,3-dioxolane solution may not form stable LiOH films due to the further reaction of the hydroxy group with the solvent; (iii) in spite of its low solubility, oxygen dissolved in propylene carbonate and tetrahydrofuran solutions has some impact on the surface chemistry developed on Li in these solutions (probably due to Li 2O formation).

  19. Interfacial polarization phenomena in organic molecular films

    International Nuclear Information System (INIS)

    Iwamoto, Mitsumasa; Manaka, Takaaki

    2006-01-01

    Electrostatic phenomena occurring at the interface between metal/organic and organic/organic materials are discussed from the viewpoint of dielectrics physics. Focusing on two important origins of surface polarization phenomena, orientational ordering of polar molecules and displacement of excess charges at the interface, surface polarization phenomena of organic thin films are discussed. To define the orientational order of polar molecules, orientational order parameters are introduced, and surface polarization due to the alignment of dipoles is expressed. The generation of Maxwell displacement current (MDC) and optical second harmonic generation (SHG) that are specific for surface organic monomolecular films are discussed, and some experimental evidence are shown. As an extension of the concept of surface Fermi level introduced to discuss the electrostatic phenomena due to electron transfer at the interface between metal-organic insulators, the surface Fermi level is extended to the discussion on the electrostatic phenomena of organic semiconductor materials on metals. In this paper, some experimental evidence of surface polarization originating from polar molecules and displacement of excess charges are shown. After that, with consideration of these surface phenomena, single electron tunneling of organic films are briefly discussed in association with surface polarization phenomena

  20. Strings, fields and critical phenomena

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-07-01

    The connection between field theory and critical phenomena is reviewed. Emphasis is put on the use of Monte Carlo methods in the study of non-perturbative aspects of field theory. String theory is then described as a statistical theory of random surfaces and the critical behaviour is analyzed both by analytical and numerical methods. (orig.)

  1. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  2. Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Michael Søgaard; Kornbeck, Kasper Pihl; Kristensen, Rune

    Dropout from university studies comprises a number of complex phenomena with serious complex consequences and profound political attention. Further analysis of the field is, therefore, warranted. Such an analysis is offered here as a systematic review which gives answers based on the best possible...... such dropout phenomena occur at universities? What can be done by the universities to prevent or reduce such dropout phenomena?...

  3. DINEOF reconstruction of clouded images including error maps – application to the Sea-Surface Temperature around Corsican Island

    Directory of Open Access Journals (Sweden)

    J.-M. Beckers

    2006-01-01

    Full Text Available We present an extension to the Data INterpolating Empirical Orthogonal Functions (DINEOF technique which allows not only to fill in clouded images but also to provide an estimation of the error covariance of the reconstruction. This additional information is obtained by an analogy with optimal interpolation. It is shown that the error fields can be obtained with a clever rearrangement of calculations at a cost comparable to that of the interpolation itself. The method is presented on the reconstruction of sea-surface temperature in the Ligurian Sea and around the Corsican Island (Mediterranean Sea, including the calculation of inter-annual variability of average surface values and their expected errors. The application shows that the error fields are not only able to reflect the data-coverage structure but also the covariances of the physical fields.

  4. Micro- and nanoscale phenomena in tribology

    CERN Document Server

    Chung, Yip-Wah

    2011-01-01

    Drawn from presentations at a recent National Science Foundation Summer Institute on Nanomechanics, Nanomaterials, and Micro/Nanomanufacturing, Micro- and Nanoscale Phenomena in Tribology explores the convergence of the multiple science and engineering disciplines involved in tribology and the connection from the macro to nano world. Written by specialists from computation, materials science, mechanical engineering, surface physics, and chemistry, each chapter provides up-to-date coverage of both basic and advanced topics and includes extensive references for further study.After discussing the

  5. Remote sensing of natural phenomena

    Directory of Open Access Journals (Sweden)

    Miodrag D. Regodić

    2014-06-01

    Full Text Available There has always been a need to directly perceive and study the events whose extent is beyond people's possibilities. In order to get new data and to make observations and studying much more objective in comparison with past syntheses - a new method of examination called remote sensing has been adopted. The paper deals with the principles and elements of remote sensing, as well as with the basic aspects of using remote research in examining meteorological (weather parameters and the conditions of the atmosphere. The usage of satellite images is possible in all phases of the global and systematic research of different natural phenomena when airplane and satellite images of different characteristics are used and their analysis and interpretation is carried out by viewing and computer added procedures. Introduction Remote sensing of the Earth enables observing and studying global and local events that occur on it. Satellite images are nowadays used in geology, agriculture, forestry, geodesy, meteorology, spatial and urbanism planning, designing of infrastructure and other objects, protection from natural and technological catastrophes, etc. It it possible to use satellite images in all phases of global and systematic research of different natural phenomena. Basics of remote sensing Remote sensing is a method of the acquisition and interpretation of information about remote objects without making a physical contact with them. The term Daljinska detekcija is a literal translation of the English term Remote Sensing. In French it isTeledetection, in German - Fernerkundung, in Russian - дистанционие иследования. We also use terms such as: remote survailance, remote research, teledetection, remote methods, and distance research. The basic elements included in Remote Sensing are: object, electromagnetic energy, sensor, platform, image, analysis, interpretation and the information (data, fact. Usage of satellite remote research in

  6. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  7. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  8. Whistlers and related ionospheric phenomena

    CERN Document Server

    Helliwell, Robert A

    2006-01-01

    The investigation of whistlers and related phenomena is a key element in studies of very-low-frequency propagation, satellite communication, the outer ionosphere, and solar-terrestrial relationships. This comprehensive text presents a history of the study of the phenomena and includes all the elements necessary for the calculation of the characteristics of whistlers and whistler-mode signals.An introduction and brief history are followed by a summary of the theory of whistlers and a detailed explanation of the calculation of their characteristics. Succeeding chapters offer a complete atlas of

  9. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    Science.gov (United States)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  10. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  11. Transport phenomena in particulate systems

    CERN Document Server

    Freire, José Teixeira; Ferreira, Maria do Carmo

    2012-01-01

    This volume spans 10 chapters covering different aspects of transport phenomena including fixed and fluidized systems, spouted beds, electrochemical and wastewater treatment reactors. This e-book will be valuable for students, engineers and researchers aiming to keep updated on the latest developments on particulate systems.

  12. Discovery potential for new phenomena

    International Nuclear Information System (INIS)

    Godfrey, S.; Price, L.E.

    1997-03-01

    The authors examine the ability of future facilities to discover and interpret non-supersymmetric new phenomena. The authors first explore explicit manifestations of new physics, including extended gauge sectors, leptoquarks, exotic fermions, and technicolor models. They then take a more general approach where new physics only reveals itself through the existence of effective interactions at lower energy scales

  13. Strains of Sarcocystis neurona exhibit differences in their surface antigens, including the absence of the major surface antigen SnSAG1.

    Science.gov (United States)

    Howe, Daniel K; Gaji, Rajshekhar Y; Marsh, Antoinette E; Patil, Bhagyashree A; Saville, William J; Lindsay, David S; Dubey, J P; Granstrom, David E

    2008-05-01

    A gene family of surface antigens is expressed by merozoites of Sarcocystis neurona, the primary cause of equine protozoal myeloencephalitis (EPM). These surface proteins, designated SnSAGs, are immunodominant and therefore excellent candidates for development of EPM diagnostics or vaccines. Prior work had identified an EPM isolate lacking the major surface antigen SnSAG1, thus suggesting there may be some diversity in the SnSAGs expressed by different S. neurona isolates. Therefore, a bioinformatic, molecular and immunological study was conducted to assess conservation of the SnSAGs. Examination of an expressed sequence tag (EST) database revealed several notable SnSAG polymorphisms. In particular, the EST information implied that the EPM strain SN4 lacked the major surface antigen SnSAG1. The absence of this surface antigen from the SN4 strain was confirmed by both Western blot and Southern blot. To evaluate SnSAG polymorphisms in the S. neurona population, 14 strains were examined by Western blots using monospecific polyclonal antibodies against the four described SnSAGs. The results of these analyses demonstrated that SnSAG2, SnSAG3, and SnSAG4 are present in all 14 S. neurona strains tested, although some variance in SnSAG4 was observed. Importantly, SnSAG1 was not detected in seven of the strains, which included isolates from four cases of EPM and a case of fatal meningoencephalitis in a sea otter. Genetic analyses by PCR using gene-specific primers confirmed the absence of the SnSAG1 locus in six of these seven strains. Collectively, the data indicated that there is heterogeneity in the surface antigen composition of different S. neurona isolates, which is an important consideration for development of serological tests and prospective vaccines for EPM. Furthermore, the diversity reported herein likely extends to other phenotypes, such as strain virulence, and may have implications for the phylogeny of the various Sarcocystis spp. that undergo sexual stages

  14. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  15. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  16. Science and Paranormal Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H. Pierre

    1999-06-03

    In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.

  17. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  18. Surface phenomena in thermionic research. Oberflaechenphysikalische Probleme der Thermionik. Vortrage aus der Round-table- Konferenz im Institut fuer Energiewandlung und Elektrische Antriebe der DFVLR in Stuttgart 1972 [Nine papers, 4 summaries

    Energy Technology Data Exchange (ETDEWEB)

    Henne, R. (ed.)

    1973-07-15

    This report compiles papers concerning especially recent developments in work function theory and work function measurements, which were given at a round table conference about surface phenomena in thermionic research, arranged by the 'Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt' in Stuttgart on Nov. 20 and Dec. 1, 1972. 9 papers are printed completely, 4 others in form of a summary. Two of them concern the work function of uncovered surfaces, 2 others show the influence of adsorbed electropositive elements (Cs, Sr) on work function. In 4 papers the coadsorption of electropositive (Cs, Sr, resp. Ba) and electronegative (O {sub 2}) elements and their influence on work function of different surfaces are discussed. Finally a paper is added, describing the development of Sr-Cs-alloys, which are of interest for the generation of the atmosphere of a Sr-Cs-converter by means of one single reservoir. (auth)

  19. Surface phenomena in thermionic research. Oberflaechenphysikalische Probleme der Thermionik. Vortrage aus der Round-table- Konferenz im Institut fuer Energiewandlung und Elektrische Antriebe der DFVLR in Stuttgart 1972 [Nine papers, 4 summaries

    Energy Technology Data Exchange (ETDEWEB)

    Henne, R [ed.

    1973-07-15

    This report compiles papers concerning especially recent developments in work function theory and work function measurements, which were given at a round table conference about surface phenomena in thermionic research, arranged by the 'Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt' in Stuttgart on Nov. 20 and Dec. 1, 1972. 9 papers are printed completely, 4 others in form of a summary. Two of them concern the work function of uncovered surfaces, 2 others show the influence of adsorbed electropositive elements (Cs, Sr) on work function. In 4 papers the coadsorption of electropositive (Cs, Sr, resp. Ba) and electronegative (O {sub 2}) elements and their influence on work function of different surfaces are discussed. Finally a paper is added, describing the development of Sr-Cs-alloys, which are of interest for the generation of the atmosphere of a Sr-Cs-converter by means of one single reservoir. (auth)

  20. Interfacial transport phenomena

    CERN Document Server

    Slattery, John C; Oh, Eun-Suok

    2007-01-01

    Revised and updated extensively from the previous editionDiscusses transport phenomena at common lines or three-phase lines of contactProvides a comprehensive summary about the extensions of continuum mechanics to the nanoscale.

  1. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  2. Observation of Celestial Phenomena in Ancient China

    Science.gov (United States)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  3. Electro-optic investigation of the n-alkanethiol GaAs(001) interface: Surface phenomena and applications to photoluminescence-based biosensing

    Science.gov (United States)

    Marshall, Gregory M.

    Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH2)n], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the

  4. Analysis of myelomonocytic leukemic differentiation by a cell surface marker panel including a fucose-binding lectin from Lotus tetragonolobus.

    Science.gov (United States)

    Elias, L; Van Epps, D E

    1984-06-01

    The fucose-binding lectin from Lotus tetragonolobus ( FBL -L) has been previously shown to bind specifically to normal cells of the myeloid and monocytic lineages. The purpose of this study was to explore the utility of fluoresceinated FBL -L as a leukemia differentiation marker in conjunction with a panel of other frequently used surface markers (Fc receptor, HLA-DR, OKM1, and antimonocyte antibody). FBL -L reacted with leukemic cells in 8/9 cases of clinically recognized acute myeloid leukemia, including myeloid blast crisis of chronic granulocytic leukemia, 3/3 cases of chronic phase chronic myelogenous leukemia, and in 2/7 cases of clinically undifferentiated acute leukemia. Correlations were noted between reactivity with FBL -L, and DR and Fc receptor expression. Among continuous cell lines, FBL -L bound with high intensity to a majority of HL-60 and U937 cells. The less well differentiated myeloblast cell lines, KG-1, KG1a , and HL-60 blast II, exhibited less FBL -L binding than HL-60 and U937. A moderate proportion of K562 cells exhibited low level binding of FBL -L. Several lymphoblastic cell lines exhibited a pattern of low intensity binding that was distinguishable from the high intensity binding pattern of the myeloblastic lines. FBL -L reactivity of U937 was enhanced by induction of differentiation with leukocyte conditioned medium, but not dimethylsulfoxide. Such treatments induced contrasting patterns of change of HL-60 and U937 when labeled with OKM1, alpha-Mono, and HLA-DR. These studies demonstrate the application of FBL -L to analysis and quantitation of myelomonocytic leukemic differentiation.

  5. Quantum phenomena in gravitational field

    Science.gov (United States)

    Bourdel, Th.; Doser, M.; Ernest, A. D.; Voronin, A. Yu.; Voronin, V. V.

    2011-10-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold antihydrogen above a material surface and measuring a gravitational interaction of antihydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eötvös-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology.

  6. Quantum phenomena in gravitational field

    International Nuclear Information System (INIS)

    Bourdel, Th.; Doser, M.; Ernest, A.D.; Voronin, A.Y.; Voronin, V.V.

    2010-01-01

    The subjects presented here are very different. Their common feature is that they all involve quantum phenomena in a gravitational field: gravitational quantum states of ultracold anti-hydrogen above a material surface and measuring a gravitational interaction of anti-hydrogen in AEGIS, a quantum trampoline for ultracold atoms, and a hypothesis on naturally occurring gravitational quantum states, an Eoetvoes-type experiment with cold neutrons and others. Considering them together, however, we could learn that they have many common points both in physics and in methodology. (authors)

  7. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  8. Rheological phenomena in focus

    CERN Document Server

    Boger, DV

    1993-01-01

    More than possibly any other scientific discipline, rheology is easily visualized and the relevant literature contains many excellent photographs of unusual and often bizarre phenomena. The present book brings together these photographs for the first time. They are supported by a full explanatory text. Rheological Phenomena in Focus will be an indispensable support manual to all those who teach rheology or have to convince colleagues of the practical relevance of the subject within an industrial setting. For those who teach fluid mechanics, the book clearly illustrates the difference be

  9. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    Science.gov (United States)

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  10. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Nitin, E-mail: nitin@unik.no [Carinthian Tech Research CTR AG, Europastraße 4/1, Technologiepark Villach, A-9524 Villach/St. Magdalen (Austria); Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway); Fjeldly, Tor A. [Department of Electronics and Telecommunication, Norwegian University of Science and Technology, Trondheim NO7034 (Norway)

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  11. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.

    Science.gov (United States)

    Shankar, Akshaya; Jagota, Anand; Mittal, Jeetain

    2012-10-11

    Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.

  12. Bioelectrochemistry II membrane phenomena

    CERN Document Server

    Blank, M

    1987-01-01

    This book contains the lectures of the second course devoted to bioelectro­ chemistry, held within the framework of the International School of Biophysics. In this course another very large field of bioelectrochemistry, i. e. the field of Membrane Phenomena, was considered, which itself consists of several different, but yet related subfields. Here again, it can be easily stated that it is impossible to give a complete and detailed picture of all membrane phenomena of biological interest in a short course of about one and half week. Therefore the same philosophy, as the one of the first course, was followed, to select a series of lectures at postgraduate level, giving a synthesis of several membrane phenomena chosen among the most'important ones. These lectures should show the large variety of membrane-regulated events occurring in living bodies, and serve as sound interdisciplinary basis to start a special­ ized study of biological phenomena, for which the investigation using the dual approach, physico-che...

  13. Sawtooth phenomena in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1989-01-01

    A review of experimental and theoretical investigaions of sawtooth phenomena in tokamaks is presented. Different types of sawtooth oscillations, scaling laws and methods of interanl disruption stabilization are described. Theoretical models of the sawtooth instability are discussed. 122 refs.; 4 tabs

  14. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  15. The prediction of the cavitation phenomena including population balance modeling

    Science.gov (United States)

    Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib

    2017-07-01

    Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.

  16. Radiation phenomena of plasma waves, 1

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1978-06-01

    The fundamental radiation theories on radiation phenomena of plasma waves are presented. As the fundamental concepts of propagating waves, phase, group and ray velocities are explained, and phase velocity surface, group velocity surface, ray velocity surface and refractive index surface are considered. These concepts are important in anisotropic plasma. Fundamental equations for electron plasma waves in a fluid model and fundamental equations for ion plasma waves can be expressed with the above mentioned concepts. Kuehl derived the formulas for general radiation fields of electromagnetic and electrostatic waves which are radiated from an arbitrary current source. Fundamental equations for kinetic model are the Vlasov equation and Maxwell equations. By investigating electromagnetic radiation in cold anisotropic plasma, Kuehl found the important behavior that the fields radiated from a source become very large in certain directions for some ranges of plasma parameters. The fact is the so-called high frequency resonance cone. A fundamental formula for quasi-static radiation from an oscillating point source in warm anisotropic plasma includes the near field of electromagnetic mode and the field of electrostatic mode, which are radiated from the source. This paper presents the formula in a generalized form. (Kato, T.)

  17. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    Science.gov (United States)

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (text">SM). text">SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of text">SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and text">SM). This is particularly marked in regions with high variability in minimum and maximum θe, where

  18. Nox diffusion-simulation in an urban area in using the vertical diffusion diagram including a surface roughness parameter

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Hitoshi; Fujimoto, Akira; Nakano, Hiroshi

    1988-03-31

    In recent years, in order to attain a total quantity regulation of air pollution and to prepare a local air-control program, a diffusion simulation is often made using a Gaussian plume model. NOx diffusion simulation of the urban area was carried out using a vertical diffusion width by taking a parameter of ground-surface roughness using Smith's correction to the Gaussian model. For the diffusion of car exhaust gas, comparison was made for the estimate and the measurement by jointly using the values of ground-surface roughness and the initial diffusion width. As a result, change in the diffusion width of the car exhaust gas due to the urban buildings was expressed at a necessary practical level by giving the height of the point of calculation, 1 - 3 m in the central part and 30 cm at the peripheral part, and giving the initial diffusion width of roughly half to equal size of initial diffusion width to the average height of the buildings. (2 figs, 8 tabs, 20 refs)

  19. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    International Nuclear Information System (INIS)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-01-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites. - Highlights: • Surface functions of C-fibres are analyzed for their effect on radical reaction. • Irradiation of nBu-acrylate in presence of aromatic additives reveals inhibition. • Thiol groups sensitize the radiation-initiated polymerization of nBu-acrylate. • Modification of C-fibres with thiomalic acid enhances composite properties

  20. Chaotic phenomena in plasmas

    International Nuclear Information System (INIS)

    Kawai, Y.

    1991-08-01

    It has recently been recognized that the research on various aspects of chaotic dynamics grows rapidly as one of some areas in nonlinear science. On the other hands, the plasma has long been called a treasure-house of nonlinear phenomena, so it is easy to imagine that the plasma is abundant in chaotic phenomena. In fact, the research on plasma chaos is going on, such as the research on the stochastic magnetic field and the chaotic orbit in the toroidal helical system, as well as the research in other experiments. To review the present status of the research on plasma chaos and to make clear the basic common physics, a working group was organized in 1990 as a collaboration research of National Institute for Fusion Science. This is the report on its activity in 1990, with a stress on experimental data obtained in basic plasma experiments and RFP, and on the relaxed theories and computer simulations. (author)

  1. Theory of threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2002-01-01

    Theory of Threshold Phenomena in Quantum Scattering is developed in terms of Reduced Scattering Matrix. Relationships of different types of threshold anomalies both to nuclear reaction mechanisms and to nuclear reaction models are established. Magnitude of threshold effect is related to spectroscopic factor of zero-energy neutron state. The Theory of Threshold Phenomena, based on Reduced Scattering Matrix, does establish relationships between different types of threshold effects and nuclear reaction mechanisms: the cusp and non-resonant potential scattering, s-wave threshold anomaly and compound nucleus resonant scattering, p-wave anomaly and quasi-resonant scattering. A threshold anomaly related to resonant or quasi resonant scattering is enhanced provided the neutron threshold state has large spectroscopic amplitude. The Theory contains, as limit cases, Cusp Theories and also results of different nuclear reactions models as Charge Exchange, Weak Coupling, Bohr and Hauser-Feshbach models. (author)

  2. Wolf-Rayet phenomena

    International Nuclear Information System (INIS)

    Conti, P.S.

    1982-01-01

    The author reviews in broad terms the concept of Wolf-Rayet (W-R) phenomena, outlines what we currently know about the properties of stars showing such phenomena and indicates the directions in which future work is leading. He begins by listing the characteristics of W-R spectra and then considers the following specific problems: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions; the mass loss rates; the existence of very luminous and possibly very massive W-R stars. He discusses briefly our current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R stars. (Auth.)

  3. Transport phenomena II essentials

    CERN Document Server

    REA, The Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Transport Phenomena II covers forced convention, temperature distribution, free convection, diffusitivity and the mechanism of mass transfer, convective mass transfer, concentration

  4. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  5. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  6. Report on workshop "Study of the polar atmosphere and cryosphere using satellite data with surface validation observations including unmanned one"

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanzawa

    1993-07-01

    Full Text Available The workshop was organized to discuss algorithms to derive parameters of the polar atmosphere and cryosphere using satellite data received mainly at Syowa Station (69°S, 40°E, Antarctica, i.e., the data from NOAA, MOS (Marine Observation Satellite-1,ERS (European Remote Sensing Satellite-1,JERS (Japanese Earth Resources Satellite-1 with validation data at the surface. It was held on 16 March 1993 at the National Institute of Polar Research (NIPR, total number of participants being about 40. The contents of the workshop are as follows : The present status of receipt and utilization of the satellite data of NOAA, MOS-1,ERS-1,JERS-1; The Atmosphere; Sea ice; The Cryosphere; Introduction to the satellite data analysis system at the Information Science Center at NIPR.

  7. Hydrogeochemical Investigations of Historic Mining Districts, Central Western Slope of Colorado, Including Influence on Surface-Water Quality

    Science.gov (United States)

    Nash, J. Thomas

    2002-01-01

    This report describes reconnaissance hydrogeochemical investigations of 22 mining districts on the Western Slope of Colorado in the Gunnison and Uncompahgre National Forests and adjacent public lands administered by the Bureau of Land Management. Sources and fates of contaminants from historic mines, mine waste, and mill tailings are interpreted from chemical analyses for 190 samples of surface waters; 185 samples of mined rocks, mill tailings, and altered rocks; and passive leach analyses of 116 samples of those mineralized materials. Short reaches of several headwater streams show relatively low level effects of historic mining; the headwaters of the Uncompahgre River are highly contaminated by mines and unmined altered rocks in the Red Mountain district. There is encouraging evidence that natural processes attenuate mine-related contamination in most districts.

