WorldWideScience

Sample records for surface oxidation treatment

  1. Surface oxide formation during corona discharge treatment of AA 1050 aluminium surfaces

    DEFF Research Database (Denmark)

    Minzari, Daniel; Møller, Per; Kingshott, Peter

    2008-01-01

    process modifies aluminium AA 1050 surface, the oxide growth and resulting corrosion properties. The corona treatment is carried out in atmospheric air. Treated surfaces are characterized using XPS, SEM/EDS, and FIB-FESEM and results suggest that an oxide layer is grown, consisting of mixture of oxide...

  2. Influence of surface treatment on the oxidation behavior of zirconium and zircaloy-4

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1986-01-01

    The influence of fluoride concentration in surface treatment solutions on the oxidation behavior of Zr and Zircaloy-4 in the temperature range 350-760 0 C have been studied by means of thermogravimetric analysis. Two solutions containing different concentrations of hydrofluoric acid have been used for surface treatments, following which surface roughness measurements were also carried out. The influence of fluoride ion concentration on oxidation behavior has been found to be significant at higher temperatures. (Author) [pt

  3. Strengthening of Zircaloy-4 with Oxide Particles by Surface Treatment using Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Park, Dong Jun; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Accident tolerant fuel (ATF) cladding is being developed globally after the Fukushima accident with the demands for the nuclear fuel having higher safety at normal operation conditions as well as even in a severe accident conditions. Korea Atomic Energy Research Institute (KAERI) is one of the leading organizations for developing ATF claddings. One concept is to form an oxidation-resistant layer on Zr cladding surface. The other is to increase high-temperature mechanical strength of Zr tube. High-power laser beam was exposed on the zirconium surface previously coated by oxides. Various oxides such as Y{sub 2}O{sub 3}, CeO{sub 2}, Gd{sub 2}O{sub 3}, Er{sub 2}O{sub 3} were used for the ODS treatment. In this study, the effect of strengthening by the ODS treatment was investigated. The oxide particles of Y{sub 2}O{sub 3} were dispersed well in the Zr matrix at the surface region.

  4. Reduction of a thin chromium oxide film on Inconel surface upon treatment with hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka, E-mail: alenka.vesel@guest.arnes.si [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Mozetic, Miran [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Balat-Pichelin, Marianne [PROMES-CNRS Laboratory, 7 Rue du four solaire, 66120 Font Romeu Odeillo (France)

    2016-11-30

    Highlights: • Oxidized Inconel alloy was exposed to hydrogen at temperatures up to 1500 K. • Oxide reduction in hydrogen plasma started at approximately 1300 K. • AES depth profiling revealed complete reduction of oxides in plasma. • Oxides were not reduced, if the sample was heated just in hydrogen atmosphere. • Surface of reduced Inconel preserved the same composition as the bulk material. - Abstract: Inconel samples with a surface oxide film composed of solely chromium oxide with a thickness of approximately 700 nm were exposed to low-pressure hydrogen plasma at elevated temperatures to determine the suitable parameters for reduction of the oxide film. The hydrogen pressure during treatment was set to 60 Pa. Plasma was created by a surfaguide microwave discharge in a quartz glass tube to allow for a high dissociation fraction of hydrogen molecules. Auger electron depth profiling (AES) was used to determine the decay of the oxygen in the surface film and X-ray diffraction (XRD) to measure structural modifications. During hydrogen plasma treatment, the oxidized Inconel samples were heated to elevated temperatures. The reduction of the oxide film started at temperatures of approximately 1300 K (considering the emissivity of 0.85) and the oxide was reduced in about 10 s of treatment as revealed by AES. The XRD showed sharper substrate peaks after the reduction. Samples treated in hydrogen atmosphere under the same conditions have not been reduced up to approximately 1500 K indicating usefulness of plasma treatment.

  5. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  6. Effect of passive film on electrochemical surface treatment for indium tin oxide

    International Nuclear Information System (INIS)

    Wu, Yung-Fu; Chen, Chi-Hao

    2013-01-01

    Highlights: ► Oxalic, tartaric, and citric acid baths accompanying with applied voltages were used to treat the ITO surface. ► We investigated the changes in ITO surfaces by examining the potentiodynamic behavior of ITO films. ► AFM analysis showed the formation of a passive layer could assist to planarize surface. ► XPS analysis indicated this passive layer was mainly composed of SnO 2. ► A better planarization was obtained by treating in 3.0 wt.% tartaric acid at 0.5 V due to weak complexation strength. - Abstract: Changes in indium tin oxide (ITO) film surface during electrochemical treatment in oxalic acid, tartaric acid, and citric acid were investigated. Controlling the voltage applied on ITO film allows the formation of a passive layer, effectively protecting the film surface. X-ray photoelectron spectrometry showed that the passive layer composition was predominantly SnO 2 in tartaric acid, while a composite of tin oxide and tin carboxylate in citric or oxalic acid. Even though the passive films on ITO surface generated in these organic acids, the indium or tin could complex with the organic acid anions, enhancing the dissolution of ITO films. The experimental results show that the interaction between the dissolution and passivation could assist to planarize the ITO surface. We found that the optimal treatment at 0.5 V in 3 wt.% tartaric acid could provide the ITO surface with root-mean-squared roughness less than 1.0 nm, due to the weak complexing characteristics of tartaric acid.

  7. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  8. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  9. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    A remote microwave-generated H{sub 2} plasma and heating to 250 deg. C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form Al-O-Si interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of Al-O-Si interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased Al-O-Si bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H{sub 2} plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of Al-O-Si interfacial bonding. Overall, heating

  10. Metal-oxide assisted surface treatment of polyimide gate insulators for high-performance organic thin-film transistors.

    Science.gov (United States)

    Kim, Sohee; Ha, Taewook; Yoo, Sungmi; Ka, Jae-Won; Kim, Jinsoo; Won, Jong Chan; Choi, Dong Hoon; Jang, Kwang-Suk; Kim, Yun Ho

    2017-06-14

    We developed a facile method for treating polyimide-based organic gate insulator (OGI) surfaces with self-assembled monolayers (SAMs) by introducing metal-oxide interlayers, called the metal-oxide assisted SAM treatment (MAST). To create sites for surface modification with SAM materials on polyimide-based OGI (KPI) surfaces, the metal-oxide interlayer, here amorphous alumina (α-Al 2 O 3 ), was deposited on the KPI gate insulator using spin-coating via a rapid sol-gel reaction, providing an excellent template for the formation of a high-quality SAM with phosphonic acid anchor groups. The SAM of octadecylphosphonic acid (ODPA) was successfully treated by spin-coating onto the α-Al 2 O 3 -deposited KPI film. After the surface treatment by ODPA/α-Al 2 O 3 , the surface energy of the KPI thin film was remarkably decreased and the molecular compatibility of the film with an organic semiconductor (OSC), 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-C 10 ), was increased. Ph-BTBT-C 10 molecules were uniformly deposited on the treated gate insulator surface and grown with high crystallinity, as confirmed by atomic force microscopy (AFM) and X-ray diffraction (XRD) analysis. The mobility of Ph-BTBT-C 10 thin-film transistors (TFTs) was approximately doubled, from 0.56 ± 0.05 cm 2 V -1 s -1 to 1.26 ± 0.06 cm 2 V -1 s -1 , after the surface treatment. The surface treatment of α-Al 2 O 3 and ODPA significantly decreased the threshold voltage from -21.2 V to -8.3 V by reducing the trap sites in the OGI and improving the interfacial properties with the OSC. We suggest that the MAST method for OGIs can be applied to various OGI materials lacking reactive sites using SAMs. It may provide a new platform for the surface treatment of OGIs, similar to that of conventional SiO 2 gate insulators.

  11. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  13. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    International Nuclear Information System (INIS)

    Abderrahmen, A.; Romdhane, F.F.; Ben Ouada, H.; Gharbi, A.

    2006-01-01

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results

  14. Indium-tin oxide surface treatments: Effects on the performance of liquid crystal devices

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, A. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia)]. E-mail: asma_abderrahmen@yahoo.fr; Romdhane, F.F. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ben Ouada, H. [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000, Monastir (Tunisia); Gharbi, A. [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia)

    2006-03-15

    In this work, we investigate the effect of indium tin oxide (ITO) substrate cleaning on the surface properties. Wettability technique was used to measure the contact angle and the surface energy of the different treated ITO substrates. It is found that treatment with the methanol without dehydration gives the lowest water contact angle (most hydrophilic surface) and the highest surface energy compared to other solvents. This result was confirmed by impedance measurements performed on nematic liquid crystal cells with ITO electrodes. Indeed, we check the decrease of ionic entities in the interface ITO/liquid crystal. The polarity and dielectric parameters of the used solvents explain the obtained results.

  15. Influence of oxidation treatment on ballistic electron surface-emitting display of porous silicon

    International Nuclear Information System (INIS)

    Du, Wentao; Zhang, Xiaoning; Zhang, Yujuan; Wang, Wenjiang; Duan, Xiaotao

    2012-01-01

    Two groups of porous silicon (PS) samples are treated by rapid thermal oxidation (RTO) and electrochemical oxidation (ECO), respectively. Scanning electron microscopy images show that PS samples are segmented into two layers. Oxidized film layer is formed on the top surface of PS samples treated by RTO while at the bottom of PS samples treated by ECO. Both ECO and RTO treatment can make emission current density, diode current density, and emission efficiency of PS increase with the bias voltage increasing. The emission current density and the field emission enhancement factor β of PS sample treated by RTO are larger than that treated by ECO. The Fowler–Nordheim curves of RTO and ECO samples are linear which indicates that high electric field exists on the oxidized layer and field emission occurs whether PS is treated by RTO or ECO.

  16. Processing surface sizing starch using oxidation, enzymatic hydrolysis and ultrasonic treatment methods--Preparation and application.

    Science.gov (United States)

    Brenner, Tobias; Kiessler, Birgit; Radosta, Sylvia; Arndt, Tiemo

    2016-03-15

    The surface application of starch is a well-established method for increasing paper strength. In surface sizing, a solution of degraded starch is applied to the paper. Two procedures have proved valuable for starch degradation in the paper mill: enzymatic and thermo-oxidative degradation. The objective of this study was to determine achievable efficiencies of cavitation in preparing degraded starch for surface application on paper. It was found that ultrasonic-assisted starch degradation can provide a starch solution that is suitable for surface sizing. The molecular composition of starch solutions prepared by ultrasonic treatment differed from that of starch solutions degraded by enzymes or by thermo-oxidation. Compared to commercial degradation processes, this resulted in intensified film formation and in greater penetration during surface sizing and ultimately in a higher starch content of the paper. Paper sized with ultrasonically treated starch solutions show the same strength properties compared to commercially sized paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Decontamination of U-metal surface by an oxidation etching system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Kansa, E.J.; Shaffer, R.J.; Weed, H.C. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    A surface treatment to remove surface contamination from uranium (U) metal and/or hydrides of uranium and heavy metals (HM) from U-metal parts is described. In the case of heavy metal atomic contamination on a surface, and potentially several atomic layers beneath, the surface oxidation treatment combines both chemical and chemically driven mechanical processes. The chemical process is a controlled temperature-time oxidation process to create a thin film of uranium oxide (UO{sub 2} and higher oxides) on the U-metal surface. The chemically driven mechanical process is strain induced by the volume increase as the U-metal surface transforms to a UO{sub 2} surface film. These volume strains are significantly large to cause surface failure spalling/scale formation and thus, removal of a U-oxide film that contains the HM-contaminated surface. The case of a HM-hydride surface contamination layer can be treated similarly by using inert hot gas to decompose the U-hydrides and/or HM-hydrides that are contiguous with the surface. A preliminary analysis to design and to plan for a sequence of tests is developed. The tests will provide necessary and sufficient data to evaluate the effective implementation and operational characteristics of a safe and reliable system. The following description is limited to only a surface oxidation process for HM-decontamination. (authors)

  18. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  19. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  20. Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.

    Science.gov (United States)

    Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M

    2014-10-01

    The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment

  1. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    International Nuclear Information System (INIS)

    Chen, Po-Hsun; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui; Zheng, Hao-Xuan; Chen, Min-Chen; Sze, Simon M.

    2017-01-01

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O_2 inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O_2 plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O_2 plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O_2 plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O_2 plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O_2 plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  2. Effects of plasma treatment time on surface characteristics of indium-tin-oxide film for resistive switching storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Hsun [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Chang, Kuan-Chang, E-mail: kcchang@pkusz.edu.cn [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); School of Electronic and Computer Engineering, Peking University, Shenzhen 518055 (China); Tsai, Tsung-Ming; Pan, Chih-Hung; Shih, Chih-Cheng; Wu, Cheng-Hsien; Yang, Chih-Cheng; Chen, Wen-Chung; Lin, Jiun-Chiu; Wang, Ming-Hui [Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Zheng, Hao-Xuan; Chen, Min-Chen [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Sze, Simon M. [Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2017-08-31

    In this paper, we implement a post-oxidation method to modify surface characteristics of indium tin oxide (ITO) films by using an O{sub 2} inductively coupled plasma (ICP) treatment. Based on field emission-scanning electron microscope (FE-SEM) and atomic force microscope (AFM) analysis, we found that the surface morphologies of the ITO films become slightly flatter after the O{sub 2} plasma treatment. The optical characteristics and X-ray diffraction (XRD) experiments of either pure ITO or O{sub 2} plasma treated ITO films were also verified. Even though the XRD results showed no difference from bulk crystallizations, the oxygen concentrations increased at the film surface after O{sub 2} plasma treatment, according to the XPS inspection results. Moreover, this study investigated the effects of two different plasma treatment times on oxygen concentration in the ITO films. The surface sheet resistance of the plasma treated ITO films became nearly non-conductive when measured with a 4-point probe. Finally, we applied the O{sub 2} plasma treated ITO films as the insulator in resistive random access memory (RRAM) to examine their potential for use in resistive switching storage applications. Stable resistance switching characteristics were obtained by applying the O{sub 2} plasma treatment to the ITO-based RRAM. We also confirmed the relationship between plasma treatment time and RRAM performance. These material analyses and electrical measurements suggest possible advantages in using this plasma treatment technique in device fabrication processes for RRAM applications.

  3. Homogeneous dispersion of gadolinium oxide nanoparticles into a non-aqueous-based polymer by two surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jorice, E-mail: jorice.samuel@gmail.com [AREVA T and D UK Ltd, AREVA T and D Research and Technology Centre (United Kingdom); Raccurt, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Mancini, Cedric; Dujardin, Christophe; Amans, David; Ledoux, Gilles [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France); Poncelet, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Tillement, Olivier [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France)

    2011-06-15

    Gadolinium oxide nanoparticles are more and more used. They can notably provide interesting fluorescence properties. Herein they are incorporated into a non-aqueous-based polymer, the poly(methyl methacrylate). Their dispersion within the polymer matrix is the key to improve the composite properties. As-received gadolinium oxide nanopowders cannot be homogeneously dispersed in such a polymer matrix. Two surface treatments are, therefore, detailed and compared to achieve a good stability of the nanoparticles in a non-aqueous solvent such as the 2-butanone. Then, once the liquid suspensions have been stabilized, they are used to prepare nanocomposites with homogeneous particles dispersion. The two approaches proposed are an hybrid approach based on the growth of a silica shell around the gadolinium oxide nanoparticles, and followed by a suitable silane functionalization; and a non-hybrid approach based on the use of surfactants. The surface treatments and formulations involved in both methods are detailed, adjusted and compared. Thanks to optical methods and in particular to the use of a 'home made' confocal microscope, the dispersion homogeneity within the polymer can be assessed. Both methods provide promising and conclusive results.

  4. Enhancement of the oxidation resistance of carbon fibres in C/C composites via surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Labruquere, S.; Pailler, R.; Naslain, R. [Bordeaux Univ., Pessac (France). Lab. des Composites Thermostructuraux; Desbat, B. [Lab. de Spectroscopie Moleculaire et Cristalline, Univ. of Bordeaux, Talence (France)

    1997-12-31

    Carbon-carbon (C/C) composites are commonly used in rockets and braking systems. However, the carbon reacts with oxygen, burning away rapidly at temperatures as low as 450 C. This work deals with the protection of carbon fibres from oxidation between 600 and 1000 C. Two kinds of methods were investigated to protect carbon fibres: (i) surface treatment with aqueous solutions (e.g. of H3PO4) and (ii) chemical vapour deposition (CVD) of SiC coatings. Oxidation resistance of the as treated preforms was studied under dry air atmosphere. (orig.) 2 refs.

  5. Physical and electrical characterizations of AlGaN/GaN MOS gate stacks with AlGaN surface oxidation treatment

    Science.gov (United States)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    The impacts of inserting ultrathin oxides into insulator/AlGaN interfaces on their electrical properties were investigated to develop advanced AlGaN/GaN metal–oxide–semiconductor (MOS) gate stacks. For this purpose, the initial thermal oxidation of AlGaN surfaces in oxygen ambient was systematically studied by synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) and atomic force microscopy (AFM). Our physical characterizations revealed that, when compared with GaN surfaces, aluminum addition promotes the initial oxidation of AlGaN surfaces at temperatures of around 400 °C, followed by smaller grain growth above 850 °C. Electrical measurements of AlGaN/GaN MOS capacitors also showed that, although excessive oxidation treatment of AlGaN surfaces over around 700 °C has an adverse effect, interface passivation with the initial oxidation of the AlGaN surfaces at temperatures ranging from 400 to 500 °C was proven to be beneficial for fabricating high-quality AlGaN/GaN MOS gate stacks.

  6. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  7. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  8. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  9. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    International Nuclear Information System (INIS)

    Wang Shifang; Li Juan; Suo Jinping; Luo Tianzhi

    2010-01-01

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3 deg. to 30 ± 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K 0.27 MnO 2 .0.54H 2 O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  10. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shifang; Li Juan [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China); Luo Tianzhi [State Key Laboratory of Mould Technology, Department of Materials Science and Engineering, Huazhong University of Science and Technology, Luo-Yu Road 1037, Wuhan, Hubei 430074 (China)

    2010-01-15

    A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 {+-} 3 deg. to 30 {+-} 4 deg. treated at 100 deg. C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 deg. C for 3 h. Hydrophilic groups such as carbonyl (C=O) and hydroxyl (-OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K{sub 0.27}MnO{sub 2}.0.54H{sub 2}O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.

  11. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    Science.gov (United States)

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  12. Influence of Oxidation Treatments and Surface Finishing on the Electrochemical Behavior of Ni-20Cr HVOF Coatings

    Science.gov (United States)

    Ruiz-Luna, H.; Porcayo-Calderon, J.; Alvarado-Orozco, J. M.; Mora-García, A. G.; Martinez-Gomez, L.; Trápaga-Martínez, L. G.; Muñoz-Saldaña, J.

    2017-12-01

    The low-temperature electrochemical behavior of HVOF Ni-20Cr coatings was assessed. The coatings were evaluated in different conditions including as-sprayed, as-ground, and heat-treated in air and argon atmospheres. A detailed analysis of the coatings was carried out by means of XRD, SEM, and EPMA, prior and after the corrosion test. The corrosion rate was analyzed in a NaCl solution saturated with CO2. Results demonstrate that the use of a low-oxygen partial pressure favors the formation of a Cr2O3 layer on the surface of the coatings. According to the electrochemical results, the lower corrosion rates were obtained for the heat-treated coatings irrespective of the surface finishing, being the ground and argon heat-treated condition that shows the best corrosion performance. This behavior is due to the synergistic effect of the low-pressure heat treatment and the grinding processes. The grinding promotes a more homogeneous reaction area without surface heterogeneities such as voids, and the pre-oxidation treatment decreases the porosity content of the coating and also allows the growing of a Cr-rich oxide scale which acts as a barrier against the ions of the aqueous solution.

  13. Damage free Ar ion plasma surface treatment on In{sub 0.53}Ga{sub 0.47}As-on-silicon metal-oxide-semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Donghyi; Shin, Seung Heon; Ahn, Jaehyun; Sonde, Sushant; Banerjee, Sanjay K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758 (United States); Kwon, Hyuk-Min [SK Hynix, Icheon, 2091, Gyeongchung-daero, Bubal-eub, Icheon-si, Gyeonggi-do 136-1 (Korea, Republic of); Orzali, Tommaso; Kim, Tae-Woo, E-mail: twkim78@gmail.com [SEMATECH Inc., 257 Fuller Rd #2200, Albany, New York 12203 (United States); Kim, Dae-Hyun [Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-11-02

    In this paper, we investigated the effect of in-situ Ar ion plasma surface pre-treatment in order to improve the interface properties of In{sub 0.53}Ga{sub 0.47}As for high-κ top-gate oxide deposition. X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor capacitors (MOSCAPs) demonstrate that Ar ion treatment removes the native oxide on In{sub 0.53}Ga{sub 0.47}As. The XPS spectra of Ar treated In{sub 0.53}Ga{sub 0.47}As show a decrease in the AsO{sub x} and GaO{sub x} signal intensities, and the MOSCAPs show higher accumulation capacitance (C{sub acc}), along with reduced frequency dispersion. In addition, Ar treatment is found to suppress the interface trap density (D{sub it}), which thereby led to a reduction in the threshold voltage (V{sub th}) degradation during constant voltage stress and relaxation. These results outline the potential of surface treatment for III-V channel metal-oxide-semiconductor devices and application to non-planar device process.

  14. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  15. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  16. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  17. Laser surface treatment on a nickel based alloy in order to form chromium oxide to reduce cations release in primary circuit. Experimental and numerical study of laser mater interaction

    International Nuclear Information System (INIS)

    Gouton, Lucille

    2015-01-01

    Alloy 690 (60%Ni, 30%Cr, 10%Fe) is mainly used in primary circuit pipes for nuclear power plants.The aim of this thesis is to form a Cr 2 O 3 layer, using laser surface melting, with the objective of creating a chromium-rich oxide layer. In order to optimize the treatment, it was first important to determine parameters influence on the layer oxide properties then, with the objective of a deeper understanding of mechanisms involved, to address thermo-physical phenomena occurring during and after the laser pulse striking the upper surface. A deep parametric study first enabled to find an optimized laser surface treatment which produces chromium enrichment of the upper surface and a dense and continuous oxide layer. This treatment has been applied on samples, set in a primary medium simulation loop. Experiments and calculations were carried out to provide understanding of surface chromium enrichment by laser process. The results were shown to explain chromium enrichment until melt pool solidification occurred on the upper surface, assumingly just before chromium oxide formation. This was also promoted by a high affinity with oxygen and a higher stability of Cr 2 O 3 oxide compared with other potential oxide formation. (author) [fr

  18. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  19. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  20. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  1. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  2. Modification of polycarbonate surface in oxidizing plasma

    Science.gov (United States)

    Ovtsyn, A. A.; Smirnov, S. A.; Shikova, T. G.; Kholodkov, I. V.

    2017-11-01

    The properties of the surface of the film polycarbonate Lexan 8010 were experimentally studied after treatment in a DC discharge plasma in oxygen and air at pressures of 50-300 Pa and a discharge current of 80 mA. The contact angles of wetting and surface energies are measured. The topography of the surface was investigated by atomic force microscopy. The chemical composition of the surface was determined from the FT-IR spectroscopy data in the variant of total internal reflection, as well as X-ray photoelectron spectroscopy. Treatment in the oxidizing plasma leads to a change in morphology (average roughness increases), an increase in the surface energy, and the concentration of oxygen-containing groups (hydroxyl groups, carbonyl groups in ketones or aldehydes and in oxyketones) on the surface of the polymer. Possible reasons for the difference in surface properties of polymer under the action of oxygen and air plasma on it are discussed.

  3. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-02

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

  4. Oxidation behaviour of cast aluminium matrix composites with Ce surface coatings

    International Nuclear Information System (INIS)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Feliu, S.; Viejo, F.

    2007-01-01

    The oxidation behaviour of SiC-reinforced aluminium matrix composites (A3xx.x/SiCp) has been studied after Ce-based treatments. Kinetics data of oxidation process were obtained from gravimetric tests performed at different temperatures (350, 425 and 500 o C). The nature of the oxidation layer was analyzed by scanning electron and atomic force microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The extent of oxidation degradation in untreated composites was preferentially localized in matrix/SiCp interfaces favouring the MgO formation. Ce coatings favoured a uniform oxidation of the composite surface with MgAl 2 O 4 spinel formation. This oxide increased the surface hardness of the materials

  5. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  6. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    International Nuclear Information System (INIS)

    Vunnam, Swathi; Ankireddy, Krishnamraju; Kellar, Jon; Cross, William

    2013-01-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO

  7. Surface modification of indium tin oxide for direct writing of silver nanoparticulate ink micropatterns

    Energy Technology Data Exchange (ETDEWEB)

    Vunnam, Swathi, E-mail: swathi.vunnam@mines.sdsmt.edu [Nanoscience and Nanoengineering Department, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States); Ankireddy, Krishnamraju; Kellar, Jon; Cross, William [Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD-57701 (United States)

    2013-03-01

    Surface treatment techniques were deployed to alter the surface of indium tin oxide (ITO) samples to attain a favorable interface between printed nano-inks and ITO surface. Surface free energy components of treated ITO substrates were calculated for each treatment using the van Oss–Chaudhury–Good method. The surface treatments of ITO changed the Lifshitz–van der Waals and Lewis acid–base components, and contact angle hysteresis significantly. Among all the surface treatments, air plasma treated samples showed high polar in nature, whereas dodecyltrichlorosilane self-assembled monolayer treated sample showed the lowest. In addition to the polarity and homogeneity, the surface roughness of the ITO was studied with respect to the surface treatment. Silver nanoparticulate ink was printed on treated ITO surfaces using aerosol jet printing system. Printed silver nano-ink line width and morphology strongly depended on the surface treatment of the ITO, ink properties and printing parameters. - Highlights: ► Surface treatments on indium tin oxide (ITO) altered its surface free energy. ► Surface free energies were studied in terms of acid–base components. ► ITO surface morphology and roughness were changed with the surface treatment. ► Silver ink was printed on treated ITO samples using aerosol jet printing system. ► Line widths of printed patterns clearly depended on the surface free energy of ITO.

  8. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  9. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Szesz, Eduardo M., E-mail: eszesz@neoortho.com.br [Neoortho Research Institute, Rua Ângelo Domingos Durigan, 607-Cascatinha, CEP 82025-100 Curitiba, PR (Brazil); Pereira, Bruno L., E-mail: brnl7@hotmail.com [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Kuromoto, Neide K., E-mail: kuromoto@fisica.ufpr.br [Physics Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Marino, Claudia E.B., E-mail: claudiamarino@yahoo.com [Mechanical Engineering Department, Universidade Federal do Paraná, 81531-980 Curitiba, PR (Brazil); Souza, Gelson B. de, E-mail: gelsonbs@uepg.br [Physics Department, Universidade Estadual de Ponta Grossa, 84051-510 Ponta Grossa, PR (Brazil); Soares, Paulo, E-mail: pa.soares@pucpr.br [Mechanical Engineering Department, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, PR (Brazil)

    2013-01-01

    In recent years, many surface modification processes have been developed in order to induce the osseointegration on titanium surface and thus to improve the implants' biocompatibility. In this work, Ti surface has been modified by shot blasting followed by anodic oxidation process in order to associate the good surface characteristics of both processes to obtain a rough and porous surface able to promote the titanium surface bioactivity. Commercially pure titanium (grade 2) plates were used on the surface treatments that were as follows: Shot blasting (SB) performed using alumina (Al{sub 2}O{sub 3}) particles, and anodic oxidation (AO) using NaOH electrolyte. The morphology, structural changes and the open-circuit potentials (OCP) of the surfaces were analyzed. It can be observed that an increase on the roughness of the blasted surface and a rough and porous surface happens after the AO process. The anodic film produced is thin and followed the blasted surface topography. It can be observed that there are small pores with regular shape covering the entire surface. X-ray diffraction results showed the presence of the anatase and rutile phases on the blasted and anodized surface after heat treatment at 600 °C/1 h. Concerning electrochemical measurements, when the different samples were submitted to open-circuit conditions in a physiological electrolyte, the protective effect increases with the oxidation process due to the oxide layer. When the surface was blasted, the OCP was more negative when compared with the Ti surface without surface treatments. - Highlights: ► A combination of shot blasting and anodic oxidation surface treatments is proposed. ► Both processes produced an increase in roughness compared to the polished surface. ► The combination of processes produced a rough and porous surface. ► Open circuit results show that the protective effect increases with oxidation process. ► The combination of processes presents the better results in this

  10. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  11. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  12. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  13. Capacitance-Voltage Characterization of La2O3 Metal-Oxide-Semiconductor Structures on In0.53Ga0.47As Substrate with Different Surface Treatment Methods

    Science.gov (United States)

    Zade, Dariush; Kanda, Takashi; Yamashita, Koji; Kakushima, Kuniyuki; Nohira, Hiroshi; Ahmet, Parhat; Tsutsui, Kazuo; Nishiyama, Akira; Sugii, Nobuyuki; Natori, Kenji; Hattori, Takeo; Iwai, Hiroshi

    2011-10-01

    We studied InGaAs surface treatment using hexamethyldisilazane (HMDS) vapor or (NH4)2S solution after initial oxide removal by hydrofluoric acid. The effect of each treatment on interface properties of La2O3/In0.53Ga0.47As metal-oxide-semiconductor (MOS) capacitor was evaluated. We found that HMDS surface treatment of InGaAs, followed by La2O3 deposition and forming gas annealing reduces the MOS capacitor's interface state density more effectively than (NH4)2S treatment. The comparison of the capacitance-voltage data shows that the HMDS-treated sample reaches a maximum accumulation capacitance of 2.3 µF/cm2 at 1 MHz with roughly 40% less frequency dispersion near accumulation, than the sample treated with (NH4)2S solution. These results suggest that process optimization of HMDS application could lead to further improvement of InGaAs MOS interface, thereby making it a potential routine step for InGaAs surface passivation.

  14. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  15. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  16. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Østergaard, Thomas M.; Giordano, Livia; Castelli, Ivano Eligio

    2018-01-01

    Understanding the reactivity of the cathode surface is of key importance to the development of batteries. Here, density functional theory is applied to investigate the oxidative decomposition of the electrolyte component, ethylene carbonate (EC), on layered LixMO(2) oxide surfaces. We compare...

  17. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  18. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Qian Xin, E-mail: qx3023@nimte.ac.cn [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang Xuefei; Ouyang Qin; Chen Yousi; Yan Qing [National Engineering Laboratory of Carbon Fiber Preparation Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment. Black-Right-Pointing-Pointer The concentration of oxygen and nitrogen on the fiber surface increased after surface treatment. Black-Right-Pointing-Pointer The intensity of oxidative reaction varied with the change of ammonium-salt solutions. Black-Right-Pointing-Pointer The higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative reaction happened. - Abstract: The surfaces of polyacrylonitrile-based carbon fibers were treated by an electrochemical anodic method. Three different kinds of ammonium-salt solutions namely NH{sub 4}HCO{sub 3}, (NH{sub 4}){sub 2}CO{sub 3} and (NH{sub 4}){sub 3}PO{sub 4} were respectively chosen as the electrolytes. The effect of these electrolytes on the surface structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed that longitudinal grooves on the fiber surface became more well-defined and much deeper after surface treatment, and the root mean square roughness (RMS) of carbon fiber surface increased from 4.6 nm for untreated fibers to 13.5 nm for treated fibers in (NH{sub 4}){sub 3}PO{sub 4} electrolytes. The concentration of oxygen and nitrogen atomic on the fiber surface increased after surface treatment. The tensile strength of oxidized fibers had an obvious decrease, whereas the interlaminar shear strength (ILSS) value of corresponding carbon fiber reinforced polymers (CFRPs) increased in a large extent. The intensity of oxidative reaction varied with the change of ammonium-salt solutions and electrochemical oxidation in (NH{sub 4}){sub 3}PO{sub 4} electrolyte was of the most violence. The corresponding mechanism was also discussed and the result showed that the higher the concentration of OH{sup -} ions in the electrolytes, the violent the oxidative

  19. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  20. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  1. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  2. Fluorinated cellular polypropylene films with time-invariant excellent surface electret properties by post-treatments

    International Nuclear Information System (INIS)

    An Zhenlian; Mao Mingjun; Yao Junlan; Zhang Yewen; Xia Zhongfu

    2010-01-01

    In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy RO 2 . radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy RO 2 . radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.

  3. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    Science.gov (United States)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    Science.gov (United States)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  5. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  7. Oxidation of hydrogen terminated Ge(1 0 0) surface in the presence of iodine in methanol

    International Nuclear Information System (INIS)

    Lee, Younghwan; Park, Kibyung; Lim, Sangwoo

    2008-01-01

    Surface reaction on Ge(1 0 0) in liquid methanol (MeOH) was systematically studied. In particular, the characteristics of the Ge surface in the presence of iodine (I 2 ) in MeOH were investigated. MeOH treatment of the Ge surface in the presence of 0.05 or 0.005 mM of I 2 exhibited a similar result to that without I 2 , which produces a GeO x -dominant oxide structure. However, when the concentration of I 2 in MeOH increased to 0.5 mM, Ge surface revealed a GeO 2 -dominant oxide structure. Therefore, it is believed that the addition of enough I 2 in MeOH modifies the Ge oxidation mechanism. Hydroxide produced by the reaction between MeOH and the iodine radical may oxidize the Ge surface to form a Ge-O layer. Because MeOH is greatly consumed by chain and series reactions when I 2 concentration is high, a GeO 2 structure is not etched and a GeO 2 -dominant oxide structure is obtained with the addition of 0.5 mM I 2 in MeOH. The modified oxide layer prepared in MeOH with 0.5 mM I 2 exhibited an atomically smoother surface compared to a pure MeOH- or H 2 O 2 -treated Ge surface and a much thinner oxide layer than H 2 O 2 treatment.

  8. Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release.

    Science.gov (United States)

    Clarke, B; Carroll, W; Rochev, Y; Hynes, M; Bradley, D; Plumley, D

    2006-10-01

    Medical implants and devices are now used successfully in surgical procedures on a daily basis. Alloys of nickel and titanium, and in particular Nitinol are of special interest in the medical device industry, because of their shape memory and superelastic properties. The corrosion behavior of nitinol in the body is also of critical importance because of the known toxicological effects of nickel. The stability of a NiTi alloy in the physiological environment is dependant primarily on the properties of the mostly TiO(2) oxide layer that is present on the surface. For the present study, a range of nitinol wires have been prepared using different drawing processes and a range of surface preparation procedures. It is clear from the results obtained that the wire samples with very thick oxides also contain a high nickel content in the oxide layer. The untreated samples with the thicker oxides show the lowest pitting potential values and greater nickel release in both long and short-term experiments. It was also found that after long-term immersion tests breakdown potentials increased for samples that exhibited lower values initially. From these results it would appear that surface treatment is essential for the optimum bioperformance of nitinol. (c) 2006 Wiley Periodicals, Inc

  9. Characterization, modeling and physical mechanisms of different surface treatment methods at room temperature on the oxide and interfacial quality of the SiO2 film using the spectroscopic scanning capacitance microscopy

    Directory of Open Access Journals (Sweden)

    Kin Mun Wong

    Full Text Available In this article, a simple, low cost and combined surface treatment method [pre-oxidation immersion of the p-type silicon (Si substrate in hydrogen peroxide (H2O2 and post oxidation ultra-violet (UV irradiation of the silicon-dioxide (SiO2 film] at room temperature is investigated. The interface trap density at midgap [Dit(mg] of the resulting SiO2 film (denoted as sample 1A is quantified from the full width at half-maximum of the scanning capacitance microscopy (SCM differential capacitance (dC/dV characteristics by utilizing a previously validated theoretical model. The Dit(mg of sample 1A is significantly lower than the sample without any surface treatments which indicates that it is a viable technique for improving the interfacial quality of the thicker SiO2 films prepared by wet oxidation. Moreover, the proposed combined surface treatment method may possibly complement the commonly used forming gas anneal process to further improve the interfacial quality of the SiO2 films. The positive shift of the flatband voltage due to the overall oxide charges (estimated from the probe tip dc bias at the peak dC/dV spectra of sample 1A suggests the presence of negative oxide fixed charge density (Nf in the oxide. In addition, an analytical formula is derived to approximate the difference of the Nf values between the oxide samples that are immersed in H2O2 and UV irradiated from their measured SCM dC/dV spectra. Conversely, some physical mechanisms are proposed that result in the ionization of the SiO− species (which are converted from the neutral SiOH groups that originate from the pre-oxidation immersion in H2O2 and ensuing wet oxidation during the UV irradiation as well as the UV photo-injected electrons from the Si substrate (which did not interact with the SiOH groups. They constitute the source of mobile electrons which partially passivate the positively charged empty donor-like interface traps at the Si-SiO2 interface. Keywords: Dielectrics

  10. Oxidation of scandium thin films on tungsten surface

    International Nuclear Information System (INIS)

    Gorodetskij, D.A.; Martynyuk, A.V.

    1988-01-01

    Presence of Sc on the surface of W in amounts larger than a monolayer coverage leads to a decrease of the work function at the initial oxidation stage, which is attributed to oxygen implantation into the surface layer of the metal. A subsequent oxidation is followed by the formation on the surface of a thin oxide layer and an increase of the work function. An increase of the amount of Sc deposited on the surface before the oxidation decreases the work function of the obtained oxide from 5.8 (clean W surface) down to 3.3 eV (thick Sc layer on W)

  11. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, Serguei [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Núcleo de Energías Renovables (F. Ingeniería), Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco (Chile); Valdés, Héctor, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologías Limpias (F. Ingeniería), Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción (Chile); Manéro, Marie-Hélène [Université de Toulouse (France); INPT, UPS (France); Laboratoire de Génie Chimique, 4, Allée Emile Monso, F–31030 Toulouse (France); CNRS (France); Laboratoire de Génie Chimique, F–31030 Toulouse (France); Zaror, Claudio A. [Departamento de Ingeniería Química (F. Ingeniería), Universidad de Concepción, Concepción, Correo 3, Casilla 160–C (Chile)

    2014-06-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity.

  12. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics

    International Nuclear Information System (INIS)

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A.

    2014-01-01

    Highlights: • Surface acidity of modified natural zeolite is related to its chemical reactivity. • Brønsted acid sites are associated to toluene adsorption. • Lewis acid sites could decompose ozone generating surface active oxygen species. • Infrared spectra evidence active atomic oxygen and oxidation by-product formation. • 2NH4Z1 sample shows the highest reactivity toward adsorbed toluene. - Abstract: In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823 K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623 K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity

  13. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  14. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  15. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  16. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  17. Effect of Ge surface termination on oxidation behavior

    Science.gov (United States)

    Lee, Younghwan; Park, Kibyung; Cho, Yong Soo; Lim, Sangwoo

    2008-09-01

    Sulfur-termination was formed on the Ge(1 0 0) surface using (NH 4) 2S solution. Formation of Ge-S and the oxidation of the S-terminated Ge surface were monitored with multiple internal reflection Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. In the 0.5, 5, or 20% (NH 4) 2S solution, H-termination on the Ge(1 0 0) surface was substituted with S-termination in 1 min. When the S-terminated Ge(1 0 0) surface was exposed in air ambient, the oxidation was retarded for about 3600 min. The preservation time of the oxide layer up to one monolayer of S-terminated Ge(1 0 0) surface was about 120 times longer than for the H-terminated Ge(1 0 0) surface. However, the oxidation of S-terminated Ge(1 0 0) surface drastically increased after the threshold time. There was no significant difference in threshold time between S-terminations formed in 0.5, 5, and 20% (NH 4) 2S solutions. With the surface oxidation, desorption of S on the Ge surface was observed. The desorption behavior of sulfur on the S-terminated Ge(1 0 0) surface was independent of the concentration of the (NH 4) 2S solution that forms S-termination. Non-ideal S-termination on Ge surfaces may be related to drastic oxidation of the Ge surface. Finally, with the desulfurization on the S-terminated Ge(1 0 0) surface, oxide growth is accelerated.

  18. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  19. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  20. Economical surface treatment of die casting dies to prevent soldering in high pressure casting

    International Nuclear Information System (INIS)

    Fraser, D.T.; Jahedi, M.Z.

    2001-01-01

    This paper describes the use of a gas oxidation treatment of H13 tool steel to develop a compact iron oxide layer at the surface of core pins to prevent soldering in high pressure die casting. The performance of oxide layers in the protection of die steel against soldering during high pressure die casting was tested in a specially designed die using removable core pins and Al-11 Si-3 Cu casting alloy. The gas oxidation treatment can be applied at low temperatures and to large areas of the die surface. In addition this process is very cost effective compared to other coating processes such as physical vapour deposition (PVD), or thermo-reactive diffusion (TRD) coatings. This work demonstrated that surface treatment producing pure magnetite (Fe 3 O 4 ) layers are more protective than oxide layers containing a combination of Fe 3 O 4 (magnetite) and Fe 3 O 3 (haematite). The magnetite layer acts as a barrier between the die steel/casting alloy interface and prevents the formation of inter-metallic phases. Optical microscopy and scanning electron microscope were used to determine the thickness of the oxide layer, while X-ray diffraction was performed to determine the oxide phase structure

  1. CO oxidation on PdO surfaces

    DEFF Research Database (Denmark)

    Hirvi, Janne T.; Kinnunen, Toni-Jani J.; Suvanto, Mika

    2010-01-01

    Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable...... oxidation via the Langmuir–Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.66 eV, which is comparable to the lowest activation energies observed on metallic surfaces. However, the reaction rate may be limited by the coverage of molecular oxygen. Actually...... adsorption, following the Eley–Rideal mechanism and taking advantage of the reaction tunnel provided by the adjacent palladium atom, has an activation energy of only 0.24 eV. The reaction mechanism and activation energy for the palladium activated CO oxidation on the most stable PdO(100)–O surface...