  8. Instability and Transition of Flow at, and Near, an Attachment-line - Including Control by Surface Suction

    Science.gov (United States)

    Smith, A.

    1996-01-01

    Advances in aviation during and following the Second World War led to an enormous improvement in the performance of aircraft. The push for enhanced efficiency brought cruise speeds into the transonic range, where the associated drag rise due to the appearance of shock-waves became a limiting factor. Wing sweep was adopted to delay the onset of this drag rise, but with this development came several new and unforeseen problems. Preliminary theoretical work assumed that the boundary layer transition characteristics of a swept wing would be subject to the independence principle, so the chordwise transition position could be predicted from two-dimensional work Gas turbine development has now reached a point where additional increases in efficiency are both difficult and expensive to achieve. Consequently, aircraft manufacturers are looking elsewhere for ways to reduce Direct Operating Costs (DOC's) or increase military performance. The attention of industry is currently focusing on Hybrid Laminar Flow Control (HLFC) as a possible method of reducing DOC's for civil aircraft. Following this study and discussions with NASA Langley and Boeing a different series of questions have been addressed in the present work. There are five areas of interest: Relaminarisation of the attachment-line boundary layer when the value of R exceeds 600. The effects of large suction levels on transition in the attachment-line boundary layer (ie critical oversuction). The transition characteristics of a relaminarised attachment-line flow which encounters a non-porous surface. The effect of attachment-line suction on the spanwise propagation of gross disturbances emanating from the wing-fuselage junction. The attachment-line transition caused by surface blowing.

  9. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  10. Fourteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A; Silvestri, Sandro; Ultrafast Phenomena XIV

    2005-01-01

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics. This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  11. Sixteenth International Conference on Ultrafast Phenomena

    CERN Document Server

    Corkum, Paul; Nelson, Keith A; Riedle, Eberhard; Schoenlein, Robert W; Ultrafast Phenomena XVI

    2009-01-01

    Ultrafast Phenomena XVI presents the latest advances in ultrafast science, including both ultrafast optical technology and the study of ultrafast phenomena. It covers picosecond, femtosecond and attosecond processes relevant to applications in physics, chemistry, biology, and engineering. Ultrafast technology has a profound impact in a wide range of applications, amongst them biomedical imaging, chemical dynamics, frequency standards, material processing, and ultrahigh speed communications. This book summarizes the results presented at the 16th International Conference on Ultrafast Phenomena and provides an up-to-date view of this important and rapidly advancing field.

  12. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    International Nuclear Information System (INIS)

    Crotts, Arlin P. S.

    2009-01-01

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: ∼50% of reports originate from near Aristarchus, ∼16% from Plato, ∼6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that ∼80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  13. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Science.gov (United States)

    Datta, Arjun

    2018-03-01

    We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git).

  14. SWRT: A package for semi-analytical solutions of surface wave propagation, including mode conversion, across transversely aligned vertical discontinuities

    Directory of Open Access Journals (Sweden)

    A. Datta

    2018-03-01

    Full Text Available We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave reflection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity, which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is considered so there is no Love–Rayleigh coupling, but incidence of any mode and coupling to any (other mode can be handled. The code is written in Python and makes use of SciPy's Simpson's rule integrator and NumPy's linear algebra solver for its core functionality. Transmission-side results from this code are found to be in good agreement with those from finite-difference simulations. In today's research environment of extensive computing power, the coded algorithms are arguably redundant but SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is available via GitHub (https://github.com/arjundatta23/SWRT.git.

  15. Traveltime and dispersion data, including associated discharge and water-surface elevation data, Kanawha River West Virginia, 1991

    Science.gov (United States)

    Wiley, J.B.

    1993-01-01

    This report presents results of a study by the U.S. Geological Survey, in cooperation with the Virginia Environmental Endowment, Marshall University Research Corporation, and the West Virginia Depart- ment of Environmental Protection, to evaluate traveltime of a soluble dye on the Kanawha River. The Kanawha River originates in south-central West Virginia and flows northwestward to the Ohio River. Knowledge of traveltime and dispersion of a soluble dye could help river managers mitigate effects of an accidental spill. Traveltime and dispersion data were collected from June 20 through July 4, 1991, when river discharges decreased from June 24 through July 3, 1991. Daily mean discharges decreased from 5,540 ft 3/s on June 24 to 2,790 ft3/s on July 2 at Kanawha Falls and from 5,680 ft3/s on June 24 to 3,000 ft3/s on July 2 at Charleston. Water-surface elevations in regulated pools indicated a loss of water storage during the period. A spill at Gauley Bridge under similar streamflow conditions of this study is estimated to take 15 days to move beyond Winfield Dam. Estimated time of passage (elapsed time at a particular location) at Marmet Dam and Winfield Dam is approximately 2.5 days and 5.5 days, respectively. The spill is estimated to spend 12 days in the Winfield pool.

  16. Nonlinear Dynamic Phenomena in Mechanics

    CERN Document Server

    Warminski, Jerzy; Cartmell, Matthew P

    2012-01-01

    Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear

  17. Quantification of natural phenomena

    International Nuclear Information System (INIS)

    Botero Alvarez, Javier

    1997-01-01

    The science is like a great spider's web in which unexpected connections appear and therefore it is frequently difficult to already know the consequences of new theories on those existent. The physics is a clear example of this. The Newton mechanics laws describe the physical phenomena observable accurately by means of our organs of the senses or by means of observation teams not very sophisticated. After their formulation at the beginning of the XVIII Century, these laws were recognized in the scientific world as a mathematical model of the nature. Together with the electrodynamics law, developed in the XIX century, and the thermodynamic one constitutes what we call the classic physics. The state of maturity of the classic physics at the end of last century it was such that some scientists believed that the physics was arriving to its end obtaining a complete description of the physical phenomena. The spider's web of the knowledge was supposed finished, or at least very near its termination. It ended up saying, in arrogant form, that if the initial conditions of the universe were known, we could determine the state of the same one in any future moment. Two phenomena related with the light would prove in firm form that mistaken that they were, creating unexpected connections in the great spider's web of the knowledge and knocking down part of her. The thermal radiation of the bodies and the fact that the light spreads to constant speed in the hole, without having an absolute system of reference with regard to which this speed is measured, they constituted the decisive factors in the construction of a new physics. The development of sophisticated of measure teams gave access to more precise information and it opened the microscopic world to the observation and confirmation of existent theories

  18. Random phenomena; Phenomenes aleatoires

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, C.E.N.G., Service d' Electronique, Section d' Electronique, Grenoble (France)

    1963-07-01

    This document gathers a set of conferences presented in 1962. A first one proposes a mathematical introduction to the analysis of random phenomena. The second one presents an axiomatic of probability calculation. The third one proposes an overview of one-dimensional random variables. The fourth one addresses random pairs, and presents basic theorems regarding the algebra of mathematical expectations. The fifth conference discusses some probability laws: binomial distribution, the Poisson distribution, and the Laplace-Gauss distribution. The last one deals with the issues of stochastic convergence and asymptotic distributions.

  19. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  20. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and

  1. Direct channel problems and phenomena

    International Nuclear Information System (INIS)

    Cutkosky, R.E.

    1975-01-01

    Direct channel problems and phenomena are considered covering the need for precision hadron spectroscopy, the data base for precision hadron spectroscopy, some relations between direct-channel and cross-channel effects, and spin rotation phenomena

  2. Proteomic plasma membrane profiling reveals an essential role for gp96 in the cell surface expression of LDLR family members, including the LDL receptor and LRP6.

    Science.gov (United States)

    Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J

    2012-03-02

    The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.

  3. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  4. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  5. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  6. Foot morphometric phenomena.

    Science.gov (United States)

    Agić, Ante

    2007-06-01

    Knowledge of the foot morphometry is important for proper foot structure and function. Foot structure as a vital part of human body is important for many reasons. The foot anthropometric and morphology phenomena are analyzed together with hidden biomechanical descriptors in order to fully characterize foot functionality. For Croatian student population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot morphometric descriptors are influenced by many factors, such as life style, climate, and things of great importance in human society. Dominant descriptors related to fit and comfort are determined by the use 3D foot shape and advanced foot biomechanics. Some practical recommendations and conclusions for medical, sportswear and footwear practice are highlighted.

  7. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  8. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  9. Characterization of Genotoxic Response to 15 Multiwalled Carbon Nanotubes with Variable Physicochemical Properties Including Surface Functionalizations in the FE1-Muta(TM) Mouse Lung Epithelial Cell Line

    DEFF Research Database (Denmark)

    Jackson, Petra; Kling, Kirsten; Jensen, Keld Alstrup

    2015-01-01

    Carbon nanotubes vary greatly in physicochemical properties. We compared cytotoxic and genotoxic response to 15 multiwalled carbon nanotubes (MWCNT) with varying physicochemical properties to identify drivers of toxic responses. The studied MWCNT included OECD Working Party on Manufactured...... Nanomaterials (WPMN) (NM-401, NM-402, and NM-403), materials (NRCWE-026 and MWCNT-XNRI-7), and three sets of surface-modified MWCNT grouped by physical characteristics (thin, thick, and short I-III, respectively). Each Groups I-III included pristine, hydroxylated and carboxylated MWCNT. Group III also included...... an amino-functionalized MWCNT. The level of surface functionalization of the MWCNT was low. The level and type of elemental impurities of the MWCNT varied by...

  10. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  11. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  12. Current status of studies on temperature fluctuation phenomena in LMFRs

    International Nuclear Information System (INIS)

    Ohshima, H.; Muramatsu, T.; Kobayashi, J.; Yamaguchi, A.

    1994-01-01

    This paper describes the current status of studies being performed in PNC on temperature fluctuation phenomena occurring in fast reactors. The studies concentrate on four problems: thermal stratification, thermal striping, core-plenum interaction and free surface sloshing. Both experimental and analytical approaches to reveal these phenomena and to establish design and safety evaluation methods are presented together with future works. (author)

  13. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  14. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  15. Hysteresis phenomena in hydraulic measurement

    International Nuclear Information System (INIS)

    Ran, H J; Farhat, M; Luo, X W; Chen, Y L; Xu, H Y

    2012-01-01

    Hysteresis phenomena demonstrate the lag between the generation and the removal of some physical phenomena. This paper studies the hysteresis phenomena of the head-drop in a scaled model pump turbine using experiment test and CFD methods. These lag is induced by complicated flow patterns, which influenced the reliability of rotating machine. Keeping the same measurement procedure is concluded for the hydraulic machine measurement.

  16. Haters Phenomena in Social Media

    OpenAIRE

    Pradipta, Angga; Lailiyah, S.Sos, M.I.Kom, Nuriyatul

    2016-01-01

    Social media is internet-basic media, functioned as interaction media room based on multimedia technology. And social media created some effects. One of the negative effects of social media is haters phenomena. Haters are a person who easily said dirty words, harass, and humiliate to others. This phenomena causes anxiety—especially in Indonesia, even the Government issued public policy and letter of regulation about this phenomena, through Paragraph 27 verse (3) IT Constitution, Paragraph 45 ...

  17. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  18. Mirror reactor surface study

    International Nuclear Information System (INIS)

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  19. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    , Manton and Rink [29] explore vortex solutions on hyperbolic surfaces extending an approach by Witten. These solutions can be interpreted as self-dual SU(2) Yang-Mills fields on R4. Shah and Woodhouse [30] use the Penrose-Ward correspondence from twistor theory to relate generalized anti self-duality equations to certain isomonodromic problems whose solutions are expressed in terms of generalized hypergeometric functions. Applications of integrable systems and nonlinear phenomena in other fields are also present in some of the papers. Kanna et al [31] study the collision of soliton solutions to coherently coupled NLS equations using a variant of the Hirota bilinearization method. Their results have applications in pulse shaping in nonlinear optics. Calogero et al [32] present examples of systems of ODEs with quadratic nonlinearities that could describe rate equations in chemical dynamics. They derive explicit conditions on the parameters of the problem for which the solutions are periodic and isochronous. Ablowitz and Haut [33] study the motion of large amplitude water waves with surface tension using asymptotic expansions and providing a comparison with experimental results. This issue is the result of the collaboration of many individuals. We would like to thank the editors and staff of the Journal of Physics A: Mathematical and Theoretical for their enthusiastic support and efficient help during the preparation of this issue. A key factor has been the work of many anonymous referees who performed careful analysis and scrutiny of the research papers submitted to this issue, often making remarks which helped to improve their quality and readability. They carried out dedicated, altruistic work with a very high standard and this issue would not exist without their contribution. Finally, we would like to thank the authors who responded to our open call, sending us their most recent results and sharing with us the enthusiasm and interest for this fascinating field of

  20. Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model

    DEFF Research Database (Denmark)

    Hansen, Anne Lausten; Refsgaard, Jens Christian; Christensen, Britt Stenhøj Baun

    2013-01-01

    the catchment. In this study, a coupled groundwater-surface water model based on the MIKE SHE code was developed for the 4.7 km2 Lillebæk catchment in Denmark, where tile drain flow is a major contributor to the stream discharge. The catchment model was calibrated in several steps by incrementally including...... the observation data into the calibration to see the effect on model performance of including diverse data types, especially tile drain discharge. For the Lillebæk catchment, measurements of hydraulic head, daily stream discharge, and daily tile drain discharge from five small (1–4 ha) drainage areas exist....... The results showed that including tile drain data in the calibration of the catchment model improved its general performance for hydraulic heads and stream discharges. However, the model failed to correctly describe the local-scale dynamics of the tile drain discharges, and, furthermore, including the drain...

  1. Simulations of Biomechanical Phenomena

    Science.gov (United States)

    Gonzalez, Jose Cruz

    Recent studies have published breakthroughs in the application of finite element (FEA) studies in the design and analysis of advanced orthodontics. However, FEA has not captured bone remodeling responses to advanced orthodontics. The results of these simulations report unrealistic displacement around the nasal bridge, which impeded correlation with clinical data. Bone remodeling has been previously documented in FEA and has shown bone response to mechanical stimulus in femur bone models. However, the relationship between mechanical stimulus and bone remodeling has not been reported in orthodontic studies due to the complexity of the skull. In the current study, strain energy is used as the mechanical stimulus to control remodeling, from which density and modulus evolve. Due to the localization of forces in orthodontics, current remodeling algorithms have limited application. In turn, we developed an algorithm that dynamically collects, sorts, and bins stresses in all elements for regional remodeling based on the proximity of the element to the load. The results demonstrate that bone response to orthodontic appliances is different than that of an FEA without bone remodeling, due to load path changes based upon evolution of the bone properties. It was also found that density and moduli proximal to the load application site exhibit faster remodeling than those located remotely. Modeling another biomechanical phenomena, a 3D simulation was created to simulate recent experimental results that discovered a difference in impact mitigation properties of dense-polymer/foam bilayer structure based on the orientation of the dense-polymer with respect to the impact site. The impact energy transmitted varied in time of arrival and amplitude depending on the orientation of the structure (thin layer up or down). By creating a 3D explicit dynamic FEA simulation, it is expected to reduce costly experiments and time consumed in set up, and offer opportunities for optimization for

  2. Inverse Analysis of Cavitation Impact Phenomena on Structures

    National Research Council Canada - National Science Library

    Lambrakos, S. G; Tran, N. E

    2007-01-01

    A general methodology is presented for in situ detection of cavitation impact phenomena on structures based on inverse analysis of luminescent emissions resulting from the collapsing of bubbles onto surfaces...

  3. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  4. Introductory lectures on critical phenomena

    International Nuclear Information System (INIS)

    Khajehpour, M.R.H.

    1988-09-01

    After a presentation of classical models for phase transitions and critical phenomena (Van der Waals theory, Weiss theory of ferromagnetism) and theoretical models (Ising model, XY model, Heisenberg model, spherical model) the Landau theory of critical and multicritical points and some single applications of renormalization group method in static critical phenomena are presented. 115 refs, figs and tabs

  5. Incorporating interfacial phenomena in solidification models

    Science.gov (United States)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  6. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  7. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  8. Transport phenomena in materials processing---1990

    International Nuclear Information System (INIS)

    Bishop, B.J.; Lior, N.; Lavine, A.; Flik, M.; Karwe, M.V.; Bergman, T.L.; Beckermann, C.; Charmchi, M.

    1990-01-01

    The papers contained in this volume represent a wide range of current research interests in processes such as food and polymer processing, casting, welding, machining, laser cutting, and superconductor processing. This volume includes papers presented in four sessions: Heat Transfer in Materials Processing; Thermal Phenomena in Superconductor Processing; Heat Transfer in Food and Polymer Processing; Heat Transfer in CAsting and Welding

  9. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  10. DOE natural phenomena hazards mitigation conference: proceedings

    International Nuclear Information System (INIS)

    1985-10-01

    The conference includes sessions which present an overview of DOE programs, available codes, standards and criteria, examples of designs and upgrades from the DOE complex, lessons learned from past natural phenomena, ground motion, seismic evaluation of equipment, and applications of probabilistic risk assessment techniques to DOE facilities. Separate abstracts have been prepared for individual papers

  11. On the possibility of study the surface structure of small bio-objects, including fragments of nucleotide chains, by means of electron interference

    Energy Technology Data Exchange (ETDEWEB)

    Namiot, V.A., E-mail: vnamiot@gmail.co [Institute of Nuclear Physics, Moscow State University, Vorobyovy Gory, 119992 Moscow (Russian Federation)

    2009-07-20

    We propose a new method to study the surface of small bio-objects, including macromolecules and their complexes. This method is based on interference of low-energy electrons. Theoretically, this type of interference may allow to construct a hologram of the biological object, but, unlike an optical hologram, with the spatial resolution of the order of inter-atomic distances. The method provides a possibility to construct a series of such holograms at various levels of electron energies. In theory, obtaining such information would be enough to identify the types of molecular groups existing on the surface of the studied object. This method could also be used for 'fast reading' of nucleotide chains. It has been shown how to depose a long linear molecule as a straight line on a substrate before carrying out such 'reading'.

  12. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  13. Disposal project for LLW and VLLW generated from research facilities in Japan: A feasibility study for the near surface disposal of VLLW that includes uranium

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Hasegawa, M.; Sakamoto, Y.; Nakatani, T.

    2016-01-01

    Conclusion and future work: • JAEA plans trench disposal of U-bearing waste with less than 100 Bq/g. • Two safety measures of trench disposal of U-bearing waste have been discussed taking into account increasing radioactivity over a long period of time. 1. First is to carry out dose assessment of site use scenario by using a conservatively stylized condition. 2. Second is to control the average concentration of U in the trench facilities based on the concept of the existing exposure situation. • We are continuously developing the method for safety measures of near surface disposal of VLLW including U-bearing waste.

  14. Advanced diffusion processes and phenomena

    CERN Document Server

    Öchsner, Andreas; Belova, Irina

    2014-01-01

    This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the

  15. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  16. Contribution of cellular automata to the understanding of corrosion phenomena

    Directory of Open Access Journals (Sweden)

    M. Zenkri

    2017-09-01

    Full Text Available We present a stochastic CA modelling approach of corrosion based on spatially separated electrochemical half-reactions, diffusion, acido-basic neutralization in solution and passive properties of the oxide layers. Starting from different initial conditions, a single framework allows one to describe generalised corrosion, localised corrosion, reactive and passive surfaces, including occluded corrosion phenomena as well. Spontaneous spatial separation of anodic and cathodic zones is associated with bare metal and passivated metal on the surface. This separation is also related to local acidification of the solution. This spontaneous change is associated with a much faster corrosion rate. Material morphology is closely related to corrosion kinetics, which can be used for technological applications.

  17. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  18. Renormalization group and critical phenomena

    International Nuclear Information System (INIS)

    Ji Qing

    2004-01-01

    The basic clue and the main steps of renormalization group method used for the description of critical phenomena is introduced. It is pointed out that this method really reflects the most important physical features of critical phenomena, i.e. self-similarity, and set up a practical solving method from it. This way of setting up a theory according to the features of the physical system is really a good lesson for today's physicists. (author)

  19. Transient phenomena in multiphase flow

    International Nuclear Information System (INIS)

    Afgan, N.H.

    1988-01-01

    This book is devoted to formulation of the two-phase system. Emphasis is given to classical instantaneous equations of mass momentum and energy for local conditions and respective averaging procedures and their relevance to the structure of transfer laws. In formulating an equation for a two-velocity continuum, two-phase dispersed flow, two-velocity and local inertial effects associated with contraction and expansion of the mixture have been considered. Particular attention is paid to the effects of interface topology and area concentration as well as the latter's dependence on interfacial transfer laws. Also covered are low bubble concentrations in basic nonuniform unsteady flow where interactions between bubbles are negligible but where the effects of bubbles must still be considered. Special emphasis has been given to the pairwise interaction of the bubble and respective hydrodynamic equations describing the motion of a pair of spherical bubbles through a liquid This book introduces turbulence phenomena in two-phase flow and related problems of phase distribution in two-phase flow. This includes an extensive survey of turbulence and phase distribution models in transient two-phase flow. It is shown that if the turbulent structure of the continuous phase of bubbly two-phase is either measured or can be predicted, then the observed lateral phase distribution can be determined by using an multidimensional two-fluid model in which all lateral forces are properly modeled

  20. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    Science.gov (United States)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  1. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  2. Novel QCD Phenomena

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; SLAC

    2007-01-01

    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions

  3. Proceedings of the Workshop on near-field phenomena in geologic repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Prediction of the behaviour of radioactive waste and the geologic host medium is a complex problem, involving an understanding of many chemical and physical phenomena. Topics covered by this Workshop include rock mechanics in stressed and heated conditions; thermally induced groundwater flow in fractured rock; chemical changes to rock surfaces associated with groundwater and changes in the thermal and chemical environment; the chemical solubilities and sorption properties of radionuclides; and the long-term integrity of containers and packaging for radioactive waste.

  4. Teaching optical phenomena with Tracker

    Science.gov (United States)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  5. Critical Phenomena in Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Gundlach Carsten

    1999-01-01

    Full Text Available As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term 'critical phenomena'. They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

  6. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  7. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  8. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  9. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  10. Basic transport phenomena in materials engineering

    CERN Document Server

    Iguchi, Manabu

    2014-01-01

    This book presents the basic theory and experimental techniques of transport phenomena in materials processing operations. Such fundamental knowledge is highly useful for researchers and engineers in the field to improve the efficiency of conventional processes or develop novel technology. Divided into four parts, the book comprises 11 chapters describing the principles of momentum transfer, heat transfer, and mass transfer in single phase and multiphase systems. Each chapter includes examples with solutions and exercises to facilitate students’ learning. Diagnostic problems are also provided at the end of each part to assess students’ comprehension of the material.  The book is aimed primarily at students in materials science and engineering. However, it can also serve as a useful reference text in chemical engineering as well as an introductory transport phenomena text in mechanical engineering. In addition, researchers and engineers engaged in materials processing operations will find the material use...

  11. Unsteady phenomena in the edge tone

    International Nuclear Information System (INIS)

    Paal, G.; Vaik, I.