  2. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  3. Calculations of oxide formation on low-index Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Xin; Liu, Renlong, E-mail: lrl@cqu.edu.cn, E-mail: henkelman@utexas.edu [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xiao, Penghao; Yang, Sheng-Che; Henkelman, Graeme, E-mail: lrl@cqu.edu.cn, E-mail: henkelman@utexas.edu [Department of Chemistry and the Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712-0165 (United States)

    2016-07-28

    Density-functional theory is used to evaluate the mechanism of copper surface oxidation. Reaction pathways of O{sub 2} dissociation on the surface and oxidation of the sub-surface are found on the Cu(100), Cu(110), and Cu(111) facets. At low oxygen coverage, all three surfaces dissociate O{sub 2} spontaneously. As oxygen accumulates on the surfaces, O{sub 2} dissociation becomes more difficult. A bottleneck to further oxidation occurs when the surfaces are saturated with oxygen. The barriers for O{sub 2} dissociation on the O-saturated Cu(100)-c(2×2)-0.5 monolayer (ML) and Cu(100) missing-row structures are 0.97 eV and 0.75 eV, respectively; significantly lower than those have been reported previously. Oxidation of Cu(110)-c(6×2), the most stable (110) surface oxide, has a barrier of 0.72 eV. As the reconstructions grow from step edges, clean Cu(110) surfaces can dissociatively adsorb oxygen until the surface Cu atoms are saturated. After slight rearrangements, these surface areas form a “1 ML” oxide structure which has not been reported in the literature. The barrier for further oxidation of this “1 ML” phase is only 0.31 eV. Finally the oxidized Cu(111) surface has a relatively low reaction energy barrier for O{sub 2} dissociation, even at high oxygen coverage, and allows for facile oxidation of the subsurface by fast O diffusion through the surface oxide. The kinetic mechanisms found provide a qualitative explanation of the observed oxidation of the low-index Cu surfaces.

  4. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  5. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  6. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  7. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  8. Plasma-oxidation of Ge(100)-surfaces characterized by MIES, UPS and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Wegewitz, Lienhard; Dahle, Sebastian; Maus-Friedrichs, Wolfgang [Institut fuer Energieforschung und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstr. 4, 38678 Clausthal-Zellerfeld (Germany); Hoefft, Oliver; Endres, Frank [Institut fuer Mechanische Verfahrenstechnik, Technische Universitaet Clausthal, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany); Vioel, Wolfgang [HAWK Goettingen, Fakultaet Naturwissenschaften und Technik, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2011-07-01

    Cleaning and passivation of Germanium surfaces is of tremendous technological interest. Germanium has various applications, for example in complementary metal-oxide-semiconductor elements. It turned out to be difficult to prepare contamination free Germanium surfaces by methods of wet chemistry. Several attempts have been made preparing such surfaces by different plasma treatments. We report cleaning and passivation of Ge(100)-surfaces by dielectric barrier discharge plasma at ambient temperature in oxygen and in air studied by Metastable Induced Electron Spectroscopy (MIES) and Photoelectron Spectroscopy (UPS(He I) and XPS). The plasma treatment is carried out in a special high-vacuum chamber which operates up to ambient pressure and is directly connected to the ultra-high vacuum chamber including the analysis equipment. In summary the air plasma treatment as well as the oxygen plasma treatment result in contamination free GeO{sub 2} covered surfaces.

  9. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  10. Influence of desiccation procedures on the surface wettability and corrosion resistance of porous aluminium anodic oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Meng, E-mail: ZhengMeng@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Sakairi, Masatoshi [Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Jha, Himendra [Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Simple desiccation treatment without coating or etching produces hydrophobicity of porous anodic oxide film. Black-Right-Pointing-Pointer Treatment time can be shortened by controlling desiccation condition. Black-Right-Pointing-Pointer Surface microstructure is the key point to determine the wettability. Black-Right-Pointing-Pointer The hydrophobic surfaces show better corrosion resistance than oxide aluminium. - Abstract: A hydrophobic oxide film was formed on aluminium by anodizing followed by desiccation treatment. Films subjected to gradual heating and cooling exhibit larger water contact angles than samples exposed to fast heating and cooling at the same temperature. From SEM and Auger Electron Spectroscopic observations, the low wettability surface shows a regular porous morphology with no significant chemical composition differences due to the different treatments. The desiccation process improves the corrosion resistance, shown by immersion in NaCl. The change in morphology by the desiccation processes is considered a main reason to lower the wettability, which further affects the corrosion properties.

  11. Removing of oxides from Fe-Ni alloys by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2007-01-01

    Plasma wall interaction is one of the key issues in fusion research for ITER application. The first-wall materials in tokamaks and in other high temperature plasma reactors are subject to and to continuous degradation due to the ion bombardment. Furthermore the release of the eroded wall material leads to their redeposition to other parts of the fusion reactor and they can be even transported into the core plasma where they cause dilution of the plasma fuel and cooling of the plasma itself. One possible solution for removal of deposits formed during operation of the fusion devices is oxygen plasma treatment. A drawback of the oxygen plasma is that it causes formation of oxides on the surface of the materials. These oxides can be reduced by further hydrogen plasma treatment. A study on reduction of an oxide layer from Fe-Ni alloys was performed. The samples were exposed to low pressure weakly ionized hydrogen plasma for different periods. A density of hydrogen plasma was 8x10 15 m -3 , an electron temperature was 6 eV, and a degree of dissociation was about 30%. After plasma treatment the samples were analyzed by Auger Electron Spectroscopy (AES). The results showed that the complete reduction of an initial oxide layer with the thickness of about 30 nm occurred after 20 s of exposure to hydrogen plasma, when AES showed no more oxygen on the surface of Fe-Ni alloy. During the exposure of the samples to the plasma their temperature was measured. The temperature first rised with time, reached the maximum value, and than dropped as soon as the layer of an oxide on the surface was reduced. (author)

  12. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  13. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  14. Oxidation and photo-oxidation of water on TiO2 surface

    DEFF Research Database (Denmark)

    Valdes, A.; Qu, Z.W.; Kroes, G.J.

    2008-01-01

    The oxidation and photo-oxidation of water on the rutile TiO2(110) surface is investigated using density functional theory (DFT) calculations. We investigate the relative stability of different surface terminations of TiO2 interacting with H2O and analyze the overpotential needed for the electrol...

  15. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stainless steel 304L with europium (Eu as contaminant. This technique consists in spraying an Eu-solution on stainless steel samples. The specimens are firstly treated with a pulsed nanosecond laser after which the steel samples are placed in a 873 K furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer were analyzed by scanning electron microscopy coupled to an energy-dispersive X-ray microanalyzer, as well as by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm–4.5 μm depending on the laser treatment parameters and the heating duration. These contaminated oxides had a ‘duplex structure’ with a mean concentration of the order of 6 × 1016 atoms/cm2 (15 μg/cm2 of europium in the volume of the oxide layer. It appears that europium implementation prevented the oxide growth in the furnace. Nevertheless, the presence of the contamination had no impact on the thickness of the oxide layers obtained by preliminary laser treatment. These oxide layers were used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  16. Control of Surface and Edge Oxidation on Phosphorene.

    Science.gov (United States)

    Kuntz, Kaci L; Wells, Rebekah A; Hu, Jun; Yang, Teng; Dong, Baojuan; Guo, Huaihong; Woomer, Adam H; Druffel, Daniel L; Alabanza, Anginelle; Tománek, David; Warren, Scott C

    2017-03-15

    Phosphorene is emerging as an important two-dimensional semiconductor, but controlling the surface chemistry of phosphorene remains a significant challenge. Here, we show that controlled oxidation of phosphorene determines the composition and spatial distribution of the resulting oxide. We used X-ray photoemission spectroscopy to measure the binding energy shifts that accompany oxidation. We interpreted these spectra by calculating the binding energy shift for 24 likely bonding configurations, including phosphorus oxides and hydroxides located on the basal surface or edges of flakes. After brief exposure to high-purity oxygen or high-purity water vapor at room temperature, we observed phosphorus in the +1 and +2 oxidation states; longer exposures led to a large population of phosphorus in the +3 oxidation state. To provide insight into the spatial distribution of the oxide, transmission electron microscopy was performed at several stages during the oxidation. We found crucial differences between oxygen and water oxidants: while pure oxygen produced an oxide layer on the van der Waals surface, water oxidized the material at pre-existing defects such as edges or steps. We propose a mechanism based on the thermodynamics of electron transfer to interpret these observations. This work opens a route to functionalize the basal surface or edges of two-dimensional (2D) black phosphorus through site-selective chemical reactions and presents the opportunity to explore the synthesis of 2D phosphorene oxide by oxidation.

  17. Aesthetic value improvement of the ruby stone using heat treatment and its synergetic surface study

    International Nuclear Information System (INIS)

    Sahoo, Rakesh K.; Mohapatra, Birendra K.; Singh, Saroj K.; Mishra, Barada K.

    2015-01-01

    Highlights: • Natural ruby is heated at high temperature with metal oxide additives (PbO and ZnO) to enhance its aesthetic value. • Changes in surface characteristics of these natural rubies before and after heat treatment are compared. • The R-line peak splitting in the PL spectra and the contrary shift of the Al 2p peaks in the XPS spectra are explicated. - Abstract: The surface behavior of the natural ruby stones before and after heat treatment with metal oxide additives like: zinc oxide (ZnO) and lead oxide (PbO) have been studied. The surface appearance of the ruby stones processed with the metal oxides changed whereas the bulk densities of the stones remained within the range of 3.9–4.0 g/cm 3 . The cracks healing and pores filling by the metal oxides on the surface of the ruby have been examined using scanning electron microscopy. The chemical compositions based on the XPS survey scans are in good agreement with the expected composition. The phase and crystallinity of the ruby stones original and heat-treated were obtained from their X-ray diffraction patterns. The change in peak separation between R 1 and R 2 – peaks in photoluminescence spectra and the contrary binding energy shift of the Al 2p peaks in the X-ray photoelectron spectra have been explicated. Moreover, in this work we describe the change in surface chemical and physical characteristics of the ruby stone before and after heat treatment

  18. Non-activated high surface area expanded graphite oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M. [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece); Lei, C.; Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece)

    2015-12-15

    Graphical abstract: - Highlights: • One-step exfoliation and reduction of graphite oxide via microwave irradiation. • Effect of pristine graphite (type, flake size) on the microwave expanded material. • Effect of pretreatment and oxidation cycles on the produced expanded material. • Expanded graphene materials with high BET surface areas (940 m{sup 2}/g–2490 m{sup 2}/g). • Non-activated graphene based materials suitable for supercapacitors. - Abstract: Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m{sup 2}/g to 2490 m{sup 2}/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  19. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Science.gov (United States)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez; Gyergyek, Tomaz; Stockel, Jan; Varju, Jozef; Panek, Radomir; Balat-Pichelin, Marianne

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni60Cr30Mo10Ni4Nb1) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr2O4 compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al2O3 crystals.

  20. Preliminary Investigation of the Effect of Surface Treatment on the Strength of a Titanium Carbide - 30 Percent Nickel Base Cermet

    Science.gov (United States)

    Robins, Leonard; Grala, Edward M

    1957-01-01

    Specimens of a nickel-bonded titanium carbide cermet were given the following surface treatments: (1) grinding, (2) lapping, (3) blast cleaning, (4) acid roughening, (5) oxidizing, and (6) oxidizing and refinishing. Room-temperature modulus-of-rupture and impact strength varied with the different surface treatments. Considerable strength losses resulted from the following treatments: (1) oxidation at 1600 F for 100 hours, (2) acid roughening, and (3) severe grinding with 60-grit silicon carbide abrasive. The strength loss after oxidation was partially recovered by grit blasting or diamond grinding.

  1. Apparatus for surface treatment of U-Pu carbide fuel samples

    International Nuclear Information System (INIS)

    Fukushima, Susumu; Arai, Yasuo; Handa, Muneo; Ohmichi, Toshihiko; Shiozawa, Ken-ichi.

    1979-05-01

    Apparatus has been constructed for treating the surface of U-Pu carbide fuel samples for EPMA. The treatment is to clean off oxide layer on the surface, then coat with an electric-conductive material. The apparatus, safe in handling plutonium, operates as follows. (1) To avoid oxidation of the analyzing surface by oxygen and water in the air, series of cleaning and coating, i.e. ion-etching and ion-coating or ion-etching and vacuum-evaporation is done at the same time in an inert gas atmosphere. (2) Ion-etching is possible on samples embedded in non-electric-conductive and low heat-conductive resin. (3) Since the temperature rise in (2) is negligible, there is no deterioration of the samples. (author)

  2. An evaluation of the effect of surface chromium concentration on the oxidation of a stainless steel

    International Nuclear Information System (INIS)

    Lobb, R.C.; Evans, H.E.

    1983-01-01

    Short-term oxidation tests have been performed at 850 deg C in a CO 2 -based atmosphere on 20Cr-25Ni-Nb-stabilized steels previously exposed to dynamic vacuum at 1000 deg C. This pre-treatment preferentially removes chromium from the metal surface and is always detrimental to the oxidation properties. It is shown that porous, iron-rich oxides initially form on specimens with surface chromium concentrations 18.5 w/o chromium, a protective surface layer is produced. It is suggested that the transition between these extremes is determined by nucleation conditions and, in the present steels, it is shown how the metal grain size plays a significant role. (author)

  3. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  4. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    Science.gov (United States)

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  5. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croue, Jean-Philippe

    2016-01-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  6. Influence of surface properties of filtration-layer metal oxide on ceramic membrane fouling during ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-04-01

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. Distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e. surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). In consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides are quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides towards oil droplets which consists very well with irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  7. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  8. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  9. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  10. Role of the carbonate impurities on the surface state of pyrite and arsenopyrite under treatment by high power electromagnetic pulses (HPEMP): oxidation of 50-100 μm size particles

    International Nuclear Information System (INIS)

    Filippova, I; Filippov, L; Ryazantseva, M; Chanturiya, V; Bunin, I

    2013-01-01

    Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Transmission Electron Microscopy (TEM) have shown the variation of surface phase compositions of carbonate bearing pyrite and arsenopyrite as a result of the combined action of chemical oxidation and thermal processes after the treatment by high power electromagnetic pulses (HPEMP). The monitoring of the surface phase composition allowed to determine the correlation between the treatment conditions, the surface phase composition, and the flotation yield. Thus, HPEMP treatment may be regarded as a tool controlling the surface composition and the sorption ability of flotation collector onto minerals surface, and therefore, allowing to control the hydrophobic-hydrophilic surface balance. It was confirmed in this study that the flotation of pyrite with xanthate as a result of the influence HPEMP may vary depending on the presence of impurities such as calcite.

  11. Development of titanium alloys and surface treatments to increase the implants lifetime

    Directory of Open Access Journals (Sweden)

    Joan Lario-Femenía

    2016-12-01

    Full Text Available The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration achievement. Therefore, metal implants must have a mechanical compatibility with the substituted bone, which is achieved through a combination of low elastic modulus, high flexural and fatigue strength. The improvement, in the short and long term, of the osseointegration depends on several factors, where the macroscopic design and dimensional, material and implant surface topography are of great importance. This article is focused on summarizing the advantages that present the titanium and its alloys to be used as biomaterials, and the development that they have suffered in recent decades to improve their biocompatibility. Consequently, the implants evolution has been recapitulated and summarized through three generations. In the recent years the interest on the surface treatments for metallic prostheses has been increased, the main objective is achieve a lasting integration between implant and bone tissue, in the shortest time possible. On this article various surface treatments currently used to modify the surface roughness or to obtain coatings are described it; it is worthy to mention the electrochemical oxidation with post-heat treated to modify the titanium oxide crystalline structure. After the literature review conducted for prepare this article, the ? titanium alloys, with a nanotubes surface of obtained by electrochemical oxidation and a subsequent step of heat treatment to obtain a crystalline structure are the future option to improve long term biocompatibility of titanium prostheses.

  12. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  13. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vesel, Alenka; Drenik, Aleksander; Elersic, Kristina; Mozetic, Miran; Kovac, Janez [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Gyergyek, Tomaz [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Stockel, Jan; Varju, Jozef; Panek, Radomir [Institute of Plasma Physics, Academy of Sciences of the Czech Republic, Ze Slovankou 3, Praha 8 (Czech Republic); Balat-Pichelin, Marianne, E-mail: marianne.balat@promes.cnrs.fr [PROMES-CNRS Laboratory, 7 rue du four solaire, 66120 Font Romeu Odeillo (France)

    2014-06-01

    Initial stages of Inconel 625 superalloy (Ni{sub 60}Cr{sub 30}Mo{sub 10}Ni{sub 4}Nb{sub 1}) oxidation upon short treatment with gaseous plasma at different temperatures up to about 1600 K were studied. Samples were treated for different periods up to a minute by oxygen or hydrogen plasma created with a microwave discharge in the standing-wave mode at a pressure of 40 Pa and a power 500 W. Simultaneous heating of the samples was realized by focusing concentrated solar radiation from a 5 kW solar furnace directly onto the samples. The morphological changes upon treatment were monitored using scanning electron microscopy, compositional depth profiling was performed using Auger electron spectroscopy, while structural changes were determined by X-ray diffraction. The treatment in oxygen plasma caused formation of metal oxide clusters of three dimensional crystallites initially rich in nickel oxide with the increasing chromium oxide content as the temperature was increasing. At about 1100 K iron and niobium oxides prevailed on the surface causing a drop of the material emissivity at 5 μm. Simultaneously the NiCr{sub 2}O{sub 4} compound started growing at the interface between the oxide film and bulk alloy and the compound persisted up to temperatures close to the Inconel melting point. Intensive migration of minority alloying elements such as Fe and Ti was observed at 1600 K forming mixed surface oxides of sub-micrometer dimensions. The treatment in hydrogen plasma with small admixture of water vapor did not cause much modification unless the temperature was close to the melting point. At such conditions aluminum segregated on the surface and formed well-defined Al{sub 2}O{sub 3} crystals.

  14. Surface modification and characterization of indium-tin oxide for organic light-emitting devices.

    Science.gov (United States)

    Zhong, Z Y; Jiang, Y D

    2006-10-15

    In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.

  15. Surface and sub-surface thermal oxidation of ruthenium thin films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    For next generation Extreme UV photolithography, multilayer coatings may require protective capping layers against surface contamination. Ruthenium, as a low-oxidation metal, is often used as a reference material. The oxidation behaviour of Ru thin films has been studied using X-ray reflectometry

  16. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  17. Effect of thermal oxidation treatment on pH sensitivity of AlGaN/GaN heterostructure ion-sensitive field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Bu, Yuyu [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan); Li, Liuan, E-mail: liliuan@mail.sysu.edu.cn [School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275 (China); Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan)

    2017-07-31

    Highlights: • AlGaN/GaN ISFETs were fabricated and evaluated with thermal oxidation treatment. • Sensitivity was improved to 57.7 mV/pH after 700 °C treatment. • Sensitivity became poor after 800 °C treatment. • The pure α-Al{sub 2}O{sub 3} crystal phase generated on the surface of the 700 °C treatment sample. • Ga{sub 2}O{sub 3} phase content in the metal oxide layer increased after 800 °C treatment. - Abstract: In this article, AlGaN/GaN heterostructure ion-sensitive field-effect transistors (ISFETs) were prepared and evaluated by thermal oxidation treatment on the AlGaN surface. The ISFETs were fabricated on the AlGaN/GaN heterostructure and then thermally oxidized with dry oxygen in 600, 700, and 800 °C, respectively. It indicates that the performance of the AlGaN/GaN heterostructure ISFETs, such as noise and sensitivity, has been improved owing to the thermal oxidation treatment process at different temperatures. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results indicate that after thermal oxidation treatment at different temperatures, hydroxide who possesses high surface state density will transfer to oxide owing to the higher chemical stability of the latter. Moreover, a crystalline α-Al{sub 2}O{sub 3} phase generated at 700 °C can not only provide a relatively smooth surface, but also improve the sensitivity to 57.7 mV/pH for the AlGaN/GaN heterostructure ISFETs, which is very close to the Nernstian limit.

  18. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    International Nuclear Information System (INIS)

    Kim, J.; Teo, M.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2005-01-01

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi] + /[Al 2 O] + SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H 2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization

  19. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]{sup +}/[Al{sub 2}O]{sup +} SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H{sub 2} plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization.

  20. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Z.; Fratila-Apachitei, L.E., E-mail: e.l.fratila-apachitei@tudelft.nl; Apachitei, I.; Duszczyk, J.

    2013-06-01

    Despite the ability of creating porous oxide layers on nickel–titanium alloy (NiTi) surface for biofunctionalization, the use of plasma electrolytic oxidation (PEO) has raised concerns over the possible increased levels of Ni release. Therefore, the primary aim of this study was to investigate the effect of aging in boiling water on Ni release from porous NiTi surfaces that have been formed by the PEO process. Based on different oxidation conditions, e.g. electrolyte composition and electrical parameters, three kinds of oxide layers with various characteristics were prepared on NiTi substrate. The process was followed by aging in boiling water for different durations. The Ni release was assessed by immersion tests in phosphate buffer saline and the Ni concentration was measured using the flame atomic absorption spectrometry. The results showed that aging in boiling water can significantly reduce the Ni release from oxidized porous samples, given that the duration of the treatment is finely adjusted according to the parameters of the as-formed oxide layer. Surface examination of the samples before and after aging in boiling water suggested that such a treatment is non-destructive while improving the corrosion resistance of oxidized samples, as evidenced by potentiodynamic polarization tests. The results of this study indicate that water boiling may be a suitable post-treatment required to minimize Ni release from porous oxides produced on NiTi by PEO for biomedical applications.