    2007-01-01

    Despite its geometrical simplicity, the edge tone displays a remarkably complex behaviour. A plane jet oscillates around the wedge-shaped object with a relatively stable frequency and under certain circumstances emits an audible tone. This configuration plays a central role in the sound production of several wind instruments but occurs in industrial situations too. The flow exhibits various interesting nonlinear phenomena reported in the literature which are not entirely explained. In this paper, detailed high precision numerical simulations of the flow are reported under various conditions. Several phenomena are reproduced in agreement with the literature such as the existence of 'stages', the dependence of oscillation frequency on the outflow velocity and the orifice-edge distance within one stage, the pressure distribution on the edge surface, etc. A criterion for the appropriate time step for constant accuracy has been derived. The location of force action is surprisingly stable; it remains in a very narrow region of the wedge surface independently of the Reynolds number and the orifice-edge distance but it is much further behind the edge tip than reported in the literature. The various stages can coexist in different ways: jumping back and forth between stages or being superposed on each other. Regardless of the form, the first stage continues to be dominant even when the second and third stage appears. The question of disturbance propagation velocity and disturbance wavelength is also investigated. The development of higher harmonics of a single stage along the orifice-edge tip distance is presented

  12. Plasma phenomena around comets: interaction with the solar wind

    International Nuclear Information System (INIS)

    Sagdeev, R.Z.; Shapiro, V.D.; Shevchenko, V.I.; Szegoe, K.

    1987-08-01

    The most important plasma physical experimental data measured during the cometary missions are summarized. These data do not include tail phenomena. Theoretical considerations are also presented concerning the upstream and bow shock regions. (author) 47 refs.; 15 figs

  13. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  14. Application of atomic mutations included in nuclear reactions, 40Ar(γ, p)39Cl(β decay)39Ar, to surface study

    International Nuclear Information System (INIS)

    Ohkuma, Juzo

    1987-01-01

    It has been found that the nuclear transformation processes which are initiated by photonuclear reactions can be used for studying the adsorption and chemical reactions taking place on solid surfaces. Chemically reactive 39 Cl was produced by irradiating 40 Ar with high-energy bremsstrahlung, and its blow was directed onto several material surfaces. The amount of chlorine adsorption was ascertained by detecting its radioactivity. Desorption without heating the adsorber samples inevitably occurred owing to the nuclear decay of 39 Cl. The adsorption and desorption rates were compared for several elements. A fast growth of oxide islands on sample surfaces was observed during the adsorption-desorption process. (author)

  15. Thermal transport phenomena in nanoparticle suspensions

    International Nuclear Information System (INIS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications. (topical review)

  16. Transport phenomena in multiphase flows

    CERN Document Server

    Mauri, Roberto

    2015-01-01

    This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy.  It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory...

  17. Mathematical Modeling of Diverse Phenomena

    Science.gov (United States)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  18. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  19. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  20. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    Science.gov (United States)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  1. Realistic generation of natural phenomena based on video synthesis

    Science.gov (United States)

    Wang, Changbo; Quan, Hongyan; Li, Chenhui; Xiao, Zhao; Chen, Xiao; Li, Peng; Shen, Liuwei

    2009-10-01

    Research on the generation of natural phenomena has many applications in special effects of movie, battlefield simulation and virtual reality, etc. Based on video synthesis technique, a new approach is proposed for the synthesis of natural phenomena, including flowing water and fire flame. From the fire and flow video, the seamless video of arbitrary length is generated. Then, the interaction between wind and fire flame is achieved through the skeleton of flame. Later, the flow is also synthesized by extending the video textures using an edge resample method. Finally, we can integrate the synthesized natural phenomena into a virtual scene.

  2. Physical resuspension and revaporisation phenomena in control rod aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Browsher, B.R.

    1988-12-01

    Physical resuspension and revaporisation processes could play a significant role in the transport of fission products in a severe reactor accident. The processes involved in physical resuspension and revaporisation of control rod alloy aerosol particles from a stainless steel substrate have been studied at room temperature under laminar and turbulent flow conditions (Reynolds numbers of between 70 and 7000), and at temperatures in the range from 370 K to 870 K under laminar and intermediate flow conditions (Reynolds numbers of between 7 and 1400) in the absence and presence of steam. The phenomena were investigated using bulk analyses to determine the quantity of material remaining on a coupon after each experiment, and standard surface analysis techniques were used to examine the composition and morphology of the particles. The main conclusions of this work are that: (i) physical resuspension is only significant in turbulent flow, (ii) two processes are involved in physical resuspension: the removal of surface layers which are only loosely bound to the substrate, and the removal of a more tightly-bound layer, (iii) the amount of material resuspended decreases exponentially with time, and the data have been correlated with a reverse isotherm model, (iv) the weight loss from the revaporisation experiments can be interpreted in terms of the effective vapour pressure of the deposit, and an equation has been derived to express this vapour pressure as a function of temperature. These studies have demonstrated the importance of a number of resuspension processes in generating a source of radioactive material that could be released after failure of the containment. Efforts are in hand to include these phenomena in the relevant modelling studies. (author)

  3. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena; Accion de las sustancias extranas en la superficies de los electrodos. Estudio mediante radiotrazadores. II. Influencia en los procesos de electrocristalizacion

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J; Gamboa, J M; Arizmendi, L

    1963-07-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs.

  4. General unifying features of controlled quantum phenomena

    International Nuclear Information System (INIS)

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-01-01

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  5. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine (ed.)

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  6. Cooperative phenomena in flows; Poster abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Loekseth, Trine [ed.

    2011-05-15

    The objective of this 'Geilo School' was to bring together researchers with various interests and background including theoretical experimental physicists, material scientists and molecular biologists to identify and discuss areas where synergism between these disciplines may be most fruitfully applied to the study of various aspects of 'Cooperative phenomena in flows'. There were altogether 21 lecturers at the School with about 80 participants from 19 countries. This was the 21. Geilo School held biannually since the first one in I971. Reference to the earlier Geilo Schools 1971-2009 may be found here: http://www.ife.no/departments/physics/projects/geilo (Author)

  7. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  8. Layered phenomena in the mesopause region

    Science.gov (United States)

    Plane, J. M. C.; Bailey, S. M.; Baumgarten, G.; Rapp, M.

    2015-05-01

    This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises a collection of papers which were mostly presented at the 11th Layered Phenomena in the Mesopause Region (LPMR) Workshop, held at the University of Leeds between 29th July 2013 and 1st August 2013. The topics covered at the workshop included atmospheric dynamics, mesospheric ice clouds, meteoric metal layers, meteoric smoke particles, and airglow layers. There was also a session on the potential of planned sub-orbital spacecraft for making measurements in the mesosphere and lower thermosphere (MLT).

  9. Phenomena and Diosignes of Aratous

    Science.gov (United States)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  10. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  11. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  12. Nonlinear phenomena in general relativity

    Science.gov (United States)

    Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza

    2018-04-01

    The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.

  13. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  14. Violent phenomena in the Universe

    CERN Document Server

    Narlikar, Jayant V

    2007-01-01

    The serenity of a clear night sky belies the evidence-gathered by balloons, rockets, satellites, and telescopes-that the universe contains centers of furious activity that pour out vast amounts of energy, some in regular cycles and some in gigantic bursts. This reader-friendly book, acclaimed by Nature as ""excellent and uncompromising,"" traces the development of modern astrophysics and its explanations of these startling celestial fireworks.This lively narrative ranges from the gravitational theories of Newton and Einstein to recent exciting discoveries of such violent phenomena as supernova

  15. Quantum theory of collective phenomena

    CERN Document Server

    Sewell, G L

    2014-01-01

    ""An excellent and competent introduction to the field … [and] … a source of information for the expert."" - Physics Today""This a book of major importance…. I trust that this book will be used as a basis for the teaching of a balanced, modern and rigorous course on statistical mechanics in all universities."" - Bulletin of the London Mathematical Society""This is one of the best introductions to the subject, and it is strongly recommended to anyone interested in collective phenomena."" - Physics Bulletin ""The book may be recommended for students as a well-balanced introduction to this rich s

  16. Foot anthropometry and morphology phenomena.

    Science.gov (United States)

    Agić, Ante; Nikolić, Vasilije; Mijović, Budimir

    2006-12-01

    Foot structure description is important for many reasons. The foot anthropometric morphology phenomena are analyzed together with hidden biomechanical functionality in order to fully characterize foot structure and function. For younger Croatian population the scatter data of the individual foot variables were interpolated by multivariate statistics. Foot structure descriptors are influenced by many factors, as a style of life, race, climate, and things of the great importance in human society. Dominant descriptors are determined by principal component analysis. Some practical recommendation and conclusion for medical, sportswear and footwear practice are highlighted.

  17. Gravitational Anomaly and Transport Phenomena

    International Nuclear Information System (INIS)

    Landsteiner, Karl; Megias, Eugenio; Pena-Benitez, Francisco

    2011-01-01

    Quantum anomalies give rise to new transport phenomena. In particular, a magnetic field can induce an anomalous current via the chiral magnetic effect and a vortex in the relativistic fluid can also induce a current via the chiral vortical effect. The related transport coefficients can be calculated via Kubo formulas. We evaluate the Kubo formula for the anomalous vortical conductivity at weak coupling and show that it receives contributions proportional to the gravitational anomaly coefficient. The gravitational anomaly gives rise to an anomalous vortical effect even for an uncharged fluid.

  18. Department of Energy Natural Phenomena Hazards Mitigation program

    International Nuclear Information System (INIS)

    Murray, R.C.

    1993-01-01

    This paper presents a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance, (2) Technical support, research and development, (3) Technology transfer, and (4) Oversight

  19. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  20. Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions

    International Nuclear Information System (INIS)

    Simon, G H; König, T; Heinke, L; Lichtenstein, L; Heyde, M; Freund, H-J

    2011-01-01

    We present an extensive atomic resolution frequency modulation dynamic force microscopy study of ultrathin aluminium oxide on a single crystalline NiAl(110) surface. One-dimensional surface defects produced by domain boundaries have been resolved. Images are presented for reflection domain boundaries (RDBs), four different types of antiphase domain boundaries, a nucleation-related translation domain boundary and also domain boundary junctions. New structures and aspects of the boundaries and their network are revealed and merged into a comprehensive picture of the defect arrangements. The alumina film also covers the substrate completely at the boundaries and their junctions and follows the structural building principles found in its unit cell. This encompasses square and rectangular groups of surface oxygen sites. The observed structural elements can be related to the electronic signature of the boundaries and therefore to the electronic defects associated with the boundaries. A coincidence site lattice predicted for the RDBs is in good agreement with experimental data. With Σ = 19 it can be considered to be of low-sigma type, which frequently coincides with special boundary properties. Images of asymmetric RDBs show points of good contact alternating with regions of nearly amorphous disorder in the oxygen sublattice. (paper)

  1. Analysis of a Free Surface Film from a Controlled Liquid Impinging Jet over a Rotating Disk Including Conjugate Effects, with and without Evaporation

    Science.gov (United States)

    Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.

    2005-01-01

    A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.

  2. Effects of hot electron emission on a low-conductivity tetracyanoethylene polymer layer including studies of the corrugation of the film surface

    International Nuclear Information System (INIS)

    Lorenz, K.L.; Mousa, M.S.

    2003-01-01

    The effect of strong field electron emission (FEE) on a tetracyanoethylene (TCNE) polymer layer was studied by Field Ion Microscopy (FIM) using TCNE and Ne as the imaging gases. The TCNE polymer was formed on each tungsten tip by radical polymerisation before FEE. The FIM images show field emission spots all over the surface of the tip. The FEM images show a random distribution of several field emission areas at the onset of FEE. After sometime at a current of about 1 μA, there is a transition to higher currents at the same voltage, in which the electron emission pattern changes to have only one emitting area. After this transition, two different types of FIM images were observed, depending on the imaging gas that was used. Neon FIM images at low tip voltages show spots in the areas where the electron emission current was greatest, and at much higher voltages these images show emission from other areas with lower surface corrugation. However, the FIM images with TCNE as the imaging gas do not show any differences between the areas with and without electron emission. The FIM images remain as before FEE, which can be explained by the formation of a new polymer by the reaction of the surface layer with the imaging gas. It is assumed that chemically reactive fragments at the polymer/vacuum interface, which are needed for the polymerisation reaction, are formed by pyrolysis and sputtering processes during FEE

  3. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  4. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  5. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  6. Augmented Visual Experience of Simulated Solar Phenomena

    Science.gov (United States)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  7. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  8. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-01-01

    Roč. 34, č. 5 (2013), s. 792-812 ISSN 0195-928X R&D Projects: GA AV ČR IAA200760905; GA ČR(CZ) GPP101/11/P046; GA ČR GA101/09/1633 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : chemical polarity * gradient theory * surface tension Subject RIV: BJ - Thermodynamics Impact factor: 0.623, year: 2013 http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10765-012-1207-z

  9. In vessel core melt progression phenomena

    International Nuclear Information System (INIS)

    Courtaud, M.

    1993-01-01

    For all light water reactor (LWR) accidents, including the so called severe accidents where core melt down can occur, it is necessary to determine the amount and characteristics of fission products released to the environment. For existing reactors this knowledge is used to evaluate the consequences and eventual emergency plans. But for future reactors safety authorities demand decrease risks and reactors designed in such a way that fission products are retained inside the containment, the last protective barrier. This requires improved understanding and knowledge of all accident sequences. In particular it is necessary to be able to describe the very complex phenomena occurring during in vessel core melt progression because they will determine the thermal and mechanical loads on the primary circuit and the timing of its rupture as well as the fission product source term. On the other hand, in case of vessel failure, knowledge of the physical and chemical state of the core melt will provide the initial conditions for analysis of ex-vessel core melt progression and phenomena threatening the containment. Finally a good understanding of in vessel phenomena will help to improve accident management procedures like Emergency Core Cooling System water injection, blowdown and flooding of the vessel well, with their possible adverse effects. Research and Development work on this subject was initiated a long time ago and is still in progress but now it must be intensified in order to meet the safety requirements of the next generation of reactors. Experiments, limited in scale, analysis of the TMI 2 accident which is a unique source of global information and engineering judgment are used to establish and assess physical models that can be implemented in computer codes for reactor accident analysis

  10. BWR core melt progression phenomena: Experimental analyses

    International Nuclear Information System (INIS)

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component

  11. Mathematical modeling of synthesis gas fueled electrochemistry and transport including H2/CO co-oxidation and surface diffusion in solid oxide fuel cell

    Science.gov (United States)

    Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin

    2015-10-01

    Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.

  12. The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes

    Science.gov (United States)

    Tonkin-Hill, Gerry Q.; Trianty, Leily; Noviyanti, Rintis; Nguyen, Hanh H. T.; Sebayang, Boni F.; Lampah, Daniel A.; Marfurt, Jutta; Cobbold, Simon A.; Rambhatla, Janavi S.; McConville, Malcolm J.; Rogerson, Stephen J.; Brown, Graham V.; Day, Karen P.; Price, Ric N.; Anstey, Nicholas M.

    2018-01-01

    Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to—or is selected by—this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to—or are selected by—the host environment in severe malaria. PMID:29529020

  13. PSA methodology including new design, operational and safety factors, 'Level of recognition of phenomena with a presumed dominant influence upon operational safety' (failures of conventional as well as non-conventional passive components, dependent failures, influence of operator, fires and external threats, digital control, organizational factors)

    International Nuclear Information System (INIS)

    Jirsa, P.

    2001-10-01

    The document represents a specific type of discussion of existing methodologies for the creation and application of probabilistic safety assessment (PSA) in light of the EUR document summarizing requirements placed by Western European NPP operators on the future design of nuclear power plants. A partial goal of this discussion consists in mapping, from the PSA point of view, those selected design, operational and/or safety factors of future NPPs that may be entirely new or, at least, newly addressed. Therefore, the terms of reference for this stage were formulated as follows: Assess current level of knowledge and procedures in the analysis of factors and phenomena with a dominant influence upon operational safety of new generation reactors, especially in the following areas: (1) Phenomenology of failure types and mechanisms and reliability of conventional passive safety system components; (2) Phenomenology of failure types and mechanisms and reliability of non-conventional passive components of newly designed safety systems; (3) Phenomenology of types and mechanisms of dependent failures; (4) Human factor role in new generation reactors and its effect upon safety; (5) Fire safety and other external threats to new nuclear installations; (6) Reliability of the digital systems of the I and C system and their effect upon safety; and (7) Organizational factors in new nuclear installations. (P.A.)

  14. Research in magnetospheric wave phenomena

    International Nuclear Information System (INIS)

    Barfield, J.N.

    1975-01-01

    During the last 4 years a number of developments have occurred which have led to an increased understanding of the role of wave phenomena in the physical processes of the magnetosphere. While the studies span the frequency regime from millihertz to the electron gyrofrequency, the developments to be discussed in this paper have in common that they have added substantially to the understanding of the controlling processes, regions, and boundaries in the magnetosphere. The topics discussed are the increased awareness and documentation of the role of the plasmapause in micropulsation generation and propagation; the establishment of the role of ion cyclotron waves in the wave-particle interactions at the plasmapause; the discovery of magnetospheric electrostatic waves with ω = (3/2)Ω/sub -/; the discovery and preliminary identification of the source of plasmaspheric hiss; and the analysis of storm time Pc 5 waves as observed on the satellites ATS 1 and Explorer 45. (auth)

  15. Emergent Phenomena at Oxide Interfaces

    International Nuclear Information System (INIS)

    Hwang, H.Y.

    2012-01-01

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r → -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t → -t. In quantum mechanics, the time-evolution of the wave-function Ψ is given by the phase factor e -iEt/h b ar with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign

  16. The quest for new phenomena

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1996-12-01

    The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics

  17. In-vessel phenomena -- CORA

    International Nuclear Information System (INIS)

    Ott, L.J.; Rij, W.I. van.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level ''whole-core'' codes

  18. Studies of Novel Quantum Phenomena in Ruthenates

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  19. Fluid models and simulations of biological cell phenomena

    Science.gov (United States)

    Greenspan, H. P.

    1982-01-01

    The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.

  20. Investigations of corrosion phenomena on gold coins with SIMS

    International Nuclear Information System (INIS)

    Mayerhofer, K.E.; Piplits, K.; Traum, R.; Griesser, M.; Hutter, H.

    2005-01-01

    In order to establish a new handling procedure for contaminated coins, the Coin Cabinet and the Conservation Science Department of the Kunsthistorisches Museum, Vienna, initiated a research project on corrosion effects of gold coins. By now, investigations on historic and contemporary coins included optical microscopy, scanning electron microscopy (SEM), Auger electron microscopy (AES), X-ray photoelectron microscopy (XPS), and electrochemical methods showing the distribution of pollutants. This work focuses on secondary ion mass spectrometry (SIMS) investigations merely showing the distribution of electronegative elements, such as sulfur, oxygen, and chlorine on the surface. Sulfur is highly suspected of causing the observed corrosion phenomena, and is indeed enriched near polluting splints. Since SIMS is a destructive method, the investigated samples are test coins with intentionally added impurities. These coins were manufactured in cooperation with the Austrian Mint. They were treated with potassium polysulfide (K 2 S x ) for 8 h gaining a rapid corrosion of the surface. SIMS mass spectra, depth profiles, and images were done (a) at non-polluted areas (b) near polluted areas with slight coloring, and (c) directly at polluting stains showing enrichments of sulfur and chlorine. Due to the success of these investigations further studies on historic coins are intended

  1. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  2. WHC natural phenomena hazards mitigation implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  3. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. I. Polarization Phenomena; Accion de las sustancias extranas en la superficie de los electrodos. Estudio mediante radiotrazadores

    Energy Technology Data Exchange (ETDEWEB)

    Llopis, J; Gamboa, J M; Arizmendi, L

    1961-07-01

    Radioactive stearic acid ({sup 1}4C) has been used to determine the number of molecular layers present on copper electrode surfaces and its distribution. The stability of these layers under the experimental conditions has been studied and it has been shown that its presence has no influence on the anodic and cathodic polarization. an increase of these polarizations has been observed with mixed multilayers of stearic acid and sterolamide. (Author) 13 refs.

  4. Efficacy of humidity retention bags for the reduced adsorption and improved cleaning of tissue proteins including prion-associated amyloid to surgical stainless steel surfaces.

    Science.gov (United States)

    Secker, T J; Pinchin, H E; Hervé, R C; Keevil, C W

    2015-01-01

    Increasing drying time adversely affects attachment of tissue proteins and prion-associated amyloid to surgical stainless steel, and reduces the efficacy of commercial cleaning chemistries. This study tested the efficacy of commercial humidity retention bags to reduce biofouling on surgical stainless steel and to improve subsequent cleaning. Surgical stainless steel surfaces were contaminated with ME7-infected brain homogenates and left to dry for 15 to 1,440 min either in air, in dry polythene bags or within humidity retention bags. Residual contamination pre/post cleaning was analysed using Thioflavin T/SYPRO Ruby dual staining and microscope analysis. An increase in biofouling was observed with increased drying time in air or in sealed dry bags. Humidity retention bags kept both protein and prion-associated amyloid minimal across the drying times both pre- and post-cleaning. Therefore, humidity bags demonstrate a cheap, easy to implement solution to improve surgical instrument reprocessing and to potentially reduce associated hospital acquired infections.

  5. Development of symmetric composition-gradient materials including hard particles in its surface layer; Hyosobu ni koshitsu ryushi wo fukumu taishogata sosei keisha zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Development of new materials with both thermal resistance and thermal shock resistance was studied on the basis of symmetric ceramics/metal/ceramics gradient composition. Al2O3/TiC/Ni/TiC/Al2O3 was used as material model of basic composition, and the system was selected where WC-Co system alloy hard particles were dispersed into the Al2O3 ceramic surface layer. The layered material was sintered in N2 gas atmosphere by SHS/HIP method using exothermic caused by nitriding reaction. Since cracks were generated in some specimens of 5-layer structure, improved specimens of 7-layer structure were prepared. To examine the effect of a particle size on toughness, WC-Co system alloy specimens with different particle sizes were also prepared. As a result, no cracks were found, and residual stress and fracture toughness were affected by particle size. In addition, the following were studied: technique of mass production, observation of fine structures, analysis of thermal stress, thermal shock resistance, and friction and abrasion characteristics. 13 refs., 65 figs., 15 tabs.

  6. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  7. Drone Use in Monioring Open Ocean Surface Debris, Including Paired Manta and Tucker Trawls for Relateing Sea State to Vertical Debris Distribution

    Science.gov (United States)

    Lattin, G.

    2016-02-01

    Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.

  8. Modeling temperature and moisture fields in conditioned spaces using zonal approach, including sorption phenomena in buildings materials; Modelisation thermo-hydro-aeraulique des locaux climatises selon l'approche zonale (prise en compte des phenomenes de sorption d'humidite)

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro Mendoca, K.