  1. Surface morphology study on chromium oxide growth on Cr films by Nd-YAG laser oxidation process

    International Nuclear Information System (INIS)

    Dong Qizhi; Hu Jiandong; Guo Zuoxing; Lian Jianshe; Chen Jiwei; Chen Bo

    2002-01-01

    Grain sized (60-100 nm) Cr 2 O 3 thin films were prepared on Cr thin film surfaces by Nd-YAG laser photothermal oxidation process. Surface morphology study showed crack-free short plateau-like oxide films formed. Increase of dislocation density after pulsed laser irradiation was found. Thin film external surfaces, grain boundaries and dislocations are main paths of laser surface oxidation. Pinning and sealing of grain boundary was the reason that deeper oxidation did not produce. Grain growth and agglomeration of Cr sub-layer yielded tensile stress on the surface Cr 2 O 3 thin film. It was the reason that short plateau-like surface morphology formed and cracks appeared sometimes. In oxygen annealing at 700 deg. C, grain boundaries were considered not to be pinned at the surface, mixture diffusion was main mechanism in growth of oxide. Compression stress development in whole film led to extrusion of grains that was the reason that multiple appearances such as pyramid-like and nutshell-like morphology formed

  2. Surface improvement of EPDM rubber by plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, J H [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Silva Sobrinho, A S da [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Maciel, H S [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Dutra, J C N [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Massi, M [LPP, Physics Department, ITA, CTA, Pca Mal Eduardo Gomes 50, 12228-900 Sao Jose dos Campos, S.P. (Brazil); Mello, S A C [EBO, Chemistry Division, IAE, CTA, Pca Mal Eduardo Gomes 50, 12228-904 Sao Jose dos Campos, S.P. (Brazil); Schreiner, W H [Physics Department, UFPR, Centro Politecnico, 80060-000 Curitiba, P.R. (Brazil)

    2007-12-21

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N{sub 2}/Ar and N{sub 2}/H{sub 2}/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  3. Surface improvement of EPDM rubber by plasma treatment

    International Nuclear Information System (INIS)

    Moraes, J H; Silva Sobrinho, A S da; Maciel, H S; Dutra, J C N; Massi, M; Mello, S A C; Schreiner, W H

    2007-01-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N 2 /Ar and N 2 /H 2 /Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber

  4. Surface improvement of EPDM rubber by plasma treatment

    Science.gov (United States)

    Moraes, J. H.; da Silva Sobrinho, A. S.; Maciel, H. S.; Dutra, J. C. N.; Massi, M.; Mello, S. A. C.; Schreiner, W. H.

    2007-12-01

    The surface of ethylene-propylene-diene monomer (EPDM) rubber was treated in N2/Ar and N2/H2/Ar RF plasmas in order to achieve similar or better adhesion properties than NBR (acrylonitrile-butadiene) rubber, nowadays used as thermal protection of rocket chambers. The surface properties were studied by contact angle measurements and by x-ray photoelectron spectroscopy (XPS). The treated surfaces of the EPDM samples show a significant reduction in the contact angle measurement, indicating an increase in the surface energy. XPS analyses show the incorporation of polar nitrogen- and oxygen-containing groups on the rubber surface. After plasma treatment the presence of oxygen is observed due to surface oxidation which occurs when the samples are exposed to the air. Atomic force microscopy and scanning electron microscopy analyses indicate a decrease in the EPDM rubber surface roughness, promoted by surface etching during the plasma treatment. Strength tests indicate improvement of about 30% and 110% in the adhesion strength for the plasma treated EPDM/polyurethane liner interface and for the EPDM/epoxy adhesive interface, respectively. The adhesion strength of the EPDM/liner is similar to that obtained for the NBR/liner, which indicates that EPDM rubber can safely be used as thermal protection of the solid propellant rocket chamber.

  5. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  6. Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Retraint, D.; Grosseau-Poussard, J.-L.; Li, L.; Guérain, M.; Goudeau, P.; Tamura, N.; Kunz, M.

    2012-01-01

    Highlights: ► SMAT leads to a modification of surface properties of an M5 zirconium alloy (grain size and roughness. ► SMAT induces a change in the oxidation kinetics during high temperature oxidation. ► A diffusion model is able to reproduce kinetics and emphasise the consequences of SMAT on dissolution of oxygen in Zr. - Abstract: In the present work, the effects of a nanocrystallisation treatment on the high-temperature oxidation of a zirconium alloy are investigated. Surface Mechanical Attrition Treatment is a recent process designed to nanocrystallise the surface of materials. The particular effects of this treatment on an M5 zirconium alloy are studied using different experimental techniques at several scales. This material is of considerable interest, especially to the nuclear industry where very stringent conditions apply. High temperature oxidation was performed in order to show the benefits of this type of nanocrystallisation on the corrosion resistance of the alloy concerned. Microstructure development mechanisms, which improve the oxidation resistance of zirconium alloys have been identified during high-temperature corrosion. Those mechanisms have been discussed in further detail in relation to numerical calculations concerning the oxidation kinetics.

  7. Process for surface treatment of zirconium-containing cladding materials for fuel element or other components for nuclear reactors

    International Nuclear Information System (INIS)

    Videm, K.G.; Lunde, L.R.; Kooyman, H.H.

    1975-01-01

    A process for the surface treatment of zirconium-base cladding materials for fuel elements or other components for nuclear reactors is described. The treatment includes pickling the cladding material in a fluoride-containing bath, and then applying a protective coating through oxidation to the pickled cladding material. The fluoride-containing contaminants which remain on the surface of the cladding material during pickling are removed or rendered harmless by anodic oxidation

  8. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  9. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  10. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  11. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  12. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  13. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    Directory of Open Access Journals (Sweden)

    Adriana Ibarra-Hernández

    2018-02-01

    Full Text Available Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A. These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation.

  14. Non-activated high surface area expanded graphite oxide for supercapacitors

    Science.gov (United States)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  15. Volcano Relations for Oxidation of Hydrogen Halides over Rutile Oxide Surfaces

    DEFF Research Database (Denmark)

    Toftelund, Anja; Man, Isabela C.; Hansen, Heine A.

    2012-01-01

    over a range of different rutile oxide surfaces. Based on the scaling relations, two descriptors are identified that describe the reactions uniquely. By combining scaling with the micro-kinetic model, activity volcanoes for the three different oxidation reactions are derived. It is found...

  16. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  17. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  18. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  19. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  20. Surface oxidation of porous ZrB2-SiC ceramic composites by continuous-wave ytterbium fibre laser

    International Nuclear Information System (INIS)

    Mahmod, Dayang Salyani Abang; Glandut, Nicolas; Khan, Amir Azam; Labbe, Jean-Claude

    2015-01-01

    Highlights: • Surface oxidation of ZrB 2 -SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO 2 -rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB 2 -SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB 2 -SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s 2 . The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO 2 -rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  1. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  2. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  3. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  4. Small Punch Tests at Oxide Scales Surface of Structural Steel and Low Silicon Steel

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, J.; Dobeš, Ferdinand; Horský, J.

    2014-01-01

    Roč. 82, 3-4 (2014), s. 297-310 ISSN 0030-770X Institutional support: RVO:68081723 Keywords : Small punch * Oxide scales * X-ray diffraction * Mechanical properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.140, year: 2014

  5. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  6. Surface chemistry on interstellar oxide grains

    International Nuclear Information System (INIS)

    Denison, P.; Williams, D.A.

    1981-01-01

    Detailed calculations are made to test the predictions of Duley, Millar and Williams (1978) concerning the chemical reactivity of interstellar oxide grains. A method is established for calculating interaction energies between atoms and the perfect crystal with or without surface vacancy sites. The possibility of reactions between incident atoms and absorbed atoms is investigated. It is concluded that H 2 formation can occur on the perfect crystal surfaces, and that for other diatomic molecules the important formation sites are the Fsub(s)- and V 2- sub(s)-centres. The outline by Duley, Millar and Williams (1979) of interstellar oxide grain growth and destruction is justified by these calculations. (author)

  7. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  8. Oxidation Behavior of Surface-modified Stainless Steel 316LN in Supercritical-CO{sub 2} Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan; Heo, Jin Woo; Kim, Hyunm Yung; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Compared to other working fluids such as helium or nitrogen, S-CO{sub 2} offers a higher efficiency at operating temperatures of advanced reactors above 550 .deg. C. Moreover, the S-CO{sub 2} cycle is expected to have a significantly smaller footprint compared to other power conversion cycles, resulting in a broader range of applications with lower capital costs. Currently, stainless steel 316 is considered as the candidate structural material for the SFR. In comparison, it is well known that alumina (Al{sub 2}O{sub 3}) have superior oxidation and carburization resistance specifically at higher temperatures where α-Al{sub 2}O{sub 3} may form. Thus, various surface modification techniques have been applied to mostly Ni-base alloys so that a protective and continuous Al-rich oxide layer forms on the surface, conferring superior oxidation and carburization resistance. In this study, SS 316LN was deposited with Al via physical vapor deposition (PVD) method followed by heat treatment processes to develop an Al-rich layer at the surface. The specimens are to be exposed to high temperature S-CO{sub 2} environment to evaluate the oxidation and carburization resistance. Stainless steel 316LN was surface-modified to develop an Al-rich layer for improvement of oxidation behavior in S-CO{sub 2} environment. As the test temperature of 600 .deg. C is not sufficiently high for the formation of protective α-Al{sub 2}O{sub 3} formation, pre-oxidation of surface modified SS 316LN was conducted.

  9. Initial oxidation processes of Si(001) surfaces by supersonic O2 molecular beams. Different oxidation mechanisms for clean and partially-oxidized surfaces

    International Nuclear Information System (INIS)

    Teraoka, Yuden; Yoshigoe, Akitaka

    2002-01-01

    Potential energy barriers for dissociative chemisorption of O 2 molecules on Si(001) clean surfaces were investigated using supersonic O 2 molecular beams and photoemission spectroscopy. Relative initial sticking probabilities of O 2 molecules and the saturated oxygen amount on the Si(001) surface were measured as a function of incident energy of O 2 molecules. Although the probability was independent on the incident energy in the region larger than 1 eV, the saturated oxygen amount was dependent on the incident energy without energy thresholds. An Si-2p photoemission spectrum of the Si(001) surface oxidized by thermal O 2 gas revealed the oxygen insertion into dimer backbond sites. These facts indicate that a reaction path of the oxygen insertion into dimer backbonds through bridge sites is open for the clean surface oxidation, and the direct chemisorption probability at the backbonds is negligibly small comparing with that at the bridge sites. (author)

  10. A METHOD FOR POST-TREATMENT OF AN ARTICLE WITH A METALLIC SURFACE AS WELL AS A TREATMENT SOLUTION TO BE USED IN THE METHOD

    DEFF Research Database (Denmark)

    1993-01-01

    A method and a treatment solution for post-treatment of an article with a metallic surface, where the metallic surface is made of one or more metals of a standard oxidation potential within the range -2.5 to +0.5 V. A thin coating is formed on the metallic surface by a treatment with an aqueous...... conditions where the metal surface is maintained at a potential within the range of -600 and -1800 mV/nhe. A corrosion-protecting and/or decorative effect is obtained which can be compared with the effect obtained by conventional chromate treatment, and which avoids the environmental and toxicologic...

  11. Characterization of SCC crack tips and surface oxide layers in alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)

  12. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  13. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  14. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  15. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  16. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  17. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  19. Influence of surface treatment on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  20. Development of surface decontamination technology for radioactive waste using plasma. Dust behaviors in the treatment of oxide films using a low-pressure arc

    International Nuclear Information System (INIS)

    Adachi, Kazuo; Furukawa, Shizue; Amakawa, Tadashi; Fujiwara, Kazutoshi; Kanbe, Hiromu

    2002-01-01

    We are developing the surface treatment technique using low-pressure arc as a new decontamination technology for radioactive wastes from nuclear facilities. For the practical use, effective dust collection methods are necessary, because dust is generated from oxide films on the surface during the treatment. The method using gas stream and filters may be one of them, but the behavior of the dust has not been examined yet. We studied the basic behavior of the dust and the possibilities of dust control by gas stream as follows. 1. Most of the dust attached to the anode in the case of no gas blow. 2. Dust attachment to the anode was reduced to about half using small cross section type anode. It seems to be possible to reduce the dust attachment by proper choice of electrode shape. 3. The dust attachment was reduced to 10 to 40 percent by the gas blow to the side of arc. The dust control by gas stream might be possible. (author)

  1. Regularities of radiation defects build up on oxide materials surface; Zakonomernosti nakopleniya radiatsionnykh defektov na poverkhnosti oksidnykh materialov

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan); Tuseev, T [Inst. Yadernoj Fiziki, Almaty (Kazakhstan)

    2005-07-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide{yields}beryllium oxide{yields}aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency.

  2. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (psurface concentration of Si(K) increased 76% after SC treatment. HF is an inadequate surface treatment for bonding resins to IZ ceramic. Treating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  3. Aging promotes todorokite formation from layered manganese oxide at near-surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Haojie [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Liu, Fan; Feng, Xionghan; Tan, Wenfeng [Huazhong Agricultural Univ., Ministry of Agriculture, Wuhan (China). Key Lab. of Subtropical Agricultural Resources and Environment; Wang, Ming Kuang [National Taiwan Univ., Taipei (China). Dept. of Agricultural Chemistry

    2010-12-15

    Todorokite is one common manganese oxide in soils and sediments and is commonly formed from layered Na-buserite. Aging processes can alter the physicochemical properties of freshly formed Na-buserite in natural environments. However, it is not clear whether and how aging affects the formation of todorokites. In the present paper, Na-buserite with aging treatment was employed to prepare todorokite at atmospheric pressure to investigate the effects of aging treatment of Na-buserite on the formation of todorokite. Four aged Na-buserite samples, which are produced through oxidation of Mn{sup 2+} in concentrated NaOH medium by O{sub 2} with aging for 3, 6, 9, and 12 months, were employed to investigate the effects of aging processes on the transformation from Na-buserite to todorokite by Mg{sup 2+}-templating reaction at atmospheric pressure. The manganese oxides were examined using X-ray diffraction (XRD), elemental analysis, determinations of the average manganese oxidation number, infrared spectroscopy (IR), and transmission electron microscopy (TEM). The XRD, IR, and elemental analyses indicate that aging treatment can alter the substructure of the freshly synthesized Na-buserite. During the aging process, some of the Mn(III) may migrate into the interlayer region or disproportionate to form Mn{sup 2+} and Mn{sup 4+} from the layer of Na-buserite and the concomitant formation of layer vacancies. The interlayer Mn{sup 3+} or Mn{sup 2+} occupied above or below the layer vacancy sites and become corner-sharing octahedral. XRD analyses and TEM clearly show that the transformation from Na-buserite to todorokite was promoted by aging treatments. The alterations of substructure of aged Na-buserites can promote the rearrangement of manganese to construct a tunnel structure during the transformation from layered manganese oxides to tunnel-structure todorokite at atmospheric pressure. The transformation from Na-buserite to todorokite was promoted by aging treatments at

  4. Dependence of the specific surface area of the nuclear fuel with the matrix oxidation

    International Nuclear Information System (INIS)

    Gomez, F.; Quinones, J.; Iglesias, E.; Rodriguez, N.

    2008-01-01

    This paper is focused on the study of the changes in the specific surface area measured using BET techniques. The objective is to obtain a relation between this parameter and the change in the matrix stoichiometry (i.e., oxidation increase). None of the actual models used for extrapolating the behaviour of the spent fuel matrix under repository conditions have included this dependence yet. In this work the specific surface area of different uranium oxide were measured using N 2 (g) and Kr(g). The starting material was UO 2+x (s) with a size powder distribution lower than 20 μm. The results included in this paper shown a strong dependence on specific surface area with the matrix stoichiometry, i.e., and increase of more than one order of magnitude (SUO 2 = 6 m 2 *g -1 and SU 3 O 8 = 16.07 m 2 *g -1 ). Furthermore, the particle size distribution measured as a function of the thermal treatment done shows changes on the powder size related to the changes observed in the uranium oxide stoichiometry. (authors)

  5. Modelling of low energy ion sputtering from oxide surfaces

    International Nuclear Information System (INIS)

    Kubart, T; Nyberg, T; Berg, S

    2010-01-01

    The main aim of this work is to present a way to estimate the values of surface binding energy for oxides. This is done by fitting results from the binary collisions approximation code Tridyn with data from the reactive sputtering processing curves, as well as the elemental composition obtained from x-ray photoelectron spectroscopy (XPS). Oxide targets of Al, Ti, V, Nb and Ta are studied. The obtained surface binding energies are then used to predict the partial sputtering yields. Anomalously high sputtering yield is observed for the TiO 2 target. This is attributed to the high sputtering yield of Ti lower oxides. Such an effect is not observed for the other studied metals. XPS measurement of the oxide targets confirms the formation of suboxides during ion bombardment as well as an oxygen deficient surface in the steady state. These effects are confirmed from the processing curves from the oxide targets showing an elevated sputtering rate in pure argon.

  6. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Layer Dependence of Graphene for Oxidation Resistance of Cu Surface

    Institute of Scientific and Technical Information of China (English)

    Yu-qing Song; Xiao-ping Wang

    2017-01-01

    We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted,diminishing the influence induced by residue and transfer technology.It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate,compared to that coated with the bilayer graphene,which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene,respectively.We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection.Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects,depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.

  8. Surface energy for electroluminescent polymers and indium-tin-oxide

    International Nuclear Information System (INIS)

    Zhong Zhiyou; Yin Sheng; Liu Chen; Zhong Youxin; Zhang Wuxing; Shi Dufang; Wang Chang'an

    2003-01-01

    The contact angles on the thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and indium-tin-oxide (ITO) were measured by the sessile-drop technique. The surface energies of the films were calculated using the Owens-Wendt (OW) and van Oss-Chaudhury-Good (vOCG) approaches. The overall total surface energies of MEH-PPV and the as-received ITO were 30.75 and 30.07 mJ/m 2 , respectively. Both approaches yielded almost the same surface energies. The surface energies were mainly contributed from the dispersion interactions or Lifshitz-van der Waals (LW) interactions for both MEH-PPV and ITO. The changes in the contact angles and surface energies of the ITO films, due to different solvent cleaning processes and oxygen plasma treatments, were analyzed. Experimental results revealed that the total surface energy of the ITO films increased after various cleaning processes. In comparison with different solvents used in this study, we found that methanol is an effective solvent for ITO cleaning, as a higher surface energy was observed. ITO films treated with oxygen plasma showed the highest surface energy. This work demonstrated that contact angle measurement is a useful method to diagnose the cleaning effect on ITO films

  9. Influence of corrosive solutions on microhardness and chemistry of magnesium oxide /001/ surfaces

    Science.gov (United States)

    Ishigaki, H.; Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analyses and hardness experiments were conducted on cleaved magnesium oxide /001/ surfaces. The magnesium oxide bulk crystals were cleaved to specimen size along the /001/ surface, and indentations were made on the cleaved surface in corrosive solutions containing HCl, NaOH, or HNO3 and in water without exposing the specimen to any other environment. The results indicated that chloride (such as MgCl2) and sodium films are formed on the magnesium oxide surface as a result of interactions between an HCl-containing solution and a cleaved magnesium oxide surface. The chloride films soften the magnesium oxide surface. In this case microhardness is strongly influenced by the pH value of the solution. The lower the pH, the lower the microhardness. Sodium films, which are formed on the magnesium oxide surface exposed to an NaOH containing solution, do not soften the magnesium oxide surface.

  10. The surface oxide as a source of oxygen on Rh(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, E. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden)]. E-mail: edvin.lundgren@sljus.lu.se; Gustafson, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Resta, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Weissenrieder, J. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Mikkelsen, A. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Andersen, J.N. [Department of Synchrotron Radiation Research, Institute of Physics, Lund University, Box 118, S-221 00 Lund (Sweden); Koehler, L. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Kresse, G. [Institut fuer Materialphysik and Centre for Computational Materials Science, Universitaet Wien, A-1090 Vienna (Austria); Klikovits, J. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Biederman, A. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Schmid, M. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria); Varga, P. [Institut fuer Allgemeine Physik, Technische Universitaet Wien, A-1040 Vienna (Austria)

    2005-06-15

    The reduction of a thin surface oxide on the Rh(1 1 1) surface by CO is studied in situ by photoemission spectroscopy, scanning tunneling microscopy, and density functional theory. CO molecules are found not to adsorb on the surface oxide at a sample temperature of 100 K, in contrast to on the clean and chemisorbed oxygen covered surface. Despite this behavior, the surface oxide may still be reduced by CO, albeit in a significantly different fashion as compared to the reduction of a phase containing only chemisorbed on surface oxygen. The experimental observations combined with theoretical considerations concerning the stability of the surface oxide, result in a model of the reduction process at these pressures suggesting that the surface oxide behaves as a source of oxygen for the CO-oxidation reaction.

  11. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H2, O2, and Ar gases

    International Nuclear Information System (INIS)

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-01-01

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H 2 , O 2 , and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O 2 plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E VBM ) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O 2 and H 2 plasma treatments partially would compensate for the decrease in E VBM . After Ar plasma treatment, the smallest value of E VBM resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  12. A comparison between oxidation of activated carbon by electrochemical and chemical treatments

    OpenAIRE

    Berenguer, Raúl; Marco-Lozar, Juan Pablo; Quijada tomás, Cesar; Cazorla-Amoros, Diego; Morallón, Emilia

    2012-01-01

    The anodic oxidation of a granular activated carbon (GAC) in NaCl solution has been studied. The influence of the electrocatalyst-anode material, applied current and time of treatment on both the surface chemistry and porous texture properties of the GAC has been analyzed. For comparison purposes, the same GAC has been treated with three of the classical chemical oxidants: HNO 3, H 2O 2 and (NH 4) 2S 2O 8 at different concentrations and for different times. Results show that the anodic treatm...