    2004-05-15

    Building simulation models represent in our days an important tool for building conception and performance analysis. Although moisture interacts in many ways with the whole building affecting therefore its behavior, frequently these models neglects the interactions between them. In addition, in most of them, indoor air conditions are considered uniform, which is a non-realistic assumption in conditioned spaces. In this work, a model to predict temperature and moisture fields in conditioned spaces, using zonal approach, is proposed. This method is based in dividing spatially a room in a relative small number of zones, typically on the order of tens to hundreds, where the state variables of air are considered uniform, with the exception of pressure that varies hydrostatically. While not as fine-grained as CFD simulation, zonal models do give useful information about temperature and moisture distributions that is important in comfort analysis. The proposed model was structured in three groups of sub-models representing the three building domains: indoor air, envelope and HVAC system. The indoor air sub-model is related to the indoor air space, where airflow speed can be considered weak. The envelope sub-model is related to the radiation exchanges between envelope and its neighborhood, and to the simultaneous heat and mass transfers across the envelope material. This latest can be represented by four sub-models of different complexity levels, with two of them taking into account moisture adsorption and desorption by building materials. Concerning to the HVAC system model, it refers to the whole system that means equipment, control and specific airflow from equipment. All sub-models were coupled into a modular simulation environment, SPARK, well-adapted to compare different models. The applicability of the proposed model is shown by two examples. The first one shows the importance of considering moisture sorption phenomena in the prediction of indoor air conditions

  9. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  10. Poorly studied phenomena in geoelectrics

    Directory of Open Access Journals (Sweden)

    В. С. Могилатов

    2016-12-01

    Full Text Available Undoubtedly, modern geoelectric technologies emerge in the result of the development of traditional approaches and techniques. However of more interest is the appearance of completely new technologies based on new effects and new models of interaction of geological medium and electromagnetic field. The author does not commit to indicate principally new directions, but only wants to discuss some poorly known facts from the theory and practice of geoelectrics. The outcome of this study could be considered attracting the attention of experts to non-traditional signals in geoelectrics. The reviewed phenomena of interest, not fully implemented in practice in the author’s opinion, are field split into two polarizations: transverse electric (the ТЕ-field and transverse magnetic (the ТМ-field, then some poorly known properties of ТМ-field, the role of bias currents, the anisotropy of horizontal resistances, the role of geomagnetic field in geoelectric sounding, the unique resolution of CSEM (Controlled Source Electro-Magnetic techniques at sea.

  11. Heat Transfer Phenomena of Supercritical Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Krau, Carmen Isabella; Kuhn, Dietmar; Schulenberg, Thomas [Forschungszentrum Karlsruhe, Institute for Nuclear and Energy Technologies, 76021 Karlsruhe (Germany)

    2008-07-01

    In concepts for supercritical water cooled reactors, the reactor core is cooled and moderated by water at supercritical pressures. The significant temperature dependence of the fluid properties of water requires an exact knowledge of the heat transfer mechanism to avoid fuel pin damages. Near the pseudo-critical point a deterioration of heat transfer might happen. Processes, that take place in this case, are not fully understood and are due to be examined systematically. In this paper a general overview on the properties of supercritical water is given, experimental observations of different authors will be reviewed in order to identify heat transfer phenomena and onset of occurrence. The conceptional design of a test rig to investigate heat transfer in the boundary layer will be discussed. Both, water and carbon dioxide, may serve as operating fluids. The loop, including instrumentation and safety devices, is shown and suitable measuring methods are described. (authors)

  12. Extended RPA study of nuclear collective phenomena

    International Nuclear Information System (INIS)

    Drozdz, S.

    1987-01-01

    A fully microscopic study of nuclear collective phenomena is presented within the framework of an extended RPA which includes 1p-1h and 2p-2h excitations in a consistent way. This theory allows us to obtain a very realistic description of various excitation spectra. As a result, a strong evidence of correlation effects beyond mean-field theory emerges. The effective interaction used is a G-matrix derived from the meson-exchange potential. The extended theory introduces also additional correlations which screen the long-large part of the effective interaction. This effect significantly enhances the stability of the ground state against density fluctuations. In this connection a possible importance of relativistic effects is also discussed. 99 refs., 19 figs., 5 tabs. (author)

  13. Study of Travelling Interplanetary Phenomena Report

    Science.gov (United States)

    Dryer, Murray

    1987-09-01

    Scientific progress on the topic of energy, mass, and momentum transport from the Sun into the heliosphere is contingent upon interdisciplinary and international cooperative efforts on the part of many workers. Summarized here is a report of some highlights of research carried out during the SMY/SMA by the STIP (Study of Travelling Interplanetary Phenomena) Project that included solar and interplanetary scientists around the world. These highlights are concerned with coronal mass ejections from solar flares or erupting prominences (sometimes together); their large-scale consequences in interplanetary space (such as shocks and magnetic 'bubbles'); and energetic particles and their relationship to these large-scale structures. It is concluded that future progress is contingent upon similar international programs assisted by real-time (or near-real-time) warnings of solar activity by cooperating agencies along the lines experienced during the SMY/SMA.

  14. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  15. Novel nuclear phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs

  16. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH.

    Science.gov (United States)

    Luebberding, S; Krueger, N; Kerscher, M

    2013-10-01

    Evidence is given that differences in skin physiological properties exist between men and women. However, despite an assessable number of available publications, the results are still inconsistent. Therefore, the aim of this clinical study is the first systematic assessment of gender-related differences in skin physiology in men and women, with a special focus on changes over lifetime. A total of 300 healthy male and female subjects (20-74 years) were selected following strict criteria including age, sun behaviour or smoking habits. TEWL, hydration level, sebum production and pH value were measured with worldwide-acknowledged biophysical measuring methods at forehead, cheek, neck, volar forearm and dorsum of hand. Until the age of 50 men's TEWL is significantly lower than the water loss of women of the same age, regardless of the location. With ageing gender-related differences in TEWL assimilate. Young men show higher SC hydration in comparison with women. But, whereas SC hydration is stable or even increasing in women over lifetime, the skin hydration in men is progressively decreasing, beginning at the age of 40. Sebum production in male skin is always higher and stays stable with increasing age, whereas sebum production in women progressively decreases over lifetime. Across all localizations and age groups, the pH value in men is below 5, the pH value of female subjects is, aside from limited expectations, higher than 5. Skin physiological distinctions between the sexes exist and are particularly remarkable with regard to sebum production and pH value. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-02-04

    splitting at non-magnetic 5d(4d) and ferromagnetic 3d-metal interfaces and their dependences on aspects such as interdiffusion, surface oxidation, thin film thickness and lattice mismatch. We find that changes of structural details strongly alter the electronic states, which in turn influences the magnetic properties and phenomena related to spin-orbit coupling. Since the interfaces studied in this work have complex electronic structures, a computational approach has been developed in order to estimate the strength of the Rashba band splitting below and at the Fermi level. We apply this approach to the interfaces between a Co monolayer and 4d (Tc, Ru, Rh, Pd, and Ag) or 5d (Re, Os, Ir, Pt, and Au) transition metals and find a clear correlation between the overall size of the band splitting and the charge transfer between the d-orbitals at the interface. Furthermore, we show that the spin splitting at the Fermi surface scales with the induced orbital moment weighted by the strength of the spin-orbit coupling.

  18. Dictionary of astronomy, space, and atmospheric phenomena

    International Nuclear Information System (INIS)

    Tver, D.F.; Motz, L.; Hartmann, W.K.

    1979-01-01

    This concise and up-to-date compendium features descriptions and definitions of terms, techniques and equipment relating to celestial phenomena. It explains the latest concepts in space exploration, planetary research, stellar astronomy, and meteorological science. The authors explore the general configurations of star groups, galaxy types, stars, and other small bodies in the solar system, including such important facts as magnitude of each and distance from Earth. They describe the brightest stars one by one. Vital data provided by the Viking, Mariner, and Pioneer space probes, the Voyager flights past Jupiter and its moons, and the Apollo landings are clearly presented and explained. New concepts in stellar astronomy such as quasars, neutron stars (pulsars), and black holes are precisely defined. Also included are discussions of meteor showers and the important rock types found on each planet; definitions of meteorological terms, ad astronomical equipment including telescopes, eyepieces and their accessories, the Golay cell, canopus sensor, filar micrometer, and more. Charts aid in identifying and locating stars and planets, and helpful reference tables list the location of the major celestial bodies - asteroids, constellations, the nearest stars, the brightest stars, interesting double and variable stars and cluters. Also included is the Meisser catalog of the coordinates and magnitudes for more than 100 celestial objects

  19. APRI-6. Accident Phenomena of Risk Importance

    International Nuclear Information System (INIS)

    Garis, Ninos; Ljung, J

    2009-06-01

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident

  20. APRI-6. Accident Phenomena of Risk Importance

    Energy Technology Data Exchange (ETDEWEB)

    Garis, Ninos; Ljung, J [eds.; Swedish Radiation Safety Authority, Stockholm (Sweden); Agrenius, Lennart [ed.; Agrenius Ingenjoersbyraa AB, Stockholm (Sweden)

    2009-06-15

    Since the early 1980s, nuclear power utilities in Sweden and the Swedish Radiation Safety Authority (SSM) collaborate on the research in severe reactor accidents. In the beginning focus was mostly on strengthening protection against environmental impacts after a severe reactor accident, for example by develop systems for the filtered relief of the reactor containment. Since the early 90s, this focus has shifted to the phenomenological issues of risk-dominant significance. During the years 2006-2008, the partnership continued in the research project APRI-6. The aim was to show whether the solutions adopted in the Swedish strategy for incident management provides adequate protection for the environment. This is done by studying important phenomena in the core melt estimating the amount of radioactivity that can be released to the atmosphere in a severe accident. To achieve these objectives the research has included monitoring of international research on severe accidents and evaluation of results and continued support for research of severe accidents at the Royal Inst. of Technology (KTH) and Chalmers University. The follow-up of international research has promoted the exchange of knowledge and experience and has given access to a wealth of information on various phenomena relevant to events in severe accidents. The continued support to KTH has provided increased knowledge about the possibility of cooling the molten core in the reactor tank and the processes associated with coolability in the confinement and about steam explosions. Support for Chalmers has increased knowledge of the accident chemistry, mainly the behavior of iodine and ruthenium in the containment after an accident.

  1. Disintegration phenomena in Comet West

    Science.gov (United States)

    Sekanina, Z.

    1976-01-01

    Two peculiarities of Comet West, the multiple splitting of the nucleus as seen in telescope observations and the complex structure of the dust tail, are discussed. A method of analysis based on the premise that the observed rate of separation of a fragment from the principal nucleus is determined by the difference in effective solar attraction acting on the bodies is applied to investigate the motion of the four fragments that separated from the nucleus of Comet West. The predicted motion of the fragments is in good agreement with available observations. It is suggested that the 'synchronic' bands of the dust tail consist of tiny fragments from relatively large particles that burst after release from the comet. The unusual orientation of these bands and their high surface brightness relative to the diffuse tail are explained by a sudden increase in the particle acceleration and in the total scattering surface as the result of the disintegration of the larger particles.

  2. Nucleation phenomena at Suzuki phases

    International Nuclear Information System (INIS)

    Acosta-Najarro, D.; Jose Y, M.

    1982-01-01

    Crystal of NaCl doped with Mn present regions with an increase in nucleation densities when observed by surface gold decoration; this increase is related to the nucleation of the Suzuki phases which are induced by cooling of the crystal matrix. Calculations based on atomistic nucleation theory are developed to explain the increased nucleation density. Experiments were made to compare with the theoretical results. In particular the density of nuclei was measured as a function of the rate or arrival of atoms to the surface. Therefore, the changes in the nucleation densities are explained in terms of change in migration energies between the Suzuki phase and the NaCl matrix excluding the possibility of nucleation induced by point defects. (author)

  3. Blistering phenomena I: metals and alloys

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1976-01-01

    A summary of the major parameters affecting the blistering process is given. Brief discussions of the blistering mechanisms are included. The following topics are described: (1) projectile-target system, (2) projectile energy, (3) critical dose for blister formation, (4) effect of total dose, (5) dose rate, (6) target temperature, (7) crystallographic orientation of the irradiated surface, (8) models for blister formation, and (9) surface erosion of fusion reactor components by blistering

  4. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  5. Polarization phenomena in heavy-ion reactions

    International Nuclear Information System (INIS)

    Sugimoto, K.; Ishihara, M.; Takahashi, N.

    1984-01-01

    This chapter presents a few key experiments which provide direct evidence of the polarization phenomena in heavy-ion reactions. The theory of polarization observables and measurements is given with the necessary formulae. The polarization phenomena is described and studies of product nuclear polarization in heavy-ion reactions are discussed. Studies of heavy-ion reactions induced by polarized beams are examined

  6. A Connection between Transport Phenomena and Thermodynamics

    Science.gov (United States)

    Swaney, Ross; Bird, R. Byron

    2017-01-01

    Although students take courses in transport phenomena and thermodynamics, they probably do not ask whether these two subjects are related. Here we give an answer to that question. Specifically we give relationships between the equations of change for total energy, internal energy, and entropy of transport phenomena and key equations of equilibrium…

  7. RELAP5-3D code validation for RBMK phenomena

    International Nuclear Information System (INIS)

    Fisher, J.E.

    1999-01-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena

  8. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  9. Material Abrasive Water Jet Cutting Investigation by Means Accompanying Physical Phenomena

    OpenAIRE

    Kinik, D.; Gánovská, B.; Hloch, S. (Sergej); Cárach, J.; Lehocká, D.

    2013-01-01

    The paper deals with the indirect ways of on-line monitoring of technological processes of cutting. The objective of the study is a design of on-line monitoring system for the cutting technology through an abrasive water jet. In cutting by the abrasive water jet two parallel phenomena are formed. The phenomena are represented by generated surface and vibrations. For the purpose of proving of the hypothetical assumptions on dependence of generated surface quality on vibrations the ex...

  10. The Center for Natural Phenomena Engineering (CNPE), 1990--1991

    International Nuclear Information System (INIS)

    1992-07-01

    The Center for Natural Phenomena Engineering (CNPE) was established to provide a natural phenomena (NP) engineering oversight role within Martin Marietta Energy Systems, Inc. (MMES). In this oversight role CNPE's goals are to provide coordination and direction of activities related to earthquake and other natural phenomena engineering, including development of hazard definition, development of design criteria, conducting new facility design, development and conducting of testing, performance of analysis and vulnerability studies, development of analysis methodology, and provision of support for preparation of safety analysis reports for the five MMES sites. In conducting these activities it is CNPE's goal to implement the elements of Total Quality Management (TQM) in a cost-effective manner, providing its customers with a quality product. This report describes 1990--1991 activities

  11. The Center for Natural Phenomena Engineering (CNPE), 1990--1991

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-07-01

    The Center for Natural Phenomena Engineering (CNPE) was established to provide a natural phenomena (NP) engineering oversight role within Martin Marietta Energy Systems, Inc. (MMES). In this oversight role CNPE`s goals are to provide coordination and direction of activities related to earthquake and other natural phenomena engineering, including development of hazard definition, development of design criteria, conducting new facility design, development and conducting of testing, performance of analysis and vulnerability studies, development of analysis methodology, and provision of support for preparation of safety analysis reports for the five MMES sites. In conducting these activities it is CNPE`s goal to implement the elements of Total Quality Management (TQM) in a cost-effective manner, providing its customers with a quality product. This report describes 1990--1991 activities.

  12. Precedent Phenomena in Quebecois Linguistic World View

    Directory of Open Access Journals (Sweden)

    Ксения Эдуардовна Болотина

    2016-12-01

    Full Text Available This article is devoted to the linguocultural analysis of precedent phenomena as parts of Quebecois’ cognitive base. Precedent phenomena being cultural facts are one of the key issues in modern linguistic and cognitive studies. By precedent phenomena we mean, according to Y.E. Prohorov, such entities when verbalized in discourse that refer to a certain cultural fact behind them. In the article the precedent phenomena such as precedent text, precedent situation, precedent utterance, and precedent name are analyzed. The main theses of the precedence theory given in the article (Y.N. Karaulov, Y.E. Prohorov, V.V. Krasnyh, D.B. Gudkov are at the heart of precedence studies on the basis of different languages. However, a complex analysis of precedent phenomena in the Quebec national variant of French is new to Russian linguistics. The study of precedent phenomena enables us to elicit features of their functioning in ethnospecific discourse and determine cultural dominants existing in Quebecois’ linguistic world view. Given the fact that the size of the article is limited, we undertooke the analysis of eight phenomena precedent of the bearers of Quebec linguoculture. The choice of phenomena is determined by the frequency of their use in discourse. The facts analyzed are of national character, i.e. known to all members of the linguocultural community. A certain cultural fact is at the very core of each precedent phenomenon given in the article. To get the whole picture we analysed historic, political, and cultural context connected to the precedent phenomena in question. The study enables us to elicit distinctive features that are at the core of each phenomenon. The results are backed with the supportive material drawn from analysis of different types of discourse. The analysis of precedent phenomena undertaken in this article allows us to reconstruct, to a certain extent, Quebec cultural space and is a stepping stone to the reconstruction of the

  13. Study of field emission phenomena

    International Nuclear Information System (INIS)

    Ramanathan, Devaki; Vijendran, P.

    1976-01-01

    The theory of field emission has been explained, using Fowler-Nordheim equation and the Fowler-Nordheim plot. The imaging theory is also described in brief. The fabrication details of a field emission microscope (FEM) are mentioned. The design of the tube and the emitter assemblies are explained in detail. Simple experiments that can be demonstrated on the FEM such as indexing, detetermination of work function and surface diffusion constants, etc. are also mentioned. The use of FEM as a simple teaching aid has been brought out. (K.B.)

  14. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  15. Theoretical and experimental study of redox processes combined with adsorption phenomena under conditions of square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin

    2001-01-01

    Theoretical models of four electrode reactions coupled with adsorption phenomena under conditions of square-wave voltammetry are developed: simple surface redox reaction, surface catalytic reaction, cathodic stripping reaction of I order, and cathodic stripping reaction of II order.

  16. Echo phenomena in a plasma

    International Nuclear Information System (INIS)

    Pavlenko, V.N.

    1983-01-01

    The mechanism of echo phenomenon in different plasma media: laboratory and cosmic plasma, metals and semiconductors is analyzed to get a more comprehensive idea on collective processes in a plasma and for practical applications in radiophysics and plasma diagnostics. The echo phenomenon permitted to confirm a reversible nature of the Landau damping, to prove the fact that the information on perturbation is conserved in a plasma (as non-damping oscillations of the distribution function) even after disappearing of the macroscopic field. The dependence of the diffusion coefficient on the velocity is measured, microturbulences in a plasma are investigated. New ways of the plasma wave conversion are suggested, as well as ''lightning'' of super-critical plasma layers and regions of plasma non-transparency. Prospective advantages of using echo for studying the mechanisms of charged particle interaction with the surface bounding a plasma are revealed

  17. Interface-Induced Phenomena in Magnetism.

    Science.gov (United States)

    Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S D; Fullerton, Eric E; Leighton, Chris; MacDonald, Allan H; Ralph, Daniel C; Arena, Dario A; Dürr, Hermann A; Fischer, Peter; Grollier, Julie; Heremans, Joseph P; Jungwirth, Tomas; Kimel, Alexey V; Koopmans, Bert; Krivorotov, Ilya N; May, Steven J; Petford-Long, Amanda K; Rondinelli, James M; Samarth, Nitin; Schuller, Ivan K; Slavin, Andrei N; Stiles, Mark D; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.

  18. A statistical approach to strange diffusion phenomena

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Sanchez, R.

    2005-01-01

    The study of particle (and heat) transport in fusion plasmas has revealed the existence of what might be called 'unusual' transport phenomena. Such phenomena are: unexpected scaling of the confinement time with system size, power degradation (i.e. sub-linear scaling of energy content with power input), profile stiffness (also known as profile consistency), rapid transient transport phenomena such as cold and heat pulses (travelling much faster than the diffusive timescale would allow), non-local behaviour and central profile peaking during off-axis heating, associated with unexplained inward pinches. The standard modelling framework, essentially equal to Fick's Law plus extensions, has great difficulty in providing an all-encompassing and satisfactory explanation of all these phenomena. This difficulty has motivated us to reconsider the basics of the modelling of diffusive phenomena. Diffusion is based on the well-known random walk. The random walk is captured in all its generality in the Continuous Time Random Walk (CTRW) formalism. The CTRW formalism is directly related to the well-known Generalized Master Equation, which describes the behaviour of tracer particle diffusion on a very fundamental level, and from which the phenomenological Fick's Law can be derived under some specific assumptions. We show that these assumptions are not necessarily satisfied under fusion plasma conditions, in which case other equations (such as the Fokker-Planck diffusion law or the Master Equation itself) provide a better description of the phenomena. This fact may explain part of the observed 'strange' phenomena (namely, the inward pinch). To show how the remaining phenomena mentioned above may perhaps find an explanation in the proposed alternative modelling framework, we have designed a toy model that incorporates a critical gradient mechanism, switching between rapid (super-diffusive) and normal diffusive transport as a function of the local gradient. It is then demonstrated

  19. Nonlinear stochastic systems with network-induced phenomena recursive filtering and sliding-mode design

    CERN Document Server

    Hu, Jun; Gao, Huijun

    2014-01-01

    This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties.The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects

  20. Transient phenomena in electrical power systems

    CERN Document Server

    Venikov, V A; Higinbotham, W

    1964-01-01

    Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems.Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Ot

  1. Computational transport phenomena for engineering analyses

    CERN Document Server

    Farmer, Richard C; Cheng, Gary C; Chen, Yen-Sen

    2009-01-01

    Computational Transport PhenomenaOverviewTransport PhenomenaAnalyzing Transport PhenomenaA Computational Tool: The CTP CodeVerification, Validation, and GeneralizationSummaryNomenclatureReferencesThe Equations of ChangeIntroductionDerivation of The Continuity EquationDerivation of The Species Continuity EquationDerivation of The Equation Of MotionDerivation of The General Energy EquationNon-Newtonian FluidsGeneral Property BalanceAnalytical and Approximate Solutions for the Equations of ChangeSummaryNomenclatureReferencesPhysical PropertiesOverviewReal-Fluid ThermodynamicsChemical Equilibrium

  2. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  3. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  4. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    Kristensen, Niels Rode; Madsen, Henrik; Jørgensen, Sten Bay

    2003-01-01

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  5. Developing Phenomena Models from Experimental Data

    DEFF Research Database (Denmark)

    A systematic approach for developing phenomena models from experimental data is presented. The approach is based on integrated application of stochastic differential equation (SDE) modelling and multivariate nonparametric regression, and it is shown how these techniques can be used to uncover...... unknown functionality behind various phenomena in first engineering principles models using experimental data. The proposed modelling approach has significant application potential, e.g. for determining unknown reaction kinetics in both chemical and biological processes. To illustrate the performance...... of the approach, a case study is presented, which shows how an appropriate phenomena model for the growth rate of biomass in a fed-batch bioreactor can be inferred from data....

  6. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  7. Polarization phenomena in inelastic scattering

    International Nuclear Information System (INIS)

    Verhaar, B.J.

    1974-01-01

    An attempt is made to clarify the principles of inelastic scattering using the distorted wave Born approximation, concentrating on inelastic proton scattering. The principle aspects and merits of the microscopic description and the necessity of including the N-N spin orbit force are discussed. (7 figures) (U.S.)

  8. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Rousculp, Christopher L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oro, David Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Griego, Jeffrey Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Turchi, Peter John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reinovsky, Robert Emil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Joseph Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cheng, Baolian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freeman, Matthew Stouten [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patten, Austin Randall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    There is a great interest in RMI as source of ejecta from metal shells. Previous experiments have explored wavelength amplitude (kA) variation but they have a small range of drive pressures and are in planer geometry. Simulations, both MD and hydro, have explored RMI in planer geometry. The ejecta source model from RMI is an area of active algorithm and code development in ASCI-IC Lagrangian Applications Project. PHELIX offers precise, reproducible variable driver for Hydro and material physics diagnoses with proton radiography.

  9. Computer-Aided Discovery of Earth Surface Deformation Phenomena

    Data.gov (United States)

    National Aeronautics and Space Administration — Key Objectives: Earth scientists are struggling to extract new insights from a sea of large data sets originating from multiple instruments. The goal of this...

  10. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  11. Classifying prion and prion-like phenomena.

    Science.gov (United States)

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  12. Canister storage building natural phenomena design loads

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site

  13. Didactic demonstrations of superfluidity and superconductivity phenomena

    International Nuclear Information System (INIS)

    Aniola-Jedrzejak, L.; Lewicki, A.; Pilipowicz, A.; Tarnawski, Z.; Bialek, H.

    1980-01-01

    In order to demonstrate to students phenomena of superfluidity and superconductivity a special helium cryostat has been constructed. The demonstrated effects, construction of the cryostat and the method of demonstration are described. (author)

  14. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 3. Numerical investigation for thermal stratification phenomena in the upper plenum

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2002-06-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. In-vessel thermohydraulic analyses were carried out using a multi-dimensional code AQUA to understand the thermal stratification characteristics in the upper plenum, and to investigate trade-off relations between gas entrainment and thermal stratification phenomena on in-vessel structures for the elimination of gas entrainment possibility. From the analysis, the following results were obtained. (1) Dummy plug insertion to a slit of the upper core structure is one of the effective measures to stabilize the in-vessel flow patterns and to mitigate in-vessel thermal shocks. (2) Though flow guide device such as a baffle ring attached to reactor vessel wall is an effective measure to eliminate impinging jet to dipped plate, rising characteristics of the thermal stratification interface are affected by the baffle ring devise. (3) Thermal stratification characteristics are not influenced very much by the installation of a partial inner barrel to the dipped plate, which is an effective measure to reduce the horizontal flow velocity components at free surface. (4) Labyrinth structures to the gap between the reactor vessel wall and the outer dipped plate have direct effects upon in-vessel thermal shock characteristics including thermal stratification phenomena due to the closing of flow path between the upper plenum and the free surface plenum. (author)

  15. Evidence on Dropout Phenomena at Universities

    DEFF Research Database (Denmark)

    Larsen, Malene Rode; Sommersel, Hanna Bjørnøy; Larsen, Michael Søgaard

    This publication is an excerpt from the full technical report ‘Dropout Phenomena at Universities: What is Dropout? Why does Dropout Occur? What Can be Done by the Universities to Prevent or Reduce it? A systematic review’, which was completed in April 2013. The purpose of this excerpt is to present...... the knowledge we have on dropout phenomena at European universities in a short, precise and comprehensible form to allow readers to orient themselves on the subject in a more readable manner....

  16. Polarization phenomena in two body systems

    International Nuclear Information System (INIS)

    Thomas, G.H.

    1978-01-01

    A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references

  17. Phenomena associated with magma expansion into a drift

    International Nuclear Information System (INIS)

    Gaffney, E.S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  18. Random walks, critical phenomena, and triviality in quantum field theory

    International Nuclear Information System (INIS)

    Fernandez, R.; Froehlich, J.; Sokal, A.D.

    1992-01-01

    The subject of this book is equilibrium statistical mechanics - in particular the theory of critical phenomena - and quantum field theory. A general review of the theory of critical phenomena in spin systems, field theories, and random-walk and random-surface models is presented. Among the more technical topics treated in this book, the central theme is the use of random-walk representations as a tool to derive correlation inequalities. The consequences of these inequalities for critical-exponent theory and the triviality question in quantum field theory are expounded in detail. The book contains some previously unpublished results. It addresses both the researcher and the graduate student in modern statistical mechanics and quantum field theory. (orig.)

  19. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  20. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  1. Attractors, bifurcations, & chaos nonlinear phenomena in economics

    CERN Document Server

    Puu, Tönu

    2003-01-01

    The present book relies on various editions of my earlier book "Nonlinear Economic Dynamics", first published in 1989 in the Springer series "Lecture Notes in Economics and Mathematical Systems", and republished in three more, successively revised and expanded editions, as a Springer monograph, in 1991, 1993, and 1997, and in a Russian translation as "Nelineynaia Economicheskaia Dinamica". The first three editions were focused on applications. The last was differ­ ent, as it also included some chapters with mathematical background mate­ rial -ordinary differential equations and iterated maps -so as to make the book self-contained and suitable as a textbook for economics students of dynamical systems. To the same pedagogical purpose, the number of illus­ trations were expanded. The book published in 2000, with the title "A ttractors, Bifurcations, and Chaos -Nonlinear Phenomena in Economics", was so much changed, that the author felt it reasonable to give it a new title. There were two new math­ ematics ch...

  2. Half collision resonance phenomena in molecules

    International Nuclear Information System (INIS)

    Maximo Garcia-Sucre; Raseev, G.; Ross, S.C.

    1991-01-01

    The Escuela Latinoamericana de Fisica (ELAF) is a series of meeting s that for 28 years has played an important role in research-level teaching of physics in Latin America. This book contains the proceedings of ELAF 90 which was held at the Instituto Venezolano de Investigaciones Cientificas (IVIC) in Caracas, Venezuela from July 23 to August 3, 1990, as part of the commemoration of the 30th anniversary of IVIC. In contrast to previous ELAF's that were of general scope, ELAF 90 centered on a particular subject matter: '' Half Collisional Resonance Phenomena in Molecules, Experimental and Theoretical Approaches. ''The term ''Half Collision'' refers to the fragmentation of a molecular system following is excitation by light. The lack of an incident fragmentation of a molecular system following is excitation by light. The lack of an incident particle (other than the photon) in the fragmentation process is what leads to the term. The purpose of this volume is to present current results in the experimental and theoretical study of half collisions and also to include pedagogical papers at an introductory or intermediate level. The contributions are grouped into several sections; light sources; ionization; dissociation-experimental; dissociation-theory; competition between ionization and dissociation; and particle-molecule collisions

  3. Stochastic phenomena in a fiber Raman amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikov, Vladimir [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Institute of Photonics, Vienna University of Technology (Austria); Sergeyev, Sergey V. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Ania-Castanon, Juan Diego [Instituto de Optica CSIC, Madrid (Spain); Jacobsen, Gunnar [Acreo, Kista (Sweden); Popov, Sergei [Royal Institute of Technology (KTH), Stockholm (Sweden)

    2017-01-15

    The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Thermal phenomenae in nuclear fuel rods

    International Nuclear Information System (INIS)

    Baigorria, Carlos.

    1983-12-01

    Thermal phenomenae occurring in a nuclear fuel rod under irradiation are studied. The most important parameters of either steady or transient thermal states are determined. The validity of applying the Fourier's approximation equations to these problems is also studied. A computer program TRANS is developed in order to study the transient cases. This program solves a system of coupled, non-linear partial differential equations, of parabolic type, in cylindrical coordinates with various boundary conditions. The benchmarking of the TRANS program is done by comparing its predictions with the analytical solution of some simplified transient cases. Complex transient cases such as those corresponding to characteristic reactor accidents are studied, in particular for typical pressurized heavy water reactor (PHWR) fuel rods, such as those of Atucha I. The Stefan problem emerging in the case of melting of the fuel element is solved. Qualitative differences between the classical Stefan problem, without inner sources, and that one, which includes sources are discussed. The MSA program, for solving the Stefan problem with inner sources is presented; and furthermore, it serves to predict thermal evolution, when the fuel element melts. Finally a model for fuel phase change under irradiation is developed. The model is based on the dimensional invariants of the percolation theory when applied to the connectivity of liquid spires nucleated around each fission fragment track. Suggestions for future research into the subject are also presented. (autor) [es

  5. Molecular nanomagnets and related phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song (ed.) [Peking Univ., Beijing (China). College of Chemistry and Molecular Engineering

    2015-07-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  6. Molecular nanomagnets and related phenomena

    International Nuclear Information System (INIS)

    Gao, Song

    2015-01-01

    The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for

  7. Certain relativistic phenomena in crystal optics

    Science.gov (United States)

    Chee-Seng, Lim

    1980-01-01

    Relativistic unsteady phenomena are established for a crystalline medium with unaligned sets of permittivity and permeability principal axes, but incorporating a compounded uniaxiality about some nonprincipal direction. All effects originate from a suddenly activated, arbitrarily oriented, maintained line current conducted with a finite velocity v. Integral representations studied in another paper (Chee-Seng) are applied. The original coordinate system is subjected to a series of rotational and translational, scaled and unscaled transformations. No specific coordinate frame is strictly adhered to. Instead, it is often expedient and advantageous to exploit several reference frames simultaneously in the course of the analysis and interpretations. The electric field is directly related to a net scalar field Δ involving another scalar Ψ and its complement Ψ¯ which can be deduced from Ψ; Ψ and Ψ¯ are associated with two expanding, inclined ellipsoidal wavefronts ξ and ξ¯; these are cocentered at the current origin and touch each other twice along the uniaxis. Elsewhere, ξ leads ξ¯. For a source current faster than ξ:vt ∈ extξ, Ψ≢0 within a finite but growing ''ice-cream cone'' domain, its nontrivial composition being χ-1/2 inside ξ and 2χ-1/2 inside part of a tangent cone from the advancing current edge vt to, and terminating at, ξ; the function χ vanishes along such a tangent cone. Alternatively, for a source current slower than ξ:vt∈ intξ, if vt is avoided, χ≳0 everywhere, while Ψ=χ-1/2 inside ξ but vanishes identically outside ξ. However, the crucial scalar field Δ depends on three separate current-velocity regimes. Over a slow regime: vt∈ intξ¯, Δ is nontrivial inside ξ wherein it is discontinuous across ξ¯. Over an intermediate regime: vt ∈ intξ extξ¯, Δ takes four distinct forms on 12 adjacent domains bounded by ξ, ξ¯ and a double-conical tangent surface linking vt to ξ¯. But for a fast regime: vt∈ ext

  8. Kinetic theory and transport phenomena

    CERN Document Server

    Soto, Rodrigo

    2016-01-01

    This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...

  9. SUPERCOMPUTER SIMULATION OF CRITICAL PHENOMENA IN COMPLEX SOCIAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Petrus M.A. Sloot

    2014-09-01

    Full Text Available The paper describes a problem of computer simulation of critical phenomena in complex social systems on a petascale computing systems in frames of complex networks approach. The three-layer system of nested models of complex networks is proposed including aggregated analytical model to identify critical phenomena, detailed model of individualized network dynamics and model to adjust a topological structure of a complex network. The scalable parallel algorithm covering all layers of complex networks simulation is proposed. Performance of the algorithm is studied on different supercomputing systems. The issues of software and information infrastructure of complex networks simulation are discussed including organization of distributed calculations, crawling the data in social networks and results visualization. The applications of developed methods and technologies are considered including simulation of criminal networks disruption, fast rumors spreading in social networks, evolution of financial networks and epidemics spreading.

  10. New phenomena in neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim

    2009-04-15

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  11. New phenomena in neutrino physics

    International Nuclear Information System (INIS)

    Kopp, Joachim

    2009-01-01

    In this thesis, we discuss two new concepts in neutrino physics: The neutrino Moessbauer effect and non-standard neutrino interactions. We show that neutrinos emitted and absorbed in recoil-free processes (Moessbauer neutrinos) can oscillate in spite of their near monochromaticity. We support this statement by quantum mechanical wave packet arguments and by a quantum field theoretical (QFT) calculation of the combined rate of Moessbauer neutrino emission, propagation and absorption. The QFT approach does not require any a priori assumptions on the neutrino wave function, and it allows us to include a realistic treatment of the different mechanisms leading to broadening of the emission and absorption lines. In the second part of this work, we study the phenomenology of non-standard neutrino interactions (NSI). We classifying the allowed NSI operators according to their impact on future oscillation experiments and present numerical results for the NSI sensitivities of reactor, superbeam and neutrino factory experiments. We point out that NSI could mimic standard oscillation effects, and might therefore lead to incorrect fit values for the oscillation parameters. For the case of the neutrino factory, we perform a detailed optimisation study to determine the optimum muon energy and detector configuration. (orig.)

  12. Eighty phenomena about the self: representation, evaluation, regulation, and change

    Science.gov (United States)

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  13. Eighty Phenomena About the Self: Representation, Evaluation, Regulation, and Change

    Directory of Open Access Journals (Sweden)

    Paul eThagard

    2015-03-01

    Full Text Available We propose a new approach for examining self-related aspects and phenomena. The approach includes (1 a taxonomy and (2 an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation. The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation. The changing self is less time-limited than the regulating self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development. Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular. We illustrate our approach by focusing on seven self-related phenomena.

  14. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    Science.gov (United States)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  15. Polarization phenomena in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1994-03-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and non-perturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g A on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x bj ; (b) consequences of the principle of hadron helicity retention in high x F inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. He also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A NN observed in large angle proton-proton scattering, the anomalously large ρπ branching ratio of the J/ψ, and the rapidly changing polarization dependence of both J/ψ and continuum lepton pair hadroproduction observed at large x F . The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron

  16. Polarization phenomena in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Univ., CA (United States)

    1994-12-01

    The author discusses a number of interrelated hadronic spin effects which test fundamental features of perturbative and nonperturbative QCD. For example, the anomalous magnetic moment of the proton and the axial coupling g{sub A} on the nucleon are shown to be related to each other for fixed proton radius, independent of the form of the underlying three-quark relativistic quark wavefunction. The renormalization scale and scheme ambiguities for the radiative corrections to the Bjorken sum rule for the polarized structure functions can be eliminated by using commensurate scale relations with other observables. Other examples include (a) new constraints on the shape and normalization of the polarized quark and gluon structure functions of the proton at large and small x{sub bj}; (b) consequences of the principle of hadron retention in high x{sub F} inclusive reactions; (c) applications of hadron helicity conservation to high momentum transfer exclusive reactions; and (d) the dependence of nuclear structure functions and shadowing on virtual photon polarization. The author also discusses the implications of a number of measurements which are in striking conflict with leading-twist perturbative QCD predictions, such as the extraordinarily large spin correlation A{sub NN} observed in large angle proton-proton scattering, the anomalously large {rho}{pi} branching ratio of the J/{psi}, and the rapidly changing polarization dependence of both J/{psi} and continuum lepton pair hadroproduction observed at large x{sub F}. The azimuthal angular dependence of the Drell-Yan process is shown to be highly sensitive to the projectile distribution amplitude, the fundamental valence light-cone wavefunction of the hadron.

  17. Geochemical modelling: what phenomena are missing

    International Nuclear Information System (INIS)

    Jacquier, P.

    1989-12-01

    In the framework of safety assessment of radioactive waste disposal, retention phenomena are usually taken into account by the Kd concept. It is well recognized that this concept is not enough for safety assessment models, because of the several and strong assumptions which are involved in this kind of representation. One way to have a better representation of the retention phenomena, is to substitute for this Kd concept an explicit description of geochemical phenomena and then couple transport codes with geochemical codes in a fully or a two-step procedure. We use currently such codes, but the scope of this paper is to display the limits today of the geochemical modelling in connection with sites analysis for deep disposal. In this paper, we intend to give an overview of phenomena which are missing in the geochemical models, or which are not completely introduced in the models. We can distinguish, on one hand phenomena for which modelling concepts exist such as adsorption/desorption and, on the other hand, phenomena for which modelling concepts do not exist for the moment such as colloids, and complexation by polyelectrolyte solutions (organics). Moreover we have to take care of very low concentrations of radionuclides, which can be expected from the leaching processes in the repository. Under those conditions, some reactions may not occur. After a critical review of the involved phenomena, we intend to stress the main directions of the wishful evolution of the geochemical modelling. This evolution should improve substantially the quality of the above-mentioned site assessments

  18. [Spiritual phenomena occurring in everybody and health].

    Science.gov (United States)

    Krsiak, M

    2008-01-01

    The past several years have seen an explosion of research in the area of spirituality and health. However, confusion and incomprehension of the conception of spirituality (e.g. confounding spirituality with various conventional views on religiousness) hampers better understanding in this area. The present paper proposes definition of spiritual phenomena in man based on natural epistemological and instrumental criteria (whether a certain phenomenon can be objectively known and evoked): spiritual phenomena in man are those, which cannot be objectively known nor evoked, but which act (e.g., love, idea). Spiritual phenomena can be really known only in the self ("in spirit"). Objectively known can be only manifestations of spiritual phenomena. Some attributes of love (e.g. its personal uniqueness) or ideas (e.g., sense of own life) whose satisfaction appears to be important for health are briefly outlined. A review of some frequently cited recent papers investigating the role of spirituality in health and discussion of frequent pitfalls in this area is given. Spirituality is a universal human phenomenon. All human beings, secular or religious, encounter with spiritual phenomena. Although the present conception of spirituality distances from some conventional views on religiousness, it is not atheistic. On the contrary, it accommodates the basic religious concept "God is love". Conceptual clarification is essential for further progress in the study of impact of spirituality on health.

  19. IUTAM Symposium on Fracture Phenomena in Nature and Technology

    CERN Document Server

    Carini, Angelo; Gei, Massimiliano; Salvadori, Alberto

    2014-01-01

    This book contains contributions presented at the IUTAM Symposium "Fracture Phenomena in Nature and Technology" held in Brescia, Italy, 1-5 July, 2012.The objective of the Symposium was fracture research, interpreted broadly to include new engineering and structural mechanics treatments of damage development and crack growth, and also large-scale failure processes as exemplified by earthquake or landslide failures, ice shelf break-up, and hydraulic fracturing (natural, or for resource extraction or CO2 sequestration), as well as small-scale rupture phenomena in materials physics including, e.g., inception of shear banding, void growth, adhesion and decohesion in contact and friction, crystal dislocation processes, and atomic/electronic scale treatment of brittle crack tips and fundamental cohesive properties.Special emphasis was given to multiscale fracture description and new scale-bridging formulations capable to substantiate recent experiments and tailored to become the basis for innovative computationa...

  20. The making of extraordinary psychological phenomena.

    Science.gov (United States)

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. © 2012 Wiley Periodicals, Inc.

  1. Conformal field theory and 2D critical phenomena. Part 1

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.; Zamolodchikov, Al.B.

    1989-01-01

    Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs

  2. Gamma-ray transients and related astrophysical phenomena

    International Nuclear Information System (INIS)

    Lingenfelter, R.E.; Hudson, H.S.; Worrall, D.M.

    1982-01-01

    The workshop covered the study of the explosive phenomena responsible for the various gamma ray transients. X-ray burster observations and theories were also reviewed with emphasis on their relationship to gamma ray bursts. Recent observational data, particularly from the SMM, HEAO, and VENERA satellites made the workshop especially timely. Major headings include: gamma-ray transients, x-ray bursts, solar transients, and instrumental concepts. Individual items from the workshop were prepared separately for the data base

  3. Numerical study of effects of accommodation coefficients on slip phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kwon, Oh Joon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    An unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. The present flow solver was applied to the simulation of flows around an axisymmetric hollow cylinder in a Mach 10.4 free stream, known as Calspan-UB Research Center (CUBRC) Run 14 case, and the velocity slip and the temperature jump on the cylinder surface were investigated. The effect of tangential momentum and thermal accommodation coefficients used in the Maxwell condition was also investigated by adjusting their values. The results show that the reverse flow region is developed on the body surface due to the interaction between the shock and the boundary layer. Also, the shock impingement makes pressure high. The flow properties on the surface agree well with the experimental data, and the velocity slip and the temperature jump vary consistently with the local Knudsen number change. The accommodation coefficients affect the slip phenomena and the size of the flow region. The slip phenomena become larger when both tangential momentum and thermal accommodation coefficients are decreased. However, the range of the reverse flow region decreases when the momentum accommodation coefficient is decreased. The characteristics of the momentum and thermal accommodation coefficients also are overlapped when they are altered together.

  4. Self field electromagnetism and quantum phenomena

    Science.gov (United States)

    Schatten, Kenneth H.

    1994-07-01

    Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.

  5. Vector (two-dimensional) magnetic phenomena

    International Nuclear Information System (INIS)

    Enokizono, Masato

    2002-01-01

    In this paper, some interesting phenomena were described from the viewpoint of two-dimensional magnetic property, which is reworded with the vector magnetic property. It shows imperfection of conventional magnetic property and some interested phenomena were discovered, too. We found magnetic materials had the strong nonlinearity both magnitude and spatial phase due to the relationship between the magnetic field strength H-vector and the magnetic flux density B-vector. Therefore, magnetic properties should be defined as the vector relationship. Furthermore, the new Barukhausen signal was observed under rotating flux. (Author)

  6. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Silicone elastomers have been heavily investigated as candidates for dielectric elastomers and are as such almost ideal candidates with their inherent softness and compliance but they suffer from low dielectric permittivity. This shortcoming has been sought optimized by many means during recent...... years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we investigate the electrical breakdown phenomena of various types of permittivity-enhanced silicone elastomers. Two types...... of silicone elastomers are investigated and different types of breakdown are discussed. Furthermore the use of voltage stabilizers in silicone-based dielectric elastomers is investigated and discussed....

  7. Dissipative phenomena in condensed matter some applications

    CERN Document Server

    Dattagupta, Sushanta

    2004-01-01

    From the field of nonequilibrium statistical physics, this graduate- and research-level volume treats the modeling and characterization of dissipative phenomena. A variety of examples from diverse disciplines like condensed matter physics, materials science, metallurgy, chemical physics etc. are discussed. Dattagupta employs the broad framework of stochastic processes and master equation techniques to obtain models for a wide range of experimentally relevant phenomena such as classical and quantum Brownian motion, spin dynamics, kinetics of phase ordering, relaxation in glasses, dissipative tunneling. It provides a pedagogical exposition of current research material and will be useful to experimentalists, computational physicists and theorists.

  8. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  9. Loss experience from natural phenomena hazards in the Department of Energy (50 years of natural phenomena hazard losses)

    International Nuclear Information System (INIS)

    Hill, J.R.

    1993-01-01

    This paper presents a historical prespective on losses due to natural hazard incidents (1943-1993) at Department of Energy (DOE) and predecessor agencies including the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA). This paper also demonstrates how an existing DOE resource can be used to gain valuable insight into injury or property damage incidents. That resource is the Computerized Accident/Incident Reporting System (CAIRS) module of DOE's Safety Performance Measurement System. CAIRS data selected the 1981-1991 DOE injury/illness reports, from all the accident reports of the AEC that cited a natural phenomena hazard as either the direct or indirect cause of the injury/property damage. Specifically, injury or property damage reports were selected for analysis if they had a causal factor link to severe weather or natural phenomena hazard categories. Natural phenomena hazard categories are injury/property damage caused by hurricane/tornado, earthquake, lightning, or flood. Severe weather categories are injury/property damage associated with other than normal weather conditions. The lessons learned, as a result of reviewing case histories, are presented, as are suggestions on how to reduce the likelihood of future injuries/property damage as a result of similar events. A significant finding, is that most injuries and property damage were the result of an indirect causal link to a natural phenomena hazard and thus, may be more preventable than previously thought possible. The primary message, however, is that CAIRS and other incident data bases are valuable resources and should be considered for use by those interested in identifying new ways of protecting the health and safety of the worker and for reducing building losses due to the effects of natural phenomena hazards

  10. CP violating phenomena and theoretical results

    International Nuclear Information System (INIS)

    Grimus, W.