  13. Low Stress Mechanical Properties of Plasma-Treated Cotton Fabric Subjected to Zinc Oxide-Anti-Microbial Treatment

    Directory of Open Access Journals (Sweden)

    Chi-Wai Kan

    2013-01-01

    Full Text Available Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.

  14. Influence of Cu(In,Ga)(Se,S)2 surface treatments on the properties of 30 × 30 cm2 large area modules with atomic layer deposited Zn(O,S) buffers

    International Nuclear Information System (INIS)

    Merdes, S.; Steigert, A.; Ziem, F.; Lauermann, I.; Klenk, R.; Hergert, F.; Kaufmann, C.A.; Schlatmann, R.

    2015-01-01

    We report the effect of Cu(In,Ga)(Se,S) 2 absorber surface treatments on the properties of atomic layer deposited-Zn(O,S) buffered 30 × 30 cm 2 large area modules. The absorber is prepared by the sequential process. H 2 O and KCN solution treatments are investigated. The absorber surface treatment is found to influence significantly the open circuit voltage and the fill factor of the full modules. Light soaking related metastabilities are also found to depend on the type of treatment. While both H 2 O and KCN treatments are efficient at removing Se-oxides and Na 2 HCO 3 , the KCN treatment is found to remove additionally Ga-oxides and elemental Se that are detected on the surface of the absorber. A 30 × 30 cm 2 module aperture efficiency up to 12.3% could be achieved with KCN surface treatment of the absorber. - Highlights: • The Cu(In,Ga)(Se,S) 2 surface influences the Zn(O,S)-buffered module performance. • Surface treatment by H 2 O efficiently removes Se-oxides and sodium compounds. • KCN treatment of the absorber removes Se-oxides, Ga-oxides and elemental Se. • The devices' light soaking behavior depends on the absorber's surface chemistry. • A 30 × 30 cm 2 module efficiency of 12.3% is achieved with KCN treatment

  15. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  16. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    International Nuclear Information System (INIS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Mittemeijer, E. J.

    2014-01-01

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al 2 O 3 films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively

  17. In situ iron-57 Moessbauer spectroscopic investigations of the effect of titania surface area on the reducibility of titania-supported iron oxide

    International Nuclear Information System (INIS)

    Berry, F.J.; Du Hongzhang

    1990-01-01

    Iron-57 Moessbauer spectroscopy has been used to monitor the reducibility in hydrogen of iron oxides supported on titania of differing surface areas. The results show that although Fe 3+ in the iron oxide supported on low surface area titania (11 m 2 g -1 ) is not amenable to facile reduction at low temperatures, complete reduction to metallic iron is achieved by treatment at 600deg C. The data also show that the extent of reduction at elevated temperatures exceeds that which is obtained on similar silica- and alumina-supported systems. Fe 3+ in iron oxide supported on higher surface area titania (50 m 2 g -1 and 240 m 2 g -1 ) is partially reduced in hydrogen at 235deg C to Fe 2+ but fails to attain complete reduction to the metallic state following treatment at 600deg C. The results are related to the different dispersions of iron oxide which can be attained on titania of differing surface area and the consequent interactions between the support and the supported phases. (orig.)

  18. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  19. Graphoepitaxy of sexithiophene and orientation control by surface treatment

    International Nuclear Information System (INIS)

    Ikeda, Susumu; Saiki, Koichiro; Wada, Yasuo; Inaba, Katsuhiko; Ito, Yoshiyasu; Kikuchi, Hirokazu; Terashima, Kazuo; Shimada, Toshihiro

    2008-01-01

    The factors influencing the graphoepitaxy of organic semiconductor α-sexithiophene (6T) on thermally oxidized silicon substrates were studied and it was discovered that a wider pitch in the microgrooves decreased the degree of graphoepitaxy. A more significant finding was that in-plane orientation could be changed by simple surface treatment. On UV/ozone-treated substrates (hydrophilic condition), the b-axis of 6T was parallel to the grooves. Further surface treatment with hexamethyl-disiloxane (under hydrophobic conditions) changed this in-plane orientation by 90 deg. This change is due to the interaction between the topmost chemical species (functional groups) of the groove walls and organic molecules, a behavior peculiar to organic graphoepitaxy and exploitable for optimal orientation control in device processing. The nucleation and growth processes that cause the graphoepitaxy are discussed, based on the experimental results

  20. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    Science.gov (United States)

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  1. Treatment by gliding arc of epoxy resin: preliminary analysis of surface modifications

    Science.gov (United States)

    Faubert, F.; Wartel, M.; Pellerin, N.; Pellerin, S.; Cochet, V.; Regnier, E.; Hnatiuc, B.

    2016-12-01

    Treatments with atmospheric pressure non-thermal plasma are easy to implement and inexpensive. Among them gliding arc (GlidArc) remains rarely used in surface treatment of polymers. However, it offers economic and flexible way to treat quickly large areas. In addition the choice of carrier gas makes it possible to bring the active species and other radicals allowing different types of grafting and functionalization of the treated surfaces, for example in order to apply for anti-biofouling prevention. This preliminary work includes analysis of the surface of epoxy resins by infrared spectroscopy: the different affected chemical bonds were studied depending on the duration of treatment. The degree of oxidation (the C/O ratio) is obtained by X-ray microanalysis and contact angle analysis have been performed to determinate the wettability properties of the treated surface. A spectroscopic study of the plasma allows to determine the possible active species in the different zones of the discharge.

  2. Characterization of manganese oxide precipitates from Appalachian coal mine drainage treatment systems

    International Nuclear Information System (INIS)

    Tan Hui; Zhang Gengxin; Heaney, Peter J.; Webb, Samuel M.; Burgos, William D.

    2010-01-01

    The removal of Mn(II) from coal mine drainage (CMD) by chemical addition/active treatment can significantly increase treatment costs. Passive treatment for Mn removal involves promotion of biological oxidative precipitation of manganese oxides (MnO x ). Manganese(II) removal was studied in three passive treatment systems in western Pennsylvania that differed based on their influent Mn(II) concentrations (20-150 mg/L), system construction (±inoculation with patented Mn(II)-oxidizing bacteria), and bed materials (limestone vs. sandstone). Manganese(II) removal occurred at pH values as low as 5.0 and temperatures as low as 2 deg. C, but was enhanced at circumneutral pH and warmer temperatures. Trace metals such as Zn, Ni and Co were removed effectively, in most cases preferentially, into the MnO x precipitates. Based on synchrotron radiation X-ray diffraction and Mn K-edge extended X-ray absorption fine structure spectroscopy, the predominant Mn oxides at all sites were poorly crystalline hexagonal birnessite, triclinic birnessite and todorokite. The surface morphology of the MnO x precipitates from all sites was coarse and 'sponge-like' composed of nm-sized lathes and thin sheets. Based on scanning electron microscopy (SEM), MnO x precipitates were found in close proximity to both prokaryotic and eukaryotic organisms. The greatest removal efficiency of Mn(II) occurred at the one site with a higher pH in the bed and a higher influent total organic C (TOC) concentration (provided by an upstream wetland). Biological oxidation of Mn(II) driven by heterotrophic activity was most likely the predominant Mn removal mechanism in these systems. Influent water chemistry and Mn(II) oxidation kinetics affected the relative distribution of MnO x mineral assemblages in CMD treatment systems.

  3. Surface treatments of metal supports for photocatalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Montecchio, Francesco, E-mail: fmon@kth.se [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Chinungi, Don [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Lanza, Roberto [Verdant Chemical Technologies AB, 114 28 Stockholm (Sweden); Engvall, Klas [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden)

    2017-04-15

    Highlights: • Treated metals can be used as photocatalyst support in full-scale applications. • Various electrochemical treatments were performed, checking the surface corrugation. • Stainless steel etched in DC and aqua regia shows the highest surface modification. • P25 coated on the DC etched sample has a high stability, with constant activity. • The support modification increases the UV irradiated area and the activity of P25. - Abstract: One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO{sub 2} photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO{sub 2}-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  4. Mechanical tearing of graphene on an oxidizing metal surface

    International Nuclear Information System (INIS)

    George, Lijin; Gupta, Aparna; Shaina, P R; Jaiswal, Manu; Gupta, Nandita Das

    2015-01-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3–0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp"3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm. (paper)

  5. Mechanical tearing of graphene on an oxidizing metal surface.

    Science.gov (United States)

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  6. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Science.gov (United States)

    Carvalho, Luisa; Pacquentin, Wilfried; Tabarant, Michel; Maskrot, Hicham; Semerok, Alexandre

    2017-09-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu) as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a `duplex structure' with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  7. Effects of high temperature surface oxides on room temperature aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, R.A.; Perrin, R.L.

    1996-09-01

    Studies were conducted to determine the effects of high-temperature surface oxides, produced during thermomechanical processing, heat treatment (750 {degrees}C in air, one hour) or simulated in-service-type oxidation (1000{degrees}C in air, 24 hours) on the room-temperature aqueous-corrosion and environmental-embrittlement characteristics of iron aluminides. Materials evaluated included the Fe{sub 3}Al-based iron aluminides, FA-84, FA-129, FAL and FAL-Mo, a FeAl-based iron aluminide, FA-385, and a disordered low-aluminum Fe-Al alloy, FAPY. Tests were performed in a mild acid-chloride solution to simulate aggressive atmospheric corrosion. Cyclic-anodic-polarization tests were employed to evaluate resistances to localized aqueous corrosion. The high-temperature oxide surfaces consistently produced detrimental results relative to mechanically or chemically cleaned surfaces. Specifically, the pitting corrosion resistances were much lower for the as-processed and 750{degrees} C surfaces, relative to the cleaned surfaces, for FA-84, FA-129, FAL-Mo, FA-385 and FAPY. Furthermore, the pitting corrosion resistances were much lower for the 1000{degrees}C surfaces, relative to cleaned surfaces, for FA-129, FAL and FAL-Mo.

  8. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)

    2011-03-15

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.

  9. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    International Nuclear Information System (INIS)

    Kulagin, N.A.

    2011-01-01

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr +4 ions in oxides, Cu +2 in HTSC, Nd +2 in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10 -9 m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: → External influence and variation of technology induce changes in valence of nl ions in compounds. → Wave function of cluster presented as anti-symmetrical set of ions wave functions. → The main equation describes the self-consistent field depending on state of all electrons of cluster. → Level scheme of Cr 4+ ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. → Plasma treatment effects in appearance of systems of unit crystallites with size of about 10 -6 -10 -9 m.

  10. Oxidant and antioxidant parameters in the treatment of meningitis.

    Science.gov (United States)

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Ocak, Ali Riza

    2007-08-01

    The aim of this study was to assess the effects of meningitis treatment on the serum and cerebrospinal-fluid oxidant and antioxidant status in children with bacterial meningitis. Forty children with bacterial meningitis, at ages ranging from 4 months to 12 years (mean age, 4 years), were enrolled in the study. Within 8 hours after admission (before treatment) and 10 days after clinical and laboratory indications of recovery (after treatment), cerebrospinal fluid and venous blood were collected. Thirty-seven healthy children (mean age, 4 years) were enrolled as control subjects, and only venous blood was collected. Serum total oxidant status, lipid hydroperoxide, oxidative stress index, uric acid, albumin, and ceruloplasmin levels were lower in the patient group after treatment (Ptotal antioxidant capacity levels, vitamin C, total bilirubin, and catalase concentrations were not significantly altered by treatment (P>0.05). However, cerebrospinal fluid total oxidant status, lipid hydroperoxide, and oxidative stress index levels were higher, and cerebrospinal fluid total antioxidant capacity levels were lower after treatment than before treatment (P<0.05). In conclusion, we demonstrated that serum oxidative stress was lower, and cerebrospinal fluid oxidative stress was higher, after rather than before treatment in children with bacterial meningitis.

  11. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  12. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  13. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  14. Fabrication of TiO2 Crystalline Coatings by Combining Ti-6Al-4V Anodic Oxidation and Heat Treatments

    Directory of Open Access Journals (Sweden)

    María Laura Vera

    2015-01-01

    Full Text Available The bio- and hemocompatibility of titanium alloys are due to the formation of a TiO2 layer. This natural oxide may have fissures which are detrimental to its properties. Anodic oxidation is used to obtain thicker films. By means of this technique, at low voltages oxidation, amorphous and low roughness coatings are obtained, while, above a certain voltage, crystalline and porous coatings are obtained. According to the literature, the crystalline phases of TiO2, anatase, and rutile would present greater biocompatibility than the amorphous phase. On the other hand, for hemocompatible applications, smooth and homogeneous surfaces are required. One way to obtain crystalline and homogeneous coatings is by heat treatments after anodic oxidation. The aim of this study is to evaluate the influence of heat treatments on the thickness, morphology, and crystalline structure of the TiO2 anodic coatings. The characterization was performed by optical and scanning electron microscopy, X-ray diffraction, and X-ray reflectometry. Coatings with different colors of interference were obtained. There were no significant changes in the surface morphology and roughness after heat treatment of 500°C. Heat treated coatings have different proportions of the crystalline phases, depending on the voltage of anodic oxidation and the temperature of the heat treatment.

  15. A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite

    International Nuclear Information System (INIS)

    Teng, Huan-Ping; Yang, Chia-Jung; Lin, Jia-Fu; Huang, Yu-Hsin; Lu, Fu-Hsing

    2016-01-01

    Highlights: • TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation. • Simple pre-immersion in K 2 HPO 4 could functionalize the surfaces of the TiO 2 . • Such pre-immersion enhanced substantially the growth of hydroxyapatite in SBF. • Growth mechanisms of hydroxyapatite via the pre-immersion have been proposed. • MTT assay shows great osteoblast-like cell activity on the obtained hydroxyapatite. - Abstract: Conventionally, hydrothermal treatment was often used to modify the TiO 2 surface prior to the growth of hydroxyapatite (HA) that is one of the most important implant biomaterials. In this work, a simple pre-immersion of the obtained TiO 2 in a weak base, instead of the conventionally high pressure-temperature hydrothermal pre-treatment, was conducted prior to the growth of HA. Firstly, anatase TiO 2 coatings with porous surfaces were produced by plasma electrolytic oxidation with optimized processing parameters. X-ray diffraction patterns and field-emission microscopy reveal that the anatase TiO 2 films with porous surfaces were produced by plasma electrolytic oxidation. Subsequently, the films were pre-immersed in 0.1–2 M K 2 HPO 4 solutions for only 10 min. Fourier transform infrared spectroscopy shows that the −OH functional groups were generated after such pre-immersion, which could enhance significantly the growth of a single phase of HA in simulated body fluid (SBF). Growth mechanisms of HA via the pre-immersion treatment and soaking in SBF have been proposed. Moreover, the proliferation rate and attachment of the MG-63 osteoblast cells were greatly enhanced on the obtained HA compared to that without the immersion pre-treatment from the MTT assay and morphology analyses. This simple immersion pre-treatment evidently provides an easy route for the growth of HA and has great potential for biomedical applications.

  16. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  17. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings; Journee Thematique: Corrosion et Traitements de surface dans les Installations Nucleaires. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  18. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    Science.gov (United States)

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  20. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  1. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    Directory of Open Access Journals (Sweden)

    Carvalho Luisa

    2017-01-01

    Full Text Available The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless steel 304L with europium (Eu as contaminant marker. In this method, an Eu-solution is sprayed on the stainless steel samples. The specimen are firstly treated with a pulsed nanosecond laser and secondly the steel samples are exposed to a 600°C furnace for various durations in order to grow an oxide layer. The oxide structure and in-depth distribution of Eu in the oxide layer are analysed by scanning electron microscopy coupled with energy dispersive X-ray microanalyzer, and by glow discharge optical emission or mass spectrometry. The oxide layers were grown to thicknesses in the range of 200 nm to 4.5 μm regarding to the laser treatment parameters and the heating duration. These contaminated oxides have a ‘duplex structure’ with a mean weight percentage of 0.5% of europium in the volume of the oxide layer. It appears that europium implementation prevents the oxide growth by furnace but has no impact on laser heating. These oxide layers are used to study the decontamination of metallic surfaces such as stainless steel 304L using a nanosecond pulsed laser.

  2. Surface treatment and history-dependent corrosion in lead alloys

    International Nuclear Information System (INIS)

    Li Ning; Zhang Jinsuo; Sencer, Bulent H.; Koury, Daniel

    2006-01-01

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services

  3. Surface treatment and history-dependent corrosion in lead alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Los Alamos National Laboratory, Los Alamos, NM (United States)]. E-mail: ningli@lanl.gov; Zhang Jinsuo [Los Alamos National Laboratory, Los Alamos, NM (United States); Sencer, Bulent H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Koury, Daniel [University of Nevada, Las Vegas, NV (United States)

    2006-06-23

    In oxygen-controlled lead and lead-bismuth eutectic (LBE), steel corrosion may be strongly history dependent. This is due to the competition between liquid metal dissolution corrosion and oxidation as a 'self-healing' protection barrier. Such effects can be observed from corrosion testing of a variety of surface-treated materials, such as cold working, shot peening, pre-oxidation, etc. Shot peening of austenitic steels produces surface-layer microstructural damages and grain compression, which could contribute to increased Cr migration to the surface and enhance the protection through an impervious oxide. Pre-oxidation under conditions different from operating ones may form more protective oxides, reduce oxygen and metal ion migration through the oxides, and achieve better protection for longer durations. Corrosion and oxidation modeling and analysis reveal the potential for significantly reducing long-term corrosion rates by initial and early-stage conditioning of steels for Pb/LBE services.

  4. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  5. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  6. Experimental investigation into the surface oxidation of lignite high temperature coke

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, H G; Dallmann, W [Technische Hochschule Aachen (Germany, F.R.). Lehrgebiet Kokerei und Brikettierung

    1979-11-01

    It was intended to produce lignite high temperature coke (BHFK) in the laboratory comparable to that produced with the Salem-Lurgi-open hearth process and quench them according to the prescribed condition. By this means, the surface oxide formation could be continually recorded gravimetrically. The self-sustaining reaction of the physical and chemical adsorption on the loose material were observed under consideration that the adsorption or surface oxide can exist in a gaseous as well as in a liquid aggregate. The established steam isotherms and electron-microscope photos identified the product BFHK as a material which shows in the range of high-humidity capillary condensation. The continuous gravimetric adsorption leads to 1,9 per cent by weight on dry surface oxides. On the other hand, oxidized coke in the presence of water builds up on the surface to 2,3 per cent by weight. It became apparent that the finest capillary water is not involved in the formation of the oxide. For the dry accumulation, which is a reaction of the first degree, the equation for the accumulation of the oxygen is given. From the BET surface, made up from the graphite-like ring structure of the carbon surface, as well as the dposited quantity of oxide, the surface density of the oxygen atoms is indicated in relation to the quantity of carbon atoms, or alternatively the six-ring. The dry deposition leads to a proportion of 1,5 oxygen atoms to 10 carbon atoms. In a wet reaction, the ratio is 1,8 to 10. With increasing quantities of oxide, the content of volatile matter, the sparking point and reactivity increase, while the porosity diminishes as a consequence.

  7. Improved biological performance of low modulus Ti-24Nb-4Zr-7.9Sn implants due to surface modification by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Gao, B., E-mail: gaobo_fmmu@163.com [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Wang, R. [Fengtai Health Center of Navy Outpatient Department, Beijing 100071 (China); Wu, J.; Zhang, L.J. [School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Hao, Y.L.; Tao, X.J. [Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-02-15

    Dental implants are usually made from commercially pure titanium or titanium alloys. The purpose of this study was to evaluate the influence of surface treatment to low modulus Ti-24Nb-4Zr-7.9Sn (TNZS) on cell and bone responses. The TNZS alloy samples were modified using anodic oxidation (AD). Surface oxide properties were characterized by using various surface analytic techniques, involving scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS), X-ray diffractometry (XRD) and surface profilometer. During the AD treatment, porous titanium oxide layer was formed and Ca ions were incorporated into the oxide layer. The viability and morphology of osteoblasts on Ca-incorporated TNZS were studied. The bone responses of Ca-incorporated TNZS were evaluated by pull-out tests and morphological analysis after implantation in rabbit tibiae. The non-treated Ti and TNZS samples were used as the control. Significant increases in cell viability and pull-out forces (p < 0.05) were observed for Ca-incorporated TNZS implants compared with those for the control groups. Porous structures supplied positive guidance cues for osteoblasts to attach. The enhanced cell and bone responses to Ca-incorporated TNZS implants could be explained by the surface chemistry and microtopography.

  8. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  9. Properties of InGaAs/GaAs metal-oxide-semiconductor heterostructure field-effect transistors modified by surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gregušová, D., E-mail: Dagmar.Gregusova@savba.sk [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Gucmann, F.; Kúdela, R. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Mičušík, M. [Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84541 (Slovakia); Stoklas, R.; Válik, L. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Greguš, J. [Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava SK-84248 (Slovakia); Blaho, M. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava SK-84104 (Slovakia); Kordoš, P. [Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology STU, Ilkovičova 3, Bratislava SK-81219 (Slovakia)

    2017-02-15

    Highlights: • AlGaAs/InGaAs/GaAs-based metal oxide semiconductor transistors-MOSHFET. • Thin Al-layer deposited in-situ and oxidize in air – gate insulator. • MOSHFET vs HFET transistor properties, density of traps evaluated. - Abstract: GaAs-based heterostructures exhibit excellent carrier transport properties, mainly the high carrier velocity. An AlGaAs-GaAs heterostructure field-effect transistor (HFET) with an InGaAs channel was prepared using metal-organic chemical vapor deposition (MOVPE). An AlOx layer was formed on the AlGaAs barrier layer by the air-assisted oxidation of a thin Al layer deposited in-situ in an MOVPE reactor immediately after AlGaAs/InGaAs growth. The HFETs and MOSHFETs exhibited a very low trap state density in the order of 10{sup 11} cm{sup −2} eV{sup −1}. Capacitance measurement yielded no significant difference between the HFET and MOSHFET structures. The formation of an AlOx layer modified the surface by partially eliminating surface states that arise from Ga-and As-based native oxides. The presence of an AlOx layer reflected in a reduced gate leakage current, which was evidenced by the two-terminal transistor measurement. Presented preparation procedure and device properties show great potential of AlGaAs/InGaAs-based MOSHFETs.

  10. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  11. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  12. Aging of iron (hydr)oxides by heat treatment and effects on heavy metal binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Starckpoole, M. M.; Frenkel, A. I.

    2000-01-01

    their transformations caused by heat treatment prior to disposal or aging at a proper disposal site. The transformations were investigated by XRD, SEM, XANES, EXAFS, surface area measurements, pH static leaching tests, and extractions with oxalate and weak hydrochloric acid. It was found that at 600 and 900 °C the iron...... oxides were transformed to hematite, which had a greater thermodynamic stability but less surface area than the initial products. Heat treatment also caused some volatilization of heavy metals (most notably, Hg). Leaching with water at pH 9 (L/S 10, 24 h) and weak acid extraction showed that heat...

  13. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  14. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    Science.gov (United States)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  15. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  16. Interactions of Graphene Oxide Nanomaterials with Natural Organic Matter and Metal Oxide Surfaces

    Science.gov (United States)

    Interactions of graphene oxide (GO) with silica surfaces were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Both GO deposition and release were monitored on silica- and poly-l-lysine (PLL) coated surfaces as a function of GO concentration a...

  17. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces.

    Science.gov (United States)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-25

    We report the observation of coherent surface states on cubic perovskite oxide SrVO_{3}(001) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a d_{xy}-derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO_{2} plane play a critical role in controlling the coherent surface state via modulating orbital state.

  18. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  19. In-situ oxidation study of Pd(100) by surface x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Volkan; Franz, Dirk; Stierle, Andreas [AG Grenzflaechen, Universitaet Siegen (Germany); Martin, Natalia; Lundgren, Edvin [Department of Synchrotron Radiation Research, Lund University (Sweden); Mantilla, Miguel [MPI fuer Metallforschung, Stuttgart (Germany)

    2011-07-01

    The oxidation of the Pd(100) surface at oxygen pressures in the 10{sup -6} mbar to 10{sup 3} mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The SXRD experiments were performed at the MPI beamline at the Angstrom Quelle Karlsruhe (ANKA). We present the surface and crystal truncation rod (CTR) data from the ({radical}(5) x {radical}(5)) surface layer. We show that the transformation from the surface oxide to PdO bulk oxide can be observed in-situ under specific pressure and temperature conditions. We compare our results with previously proposed structure models based on low energy electron diffraction (LEED) I(V) curves and density functional theory calculations. Finally, we elucidate the question of commensurability of the surface oxide layer with respect to the Pd(100) substrate.

  20. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  1. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  2. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  3. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    International Nuclear Information System (INIS)

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-04-01

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation

  4. A study in the surface treatment of the barrier of a nuclear fuel protector

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yo Seung; Chang, Si Young; Lee, Du Hyung; Noh, Bong Hyun; Kim, Ye Na [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    Materials used in the nuclear power plant, such as pipe, are needed to endure severe corrosion because they could expose the high temperature coolant under radiation. Up to now, the HT9 steel(12Cr-1MoVW) which is one of Ferritic Martensite Stainless steels has been applied because of its high swelling resistance. However, its applications are limited to the temperature of approximately 500 .deg. C. Therefore, it has been strongly demanded that the materials have excellent corrosion resistance concurrent with high mechanical properties such as fracture toughness and irradiation resistance at higher temperatures of more than 500 .dec. C for high efficiency of operating reactor. In order to overcome the corrosion problem of irradiated HT9 steel causing severe environmental problem, particularly, the ceramic coating methods could be applied. Recently, plasma electrolytic oxidation (PEO) emerged as a novel technique being capable of thick, dense and hard oxide ceramic coatings on the surface of light materials. In this study, we focused on applying the newly developed coating method, Plasma Electrolytic Oxidation (PEO) which was mainly developed for non-ferrous materials such as Al, Mg and Ti, for the HT9 steel. And then, we investigated and evaluated the possibility of application of PEO method for HT9 steel treated with/without aluminum cladding based on the microstructure observation of coatings formed under various processing parameters such as current ratio, electrolyte and time. Plasma Electrolytic Oxidation (PEO) treatment, which is an advancement of the conventional electrochemical anodizing treatment and leads to the local formation of a plasma by a spark on the metal surface, is expected to be a promising surface treatment that can overcome the drawbacks of HT9 steel. We applied PEO treatment for HT9 steel. We tried to find the effect of processing parameters, such as coating time, current ratio and electrolyte, on PEO coatings of HT9 steel, and also studied

  5. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  6. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Cumerlato, Marina; Lima, Eduardo Martinelli de; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; Menezes, Luciane Macedo de; Rizzatto, Susana Maria Deon

    2017-01-01

    The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey's test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn's test. Surface treatments on PfT enhanced SBS of brackets (pgrinding) (pgrinding. There was a positive correlation between SBS and ARI.

  7. Surfactant-assisted growth of anodic nanoporous niobium oxide with a grained surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jeong Eun [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Choi, Jinsub, E-mail: jinsub@inha.ac.k [Department of Chemical Engineering, Inha University, 253 Yonghyun Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of)

    2010-07-15

    Nanoporous niobium oxide film with a maximum thickness of 520 nm was prepared by anodizing niobium in a mixture of 1 wt% HF, 1 M H{sub 3}PO{sub 4}, and a small amount of Sodium Dodecyl Sulfate (SDS) surfactant. The porosity of the anodic niobium oxide prepared without SDS is irregular with the surface of the oxide suggesting a grained surface pattern rather than an ordered porous structure. A proper amount of SDS addition can prepare a pore arrangement with stripe patterns. The pore depth and surface pattern were strongly affected by the concentration of SDS and bath temperature. We found that the addition of SDS surfactant facilitated improvement in the chemical resistance of niobium oxide, leading to the formation of pores with a longer length compared to those prepared without a SDS surfactant. This can be in part ascribed to the protection of the surface by the physical adsorption of SDS on the surface due to a charge-charge interaction and be in part attributed to the formation of Nb=O bonding on the outermost oxide layer by SDS. When anodization was carried out for 4 h, the surface dissolution of niobium oxide was observed, which means that the maximum tolerance time against chemical dissolution was less than 4 h.

  8. Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination

    International Nuclear Information System (INIS)

    Chaney, John A.; Koh, Sharon E.; Dulcey, Charles S.; Pehrsson, Pehr E.

    2003-01-01

    The surface chemistry of carbon removal from indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS), and high-resolution energy loss spectroscopy (HR-ELS). A vibrating Kelvin probe (KP) was used to monitor the work function (PHI) of ITO after cleaning, either by base-cleaning with alcoholic-KOH or by O 2 plasma-cleaning. Base-cleaning lowered PHI ITO as seen in the KP analysis, whereas plasma-cleaning slightly increased PHI ITO by an oxidative process. The degree of PHI ITO depression by base-cleaning was seen to depend on the initial surface, but the PHI depression itself was nonreductive to the ITO, as seen in the In-MNN AES lineshape. The nonreductive depression of PHI ITO by base-cleaning was further supported by a constant charge carrier density, as estimated from the HR-ELS. Base-cleaning was slightly more effective than the oxygen plasma in removing carbon from the ITO surface. However, base-cleaning preferentially removed graphitic carbon while leaving significant hydrocarbon contaminants, as determined by vibrational analysis with HREELS. All other ITO surfaces retained a significant carbon and hydrocarbon contamination as evidenced by AES and HREELS. There was little evidence of the formation of surface hydroxyl species, as expected for such an inherently contaminated surface as ITO

  9. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

    Science.gov (United States)

    Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo

    2018-03-01

    Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

  10. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength

    International Nuclear Information System (INIS)

    He, Hongwei; Wang, Jianlong; Li, Kaixi; Wang, Jian; Gu, Jianyu

    2010-01-01

    The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix's structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.

  11. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  12. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    International Nuclear Information System (INIS)

    Anstey, Andrew; Vivekanandhan, Singaravelu; Rodriguez-Uribe, Arturo; Misra, Manjusri; Mohanty, Amar Kumar

    2016-01-01

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  13. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Andrew [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Vivekanandhan, Singaravelu [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Sustainable Materials and Nanotechnology Lab, Department of Physics, VHNSN College, Virudhunagar 626 001, Tamilnadu (India); Rodriguez-Uribe, Arturo [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Mohanty, Amar Kumar, E-mail: mohanty@uoguelph.ca [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2016-04-15

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  14. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zujun; Shao Shiqian; Wang Yi, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037, Luoyu Street, Wuhan 430074 (China)

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  15. Preparation of self-organized porous anodic niobium oxide microcones and their surface wettability

    International Nuclear Information System (INIS)

    Oikawa, Y.; Minami, T.; Mayama, H.; Tsujii, K.; Fushimi, K.; Aoki, Y.; Skeldon, P.; Thompson, G.E.; Habazaki, H.

    2009-01-01

    Porous anodic niobium oxide with a pore size of ∼10 nm was formed at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2 HPO 4 and 0.2 mol dm -3 K 3 PO 4 at 433 K. After prolonged anodizing for 5.4 ks, niobium oxide microcones develop on the surface. X-ray diffraction patterns of the anodized specimens revealed that the initially formed anodic oxide is amorphous, but an amorphous-to-crystalline transition occurs during anodizing. As a consequence of the preferential chemical dissolution of the initially formed amorphous oxide, due to different solubility of the amorphous and crystalline oxides, crystalline oxide microcones appear on the film surface after prolonged anodizing. The surface is superhydrophilic. After coating with fluorinated alkylsilane, the surface becomes superhydrophobic with a contact angle of 158 o for water. The surface is also oil repellent, with a contact angle as high as 140 o for salad oil.

  16. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. SUS 321 HTB boiler tubing with fire grained internal surface resistant to steam-induced oxidation

    International Nuclear Information System (INIS)

    Kanero, Takahiro; Minami, Yuusuke; Kodera, Toshihide

    1981-01-01

    Considerable amount of scale is produced by high temperature steam on the austenitic stainless steel tubes used for the superheaters and reheaters of large boilers for power generation. The scale of outer layer separates off due to the thermal stress at the time of starting-up and stopping, and causes the blocking of pipes and the erosion of turbine blades. Following the increase of nuclear power generation, large boilers are used for medium load, accordingly it is expected that the troubles like these increase. In this paper, the manufacturing method and the properties of SUS 321 HTB with fine grain internal surface are reported, which was developed to reduce the rate of growth of scale and to prevent the separation of scale. In order to prevent the separation of scale from austenitic stainless steel tubes, the reduction of scale thickness, surface treatment such as chrome plating, the use of alloys with excellent oxidation resistance, the formation of chrome-rich film rapidly, the heat treatment of cold-worked tubes and so on were carried out. The nitrification of SUS 321 H steel brought about two-phase structure of the fine grain internal surface with excellent oxidation resistance and the rest of coarse grains with high creep strength. (Kako, I.)

  18. Wettability and XPS analyses of nickel–phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    International Nuclear Information System (INIS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K.L.; Morelle, J.M.; Etcheberry, A.; Chalumeau, L.

    2013-01-01

    Electroless nickel-high-phosphorus Ni–P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni–P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni–P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni–P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni–P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni–P surface preparation has been established. The sessile drop method can

  19. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    Science.gov (United States)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  20. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.

    Science.gov (United States)

    Carlsson, Daniel O; Hua, Kai; Forsgren, Johan; Mihranyan, Albert

    2014-01-30

    TEMPO-mediated surface oxidation of mesoporous highly crystalline Cladophora cellulose was used to introduce negative surface charges onto cellulose nanofibrils without significantly altering other structural characteristics. This enabled the investigation of the influence of mesoporous nanocellulose surface charges on aspirin chemical stability to be conducted. The negative surface charges (carboxylate content 0.44±0.01 mmol/g) introduced on the mesoporous crystalline nanocellulose significantly accelerated aspirin degradation, compared to the starting material which had significantly less surface charge (0.06±0.01 mmol/g). This effect followed from an increased aspirin amorphisation ability in mesopores of the oxidized nanocellulose. These results highlight the importance of surface charges in formulating nanocellulose for drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  2. Impact of plasma treatment under atmospheric pressure on surface chemistry and surface morphology of extruded and injection-molded wood-polymer composites (WPC)

    Science.gov (United States)

    Hünnekens, Benedikt; Avramidis, Georg; Ohms, Gisela; Krause, Andreas; Viöl, Wolfgang; Militz, Holger

    2018-05-01

    The influence of plasma treatment performed at atmospheric pressure and ambient air as process gas by a dielectric barrier discharge (DBD) on the morphological and chemical surface characteristics of wood-polymer composites (WPC) was investigated by applying several surface-sensitive analytical methods. The surface free energy showed a distinct increase after plasma treatment for all tested materials. The analyzing methods for surface topography-laser scanning microscopy (LSM) and atomic force microscopy (AFM)-revealed a roughening induced by the treatment which is likely due to a degradation of the polymeric surface. This was accompanied by the formation of low-molecular-weight oxidized materials (LMWOMs), appearing as small globular structures. With increasing discharge time, the nodules increase in size and the material degradation proceeds. The surface degradation seems to be more serious for injection-molded samples, whereas the formation of nodules became more apparent and were evenly distributed on extruded surfaces. These phenomena could also be confirmed by scanning electron microscopy (SEM). In addition, differences between extruded and injection-molded surfaces could be observed. Besides the morphological changes, the chemical composition of the substrates' surfaces was affected by the plasma discharge. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) indicated the formation of new oxygen containing polar groups on the modified surfaces.

  3. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  4. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  5. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  6. Enhanced magnetic properties of Fe soft magnetic composites by surface oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guoliang; Wu, Chen, E-mail: chen_wu@zju.edu.cn; Yan, Mi, E-mail: mse_yanmi@zju.edu.cn

    2016-02-01

    Fe soft magnetic composites (SMCs) with low core loss were fabricated via surface oxidation of the Fe powders by H{sub 2}O and O{sub 2} at elevated temperatures. Surface oxidation prevents magnetic dilution due to the formation of the ferromagnetic iron oxide coating layer, giving rise to high magnetic flux density and effective permeability of the SMCs compared with those fabricated with traditional phosphate coating. Mechanism of the oxidation process has been investigated where Fe{sub 3}O{sub 4} forms by reactions of Fe with H{sub 2}O and O{sub 2}. The Fe{sub 3}O{sub 4} coating layer tends to convert into γ-Fe{sub 2}O{sub 3} with increased oxidation temperature and time. By controlling composition of the coating layer, low core loss of 688.9 mW/cm{sup 3} (measured at 50 mT and 100 kHz) and higher effective permeability of 88.3 can be achieved for the Fe SMCs. - Highlights: • Surface oxidation as a new method to fabricate Fe Soft magnetic composite (SMCs). • Oxidation mechanism revealed where Fe reacts with H2O and O2 at high temperatures. • Evolution of the iron oxide coating with growth temperature and time investigated. • The iron oxide insulation coating results in improved magnetic performance.

  7. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  8. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  9. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  10. Surface studies of YBa2Cu3O7-x -matching oxide substrates and interfaces

    International Nuclear Information System (INIS)

    Enevold Thaulov Andersen, J.

    1990-11-01

    Crystallographic changes as a result of heat-treatment at 700-900 deg. C are found for SrTiO 3 (100), MgO(100) and LaAlO 3 (100). The p(2x2) reconstruction of the SrTiO 3 (100) and the superstructures on MgO(100) and on LaAlO 3 (100) thus observed are suggested to be induced by segregation of impurities to the surface. The surface charge-effects which disturb electron- and photon-impact experiments with these insulators are removed by heat-treatments. Deposition of copper results in formation of copper islands on SrTiO 3 (100) and on LaAlO 3 (100). Yttrium forms islands on LaAlO 3 (100) and grows in a layer-by-layer mode on SrTiO 3 (100) and on MgO(100). An yttrium 1x1 epitaxy is observed on the MgO(100) surface, which is suggested to be an YO superstructure. Oxidation of the 1x1 Y/MgO(100) systems diminishes the charge-effects and improves all diffraction and spectroscopic measurements. This may be due to the formation of metallic states around the Fermi level when the film is oxidized. An in situ synthesized YBa 2 Cu 3 O 7 thin film on SrTiO 3 (100) compared to a thick epitaxial YBa 2 Cu 3 O 7-x (001) film on MgO(100) reveals differences in surface electronic structures but not in surface stoichiometries. (au) 18 refs

  11. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    Science.gov (United States)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  12. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    International Nuclear Information System (INIS)

    Mok, Young Sun; Ahn, Hyun Tae; Kim, Joeng Tai

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly

  13. Effect of heat treatment in air on surface composition of iron-phosphate based soft magnetic composite components

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, C., E-mail: christos.oikonomou@chalmers.se; Oro, R.; Hryha, E.; Nyborg, L.

    2014-11-15

    Highlights: • Surface morphological and chemical depth profiling analyses of SMC parts. • Effect of annealing at exterior/interior areas for different temperature regimes. • Difference in degree of oxidation/nature of bulk/coating with area and temperature. • Thermodynamic calculations/considerations on the thermal stability of the coating. • Incomplete delubrication and strong bulk oxidation of the samples under 500 °C. - Abstract: Soft magnetic composite materials (SMC) manufactured by conventional powder metallurgical techniques for electromagnetic applications constitute individually encapsulated ferromagnetic powder particles with an insulating surface layer, bonded together into 3D finished structures. The production procedure includes compaction of the SMC base powder mixed with a lubricant substance and a post-annealing treatment that aims to relieve the stresses induced in the component during pressing. In the present study, the effect of the heat treatment process to the nature of the insulating layer was investigated under different temperature regimes using analytical techniques. Its surface chemistry was determined based on the XPS depth profiling technique, and its morphology and structure were evaluated using HR-SEM and XRD. Differences between interior and exterior areas of the samples suggested the development of an oxide scale in the outer regions that prevents its further bulk oxidation at temperatures above 500 °C, while below that temperature incomplete de-lubrication takes place.

  14. Covalent Surface Modification of Silicon Oxides with Alcohols in Polar Aprotic Solvents.

    Science.gov (United States)

    Lee, Austin W H; Gates, Byron D

    2017-09-05

    Alcohol-based monolayers were successfully formed on the surfaces of silicon oxides through reactions performed in polar aprotic solvents. Monolayers prepared from alcohol-based reagents have been previously introduced as an alternative approach to covalently modify the surfaces of silicon oxides. These reagents are readily available, widely distributed, and are minimally susceptible to side reactions with ambient moisture. A limitation of using alcohol-based compounds is that previous reactions required relatively high temperatures in neat solutions, which can degrade some alcohol compounds or could lead to other unwanted side reactions during the formation of the monolayers. To overcome these challenges, we investigate the condensation reaction of alcohols on silicon oxides carried out in polar aprotic solvents. In particular, propylene carbonate has been identified as a polar aprotic solvent that is relatively nontoxic, readily accessible, and can facilitate the formation of alcohol-based monolayers. We have successfully demonstrated this approach for tuning the surface chemistry of silicon oxide surfaces with a variety of alcohol containing compounds. The strategy introduced in this research can be utilized to create silicon oxide surfaces with hydrophobic, oleophobic, or charged functionalities.

  15. Patterning pentacene surfaces by local oxidation nanolithography

    International Nuclear Information System (INIS)

    Losilla, N.S.; Martinez, J.; Bystrenova, E.; Greco, P.; Biscarini, F.; Garcia, R.

    2010-01-01

    Sequential and parallel local oxidation nanolithographies have been applied to pattern pentacene samples by creating a variety of nanostructures. The sequential local oxidation process is performed with an atomic force microscope and requires the application of a sequence of voltage pulses of 36 V for 1 ms. The parallel local oxidation process is performed by using a conductive and patterned stamp. Then, a voltage pulse is applied between the stamp and the pentacene surface. Patterns formed by arrays of parallel lines covering 1 mm 2 regions and with a periodicity of less than 1 μm have been generated in a few seconds. We also show that the patterns can be used as templates for the deposition of antibodies.

  16. A study of the characteristics of indium tin oxide after chlorine electro-chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moonsoo; Kim, Jongmin; Cho, Jaehee; Kim, Hyunwoo; Lee, Nayoung; Choi, Byoungdeog, E-mail: bdchoi@skku.edu

    2016-10-15

    Graphical abstract: The presence of Chlorine in the outer surface resulted in a highly electro-negative surface states and an increase in the vacuum energy level. - Highlights: • We investigated the influence of chlorine surface treatment on ITO properties. • Chlorination induced the change of the electro-static potential in the outer surface. • Chlorine electro-chemical treatment of ITO is a simple, fast and effective technique. - Abstract: In this work, we investigate the influence of a chlorine-based electro-chemical surface treatment on the characteristics of indium tin oxide (ITO) including the work function, chemical composition, and phase transition. The treated ITOs were characterized using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), 4-point probe measurements, and grazing incidence X-ray diffraction (GI-XRD). We confirmed a change of the chemical composition in the near-surface region of the ITO and the formation of indium-chlorine (In-Cl) bonds and surface dipoles (via XPS). In particular, the change of the electro-static potential in the outer surface was caused by chlorination. Due to the vacuum-level shift after the electro-chemical treatment in a dilute hydrochloric acid, the ITO work function was increased by ∼0.43 eV (via UPS); furthermore, the electro-negativity of the chlorine anions attracted electrons to emit them from the hole transport layer (HTL) to the ITO anodes, resulting in an increase of the hole-injection efficiency.