    1987-01-01

    An introduction to CP violating phenomena is given and the standard model and its most popular low energy extensions in this context are reviewed. The discussion comprises the minimal supersymmetric extension of the standard model, left-right symmetry, the standard model with more than one Higgs doublet and gauged horizontal symmetries. (Author)

  11. Collision and interaction phenomena - a historical outline

    International Nuclear Information System (INIS)

    Radmaneche, R.

    1977-09-01

    Collisions and interactions have become important for the description of matter. The author presents an outline which deals with elastic and inelastic collisions, with strong interactions, electromagnetic interactions, weak interactions and gravitational interactions. It is shown that the description of such processes has developed parallel with the understanding of matter and with the mechanism of the phenomena. Current and unsolved problems are mentioned

  12. Novel experimentally observed phenomena in soft matter

    Indian Academy of Sciences (India)

    The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and nonzero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, ...

  13. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  14. Hyperchaotic phenomena in dynamic decision making

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Mosekilde, Erik; Sterman, John David

    1992-01-01

    of this article is to show how the decision making behavior of real people in simulated corporate environments can lead to chaotic, hyperchaotic and higher-order hyperchaotic phenomena. Characteristics features of these complicated forms of behavior are analyzed with particular emphasis on an interesting form...

  15. Reduplication phenomena: body, mind and archetype.

    Science.gov (United States)

    Garner, J

    2000-09-01

    The many biological and few psychodynamic explanations of reduplicative syndromes tend to have paralleled the dualism of the phenomenon with organic theories concentrating on form and dynamic theories emphasising content. This paper extends the contribution of psychoanalytic thinking to an elucidation of the form of the delusion. Literature on clinical and aetiological aspects of reduplicative phenomena is reviewed alongside a brief examination of psychoanalytic models not overtly related to these phenomena. The human experience of doubles as universal archetype is considered. There is an obvious aetiological role for brain lesions in delusional misidentifications, but psychological symptoms in an individual can rarely be reduced to an organic disorder. The splitting and doubling which occurs in the phenomena have resonances in cultural mythology and in theories from different schools of psychodynamic thought. For the individual patient and doctor, it is a diverting but potentially empty debate to endeavour to draw strict divisions between what is physical and what is psychological although both need to be investigated. Nevertheless, in patients in whom there is clear evidence of an organic contribution to aetiology a psychodynamic understanding may serve to illuminate the patient's experience. Organic brain disease or serious functional illness predispose to regression to earlier modes of archetypical and primitive thinking with concretization of the metaphorical and mythological world. Psychoanalytic models have a contribution in describing the form as well as the content of reduplicative phenomena.

  16. Interface-induced phenomena in magnetism

    NARCIS (Netherlands)

    Hellman, Frances; Hoffmann, A.; Tserkovnyak, Yaroslav; Beach, Geoffrey S.D.; Fullerton, Eric E.; Leighton, Chris; Macdonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, B.; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.

    2017-01-01

    This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on

  17. Analysis of induction phenomena in thermonuclear experiments

    International Nuclear Information System (INIS)

    Deeds, W.E.; Dodd, C.V.

    1976-01-01

    Many of the problems involving transients induced by changing currents in the large coils of thermonuclear machines are identical to those arising in nondestructive testing by eddy currents. There are three chief methods used for calculating such induction phenomena: analytical boundary-value solutions, relaxation or iteration techniques, and model experiments. Some of the results obtained by each of these methods are described below

  18. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  19. Electrical breakdown phenomena of dielectric elastomers

    DEFF Research Database (Denmark)

    Yu, Liyun; Mateiu, Ramona Valentina; Skov, Anne Ladegaard

    2017-01-01

    years. However, optimization with respect to the dielectric permittivity solely may lead to other problematic phenomena such as premature electrical breakdown. In this work, we focus on the chloro propyl functionalized silicone elastomers prepared in Madsen et al[2] and we investigate the electrical...

  20. Simple classical approach to spin resonance phenomena

    DEFF Research Database (Denmark)

    Gordon, R A

    1977-01-01

    A simple classical method of describing spin resonance in terms of the average power absorbed by a spin system is discussed. The method has several advantages over more conventional treatments, and a number of important spin resonance phenomena, not normally considered at the introductory level...

  1. Transport phenomena in strongly correlated Fermi liquids

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2013-01-01

    Comprehensive overview. Written by an expert of this topic. Provides the reader with current developments in the field. In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical point using a uniform approach. We also discuss spin related transport phenomena in strongly correlated systems. In many d- and f-electron systems, the spin current induced by the spin Hall effect is considerably greater because of the orbital degrees of freedom. This fact attracts much attention due to its potential application in spintronics. We discuss various novel charge, spin and heat transport phenomena in strongly correlated metals.

  2. Understanding the physics of changing mass phenomena

    NARCIS (Netherlands)

    Ellermeijer, A.L.

    2008-01-01

    Changing mass phenomena, like a falling chain or a bungee jumper, might give surprising results, even for experienced physicists. They have resulted in hot discussions in journals, in which for instance Physics professors claim the impossibility of an acceleration larger then g in case of a bungee

  3. Solar Phenomena Associated with "EIT Waves"

    Science.gov (United States)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  4. Preface to special issue: Layered Phenomena in the Mesopause Region

    Science.gov (United States)

    Chu, Xinzhao; Marsh, Daniel R.

    2017-09-01

    Historically, the Layered Phenomena in the Mesopause Region (LPMR) workshops have focused on studies of mesospheric clouds and their related science, including spectacular noctilucent clouds (NLCs), polar mesospheric clouds (PMCs), and polar mesospheric summer echoes (PMSEs). This is because, in the pre-technology era, these high-altitude ( 85 km) clouds revealed the existence of substance above the 'normal atmosphere' - our near-space environment is not empty! The occurrence and nature of these clouds have commanded the attention of atmospheric and space scientists for generations. Modern technologies developed in the last 50 years have enabled scientists to significantly advance our understanding of these layered phenomena. Satellite observations expanded these studies to global scales, while lidar and radar observations from the ground enabled fine-scale studies. The launch of the Aeronomy of Ice in the Mesosphere (AIM) satellite in 2007 brought mesospheric cloud research to a more mature level.

  5. Autoscopic phenomena and one's own body representation in dreams.

    Science.gov (United States)

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Phenomena of synchronized response in biosystems and the possible mechanism.

    Science.gov (United States)

    Xu, Jingjing; Yang, Fan; Han, Danhong; Xu, Shengyong

    2018-02-05

    Phenomena of synchronized response is common among organs, tissues and cells in biosystems. We have analyzed and discussed three examples of synchronization in biosystems, including the direction-changing movement of paramecia, the prey behavior of flytraps, and the simultaneous discharge of electric eels. These phenomena and discussions support an electrical communication mechanism that in biosystems, the electrical signals are mainly soliton-like electromagnetic pulses, which are generated by the transient transmembrane ionic current through the ion channels and propagate along the dielectric membrane-based softmaterial waveguide network to complete synchronized responses. This transmission model implies that a uniform electrical communication mechanism might have been naturally developed in biosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    International Nuclear Information System (INIS)

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself

  8. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  9. Phenomena, dynamics and instabilities of vortex pairs

    International Nuclear Information System (INIS)

    Williamson, C H K; Asselin, D J; Leweke, T; Harris, D M

    2014-01-01

    Our motivation for studying the dynamics of vortex pairs stems initially from an interest in the trailing wake vortices from aircraft and the dynamics of longitudinal vortices close to a vehicle surface. However, our motivation also comes from the fact that vortex–vortex interactions and vortex–wall interactions are fundamental to many turbulent flows. The intent of the paper is to present an overview of some of our recent work concerning the formation and structure of counter-rotating vortex pairs. We are interested in the long-wave and short-wave three-dimensional instabilities that evolve for an isolated vortex pair, but also we would like to know how vortex pairs interact with a wall, including both two-dimensional interactions, and also the influence of the surface on the three-dimensional instabilities. The emphasis of this presentation is on physical mechanisms by which vortices interact with each other and with surfaces, principally from an experimental approach, but also coupled with analytical studies. (paper)

  10. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    Science.gov (United States)

    Conrath, B.; Curran, R.; Hanel, R.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Welker, J.; Burke, T.

    1973-01-01

    The infrared spectroscopy experiment on Mariner 9 obtained data over much of Mars. Interpretation of the thermal emission of Mars in terms of atmospheric temperatures, wind fields and dynamics, surface temperatures, surface pressure and topography, mineral composition, and minor atmospheric constituents including isotopic ratios, as well as a search for unexpected phenomena are reported.

  11. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  12. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jahangir, Vafa, E-mail: vafa.jahangir@yahoo.com; Riahifar, Reza, E-mail: reza_rfr@yahoo.com; Sahba Yaghmaee, Maziar, E-mail: fkmsahba@uni-miskolc.hu

    2016-03-31

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  13. The experiment and analysis on small leak phenomena

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Hwang, S. T.; Kim, B. H.; Jeong, J. Y.

    2000-07-01

    The liquid sodium which is used as a coolant in LMFBR, may give rise to a serious trouble in the safety aspect of steam generator. The defects in a heat transfer tube, such as pin-hole or tube welding defect, will result in a leakage of high pressure steam into the sodium side and production of hydrogen gas and corrosive sodium compounds which can cause significant damage to the tube wall of steam generator by using exothermic reaction. In significant damage to the tube wall of steam generator by using exothermic reaction. In this case, initial leak size will be enlarged with time and the leak rate developed to large leak through the micro, small, intermediate leaks. Therefore, the analysis of sodium-water reaction phenomena on the micro and small water leaks in the heat transfer tube is very important in the initial leak stage in the aspects of the protection of leak progress and safety evaluation of steam generator. In this study, firstly, the micro and small leaks phenomena, such as reopen size, shape, and time of leak path, self-wastage, corrosion of tube materials, was analyzed from the literature survey and water leakage experiments using the leak specimen. In small water leak experiments, the leak path was plugged by the sodium-water reaction products at the leak path of a specimen, and re-open phenomena were not observed in initial experiments. Other leak experiments, reopen phenomena of self-plugged leak path was observed. Re-open mechanism of sealed path could be explained by the thermal transient and vibration of heat transfer tube. As a result, perfect reopen time of self plugged leak path was observed to be about 130 minutes after water leak initiation. Reopen shape of a specimen was appeared with double layer of circular type, and reopen size of this specimen surface was about 2 mm diameter on sodium side. Also, the corrosion of a specimen initiated from sodium side, the segregation phenomena of Cr in the specimen was found much more than those of

  14. Fundamentals of Cryobiology Physical Phenomena and Mathematical Models

    CERN Document Server

    Zhmakin, Alexander I

    2009-01-01

    The book gives a summary of the state-of-the-art of cryobiology and its applications. The accent is on the underlying physical phenomena, which are common in such opposite applications as cryosurgery and cryoconservation, and the corresponding mathematical models, including numerical ones. The treatment of some more special issues is moved to the appendices. The glossary contains definitions and explanations of the major entities. All the topics considered are well referenced. The book is useful to both biologists and physicits of different level including practioners and graduate students.

  15. Experimental and analytical study of the sputtering phenomena

    International Nuclear Information System (INIS)

    Howard, P.A.

    1976-03-01

    One form of the sputtering phenomena, the heat-transfer process that occurs when an initially hot vertical surface is cooled by a falling liquid film, was examined from a new experimental approach. The sputtering front is the lowest wetted position on the vertical surface and is characterized by a short region of intense nucleate boiling. The sputtering front progresses downward at nearly a constant rate, the surface below the sputtering front being dry and almost adiabatic. This heat-transfer process is of interest in the analysis of some of the performance aspects of emergency core-cooling systems of light-water reactors. An experimental apparatus was constructed to examine the heat-transfer characteristics of a sputtering front. In the present study, a heat source of sufficient intensity was located immediately below the sputtering front, which prevented its downward progress, thus permitting detailed measurements of steady-state surface temperatures throughout a sputtering front. Experimental evidence showed the sputtering front to correspond to a critical heat-flux (CHF) phenomenon. Data were obtained with water flow rates of 350-1600 lb/sub m//hr-ft and subcoolings of 40-140 0 F on a 3 / 8 -in. solid copper rod at 1 atm. A two-dimensional analytical model was developed to describe a stationary sputtering front where the wet-dry interface corresponds to a CHF phenomena and the dry zone is adiabatic. This model is nonlinear because of the temperature dependence of the heat-transfer coefficient in the wetted region and has yielded good agreement with data. A simplified one-dimensional approximation was developed which adequately describes these data. Finally, by means of a coordinate transformation and additional simplifying assumptions, this analysis was extended to analyze moving sputtering fronts, and reasonably good agreement with reported data was shown

  16. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area......The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of the test sample by movement of the probe relative to the surface of the test sample into the specific orientation.; The probe may further comprise a contact detector (14) extending from the supporting body arranged so as to contact the surface of the test sample prior to any one of the plurality...

  17. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  18. Auroral and sub-auroral phenomena: an electrostatic picture

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2010-02-01

    Full Text Available Many auroral and sub-auroral phenomena are manifestations of an underlying magnetosphere-ionosphere coupling. In the electrostatic perspective the associated auroral current circuit describes how the generator (often in the magnetosphere is connected to the load (often in the ionosphere through field-aligned currents. The present paper examines the generic properties of the current continuity equation that characterizes the auroral circuit. The physical role of the various elements of the current circuit is illustrated by considering a number of magnetospheric configurations, various auroral current-voltage relations, and different types of behaviour of the ionospheric conductivity. Based on realistic assumptions concerning the current-voltage relation and the ionospheric conductivity, a comprehensive picture of auroral and sub-auroral phenomena is presented, including diffuse aurora, discrete auroral arcs, black aurora, and subauroral ion drift. The electrostatic picture of field-aligned potential differences, field-aligned currents, ionospheric electric fields and plasma drift, and spatial scales for all these phenomena is in qualitative agreement with observations.

  19. Exotic Phenomena Searches at Hadron Colliders

    CERN Document Server

    INSPIRE-00305407

    2013-01-01

    This review presents a selection of the final results of searches for various exotic physics phenomena in proton-proton collisions at $\\sqrt{s}=7$ and 8~TeV delivered by the LHC and collected with the ATLAS and CMS detectors in 2011 (5 $fb^{-1}$) and in the first part of 2012 (4 $fb^{-1}$). Searches for large extra dimensions, gravitons, microscopic black holes, long-lived particles, dark matter, and leptoquarks are presented in this report. No sign of new physics beyond the standard model has been observed so far. In the majority of the cases these searches set the most stringent limits to date on the aforementioned new physics phenomena.

  20. Renormalization group theory of critical phenomena

    International Nuclear Information System (INIS)

    Menon, S.V.G.

    1995-01-01

    Renormalization group theory is a framework for describing those phenomena that involve a multitude of scales of variations of microscopic quantities. Systems in the vicinity of continuous phase transitions have spatial correlations at all length scales. The renormalization group theory and the pertinent background material are introduced and applied to some important problems in this monograph. The monograph begins with a historical survey of thermal phase transitions. The background material leading to the renormalization group theory is covered in the first three chapters. Then, the basic techniques of the theory are introduced and applied to magnetic critical phenomena in the next four chapters. The momentum space approach as well as the real space techniques are, thus, discussed in detail. Finally, brief outlines of applications of the theory to some of the related areas are presented in the last chapter. (author)

  1. Transport phenomena in strongly correlated Fermi liquids

    CERN Document Server

    Kontani, Hiroshi

    2013-01-01

    In conventional metals, various transport coefficients are scaled according to the quasiparticle relaxation time, \\tau, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems, reflecting their unique electronic states. The most famous example would be cuprate high-Tc superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. To better understand the origin of this discrepancy, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. Near the magnetic quantum critical point, the current vertex correction (CVC), which describes the electron-electron scattering beyond the relaxation time approximation, gives rise to various anomalous transport phenomena. We explain anomalous transport phenomena in cuprate HTSCs and other metals near their magnetic or orbital quantum critical poi...

  2. Coherence Phenomena in Coupled Optical Resonators

    Science.gov (United States)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  3. Tunable caustic phenomena in electron wavefields

    Energy Technology Data Exchange (ETDEWEB)

    Tavabi, Amir Hossein, E-mail: a.tavabi@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Pozzi, Giulio [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute (PGI), Forschungszentrum Jülich, D-52425 Jülich (Germany); Department of Physics and Astronomy, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2015-10-15

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. - Highlights: • Electron-optical caustics are observed in defocused images of biased metallic tips. • The caustics depend on defocus, on the bias between the tips and on their separation. • The setup offers the flexibility to study a wide variety of caustic phenomena.

  4. Coherent topological phenomena in protein folding

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....

  5. Role of spinning electrons in paramagnetic phenomena

    International Nuclear Information System (INIS)

    Bose, D.M.

    1986-06-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagnetic elements is given

  6. From critical phenomena to gauge gields

    International Nuclear Information System (INIS)

    Le Bellac, M.

    1988-01-01

    In this book the author gives an introduction to the following questions: critical phenomena (Landau theory, renormalization group, two dimensional models); Perturbation theory and renormalization, scalar euclidian field (Feynman diagrams, Callan-Symanzik equations); Quantum theory of scalar fields (path integrals in quantum mechanics and statistical mechanics, green functions and S matrix, quantization of Klein-Gordon field); Gauge theories (quantization of Dirac field and electromagnetic field, quantum electrodynamics, non-abelian gauge theories) [fr

  7. Pseudogap phenomena in ultracold atomic Fermi gases

    OpenAIRE

    Chen, Qijin; Wang, Jibiao

    2014-01-01

    The pairing and superfluid phenomena in a two-component ultracold atomic Fermi gas is an analogue of Cooper pairing and superconductivity in an electron system, in particular, the high $T_c$ superconductors. Owing to the various tunable parameters that have been made accessible experimentally in recent years, atomic Fermi gases can be explored as a prototype or quantum simulator of superconductors. It is hoped that, utilizing such an analogy, the study of atomic Fermi gases may shed light to ...

  8. Occult Phenomena in Sherlock Holmes the Movie

    OpenAIRE

    NAMAZCARRA, CHRIESHER

    2014-01-01

    Keywords: Occult phenomena, Sherlock Holmes, movie. Lately, it is not difficult for people to find occult practices. There are many television programs and movie which air mystical programme aggressively to raise the rating and attract the viewers. A movie that raise occultism theme is Sherlock Holmes, the Movie. This movie tells about the struggle of detective Sherlock Holmes to fight the black magic power of Lord Blackwood.To carry out the study, the theories of Occultism such as the secrec...

  9. Investigation of oscillating airfoil shock phenomena

    OpenAIRE

    Giordano , Daniel; Fleeter , Sanford

    1992-01-01

    Fundamental experiments were performed in an unsteady flow water table facility to investigate and quantify the unsteady aerodynamics of a biconvex airfoil executing torsion mode oscillations at realistic reduced frequencies. A computer-based image enhancement system was used to measure the oscillating supersonic and transonic shock flow phenomena. By utilizing the hydraulic analogy to compare experimental results with a linear theoretical prediction, magnitude and phase relationships for the...

  10. Conformal field theories and critical phenomena

    International Nuclear Information System (INIS)

    Xu, Bowei

    1993-01-01

    In this article we present a brief review of the conformal symmetry and the two dimensional conformal quantum field theories. As concrete applications of the conformal theories to the critical phenomena in statistical systems, we calculate the value of central charge and the anomalous scale dimensions of the Z 2 symmetric quantum chain with boundary condition. The results are compatible with the prediction of the conformal field theories

  11. An interpretation of passive containment cooling phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bum-Jin [Ministry of Science & Technology, Kyunggi-Do (Korea, Democratic People`s Republic of); Kang, Chang-Sun, [Seoul National Univ. (Korea, Democratic People`s Republic of)

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  12. Quantum Chess: Making Quantum Phenomena Accessible

    Science.gov (United States)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  13. Physical phenomena as sense determinate occurrences

    International Nuclear Information System (INIS)

    Sommer, H.J.

    2005-01-01

    In the view of El Naschie's E Infinity theory [Chaos, Solitons and Fractals 22 (2004) 495], our physical laws emerge from a chaotic underground, a 'Dirac-sea'. But we have no direct access from our observations to this chaotic world and this implies that the meaning of the correspondence between the phenomena we obtain by our cognition and their causal structures remains hidden to us. The fundamental process which produces our cognition is the 'constitution of sense'. A formal description of this process will be presented. We use Dempster Shafer's belief calculus to define 'belief' and motivate an Anticipation Principle: 'Put the measurements obtained from the world in such an order that the credibility of your forecasts will be maximized.' From this specification of the basic idea of what physical science ideally strives for, we are able to deduce a frame of reference for the formation of phenomena out of arbitrary sets of measurements. Reality is formed by these 'observable phenomena'. In this emerging reality, we recognize characteristic effects and principles of modern physics: Einstein's Postulate of Relativity, Entanglement, and the Quantum Zeno Effect. The presented view of reality is closely related to the ideas that had been presented hundred years ago by Ernst Mach and which recently J. Anandan generalized in his concept of a 'Relational Reality'

  14. Some aspects of geomagnetically conjugate phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, M.J.

    1987-12-01

    Both charged particles and waves convey information about the thermosphere, ionosphere and magnetosphere from the Northern to the Southern Hemisphere and vice versa, along geomagnetic flux tubes.The interhemispheric travel time of electrons or ions, being dependent upon L-value , pitch angle and energy (which may lie between less than or equal to 1 eV and greater than or equal to 1 MeV) may be many hours, ranging down to less than or equal to 1 s. However, the one-hop propagation time for magnetohydrodynamic or whistler mode waves generally lies between 10/sup 2/s and 1 s. Such times, therefore, give the time scales of transient phenomena that are geomagnetically conjugate and of changes in steady-state plasma processes occurring in geomagnetically conjugate regions. Contrasting examples are presented of conjugate physical phenomena, obtained using satellite, rocket, aircraft and ground-based observations; the latter capitalise upon the rather rare disposition of land - rather than ocean - at each end of a geophysically interesting flux tube. Particular attention is paid to the interactions between whistler mode waves and energetic electrons. Geomagnetic, radio, optical and plasma observations, taken together with model computations, provide a wealth of knowledge on conjugate phenomena and their dependence on conditions in the solar wind, substorms, L-value, etc... Finally, some suggestions are made for future lines of research.

  15. Transport phenomena in fuel cells : from microscale to macroscale

    Energy Technology Data Exchange (ETDEWEB)

    Djilali, N. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering]|[Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems

    2006-07-01

    Proton Exchange Membrane (PEM) fuel cells rely on an array of thermofluid transport processes for the regulated supply of reactant gases and the removal of by-product heat and water. Flows are characterized by a broad range of length and time scales that take place in conjunction with reaction kinetics in a variety of regimes and structures. This paper examined some of the challenges related to computational fluid dynamics (CFD) modelling of PEM fuel cell transport phenomena. An overview of the main features, components and operation of PEM fuel cells was followed by a discussion of the various strategies used for component modelling of the electrolyte membrane; the gas diffusion layer; microporous layer; and flow channels. A review of integrated CFD models for PEM fuel cells included the coupling of electrochemical thermal and fluid transport with 3-D unit cell simulations; air-breathing micro-structured fuel cells; and stack level modelling. Physical models for modelling of transport at the micro-scale were also discussed. Results of the review indicated that the treatment of electrochemical reactions in a PEM fuel cell currently combines classical reaction kinetics with solutions procedures to resolve charged species transport, which may lead to thermodynamically inconsistent solutions for more complex systems. Proper representation of the surface coverage of all the chemical species at all reaction sites is needed, and secondary reactions such as platinum (Pt) dissolution and oxidation must be accounted for in order to model and understand degradation mechanisms in fuel cells. While progress has been made in CFD-based modelling of fuel cells, functional and predictive capabilities remain a challenge because of fundamental modelling and material characterization deficiencies in ionic and water transport in polymer membranes; 2-phase transport in porous gas diffusion electrodes and gas flow channels; inadequate macroscopic modelling and resolution of catalyst

  16. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    International Nuclear Information System (INIS)

    PLYS, M.G.