  17. Studies of high coverage oxidation of the Cu(100) surface using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2012-02-01

    The study of oxidation of single crystal metal surfaces is important in understanding the corrosive and catalytic processes associated with thin film metal oxides. The structures formed on oxidized transition metal surfaces vary from simple adlayers of chemisorbed oxygen to more complex structures which result from the diffusion of oxygen into subsurface regions. In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. Calculations are performed for various high coverage missing row structures ranging between 0.50 and 1.50 ML oxygen coverage. The results of calculations of positron binding energy, positron work function, and annihilation characteristics of surface trapped positrons with relevant core electrons as function of oxygen coverage are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES).

  18. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    Science.gov (United States)

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  19. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  20. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  1. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  2. Computerized infrared spectroscopic study of surface reactions on selected lanthanide oxides

    International Nuclear Information System (INIS)

    Dellisante, G.N.

    1982-01-01

    The natures of adsorption sites on La 2 O 3 , Nd 2 O 3 , and selected praseodymium oxides were investigated by examining surface reactions of probe molecules using computerized transmission ir spectroscopy on unsupported samples. Additionally, the rehydration/dehydration behavior and crystallographic phase transitions of these oxides were examined in pretreatment temperature experiments involving rehydration of the sesquioxides to hydroxides by water exposure. Following rehydration of La 2 O 3 to La(OH) 3 , the effect of increasing vacuum pretreatment temperature (350 to 1000 0 C) is to gradually remove surface hydroxyl and carbonate entities (up to 650 0 C), and increase the degree of A-type crystallinity. Increasing crystallinity causes a concomitant decrease in surface oxide basicity. The removal of hydroxyl and carbonate species, as well as increases in oxide basicity, strongly correlated to increases in certain catalytic activities. The adsorption of NH 3 , CO 2 , mixtures of NH 3 and CO 2 , formic acid, acetic acid, acetaldehyde, and ethanol on the oxides was determined to weakly coordinate in Ln 3 + sites, and the surface reactions are discussed. Heating was found to desorb the adsorbed compounds and/or causes changes of the originally adsorbed form into other compounds. The effects of temperature on both adsorption and desorption are reported

  3. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  4. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, A.J., E-mail: henegar1@umbc.edu; Gougousi, T., E-mail: gougousi@umbc.edu

    2016-12-30

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and TiO{sub 2} is compared. Al{sub 2}O{sub 3} if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al{sub 2}O{sub 3} ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al{sub 2}O{sub 3} limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al{sub 2}O{sub 3} and TiO{sub 2}, using H{sub 2}O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al{sub 2}O{sub 3} ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO{sub 2} and the native oxides continues well after the surface has been covered with 2 nm of TiO{sub 2}. This difference is traced to the superior properties of Al{sub 2}O{sub 3} as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to

  5. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    International Nuclear Information System (INIS)

    Henegar, A.J.; Gougousi, T.

    2016-01-01

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al_2O_3 and TiO_2 is compared. Al_2O_3 if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al_2O_3 ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al_2O_3 limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al_2O_3 and TiO_2, using H_2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al_2O_3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO_2 and the native oxides continues well after the surface has been covered with 2 nm of TiO_2. This difference is traced to the superior properties of Al_2O_3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  6. Fractional surface termination of diamond by electrochemical oxidation.

    Science.gov (United States)

    Hoffmann, René; Obloh, Harald; Tokuda, Norio; Yang, Nianjun; Nebel, Christoph E

    2012-01-10

    The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.

  7. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    International Nuclear Information System (INIS)

    Xu Xiangyang; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-01-01

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media

  8. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  9. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  10. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  11. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  12. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    Science.gov (United States)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  13. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  14. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng

    2011-06-28

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from experiments on bulk single crystals that Bi2Se3 gets additional n-type doping after exposure to the atmosphere, thereby reducing the relative contribution of SS in total conductivity. In this article, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological SS. Appropriate surface passivation or encapsulation may be required to probe topological SS of Bi2Se3 by transport measurements. © 2011 American Chemical Society.

  15. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  16. Oxidation behavior of IG and NBG nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  17. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  18. Surface treatments for aluminium alloys

    Science.gov (United States)

    Ardelean, M.; Lascău, S.; Ardelean, E.; Josan, A.

    2018-01-01

    Typically, in contact with the atmosphere, the aluminium surface is covered with an aluminium oxide layer, with a thickness of less than 1-2μm. Due to its low thickness, high porosity and low mechanical strength, this layer does not protect the metal from corrosion. Anodizing for protective and decorative purposes is the most common method of superficial oxidation processes and is carried out through anodic oxidation. The oxide films, resulted from anodizing, are porous, have a thickness of 20-50μm, and are heat-resistant, stable to water vapour and other corrosion agents. Hard anodizing complies with the same obtains principles as well as decorative and protective anodization. The difference is in that hard anodizing is achieved at low temperatures and high intensity of electric current. In the paper are presented the results of decorative and hard anodization for specimens made from several aluminium alloys in terms of the appearance of the specimens and of the thickness of the anodized.

  19. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  20. Theoretical aspects of studies of oxide and semiconductor surfaces using low energy positrons

    Science.gov (United States)

    Fazleev, N. G.; Maddox, W. B.; Weiss, A. H.

    2011-01-01

    This paper presents the results of a theoretical study of positron surface and bulk states and annihilation characteristics of surface trapped positrons at the oxidized Cu(100) single crystal and at both As- and Ga-rich reconstructed GaAs(100) surfaces. The variations in atomic structure and chemical composition of the topmost layers of the surfaces associated with oxidation and reconstructions and the charge redistribution at the surfaces are found to affect localization and spatial extent of the positron surface-state wave functions. The computed positron binding energy, work function, and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the surfaces. Theoretical positron annihilation probabilities with relevant core electrons computed for the oxidized Cu(100) surface and the As- and Ga-rich reconstructed GaAs(100) surfaces are compared with experimental ones estimated from the positron annihilation induced Auger peak intensities measured from these surfaces.

  1. Effects on temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    Science.gov (United States)

    Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the p...

  2. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  3. On the origin of the changes in the opto-electrical properties of boron-doped zinc oxide films after plasma surface treatment for thin-film silicon solar cell applications

    Science.gov (United States)

    Le, Anh Huy Tuan; Kim, Youngkuk; Lee, Youn-Jung; Hussain, Shahzada Qamar; Nguyen, Cam Phu Thi; Lee, Jaehyung; Yi, Junsin

    2018-03-01

    The modification of the steep and sharp valleys on the surface of the boron-doped zinc oxide (BZO) front electrodes by plasma surface treatment is a critical process for avoiding a significant reduction in the electrical performance of thin-film silicon solar cells. In this work, we report the origin of the changes in the electrical and optical properties of the BZO films that occur after this process. On the basis of an analysis of the chemical states, we found an improvement of the carrier concentration along with the treatment time that was mainly due to an increase of the oxygen vacancy. This indicated a deficiency of the oxygen in the BZO films under argon-ion bombardment. The red-shift of the A1 longitudinal optical mode frequency in the Raman spectra that was attributed to the existence of vacancy point defects within the films also strengthened this argument. The significant reduction of the haze ratio as well as the appearance of interference peaks on the transmittance spectra as the treatment time was increased were mainly due to the smoothing of the film surface, which indicated a degradation of the light-scattering capability of the BZO films. We also observed a gain of the visible-region transmittance that was attributed to the decrease of the thickness of the BZO films after the plasma surface treatment, instead of the crystallinity improvement. On the basis of our findings, we have proposed a further design rule of the BZO front electrodes for thin-film silicon solar cell applications.

  4. DFT study of cyanide oxidation on surface of Ge-embedded carbon nanotube

    Science.gov (United States)

    Gao, Wei; Milad Abrishamifar, Seyyed; Ebrahimzadeh Rajaei, Gholamreza; Razavi, Razieh; Najafi, Meysam

    2018-03-01

    In recent years, the discovery of suitable catalyst to oxidation of the cyanide (CN) has high importance in the industry. In present study, in the first step, the carbon nanotube (CNT) with the Ge atom embedded and the surface of Ge-CNT via the O2 molecule activated. In second step, the oxidation of CN on surface of the Ge-CNT via the Langmuir Hinshelwood (LH) and the Eley Rideal (ER) mechanisms was investigated. Results show that O2-Ge-CNT oxidized the CN molecule via the Ge-CNT-O-O∗ + CN → Ge-CNT-O-O∗-CN → Ge-CNT-O∗ + OCN and the Ge-CNT-O∗ + CN → Ge-CNT + OCN reactions. Results show that oxidation of CN on surface of Ge-CNT via the LH mechanism has lower energy barrier than ER mechanism. Finally, calculated parameters reveal that Ge-CNT is acceptable catalyst with high performance for CN oxidation, form theoretical point of view.

  5. Investigation of the Si(111) surface in uhv: oxidation and the effect of surface phosphorus

    International Nuclear Information System (INIS)

    Tom, H.W.K.; Zhu, X.D.; Shen, Y.R.; Somorjai, G.A.

    1984-06-01

    We have studied the initial stages of oxidation, the segregation of phosphorus, and the effect of phosphorus on oxidation of the Si(111) 7 x 7 surface using optical second-harmonic generation. We have also observed a (√3 x √3)R30 0 LEED pattern for P on Si

  6. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  7. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  8. Preparation of protein- and cell-resistant surfaces by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide).

    Science.gov (United States)

    Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R

    2011-05-01

    The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.

  9. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  10. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  11. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  12. An ab initio study of plutonium oxides surfaces

    International Nuclear Information System (INIS)

    Jomard, G.; Bottin, F.; Amadon, B.

    2007-01-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO 2 and β-Pu 2 O 3 in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO 2 in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p O 2 ). We conclude that at room temperature and for p O 2 ∼10 atm., the polar O 2 -(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  13. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics

    Science.gov (United States)

    Ren, Yu; Xu, Lin; Wang, Chunxia; Wang, Xiaona; Ding, Zhirong; Chen, Yuyue

    2017-12-01

    Polylactic acid (PLA) nonwoven fabrics are treated with atmospheric dielectric barrier discharge (DBD) plasma to improve surface wettability. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show that micro- to nano-scale textures appear on the treated PLA surfaces dependent on the treatment time. X-ray photoelectron spectroscopy (XPS) analysis reveals that the DBD plasma treatments result in decreased carbon contents and increased oxygen contents as well as slightly increased nitrogen contents. The water contact angle decreases sharply with the increase of the DBD plasma treatment time. The super hydrophilic PLA surfaces (the water contact angle reached 0°) are obtained when the treatment time is longer than 90 s. Ninety days after the DBD plasma treatment, the XPS analysis shows that Csbnd O/Csbnd N and Cdbnd O/Osbnd Cdbnd O percentages decline for all treatment groups. However, the water contact angle is kept constant at 0° for the groups treated above 90 s, which could be due to the oxidized nano-structured layer on the DBD plasma treated PLA surfaces.

  14. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J.

    2012-12-01

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and 131 I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated 131 I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to be

  15. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  16. Characterization of the surface of Fe–19Mn–18Cr–C–N during heat treatment in a high vacuum — An XPS study

    International Nuclear Information System (INIS)

    Zumsande, K.; Weddeling, A.; Hryha, E.; Huth, S.; Nyborg, L.; Weber, S.; Krasokha, N.; Theisen, W.

    2012-01-01

    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe–19Mn–18Cr–C–N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 °C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 °C. - Highlights: ► Surface characterization by means of XPS, SEM, and EDX analyses. ► Heat treatment of a high CrMn powder. ► Transfer of oxygen from the iron oxide layer to manganese-based particulate oxides. ► Progressive reduction of Mn oxides. ► Transformation of the Mn oxides into stable Si-containing oxides.

  17. Effects of Temperature and Acidic Pre-Treatment on Fenton-Driven Oxidation of MTBE-Spent Granular Activated Carbon

    Science.gov (United States)

    Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the pH ...

  18. High temperature oxidation behavior of aluminide on a Ni-based single crystal superalloy in different surface orientations

    Institute of Scientific and Technical Information of China (English)

    Fahamsyah H.Latief; Koji Kakehi; El-Sayed M.Sherif

    2014-01-01

    An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at 1100 1C. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.

  19. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  20. Analysis of surface modification of carbon nanotubes under different oxidation treatments Análisis de la modificación superficial de los nanotubos de carbono sometidos a distintos tratamientos de oxidación

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2013-03-01

    Full Text Available Carbon nanotubes oxidation has attracted the interest of researchers, because in addition to eliminating impurities, it increases the dispersion of aggregates creating new interac­tions between materials. In this work, carbon nanotubes (CNT were treated using two dif­ferent oxidation methods to determine the effects of each treatment on the surface area of the material. The following methods were used: the traditional chemical treatment (using strong acids and a treatment supported by microwaves. Results showed that both treat­ments reduced the surface area (traditional CNT   La oxidación de los nanotubos de carbono, ha generado gran interés porque además de eliminar impurezas, aumenta el grado de dispersión de los agregados y logra nuevas in­teracciones entre los materiales. En este trabajo, nanotubos de carbono (NTC fueron tra­tados con diferentes métodos de oxidación para conocer la modificación superficial que cada tratamiento efectúa en la estructura del material. Los métodos contrastados fueron el tratamiento químico tradicional (mediante ácidos fuertes y el tratamiento asistido por microondas. Los resultados mostraron que ambos tratamientos disminuyen el área super­ficial (NTC tradicional

  1. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    the protection provided by steam treatment with HNO3was a function of the concentration of NO3−ions. The coating generated by inclusion of KMnO4showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local......Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation...

  2. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1 ) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  3. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure

    Science.gov (United States)

    Luan, P.; Oehrlein, G. S.

    2018-04-01

    The interaction of cold temperature plasma sources with materials can be separated into two types: ‘direct’ and ‘remote’ treatments. Compared to the ‘direct’ treatment which involves energetic charged species along with short-lived, strongly oxidative neutral species, ‘remote’ treatment by the long-lived weakly oxidative species is less invasive and better for producing uniformly treated surfaces. In this paper, we examine the prototypical case of remote plasma oxidation (RPO) of polymer materials by employing a surface micro-discharge (in a N2/O2 mixture environment) treatment on polystyrene. Using material characterization techniques including real-time ellipsometry, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, the time evolution of polymer film thickness, refractive index, surface, and bulk chemical composition were evaluated. These measurements revealed three consecutive stages of polymer transformation, i.e. surface adsorption and oxidation, bulk film permeation and thickness expansion followed by the material removal as a result of RPO. By correlating the observed film thickness changes with simultaneously obtained chemical information, we found that the three stages were due to the three effects of weakly oxidative species on polymers: (1) surface oxidation and nitrate (R-ONO2) chemisorption, (2) bulk oxidation, and (3) etching. Our results demonstrate that surface adsorption and oxidation, bulk oxidation, and etching can all happen during one continuous plasma treatment. We show that surface nitrate is only adsorbed on the top few nanometers of the polymer surface. The polymer film expansion also provided evidence for the diffusion and reaction of long-lived plasma species in the polymer bulk. Besides, we found that the remote plasma etched surface was relatively rich in O-C=O (ester or carboxylic acid). These findings clarify the roles of long-lived weakly oxidative plasma species on polymers and advance

  4. Influence of surface treatment of yttrium-stabilized tetragonal zirconium oxides and cement type on crown retention after artificial aging.

    Science.gov (United States)

    Karimipour-Saryazdi, Mehdi; Sadid-Zadeh, Ramtin; Givan, Daniel; Burgess, John O; Ramp, Lance C; Liu, Perng-Ru

    2014-05-01

    Information about the influence of zirconia crown surface treatment and cement type on the retention of zirconia crowns is limited. It is unclear whether zirconia crowns require surface treatment to enhance their retention. The purpose of this in vitro study was to evaluate the effect of surface treatment on the retention of zirconia crowns cemented with 3 different adhesive resin cements after artificial aging. Ninety extracted human molars were prepared for ceramic crowns (approximately 20-degree taper, approximately 4-mm axial length) and were divided into 3 groups (n=30). Computer-aided design and computer-aided manufacturing zirconia copings were fabricated. Three surface treatments were applied to the intaglio surface of the copings. The control group received no treatment, the second group was airborne-particle abraded with 50 μm Al2O3, and the third group was treated with 30 μm silica-modified Al2O3, The copings were luted with a self-etch (RelyX Unicem 2), a total-etch (Duo-Link), or a self-etch primer (Panavia F 2.0) adhesive cement. They were stored for 24 hours at 37°C before being artificially aged with 5000 (5°C-55°C) thermal cycles and 100,000 cycles of 70 N dynamic loading. Retention was measured on a universal testing machine under tension, with a crosshead speed of 0.5 mm/min. Statistical analysis was performed with 1-way and 2-way ANOVA. Mean retention values ranged from 0.72 to 3.7 MPa. Surface treatment increased crown retention, but the difference was not statistically significant (P>.05), except for the Duo-Link cement group (P<.05). Analysis of the adhesives revealed that the Duo-Link cement resulted in significantly lower crown retention (P<.05) than the other 2 cements. For zirconia crowns, retention seems to be dependent on cement type rather than surface treatment. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  6. Surface properties of indium tin oxide treated by Cl2 inductively coupled plasma

    International Nuclear Information System (INIS)

    He, Kongduo; Yang, Xilu; Yan, Hang; Gong, Junyi; Zhong, Shaofeng; Ou, Qiongrong; Liang, Rongqing

    2014-01-01

    Graphical abstract: - Highlights: • The work function of chlorinated ITO increases initially by up to 1 eV. • The chlorinated ITO keeps an increment of work function of 0.3 eV after 100 days. • The WF decrease curves can be fitted with double exponential functions. • The desorption of unstable Cl in the surface leads to the rapid decrease of WF. • The core levels of In 3d5 and Sn 3d5 and O 1s shift toward higher binding energies. - Abstract: The effects of Cl 2 inductively coupled plasma (ICP) treatment on the time dependence of work function (WF) and surface properties of indium tin oxide (ITO) were investigated. Kelvin probe (KP) measurements show that the WF after Cl 2 ICP treatment is close to 5.9 eV. The WF decrease curve of Cl 2 plasma treated ITO is fitted with double exponential functions with an adjusted R-square of 0.99. The mechanism under the decrease process is discussed by X-ray photoelectron spectroscopy (XPS). The ITO WF decrease after Cl 2 ICP treatment performs much better than that after O 2 ICP treatment and the chlorinated ITO keeps a WF increment of 0.3 eV compared with that without plasma treatment after 100 days. Other properties of chlorinated ITO surface such as morphology and transmittance change slightly. The results are significant for the understanding of degradation of Cl 2 plasma treated ITO and the fabrication of organic semiconductor devices

  7. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Wei Yuchen; Liu Chenwei; Chang Weijung; Wang Kuanwen

    2011-01-01

    Research highlights: → Thermal treatments on the Pt-Ru/C induce different extents of surface segregation. → O 2 treatment results in obvious Ru segregation and formation of RuO 2 . → Catalysts treated in H 2 have the excellent CO de-poisoning ability. → N 2 treatment suppresses the surface Pt depletion and hence promotes the MOR. - Abstract: Carbon supported Pt-Ru/C (1:1) alloy catalysts supplied by E-TEK are widely used for fuel cell research. Heat treatments in various atmospheres are conducted for the promotion of the methanol oxidation reaction (MOR) and the investigation of the structure-activity relationship (SAR) of the catalysts. The alloy structures, surface compositions, surface species, and electro-catalytic activities of the alloy catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV), respectively. The as-received Pt-Ru/C catalysts have a Ru rich in the inner core and Pt rich on the outer shell structure. Thermal treatments on the catalysts induce Ru surface segregation in different extents and thereby lead to their alteration of the alloying degrees. O 2 treatment results in obvious Ru segregation and formation of RuO 2 . Catalysts treated in H 2 have the highest I f /I b value in the CV scans among all samples, indicating the catalysts have the excellent CO de-poisoning ability as evidenced by anodic CO stripping experiments. N 2 treatment may serve as an adjustment process for the surface composition and structure of the catalysts, which can suppress the surface Pt depletion (∼60% Pt on the surface), make the components stable and hence promote the MOR significantly.