    2000-01-01

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method

  17. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    Energy Technology Data Exchange (ETDEWEB)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method

  18. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm.

    Science.gov (United States)

    Reinert, Anna E; Simon, James A

    2017-07-01

    The study of the human orgasm has shown a core set of physiologic and psychological symptoms experienced by most individuals. The study of normal sheds light on the abnormal and has spotlighted rare physical and psychological symptoms experienced by some individuals in association with orgasm. These phenomena are rare and, as is typical of rare phenomena, their documentation in the medical literature is largely confined to case studies. To identify peri-orgasmic phenomena, defined as unusual physical or psychological symptoms subjectively experienced by some individuals as part of the orgasm response, distinct from the usual or normal orgasm response. A list of peri-orgasmic phenomena was made with help from sexual health colleagues and, using this list as a foundation, a literature search was performed of articles published in English. Publications included in this review report on physical or psychological phenomena at the time of orgasm that are distinct from psychological, whole-body, and genito-pelvic sensations commonly experienced at the time of orgasm. Cases of physical symptoms related to the physiology of sexual intercourse and not specifically to orgasm were excluded. Case studies of peri-orgasmic phenomena were reviewed, including cases describing cataplexy (weakness), crying, dysorgasmia, dysphoria, facial and/or ear pain, foot pain, headache, pruritus, laughter, panic attack, post-orgasm illness syndrome, seizures, and sneezing. The literature review confirms the existence of diverse and frequently replicated peri-orgasmic phenomena. The value of case studies is in the collection and recording of observations so that hypotheses can be formed about the observed phenomena. Accordingly, this review could inspire further research on the neurophysiologic mechanisms of orgasm. Reinert AE, Simon JA. "Did You Climax or Are You Just Laughing at Me?" Rare Phenomena Associated With Orgasm. Sex Med Rev 2017;5:275-281. Copyright © 2017 International Society for

  19. Earth is speaking: listen her! On-line questionnaire about anomalous geological and biological phenomena

    Science.gov (United States)

    Sciarra, Alessandra; Quattrocchi, Fedora; Cantucci, Barbara; Mazzarini, Francesco

    2014-05-01

    Earthquakes can be associated with non-seismic phenomena which may manifest many weeks before and after the main shock. These phenomena are characterized by ground fractures and soil liquefactions at surface often coupled with degassing events, chemical alterations of water and soils, changes in temperature and/or waters level in the epicentral area. Further manifestations include radio disturbances and light emissions. On the other hand, anomalous behavior of animals has been reported to occur before environmental changes. The co-occurrence of several phenomena may be considered as a signal of subsurface changes, and their analysis may be used as possible forecast indicators for seismic events, landslides, damages in infrastructure (e.g., dam) and groundwaters contamination. In order to obtain an accurate statistical analysis of these factors, a pre-crisis large database over a prolonged period of time is a pre-requisite. To this end, we elaborated a questionnaire for the population to pick up signs about anomalous phenomena like as: animal behavior, geological manifestations, effect on vegetation, degassing, changes on aquifers, wells and springs. After the January 25, 2013, mainshock (ML 4.8) in the Garfagnana seismic district, the Bagni di Lucca Municipality was selected as pilot site for testing this questionnaire. The complexity, variety and extension of this territory (165 kmq) sound suitable for this project. Bagni di Lucca is located in the southern border of the Garfagnana seismogenic source, characterized by the carbonate Mesozoic sequences and the Tertiary terrigenous sedimentary deposits of the Tuscan Nappe. The questionnaire was published on Bagni di Lucca web site (https://docs.google.com/file/d/0Bzw3vOYX47XoTGltTVJRbkJuajA/edit) in collaboration with Municipal Commitee, Local Civil Protection and Local Red Cross, and sent by ordinary mail to the citizenry. It is possible to answer to the questionnaire, also anonymously, direct on line (https

  20. A model for hot electron phenomena: Theory and general results

    International Nuclear Information System (INIS)

    Carrillo, J.L.; Rodriquez, M.A.

    1988-10-01

    We propose a model for the description of the hot electron phenomena in semiconductors. Based on this model we are able to reproduce accurately the main characteristics observed in experiments of electric field transport, optical absorption, steady state photoluminescence and relaxation process. Our theory does not contain free nor adjustable parameters, it is very fast computerwise, and incorporates the main collision mechanisms including screening and phonon heating effects. Our description on a set of nonlinear rate equations in which the interactions are represented by coupling coefficients or effective frequencies. We calculate three coefficients from the characteristic constants and the band structure of the material. (author). 22 refs, 5 figs, 1 tab

  1. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  2. Imaging episodic memory: implications for cognitive theories and phenomena.

    Science.gov (United States)

    Nyberg, L

    1999-01-01

    Functional neuroimaging studies are beginning to identify neuroanatomical correlates of various cognitive functions. This paper presents results relevant to several theories and phenomena of episodic memory, including component processes of episodic retrieval, encoding specificity, inhibition, item versus source memory, encoding-retrieval overlap, and the picture-superiority effect. Overall, by revealing specific activation patterns, the results provide support for existing theoretical views and they add some unique information which may be important to consider in future attempts to develop cognitive theories of episodic memory.

  3. Interfacial phenomena as related to oil recovery mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, J C

    1970-12-01

    Thermodynamic and hydrostatic principles are applied to commingled immiscible fluid phases occupying the interstices fo a porous solid. Particular attention is given to the conditions of hydrostatic equilibrium for systems which include both fluid-fluid interfacial and 3-phase contact line regions. The configurational stability of fluid interfaces also is examined. Some model pore systems are considered, and estimates obtained for the magnitude of the hysteresis in capillary pressure in such cases. These considerations define the role of interfacial phenomena in determining the extent to which a nonwetting fluid can be displaced from a porous solid. (31 refs.)

  4. Linguistic Phenomena in Men and Women - TOT, FOK, Verbal Fluency

    OpenAIRE

    Ewa Szepietowska; Barbara Gawda; Agnieszka Gawda

    2013-01-01

    The aim of this study is to describe the differences between women and men in the phenomena of feeling of knowing/know (FOK), tip of the tongue (TOT), and verbal fluency. Two studies are presented. The first included a group of 60 participants and focused on the analysis of FOK and TOT in men and women. The second study described the performance of 302 participants in verbal fluency tasks. Both studies showed that sex is not a significant predictor of linguistic abilities. Rather, the main fa...

  5. Introduction to wave scattering, localization, and mesoscopic phenomena

    CERN Document Server

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  6. Impact of measurable physical phenomena on contact thermal comfort

    Science.gov (United States)

    Fojtlín, Miloš; Pokorný, Jan; Fišer, Jan; Toma, Róbert; Tuhovčák, Ján

    Cabin HVAC (Heating Ventilation and Air-conditioning) systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  7. Impact of measurable physical phenomena on contact thermal comfort

    Directory of Open Access Journals (Sweden)

    Fojtlín Miloš

    2017-01-01

    Full Text Available Cabin HVAC (Heating Ventilation and Air-conditioning systems have become an essential part of personal vehicles as demands for comfortable transport are still rising. In fact, 85 % of the car trips in Europe are shorter than 18 km and last only up to 30 minutes. Under such conditions, the HVAC unit cannot often ensure desired cabin environment and passengers are prone to experience thermal stress. For this reason, additional comfort systems, such as heated or ventilated seats, are available on the market. However, there is no straightforward method to evaluate thermal comfort at the contact surfaces nowadays. The aim of this work is to summarise information about heated and ventilated seats. These technologies use electrical heating and fan driven air to contact area in order to achieve enhanced comfort. It is also expected, that such measures may contribute to lower energy consumption. Yet, in real conditions it is almost impossible to measure the airflow through the ventilated seat directly. Therefore, there is a need for an approach that would correlate measurable physical phenomena with thermal comfort. For this reason, a method that exploits a measurement of temperatures and humidity at the contact area is proposed. Preliminary results that correlate comfort with measurable physical phenomena are demonstrated.

  8. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  9. Jets and large Psub(T) phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, D. S.

    1980-07-01

    Jets have been observed in hadron-hadron collisions and e/sup +/e/sup -/ annihilation at high energies. An attempt is made to explain the mechanism for the production of jets. The mechanism of quark-fragmentation is described with illustrations. Basic concepts and assumptions are used to study the distribution of quarks and gluons in a hadron. Quark and gluon decay distributions, and the transverse momentum distributions of quarks and gluons, Monte-Carlo methods in the study of jets, large Psub(T) phenomena in hadrons, QCD effects in hadronization of quark jets are discussed.

  10. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  11. Simple models of equilibrium and nonequilibrium phenomena

    International Nuclear Information System (INIS)

    Lebowitz, J.L.

    1987-01-01

    This volume consists of two chapters of particular interest to researchers in the field of statistical mechanics. The first chapter is based on the premise that the best way to understand the qualitative properties that characterize many-body (i.e. macroscopic) systems is to study 'a number of the more significant model systems which, at least in principle are susceptible of complete analysis'. The second chapter deals exclusively with nonequilibrium phenomena. It reviews the theory of fluctuations in open systems to which they have made important contributions. Simple but interesting model examples are emphasised

  12. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  13. Current position on severe accident phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Robert E [Fauske and Associates, Inc., Burr Ridge, IL (United States)

    2004-07-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors.

  14. Current position on severe accident phenomena

    International Nuclear Information System (INIS)

    Henry, Robert E.

    2004-01-01

    The phenomena addressed in this lecture are: in-vessel and ex-vessel hydrogen generation; in-vessel and in-containment natural circulation, steam explosions, direct containment heating, core-concrete interaction; debris coolability, containment strength/failure. The following events were modeled: axial and radial power distribution, two-phase level in the core, steam generation in covered section, decay heat generation, convection to gas, cladding oxidation, cold ballooning and rupture, natural circulation between the core and upper plenum, hydrogen generation, core meltdown, reflooding. Differences between PWR and BWR type reactors

  15. Critical phenomena and renormalization group transformations

    International Nuclear Information System (INIS)

    Castellani, C.; Castro, C. di

    1980-01-01

    Our main goal is to guide the reader to find out the common rational behind the various renormalization procedures which have been proposed in the last ten years. In the first part of these lectures old arguments on universality and scaling will be briefly recalled. To our opinion these introductory remarks allow one to stress the physical origin of the two majore renormalization procedures, which have been used in the theory of critical phenomena: the Wilson and the field theoretic approach. All the general properties of a ''good'' renormalization transformation will also come out quite naturally. (author)

  16. Phenomena and parameters important to burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Dehart, M.D.; Wagner, J.C.

    2001-01-01

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water- reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the United States and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given. (author)

  17. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  18. Advances in modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-01-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described

  19. Critical Phenomena Associated with Boson Stars

    OpenAIRE

    Hawley, Scott H.; Choptuik, Matthew W.

    2001-01-01

    We present a brief synopsis of related work (gr-qc/0007039), describing a study of black hole threshold phenomena for a self-gravitating, massive complex scalar field in spherical symmetry. We construct Type I critical solutions dynamically by tuning a one-parameter family of initial data consisting of a boson star and a massless real scalar field, and numerically evolving this data. The resulting critical solutions appear to correspond to boson stars on the unstable branch, as we show via co...

  20. Analysis and design of Fuel Cycle Plant for natural phenomena hazards

    International Nuclear Information System (INIS)

    Horsager, B.K.

    1985-01-01

    A description of the Design Basis and the analysis and design methods used for natural phenomena at the Fuel Cycle Plant at Hanford, Washington is presented. A physical description of the main process facility and the auxiliary emergency and support facilities is given. The mission of the facility is presented and a brief description of the processes which will take place within the facility is given. The Design Criteria and design bases for natural phenomena including tornados, earthquakes and volcanic eruptions are described

  1. Proceedings of the 17. International conference on phenomena in ionized gases held at Budapest, Hungary, 8-12 Jul 1985 v. 1

    International Nuclear Information System (INIS)

    Bakos, J.S.; Soerlei, Zsuzsa

    1985-06-01

    In the first part of the Conference Proceedings the complete text of papers are published in the following sessions (with the number of papers in each session in parentheses): Kinetics and Thermodynamics of Plasmas Including Transport Phenomena (19), Waves and Instabilities in Plasmas (54), Plasma-Beam Interactions Including Laser Beams (18), Plasmas in Astrophysics (12), Physical Aspects of Plasma Chemistry (13), Non-Ideal Plasmas (11), Elementary Processes (32), Electrode and Surface Effects (29). Papers falling in the INIS scope are indexed separately. (R.P.)

  2. Structure and reactivity of heterogeneous surfaces and study of the geometry of surface complexes. Progress report, January 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Landman, U.

    1984-01-01

    Since the beginning of this project, our group has been involved in theoretical studies of surface phenomena and processes, aimed toward increasing our understanding of fundamental processes which govern the properties of material surfaces. Our studies cover a wide spectrum of surface phenomena: surface reactivity, surface crystallography, electronic and vibrational structure, dynamical processes, phase transformations and phase change, the properties of interfaces and investigations of material processing and novel materials preparation techniques. In these investigations we develop and employ analytical and novel numerical, simulation, methods for the study of complex surface phenomena. Our recent surface molecular dynamics studies and simulations of laser annealing phenomena opened new avenues for the investigation of the microscopic dynamics and evolution of equilibrium and non-equilibrium processes at surfaces and interfaces. Our current studies of metallic glasses using a new langrangian formulation which includes all components of the total energy (density dependent electron gas, single particle and pair interactions) of the system, represents a novel approach for theoretical studies of this important class of systems

  3. Transport phenomena through porous screens and openings : from theory to greenhouse practice

    NARCIS (Netherlands)

    Miguel, A.A.F.

    1998-01-01

    The study of transport phenomena in multi-zone enclosures with permeable boundaries is fundamental for indoor climate control management. In this study, aspects concerning the air exchange through porous screens and openings, and heat transfer between the enclosure surface and inside air,

  4. Relaxation-phenomena in LiAl/FeS-cells

    Science.gov (United States)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  5. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    Science.gov (United States)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  6. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  7. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  8. Syntactic Idioms and Precedent Phenomena: Intersection Zones

    Directory of Open Access Journals (Sweden)

    Hanna Sytar

    2016-08-01

    Full Text Available Background: One examined mainly structural and semantic features of syntactic idioms so far. The pragmatic dimension of these original units that are on the verge of syntax and phraseology, has not been highlighted properly in the scientific literature, so it needs theoretical understanding. The combination of syntactic idiom and phraseological phenomenon refers to the communication techniques impacting on message recipient. Purpose: to analyze the intersection zones of syntactic idioms and precedent phenomena. Results: Analysis of the collected factual material allows to distinguish two areas of interpenetration of syntactic idioms and precedent units: 1 construction of expression according to the phraseologized model, within which the position of variable component is filled by the precedent name or precedent expression; 2 the model of sentence itself is precedent, and lexical content does not comply with generally known one that does not affect on understanding of model content by recipient. With a combination of syntactic idiom and precedent phenomena speakers provide drawing of recipients’ attention, carry out a hidden influence on them, express their own attitude to the realities, so that perform phatic, manipulative and expressive-evaluative functions. The modifications and transformations of precedent expressions and names appeared to be regular in such interpenetrations. Discussion: The obtained results reflect the general trend towards transform (transformation, modification, variation, etc. of precedent, as well as phraseological units, and can be used for the analysis of patterns of their formation and modifications. Further research phase implies tracing patterns of syntactic idioms combination with other means of expressive syntax.

  9. Modelling of thermohydraulic emergency core cooling phenomena

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.; Lewis, M.J.

    1990-10-01

    The codes used in the early seventies for safety analysis and licensing were based either on the homogeneous model of two-phase flow or on the so-called separate-flow models, which are mixture models accounting, however, for the difference in average velocity between the two phases. In both cases the behavior of the mixture is prescribed a priori as a function of local parameters such as the mass flux and the quality. The modern best-estimate codes used for analyzing LWR LOCA's and transients are often based on a two-fluid or 6-equation formulation of the conservation equations. In this case the conservation equations are written separately for each phase; the mixture is allowed to evolve on its own, governed by the interfacial exchanges of mass, momentum and energy between the phases. It is generally agreed that such relatively sophisticated 6-equation formulations of two-phase flow are necessary for the correct modelling of a number of phenomena and situations arising in LWR accidental situations. They are in particular indispensible for the analysis of stratified or countercurrent flows and of situations in which large departures from thermal and velocity equilibrium exist. This report will be devoted to a discussion of the need for, the capacity and the limitations of the two-phase flow models (with emphasis on the 6-equation formulations) in modelling these two-phase flow and heat transfer phenomena and/or different core cooling situations. 18 figs., 1 tab., 72 refs

  10. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  11. Cavitation phenomena in extracorporeal microexplosion lithotripsy

    Science.gov (United States)

    Tomita, Y.; Obara, T.; Takayama, K.; Kuwahara, M.

    1994-09-01

    An experimental investigation was made of cavitation phenomena induced by underwater shock wave focusing applied to the extracorporeal microexplosion lithotripsy (microexplosion ESWL). Firstly an underwater microexplosion generated by detonation of a 10 mg silver azide pellet was studied and secondly underwater shock focusing and its induced cavitation phenomena were investgated. Underwater shock wave was focused by using a semi-ellipsoidal reflector in which a shock wave generated at the first focal point of the reflector was reflected and focused at the second focal point. It is found that an explosion product gas bubble did not produce any distinct rebound shocks. Meantime cavitation appeared after shock focusing at the second focal point where expansion waves originated at the exit of the reflector were simultaneously collected. A shock/bubble interaction is found to contribute not only to urinary tract stone disintegration but also tissue damage. The cavitation effect associated with the microexplosion ESWL was weaker in comparison with a spark discharge ESWL. The microexplosion ESWL is an effective method which can minimize the number of shock exposures hence decreasing tissue damage by conducting precise positioning of urinary tract stones.

  12. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id [PhD student, Physics Department, FMIPA, UGM. Sekip Utara Yogyakarta 55281 Indonesia (Indonesia); Brotopuspito, Kirbani S.; Sismanto; Waluyo [Geophysics Laboratory, FMIPA, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281 (Indonesia)

    2015-04-24

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  13. Separation phenomena in Liquids and Gases

    Energy Technology Data Exchange (ETDEWEB)

    Louvet, P; Soubbaramayer, [CEA Saclay, Dept. des Lasers et de la Physico-Chimie, DESICP/DLPC/SPP, 91 - Gif-sur-Yvette (France); Noe, P

    1989-07-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  14. Separation phenomena in Liquids and Gases

    International Nuclear Information System (INIS)

    Louvet, P.; Dr Soubbaramayer; Noe, P.

    1989-01-01

    The Proceedings of the 1989 Workshop are presented in two volumes: volume 1 contains 4 papers on plasma processes and 7 papers on centrifugation. The papers on plasma processes deal with two main methods: ion cyclotron resonance and rotating plasmas. A survey lecture reviews extensively the physics of the two processes, the published experimental results and includes an abundant bibliography of about 200 references. The 3 other papers communicate original and recent experiments carried out by the authors. The plasma process remains as a possible technology to separate stable isotopes and isotopes of metals located in the middle of the Mendeleev Table. Regarding the stable isotopes, the ion cyclotron resonance might be an alternative to the Calutron process. The sessions on centrifugation include 2 review papers by URENCO authors and 5 specialized communications. The review papers take stock of the centrifuge research and gives the current status of the centrifuge technology in URENCO. The authors say that the centrifugation is presently an established industrial and commercial process ready to enter in competition for any new construction of enrichment capacity. Volume 2 contains the papers on 3 topics: basic studies (11 papers), chemical process (2 papers) and laser processes (7 papers). The papers on basic studies include investigations on rotating flows. A special attention is given to studies on convection flows, driven by acceleration field or (and) capillary forces. The interest of convection is obvious, as it has applications in important fields: the hydrodynamics of liquid uranium in the evaporation crucible of AVLIS Process, the crystal growth experiments on earth or under microgravity conditions (future experiments planned in space-labs) and the welding by electron or photon beams. Two papers are presented on the chemical process and both of them are by French authors. The French CEA has, in the past, developed with success the CHEMEX process. The

  15. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  16. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    2016-11-01

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxide (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .

  17. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  18. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites

    Directory of Open Access Journals (Sweden)

    Bhuvaneshwari Balasubramaniam

    2017-10-01

    Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.

  19. Modelling transport phenomena in a multi-physics context

    Science.gov (United States)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  20. Modelling transport phenomena in a multi-physics context

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Francesco [Dipartimento di Ingegneria Chimica e Alimentare - Università degli studi di Salerno Via Ponte Don Melillo - 84084 Fisciano SA (Italy)

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  1. Modelling transport phenomena in a multi-physics context

    International Nuclear Information System (INIS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating

  2. The contact sport of rough surfaces

    Science.gov (United States)

    Carpick, Robert W.

    2018-01-01

    Describing the way two surfaces touch and make contact may seem simple, but it is not. Fully describing the elastic deformation of ideally smooth contacting bodies, under even low applied pressure, involves second-order partial differential equations and fourth-rank elastic constant tensors. For more realistic rough surfaces, the problem becomes a multiscale exercise in surface-height statistics, even before including complex phenomena such as adhesion, plasticity, and fracture. A recent research competition, the “Contact Mechanics Challenge” (1), was designed to test various approximate methods for solving this problem. A hypothetical rough surface was generated, and the community was invited to model contact with this surface with competing theories for the calculation of properties, including contact area and pressure. A supercomputer-generated numerical solution was kept secret until competition entries were received. The comparison of results (2) provides insights into the relative merits of competing models and even experimental approaches to the problem.

  3. Real time animation of space plasma phenomena

    International Nuclear Information System (INIS)

    Jordan, K.F.; Greenstadt, E.W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images

  4. Nuclear disarmament verification via resonant phenomena.

    Science.gov (United States)

    Hecla, Jake J; Danagoulian, Areg

    2018-03-28

    Nuclear disarmament treaties are not sufficient in and of themselves to neutralize the existential threat of the nuclear weapons. Technologies are necessary for verifying the authenticity of the nuclear warheads undergoing dismantlement before counting them toward a treaty partner's obligation. Here we present a concept that leverages isotope-specific nuclear resonance phenomena to authenticate a warhead's fissile components by comparing them to a previously authenticated template. All information is encrypted in the physical domain in a manner that amounts to a physical zero-knowledge proof system. Using Monte Carlo simulations, the system is shown to reveal no isotopic or geometric information about the weapon, while readily detecting hoaxing attempts. This nuclear technique can dramatically increase the reach and trustworthiness of future nuclear disarmament treaties.

  5. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  6. PHENOMENA AND BASIC MACROECONOMIC INDICATORS FOR MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    PAULINA CATANA

    2010-01-01

    Full Text Available Macroeconomics is a separate discipline of the Economy that studies and analyzes the behaviour of economic aggregates and significant average, such as price level, national income, national income potential, the gap GDP, employment and unemployment of labour, investment and export of the whole economy. We can accuse to Macroeconomics that it deals also with the average price of all goods and services, not the prices of certain products. These aggregates result from economic behaviour of certain groups (governments, companies, consumers in the course of their activities on different markets. But why does it need Macroeconomics? Experts say that we need this separate discipline because there are certain forces that affect the broader economy globally, which can not be understood only by analyzing individual economic phenomena, individual products or markets.

  7. Characterizing critical phenomena via the Purcell effect

    Science.gov (United States)

    Silva Neto, M. B.; Szilard, D.; Rosa, F. S. S.; Farina, C.; Pinheiro, F. A.

    2017-12-01

    We investigate the role of phase transitions into the spontaneous-emission rate of a single quantum emitter embedded in a critical medium. Using a Landau-Ginzburg approach, we find that in the broken symmetry phase, the emission rate is reduced, or even suppressed, due to the photon mass generated by the Higgs mechanism. Remarkably, its sensitivity to the critical exponents of the phase transition allows for an optical determination of universality classes. When applied to the cases of superconductivity and superfluidity, we show that the Purcell effect also provides valuable information on spectroscopic and thermodynamic quantities, such as the size of the superconducting gap and the discontinuity in the specific heat at the transition. By unveiling that a deeper connection between the Purcell effect and phase transitions exists, we demonstrate that the former is an efficient optical probe of distinct critical phenomena and their associated observables.

  8. Autistic phenomena in The Adventures of Pinocchio.

    Science.gov (United States)

    Smith, Adrian

    2017-04-01

    This paper seeks to demonstrate that the protagonist of Carlo Collodi's The Adventures of Pinocchio illustrates numerous autistic phenomena such as communication difficulties, sensory and perceptual distortions and mindblindness. While Pinocchio is viewed as a literary construct with contraindications of autism, it will be argued that his autistic traits are sufficient to suggest the possibility that Collodi had a partial intuition of the syndrome 60 years before it was identified by Leo Kanner. Approaching Collodi's text in this manner is taken as an opportunity to survey and reflect upon the psychoanalytic literature on autism and to position it in relation to contemporary theories from cognitive neuroscience. © 2017, The Society of Analytical Psychology.

  9. Discrete computational mechanics for stiff phenomena

    KAUST Repository

    Michels, Dominik L.

    2016-11-28

    Many natural phenomena which occur in the realm of visual computing and computational physics, like the dynamics of cloth, fibers, fluids, and solids as well as collision scenarios are described by stiff Hamiltonian equations of motion, i.e. differential equations whose solution spectra simultaneously contain extremely high and low frequencies. This usually impedes the development of physically accurate and at the same time efficient integration algorithms. We present a straightforward computationally oriented introduction to advanced concepts from classical mechanics. We provide an easy to understand step-by-step introduction from variational principles over the Euler-Lagrange formalism and the Legendre transformation to Hamiltonian mechanics. Based on such solid theoretical foundations, we study the underlying geometric structure of Hamiltonian systems as well as their discrete counterparts in order to develop sophisticated structure preserving integration algorithms to efficiently perform high fidelity simulations.

  10. Quantum field theory and critical phenomena

    CERN Document Server

    Zinn-Justin, Jean

    1996-01-01

    Over the last twenty years quantum field theory has become not only the framework for the discussion of all fundamental interactions except gravity, but also for the understanding of second-order phase transitions in statistical mechanics. This advanced text is based on graduate courses and summer schools given by the author over a number of years. It approaches the subject in terms of path and functional intergrals, adopting a Euclidean metric and using the language of partition and correlation functions. Renormalization and the renormalization group are examined, as are critical phenomena and the role of instantons. Changes for this edition 1. Extensive revision to eliminate a few bugs that had survived the second edition and (mainly) to improve the pedagogical presentation, as a result of experience gathered by lecturing. 2. Additional new topics; holomorphic or coherent state path integral; functional integral and representation of the field theory S-matrix in the holomorphic formalis; non-relativistic li...

  11. Experimental study of the natural circulation phenomena

    International Nuclear Information System (INIS)

    Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro E.; Torres, Walmir M.; Castro, Alfredo Jose Alvim de; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da; Damy, Osvaldo Luiz de Almeida; Torres, Eduardo

    2006-01-01

    The objective of this paper is to study the natural circulation in experimental loops and extend the results to nuclear facilities. New generation of compact nuclear power plants use the natural circulation as cooling and residual heat removal systems in case of accidents or shutdown. Lately the interest in this phenomenon, by scientific community, has increased. The experimental loop, described in this paper, was assembled at Escola Politecnica - USP at the Chemical Engineering Department. It is the goal to generate information to help with the understanding of the one and two phase natural circulation phenomena. Some experiments were performed with different levels of heat power and different flow of the cooling water at the secondary circuit. The data generated from these experiments are going to be used to validate some computational thermal hydraulic codes. Experimental results for one and two phase regimes are presented as well as the proposed model to simulate the flow regimes with the RELAP5 code. (author)

  12. Social phenomena from data analysis to models

    CERN Document Server

    Perra, Nicola

    2015-01-01

    This book focuses on the new possibilities and approaches to social modeling currently being made possible by an unprecedented variety of datasets generated by our interactions with modern technologies. This area has witnessed a veritable explosion of activity over the last few years, yielding many interesting and useful results. Our aim is to provide an overview of the state of the art in this area of research, merging an extremely heterogeneous array of datasets and models. Social Phenomena: From Data Analysis to Models is divided into two parts. Part I deals with modeling social behavior under normal conditions: How we live, travel, collaborate and interact with each other in our daily lives. Part II deals with societal behavior under exceptional conditions: Protests, armed insurgencies, terrorist attacks, and reactions to infectious diseases. This book offers an overview of one of the most fertile emerging fields bringing together practitioners from scientific communities as diverse as social sciences, p...

  13. Peridynamic Formulation for Coupled Thermoelectric Phenomena

    Directory of Open Access Journals (Sweden)

    Migbar Assefa

    2017-01-01

    Full Text Available Modeling of heat and electrical current flow simultaneously in thermoelectric convertor using classical theories do not consider the influence of defects in the material. This is because traditional methods are developed based on partial differential equations (PDEs and lead to infinite fluxes at the discontinuities. The usual way of solving such PDEs is by using numerical technique, like Finite Element Method (FEM. Although FEM is robust and versatile, it is not suitable to model evolving discontinuities. To avoid such shortcomings, we propose the concept of peridynamic theory to derive the balance of energy and charge equations in the coupled thermoelectric phenomena. Therefore, this paper presents the transport of heat and charge in thermoelectric material in the framework of peridynamic (PD theory. To illustrate the reliability of the PD formulation, numerical examples are presented and results are compared with those from literature, analytical solutions, or finite element solutions.

  14. Density turbulence and disruption phenomena in TEXTOR

    International Nuclear Information System (INIS)

    Waidmann, G.; Kuang, G.; Jadoul, M.

    1992-01-01

    Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs

  15. Cheshire cat phenomena and quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1986-11-01

    The notion of the ''Cheshire Cat'' principle in hadron structure is developed rigorously in (1+1) dimensions and approximately in (3+1) dimensions for up- and down-quark flavor systems. This phenomenon is invoked to address the issue as to whether or not direct quark-gluon signatures can be ''seen'' in low-energy nuclear phenomena. How addition of the third flavor -strangeness- can modify the Cheshire Cat property is discussed. It is proposed that one of the primary objectives of nuclear physics be to probe -and disturb- the ''vacuum'' of the strong interactions (QCD) and that for this purpose the chiral symmetry SU(3)xSU(3) can play a crucial role in normal and extreme conditions. As an illustration, kaon condensation at a density ρ>∼ 3ρ 0 is discussed in terms of a toy model and is related to ''cleansing'' of the quark condensates from the vacuum

  16. Implicit particle simulation of electromagnetic plasma phenomena

    International Nuclear Information System (INIS)

    Kamimura, T.; Montalvo, E.; Barnes, D.C.; Leboeuf, J.N.; Tajima, T.

    1986-11-01

    A direct method for the implicit particle simulation of electromagnetic phenomena in magnetized, multi-dimensional plasmas is developed. The method is second-order accurate for ωΔt < 1, with ω a characteristic frequency and time step Δt. Direct time integration of the implicit equations with simplified space differencing allows the consistent inclusion of finite particle size. Decentered time differencing of the Lorentz force permits the efficient simulation of strongly magnetized plasmas. A Fourier-space iterative technique for solving the implicit field corrector equation, based on the separation of plasma responses perpendicular and parallel to the magnetic field and longitudinal and transverse to the wavevector, is described. Wave propagation properties in a uniform plasma are in excellent agreement with theoretical expectations. Applications to collisionless tearing and coalescence instabilities further demonstrate the usefulness of the algorithm. (author)

  17. Modeling electrical dispersion phenomena in Earth materials

    Directory of Open Access Journals (Sweden)

    D. Patella

    2008-06-01

    Full Text Available It is illustrated that IP phenomena in rocks can be described using conductivity dispersion models deduced as solutions to a 2nd-order linear differential equation describing the motion of a charged particle immersed in an external electrical field. Five dispersion laws are discussed, namely: the non-resonant positive IP model, which leads to the classical Debye-type dispersion law and by extension to the Cole-Cole model, largely used in current practice; the non-resonant negative IP model, which allows negative chargeability values, known in metals at high frequencies, to be explained as an intrinsic physical property of earth materials in specific field cases; the resonant flat, positive or negative IP models, which can explain the presence of peak effects at specific frequencies superimposed on flat, positive or negative dispersion spectra.

  18. Hypnagogic and hypnopompic hallucinations: pathological phenomena?

    Science.gov (United States)

    Ohayon, M M; Priest, R G; Caulet, M; Guilleminault, C

    1996-10-01

    Hypnagogic and hypnopompic hallucinations are common in narcolepsy. However, the prevalence of these phenomena in the general population is uncertain. A representative community sample of 4972 people in the UK, aged 15-100, was interviewed by telephone (79.6% of those contacted). Interviews were performed by lay interviewers using a computerised system that guided the interviewer through the interview process. Thirty-seven per cent of the sample reported experiencing hypnagogic hallucinations and 12.5% reported hypnopompic hallucinations. Both types of hallucinations were significantly more common among subjects with symptoms of insomnia, excessive daytime sleepiness or mental disorders. According to this study, the prevalence of narcolepsy in the UK is 0.04%. Hypnagogic and hypnopompic hallucinations were much more common than expected, with a prevalence that far exceeds that which can be explained by the association with narcolepsy. Hypnopompic hallucinations may be a better indicator of narcolepsy than hypnagogic hallucinations in subjects reporting excessive daytime sleepiness.

  19. Nonmodal phenomena in differentially rotating dusty plasmas

    Science.gov (United States)

    Poedts, Stefaan; Rogava, Andria D.

    2000-10-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (``epicyclic shaking'') makes these collective modes transiently unstable. .

  20. Nonmodal phenomena in differentially rotating dusty plasmas

    International Nuclear Information System (INIS)

    Poedts, Stefaan; Rogava, Andria D.

    2000-01-01

    In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

  1. Pump instability phenomena generated by fluid forces

    Science.gov (United States)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  2. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  3. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  4. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  5. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  6. Phenomena during thermal removal of binders

    Science.gov (United States)

    Hrdina, Kenneth Edward

    The research presented herein has focused on debinding of an ethylene copolymer from a SiC based molded ceramic green body. Examination of the binder burnout process was carried out by breaking down the process into two distinct regions: those events which occur before any weight loss begins, and those events occurring during binder removal. Below the temperature of observed binder loss (175sp°C), both reversible and irreversible displacement was observed to occur. The displacement was accounted for by relaxation of molding stresses, thermal expansion of the system, and melting of the semicrystalline copolymer occurring during heating. Upon further heating the binder undergoes a two stage thermal degradation process. In the first stage, acetic acid is the only degradation product formed, as determined by GC/MS analysis. In this stage, component shrinkage persisted and it was found that one unit volume of shrinkage corresponded with one unit volume of binder removed, indicating that no porosity developed. The escaping acetic acid effluents must diffuse through liquid polymer filled porous regions to escape. The gas pressure of the acetic acid species produced in the first stage of the thermal degradation may exceed the ambient pressure promoting bubble formation. Controlling the heating rate of the specimen maintains the gas pressure below the bubbling threshold and minimizes the degradation time. Experiments have determined the kinetics of the reaction in the presence of the high surface area (10-15msp2/g) ceramic powder and then verified that acetic acid was diffusing through the polymer phase to the specimen surface where evaporation is taking place. The sorption method measured the diffusivity and activity of acetic acid within the filled ceramic system within a TGA. These data were incorporated into a Fickian type model which included the rate of generation of the diffusing species. The modeling process involved prediction of the bloating temperature as a

  7. Astrophysical phenomena related to supermassive black holes

    Science.gov (United States)

    Pott, Jörg-Uwe

    2006-12-01

    innermost region of a galaxy. Furthermore an increasing number of apparently totally distinct phenomena and properties of the SMBH/host system appear to be related to each other, provoking unifying ideas and models to explain the galaxy formation and evolution. For example several different types of AGN are understood as projection or orientation effects, claiming that the same AGN looks totally different as viewed from different sides (e.g. Antonucci & Miller 1985). The thesis is structured to reflect this general perception. All scales of size, AGN luminosity, and nuclear activity appear. The thesis consists of six chapters. The first two compile astrophysical and technical background of the individual projects, which themselves are presented in the following four chapters. While the first project (Chapter 3) deals with observations of the innermost parsec of our Galaxy, Chapter 4 presents data of the inner kpc of an active galaxy. The subjects of Chapters 5 and 6 are very luminous AGN/host systems, so-called QSOs. Whereas Chapter 5 presents global, spatially unresolved properties of SMBH/host systems, the radio jet, analyzed in the final Chapter 6, combines all size scales. It is investigated from close to its origin out to several kpc. The accretion onto the black hole of the Milky Way (Chapter 3) is extremely inefficient (Genzel et al. 2003a) and the SMBH possibly interacts dominantly via tidal forces only. The next discussed system (Chapter 4) is the prototype of moderately luminous Seyfert 2 AGN, NGC 1068. Here a strong local influence of the nuclear X-ray radiation is observed (Usero et al. 2004). Chapter 5 deals with the possible global importance of radiative interaction between highly luminous QSO AGN and the host. The radio jet in Chapter 6 definitely shows signs of interaction with the matter of its host several kpc away from the nucleus. Chapters 3-6 include a dedicated introductory and a conclusive section, which put the results obtained in the larger

  8. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  9. Investigation research on the evaluation of a coupled thermo-hydro-mechanical-chemical phenomena. 3. Result Report

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takaya; Chijimatsu, Masakazu; Amemiya, Kiyoshi; Shiozaki, Isao

    2004-02-01

    In order to realize a coupling analysis in the near field of the geological disposal system, the coupling analysis code 'COUPLYS (Coupling analysis system)' on the Thermo-Hydro-Mechanical-Chemical (THMC) phenomena by THAMES, Dtransu and phreeqc, which are existing analysis code, is developed in this study. And some case analyses on THMC phenomena are carried out by this code. (1) Some supporting modules, which include the transfer of dissolution concentration and total concentration (dissolution + precipitation concentration), were prepared as a functional expansion. And in order to add on the function of treat de-gases and gases diffusion, accumulation and dilution phenomena, the mass transport analysis code was modified. (2) We have modified reactive transport module to treat ionic exchange, surface reaction and kinetic reaction in the each barrier. (3) We have prepared hydraulic conductivity module of buffer material depending on change of dry density due to chemical equilibrium (dissolution and precipitation of minerals), degradation of buffer material such as Ca-type bentonite and change of concentration of NaCl solutions. After THAMES, Dtransu, phreeqc and the hydraulic conductivity module were installed in COUPLYS (Coupling Analysis), verification study was carried out to check basic function. And we have modified COUPLYS to control coupling process. (4) In order to confirm the applicability of the developed THMC analysis code (existing analysis code and COUPLYS), we have carried out case analyses on 1-dimensional and 3-dimensional model which are including vitrified waste, over-pack, buffer material and rock in the HLW near-field. (author)

  10. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  11. Comparative modeling for power generating systems with interaction phenomena

    International Nuclear Information System (INIS)

    Kim, Seong Ho; Kim, Tae Woon

    2007-01-01

    From a conflicting viewpoint, comprehensive assessment of various national power systems can be treated as a multicriteria decision-making (MCDM) problem. In reality, there are interaction phenomena among the decision elements. The main objective of this work is to propose a comprehensive framework to determinate the priority of appropriate national power sources involving various degrees of interaction among the decision elements (e.g., decision goal, decision criteria, and decision alternatives) such as inner dependence, outer dependence, and feedback effect. In the context of a generic hierarchical network (or hiernet) structure instead of one-way directional tree structure, the impact of the interaction phenomena on the grade of priority is investigated using a supermatrix technique or an analytic network process (ANP) method. Moreover, the three types of attitudes towards nuclear power system of the multiple actors are incorporated into the network structure to figure out the effect of characteristics of power systems. An illustrative example of the generic hiernet structure is demonstrated in comparison to the specific hierarchy structure without any interaction among the decision elements. The proposed framework can be applied to select the appropriate power systems, to understand the effect of its underlying decision structures, and to include risk attitudes towards a certain alternative. (author)

  12. Enhanced Understanding of High Energy Arcing Fault Phenomena in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seuk; Kim, Me Kyoung; Lee, Sang Kyu [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    This study reviews the recent HEAF events in nuclear power plants (NPPs) and investigates the HEAF phenomena with the experiment data performed at KEMA supported by OECD/NEA HEAF project. High Energy Arcing Fault (HEAF) can occur in an electrical components or systems through an arc path to ground and has the potential to cause extensive damage to the equipment involved. The intense radiant heat produced by the arc can cause significant damage or even destructions of equipment and can injure people. Affected components include a specific high-energy electrical devices, such as switch gears, load centers, bus bars/ducts, transformers, cables, etc., operating mainly on voltage levels of more than 380V but the voltage levels in NUREG/CR-6580 is more than 440. As stated before, HEAF may cause the significant damage to adjacent facilities as well as the equipment involved. Quantitative estimation of the equipment damage, determining the damage area, and predicting the secondary fire after initiating HEAF event should be further studied in depth. Draft test report produced by KEMA does not give comprehensive understanding of the HEAF phenomena. It is expected that a detail information of slug calorimeter and the test data to show the HEAF characteristics will be given in the final test reports.

  13. Current status of models for transient phenomena in dopant diffusion and activation

    International Nuclear Information System (INIS)

    Pichler, P.; Stiebel, D.

    2002-01-01

    Transient phenomena caused by ion-implantation processes have been studied for more than 25 years now with a continuously increasing number of research articles published in this field per year. One driving force of this research is the ongoing miniaturization of ULSI MOS and bipolar technology which uses extensively the capabilities of technology-computer-aided-design (TCAD). The other driving force which attracts also academic institutions and research institutes is the high complexity of the phenomena, involving the interaction of dopants, intrinsic point defects, extended defects and impurities like carbon as well as the interactions of mobile defects with surfaces and interfaces and their redistribution in multilayer structures. This paper outlines some recent advances towards a quantitative description of such phenomena

  14. Sensory phenomena related to tics, obsessive-compulsive symptoms, and global functioning in Tourette syndrome.

    Science.gov (United States)

    Kano, Yukiko; Matsuda, Natsumi; Nonaka, Maiko; Fujio, Miyuki; Kuwabara, Hitoshi; Kono, Toshiaki

    2015-10-01

    Sensory phenomena, including premonitory urges, are experienced by patients with Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). The goal of the present study was to investigate such phenomena related to tics, obsessive-compulsive symptoms (OCS), and global functioning in Japanese patients with TS. Forty-one patients with TS were assessed using the University of São Paulo Sensory Phenomena Scale (USP-SPS), the Premonitory Urge for Tics Scale (PUTS), the Yale Global Tic Severity Scale (YGTSS), the Dimensional Yale-Brown Obsessive-Compulsive Scale (DY-BOCS), and the Global Assessment of Functioning (GAF) Scale. USP-SPS and PUTS total scores were significantly correlated with YGTSS total and vocal tics scores. Additionally, both sensory phenomena severity scores were significantly correlated with DY-BOCS total OCS scores. Of the six dimensional OCS scores, the USP-SPS scores were significantly correlated with measures of aggression and sexual/religious dimensions. Finally, the PUTS total scores were significantly and negatively correlated with GAF scores. By assessing premonitory urges and broader sensory phenomena, and by viewing OCS from a dimensional approach, this study provides significant insight into sensory phenomena related to tics, OCS, and global functioning in patients with TS. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Experimental study on fundamental phenomena in HTGR small break air-ingress accident

    International Nuclear Information System (INIS)

    Kim, Jae Soon; Hwang, Jin-Seok; Kim, Eung Soo; Kim, Byung Jun; Oh, Chang Ho

    2016-01-01

    Highlights: • Air-ingress phenomena on the small break in a HTGR are experimentally investigated. • Experiment is investigated for various break sizes, angles, and density ratios. • Maximum air-ingress rate is observed at 120° in break angle. • This study reveals that air-ingress in the small break is governed by; buoyancy and flow inertia. • A non-dimensional parameter is newly proposed to determine the air-ingress flow regimes. • Newly proposed parameter is based on buoyancy versus inertia force. - Abstract: This study experimentally investigates fundamental phenomena in the HTGR small break air-ingress accident. Several important parameters including density ratio, break angle, break size, and main flow velocity are considered in the measurement and the analysis. The test-section is made of a circular pipe with small holes drilled around the surface and it is installed in the helium/air flow circulation loop. Oxygen concentrations and flow rates are recorded during the tests with fixed break angles, break sizes, and flow velocities for measurement of the air-ingress rates. According to the experimental results, the higher density difference leads to the higher rates of air-ingress with large sensitivity of the break angles. It is also found that the break angle significantly affects the air-ingress rates, which is gradually increased from 0° to 120° and suddenly decreased to 180°. The minimum air ingress rate is found at 0° and the maximum, at 110°. The air-ingress rate increases with the break size due to the increased flow-exchange area. However, it is not directly proportional to the break area due to the complexity of the phenomena. The increased flow velocity in the channel inside enhances the air-ingress process. However, among all the parameters, the main flow velocity exhibits the lowest effect on this process. In this study, the Froude Number relevant to the small break air-ingress conditions are newly defined considering both heavy

  16. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  17. Friction spinning - Twist phenomena and the capability of influencing them

    Science.gov (United States)

    Lossen, Benjamin; Homberg, Werner

    2016-10-01

    The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.

  18. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  19. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  20. Simulation of Magnetic Phenomena at Realistic Interfaces

    KAUST Repository

    Grytsyuk, Sergiy

    2016-01-01

    (4d) and ferromagnetic 3d-metal interfaces and their dependences on aspects such as interdiffusion, surface oxidation, thin film thickness and lattice mismatch. We find that changes of structural details strongly alter the electronic states, which