  8. Promotion of Pt-Ru/C catalysts driven by heat treated induced surface segregation for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wei Yuchen; Liu Chenwei; Chang Weijung [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China); Wang Kuanwen, E-mail: kuanwen.wang@gmail.com [Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan (China)

    2011-01-12

    Research highlights: > Thermal treatments on the Pt-Ru/C induce different extents of surface segregation. > O{sub 2} treatment results in obvious Ru segregation and formation of RuO{sub 2}. > Catalysts treated in H{sub 2} have the excellent CO de-poisoning ability. > N{sub 2} treatment suppresses the surface Pt depletion and hence promotes the MOR. - Abstract: Carbon supported Pt-Ru/C (1:1) alloy catalysts supplied by E-TEK are widely used for fuel cell research. Heat treatments in various atmospheres are conducted for the promotion of the methanol oxidation reaction (MOR) and the investigation of the structure-activity relationship (SAR) of the catalysts. The alloy structures, surface compositions, surface species, and electro-catalytic activities of the alloy catalysts are characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV), respectively. The as-received Pt-Ru/C catalysts have a Ru rich in the inner core and Pt rich on the outer shell structure. Thermal treatments on the catalysts induce Ru surface segregation in different extents and thereby lead to their alteration of the alloying degrees. O{sub 2} treatment results in obvious Ru segregation and formation of RuO{sub 2}. Catalysts treated in H{sub 2} have the highest I{sub f}/I{sub b} value in the CV scans among all samples, indicating the catalysts have the excellent CO de-poisoning ability as evidenced by anodic CO stripping experiments. N{sub 2} treatment may serve as an adjustment process for the surface composition and structure of the catalysts, which can suppress the surface Pt depletion ({approx}60% Pt on the surface), make the components stable and hence promote the MOR significantly.

  9. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  10. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  11. Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.

    2017-11-07

    Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

  12. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  13. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  14. [Effects of different surface treatments on the zirconia-resin cement bond strength].

    Science.gov (United States)

    Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G

    2018-02-18

    To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (Pbond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (PUV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface

  15. Structural and surface properties of highly ordered mesoporous magnesium-aluminium composite oxides derived from facile synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dahai, E-mail: pandahai@foxmail.com; Dong, Zhaoyang; He, Min; Chen, Wei; Chen, Shuwei; Yu, Feng; Fan, Binbin; Cui, Xingyu; Li, Ruifeng, E-mail: rfli@tyut.edu.cn

    2017-01-15

    Highly ordered mesoporous magnesium-aluminium composite oxides (denoted as OMMA-x) with a variety of n{sub Al}/n{sub Mg} ratios have been successfully synthesized via a facile strategy, and a salt effect was proposed to explain the formation mechanism. The incorporation of Mg can significantly improve the structural and surface properties of ordered mesoporous alumina (OMA) material. The resultant OMMA-x exhibited a much more ordered 2-D hexagonal mesostructure, a narrower pore size distribution, a higher specific surface area and pore volume, and a stronger basicity than those of OMA. More importantly, the highly homogeneous incorporation of Mg at the atomic level and the formation of framework Mg−O−Al bonds could effectively suppress the formation of crystalline alumina during the calcination process. As a result, OMMA-x demonstrated a superior thermal stability. For example, the ordered mesostructure of OMMA-8 could be well maintained with a high surface area of 182 m{sup 2}/g even after thermal treatment at 1000 °C. - Graphical abstract: A schematic procedure to illustrate the preparation of highly ordered mesoporous Mg-Al composite oxides (OMMA-x) with highly homogeneously dispersed Mg species and enhanced structural stability. - Highlights: • Mesoporous Mg-Al composite oxides with excellent structural and surface properties. • A highly homogeneous incorporation of Mg into the mesoporous framework of alumina. • A superior structural stability up to 1000 °C coupled with a large surface area. • A salt effect from the addition of Mg(NO{sub 3}){sub 2}·6H{sub 2}O to explain the formation mechanism.

  16. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  17. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  18. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  19. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    Science.gov (United States)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  20. Oxidation-reduction induced roughening of platinum (111) surface

    International Nuclear Information System (INIS)

    You, H.; Nagy, Z.

    1993-06-01

    Platinum (111) single crystal surface was roughened by repeated cycles of oxidation and reduction to study dynamic evolution of surface roughening. The interface roughens progressively upon repeated cycles. The measured width of the interface was fit to an assumed pow law, W ∼t β , with β = 0.38(1). The results are compared with a simulation based on a random growth model. The fraction of the singly stepped surface apparently saturates to 0. 25 monolayer, which explains the apparent saturation to a steady roughness observed in previous studies

  1. First principles studies of complex oxide surfaces and interfaces

    International Nuclear Information System (INIS)

    Noguera, Claudine; Finocchi, Fabio; Goniakowski, Jacek

    2004-01-01

    Oxides enter our everyday life and exhibit an impressive variety of physical and chemical properties. The understanding of their behaviour, which is often determined by the electronic and atomic structures of their surfaces and interfaces, is a key question in many fields, such as geology, environmental chemistry, catalysis, thermal coatings, microelectronics, and bioengineering. In the last decade, first principles methods, mainly those based on the density functional theory, have been frequently applied to study complex oxide surfaces and interfaces, complementing the experimental observations. In this work, we discuss some of these contributions, with emphasis on several issues that are especially important when dealing with oxides: the local electronic structure at interfaces, and its connection with chemical reactivity; the charge redistribution and the bonding variations, in relation to screening properties; and the possibility of bridging the gap between model and real systems by taking into account the chemical environments and the effect of finite temperatures, and by performing simulations on systems of an adequate (large) size

  2. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  3. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  4. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Cui, Yi

    2010-01-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  5. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro

    2010-08-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  6. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  7. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  8. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  9. Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ardigo-Besnard, M.R., E-mail: maria-rosa.ardigo-besnard@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Popa, I.; Heintz, O.; Chassagnon, R. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Vilasi, M. [Institut Jean Lamour, UMR 7198 CNRS—Université de Lorraine, Parc de Saurupt, 54011 Nancy (France); Herbst, F. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France); Girardon, P. [APERAM, Centre de Recherche, BP15, 62330 Isbergues (France); Chevalier, S. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS—Université de Bourgogne Franche-Comté, BP 47870, 21078 Dijon Cedex (France)

    2017-08-01

    Highlights: • Study of surface finishing effect on the corrosion behaviour of a stainless steel. • Mirror polished samples were compared to as-rolled material. • Two oxidation mechanisms were identified depending on the surface finishing. • Before oxidation, native chemical phases are identical for both samples. • Subsurface dislocations generated by the polishing process promote Cr{sub 2}O{sub 3} formation. - Abstract: The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn){sub 3}O{sub 4}/Cr{sub 2}O{sub 3} scale formed on the polished samples whereas external Fe{sub 3}O{sub 4} and (Cr,Fe){sub 2}O{sub 3} oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means of X-ray photoelectron spectroscopy (XPS) and residual stress analyses using XRD at the sample surfaces before ageing.

  10. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  11. Friction stir processed Al - Metal oxide surface composites: Anodization and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Canulescu, Stela

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate metal oxide (TiO2, Y2O3 and CeO2) particles into the surface of an Aluminium alloy. The surface composites were then anodized in a sulphuric acid electrolyte. The effect of anodizing parameters on the resulting optical...... dark to greyish white. This is attributed to the localized microstructural and morphological differences around the metal oxide particles incorporated into the anodic alumina matrix. The metal oxide particles in the FSP zone electrochemically shadowed the underlying Al matrix and modified the local...

  12. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, M.A. [CTT Group, Saint-Hyacinthe (Canada); Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada); Dolez, P.I., E-mail: pdolez@gcttg.com [CTT Group, Saint-Hyacinthe (Canada); Dubé, M.; David, É. [Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada)

    2017-03-01

    Highlights: • A hydrophobic treatment based on zinc oxide nanoparticles and stearic acid was developed for recycled jute fibres. • The water contact angle was increased from 33° for the scoured fibre to 148° after the ZnO nanorod/stearic acid hydrothermal treatment. • The fibre thermal degradation temperature remained the same throughout the treatment at around 315 °C. • A reduction in the fibre breaking force of 32% was observed between the as-received and the ZnO nanorod/stearic acid treated fibres. - Abstract: This work aims at developing a hydrophobic treatment for jute fibres based on the grafting and growth of zinc oxide (ZnO) nanorods on the fibre surface. The first step consists in removing impurities from the fibre surface with a scouring treatment. In the second step, the jute fibres are coated with a layer of ZnO nanoseeds. A hydrothermal process is carried out as a third step to ensure a uniform growth of ZnO nanorods on the surface of the jute fibres. Finally, a hydrophobic treatment is performed on the ZnO nanorod-covered jute fibres using stearic acid (SA), i.e., a typical fatty acid. A large improvement in the fibre hydrophobicity was obtained without any negative effect on thermal stability and limited reduction in strength. Complementary measurements by scanning electron microscopy and X-ray diffraction were also performed and revealed a hexagonal system for the ZnO nanorods.

  13. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  14. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    Science.gov (United States)

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  15. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  16. Surface characteristics of bioactive Ti fabricated by chemical treatment for cartilaginous-integration.

    Science.gov (United States)

    Miyajima, Hiroyuki; Ozer, Fusun; Imazato, Satoshi; Mante, Francis K

    2017-09-01

    Artificial hip joints are generally expected to fail due to wear after approximately 15years and then have to be replaced by revision surgery. If articular cartilage can be integrated onto the articular surfaces of artificial joints in the same way as osseo-integration of titanium dental implants, the wear of joint implants may be reduced or prevented. However, very few studies have focused on the relationship between Ti surface and cartilage. To explore the possibility of cartilaginous-integration, we fabricated chemically treated Ti surfaces with H 2 O 2 /HCl, collagen type II and SBF, respectively. Then, we evaluated surface characteristics of the prepared Ti samples and assessed the cartilage formation by culturing chondrocytes on the Ti samples. When oxidized Ti was immersed in SBF for 7days, apatite was formed on the Ti surface. The surface characteristics of Ti indicated that the wettability was increased by all chemical treatments compared to untreated Ti, and that H 2 O 2 /HCl treated surface had significantly higher roughness compared to the other three groups. Chondrocytes produced significantly more cartilage matrix on all chemically treated Ti surfaces compared to untreated Ti. Thus, to realize cartilaginous-integration and to prevent wear of the implants in joints, application of bioactive Ti formed by chemical treatment would be a promising and effective strategy to improve durability of joint replacement. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of anti-condensation mechanism on superhydrophobic anodic aluminum oxide surface

    International Nuclear Information System (INIS)

    Wu, Yanpeng; Zhang, Chaoying

    2013-01-01

    Wetting theory about superhydrophobic surfaces reveals that hydrophobicity of surfaces has great relationship with surface roughness and surface free energy. Adopt electrochemical plus fluorine silane modified method to prepare superhydrophobic surface on anodic aluminum oxide surface, which not only enhances surface roughness, but also reduces surface free energy, even the static contact angle can reach 159.2° and anti-condensation is authenticated. Based on the experimental findings, analyze the reason of anti-condensation on superhydrophobic surfaces: one is that the density of droplets formed on superhydrophobic surfaces is low and the number of droplets is little; the other is bigger static contact angle and smaller rolling angle on superhydrophobic surfaces make droplets easy to detach on smaller tilt angle. This research can solve some condensation problems of equipment using in HVAC systems, such as heat exchangers in air conditioning system, cold radiation boards, air supply outlets, and so on. Highlights: • Prepare superhydrophobic surface on anodic aluminum oxide surface. • Analyze the reason of anti-condensation on superhydrophobic surfaces. • The density of droplets formed on superhydrophobic surfaces is low. • Droplets on superhydrophobic surfaces are easy to detach. • This research can solve some problems of equipment using in HVAC systems

  18. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  19. The effect of surface treatments on the microroughness of laser-sintered and vacuum-cast base metal alloys for dental prosthetic frameworks.

    Science.gov (United States)

    Castillo-Oyagüe, Raquel; Osorio, Raquel; Osorio, Estrella; Sánchez-Aguilera, Fátima; Toledano, Manuel

    2012-09-01

    This study aimed to evaluate the effect of four chemomechanical surface treatments on the surface average microroughness and profile of laser-sintered and vacuum-cast dental prosthetic structures. Square-shaped blocks (10 mm × 10 mm × 1.5 mm) were prepared as follows: (1) laser-sintered CoCr (L) (ST2724G); (2) cast Co-Cr (C) (Gemium-cn); and (3) cast Ni-Cr-Ti (T) (Tilite). Specimens of each alloy group were randomly divided into five subgroups (n = 10 each), depending on the conditioning method used: (1) no treatment (control); (2) sandblasting (125 μm Al₂O₃-particles); (3) silica coating (50 μm silica-modified Al₂O₃-particles); (4) oxidation; and (5) oxidation plus opacification. Subgroups 2 and 3 represent "inner" pretreatments proposed for ceramometal restorations to improve the metal surface area available for luting cements. Subgroups 4 and 5 are the "outer" pretreatments required for bonding the aesthetic veneering ceramics to the underlying metal frameworks. Average surface roughness (Ra/μm) was determined using a surface profilometer. Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). Metal surface topography was SEM-analyzed. Despite the inner pretreatment applied, L samples resulted in the highest microroughness (P < 0.001), whereas sandblasting produced a surface-smoothing effect in cast specimens. After oxidation, a significant increase in surface roughness occurred in all groups compared with controls, L specimens being the roughest (P < 0.001). Opacification caused a flattening effect of all oxidized structures; all opacified groups resulting in similar microroughness. Laser sintering of Co-Cr enhances the roughness of metal structures, which may improve the frameworks' microretention of the cements, and of the opaquer before the copings are veneered with the aesthetic ceramics. Copyright © 2012 Wiley Periodicals, Inc.

  20. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  1. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy

    2015-01-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment ...

  2. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    Science.gov (United States)

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  4. Hydrofluoric–nitric–sulphuric-acid surface treatment of tungsten for carbon fibre-reinforced composite hybrids in space applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanerva, M., E-mail: Mikko.Kanerva@aalto.fi [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland); Johansson, L.-S.; Campbell, J.M. [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O.B. 16300, FI-00076 Aalto (Finland); Revitzer, H. [Aalto University, School of Chemical Technology, Department of Chemistry, P.O.B. 16300, FI-00076 Aalto (Finland); Sarlin, E. [Tampere University of Technology, Department of Materials Science, P.O.B. 589, FI-33101 Tampere (Finland); Brander, T.; Saarela, O. [Aalto University, School of Engineering, Department of Applied Mechanics, P.O.B. 14300, FI-00076 Aalto (Finland)

    2015-02-15

    Highlights: • XPS and AFM analysis of the effect of hydrofluoric–nitric–sulphuric-acid on tungsten. • Dreiling's model established 54.4% thinning of WO{sub 3} due to 67 s treatment. • Strain energy release rate increased ≈8.4 J/m{sup 2} at the interface. • Failure loci analysis expressed the oxide and carbon fibre surfaces as weak points. - Abstract: Hybrid material systems, such as combinations of tungsten foils and carbon fibre-reinforced plastic (CFRP), are replacing metal alloy concepts in spacecraft enclosures. However, a good adhesion between the tungsten oxide scale and the epoxy resin used is required. Here, the effects of a hydrofluoric–nitric–sulphuric-acid (HFNS) treatment on tungsten oxides and subsequent adhesion to CFRP are analysed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fracture testing. The work shows that HFNS treatment results in decreased oxygen content, over 50% thinner tungsten trioxide (WO{sub 3}) layer and increased nano-roughness on thin tungsten foils. Fracture testing established a 39% increase in the average critical strain for tungsten–CFRP specimens after HFNS treatment was carried out on tungsten. The effect of the oxide scale modification regarding the critical strain energy release rate was ΔG{sub c}≈ 8.4 J/m{sup 2}.

  5. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, H. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany)], E-mail: angermann@hmi.de; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M. [Hahn-Meitner-Institut, Abt. Siliziumphotovoltaik, Kekulestrasse 5, D-12489 Berlin (Germany); Huebener, K.; Hauschild, J. [Freie Universitaet Berlin, FB Physik, Arnimallee 14, 14195 Berlin (Germany)

    2008-08-30

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D{sub it}(E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency.

  6. Optimisation of electronic interface properties of a-Si:H/c-Si hetero-junction solar cells by wet-chemical surface pre-treatment

    International Nuclear Information System (INIS)

    Angermann, H.; Korte, L.; Rappich, J.; Conrad, E.; Sieber, I.; Schmidt, M.; Huebener, K.; Hauschild, J.

    2008-01-01

    The relation between structural imperfections at structured silicon surfaces, energetic distribution of interface state densities, recombination loss at a-Si:H/c-Si interfaces and solar cell characteristics have been intensively investigated using non-destructive, surface sensitive techniques, surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and electron microscopy (SEM). Sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of Si(111) pyramids. Special wet-chemical smoothing and oxide removal procedures for structured substrates were developed, in order to reduce the preparation-induced surface micro-roughness and density of electronically active defects. H-termination and passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological process. We achieved significantly lower micro-roughness, densities of surface states D it (E) and recombination loss at a-Si:H/c-Si interfaces on wafers with randomly distributed pyramids, compared to conventional pre-treatments. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H/c-Si/BSF/Al), the c-Si surface becomes part of the a-Si:H/c-Si interface, whose recombination activity determines cell performance. With textured substrates, the smoothening procedure results in a significant increase of short circuit current, fill factor and efficiency

  7. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces

    DEFF Research Database (Denmark)

    Man, Isabela Costinela; Su, Hai-Yan; Vallejo, Federico Calle

    2011-01-01

    with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano......Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination...

  8. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    Science.gov (United States)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  9. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000ppm B) with 0.21mM LiOH (1.5ppm Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentrations were analyzed with proton inelastic scattering. No lithium was detected in any sample. The boron concentration was found to follow the thickness of the oxide

  10. Determination of surface oxide compositions on Alloy 600 using Rutherford backscattering

    International Nuclear Information System (INIS)

    Hanson, A.L.; Isaacs, H.S.; Kraner, H.W.

    1984-01-01

    The surface composition of oxides formed on Alloy 600 under conditions similar to those in the primary side of PWR heat exchangers has been studied as a function of potential using Rutherford backscattering and proton inelastic scattering. Electropolished samples of Alloy 600 were exposed at several potentials to a solution of 0.18M H 3 BO 3 (2000 ppM B) with 0.28M LiOH (1.4 ppM Li) at 300 0 C for 450 hours. The potentials relative to an internal hydrogen electrode ranged from -.09 to 750 mV. RBS analysis showed little or no oxide formation on samples exposed at 0 mV. Above 0 mV oxide layers formed whose thicknesses increased with potential. In addition the RBS showed a significantly enhanced concentration of aluminum and silicon in oxide. Both the oxygen and the sum of the aluminum and silicon content appeared to maintain a fixed surface concentration independent of the oxide thickness. Boron and lithium concentration were analyzed with proton inelastic scattering. No lithium was found in any sample. The boron concentration was found to follow the thickness of the oxide

  11. Oxidation characteristics of the electron beam surface-treated Alloy 617 in high temperature helium environments

    International Nuclear Information System (INIS)

    Lee, Ho Jung; Sah, Injin; Kim, Donghoon; Kim, Hyunmyung; Jang, Changheui

    2015-01-01

    The oxidation characteristics of the electron beam surface-treated Alloy 617, which has an Al-rich surface layer, were evaluated in high temperature helium environments. Isothermal oxidation tests were performed in helium (99.999% purity) and VHTR-helium (helium of prototypical VHTR chemistry containing impurities like CO, CO 2 , CH 4 , and H 2 ) environments at 900 °C for up to 1000 h. The surface-treated Alloy 617 showed an initial transient oxidation stage followed by the steady-state oxidation in all test environments. In addition, the steady-state oxidation kinetics of the surface-treated Alloy 617 was 2-order of magnitude lower than that of the as-received Alloy 617 in both helium environments as well as in air. The improvement in oxidation resistance was primarily due to the formation of the protective Al 2 O 3 layer on the surface. The weight gain was larger in the order of air, helium, and VHTR-helium, while the parabolic rate constants (k p ) at steady-state were similar for all test environments. In both helium environments, the oxide structure consisted of the outer transition Al 2 O 3 with a small amount of Cr 2 O 3 and inner columnar structured Al 2 O 3 without an internal oxide. In the VHTR-helium environment, where the impurities were added to helium, the initial transient oxidation increased but the steady state kinetics was not affected

  12. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  13. Heat treatment effects on the surface chemisorption behavior of strained uranium: The H2O/U reaction

    International Nuclear Information System (INIS)

    Tiferet, E.; Mintz, M.H.; Zalkind, S.; Jacob, I.; Shamir, N.

    2007-01-01

    The initial interaction of H 2 O vapor with polycrystalline uranium surfaces was studied with samples initially strained, then strain relieved by heat treatments, performed in the temperature range up to ∼650 K. The chemisorption characteristics of these surfaces were studied by a combination of direct recoils spectrometry and X-ray photoelectron spectroscopy. X-ray diffraction measurements were used to determine the level of strain relief induced by each of the heat treatments. For all the samples, full water dissociation on the metal surface is observed. The reactivity of the samples towards water is clearly strain dependent, with the sticking coefficient decreasing as strain is relieved. It also seems that for strained samples the initial growth of the oxide is mostly inwards, while for the more relaxed samples lateral growth is dominant. Two interesting phenomena were observed for specific samples. For the 420 K relieved sample, partial dissociation process is observed on top of the forming oxide, in contrast to the full dissociation observed for the other samples. For the ∼650 K relieved sample, clustering of the adsorbed hydrogen atoms (resulted by water dissociation) on the metal surface is observed, in contrast to the homogeneous dispersion of H, occurring on the surface of all other samples. These two phenomena will further be studied in conjunction with microscopic metallurgical observations

  14. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  15. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  16. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film

    International Nuclear Information System (INIS)

    Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B.

    2017-01-01

    Highlights: •The steel substrate was treated by a covalently modified amino functionalized graphene oxide (fGO) film. •Deposition of fGO film at the interface of steel and epoxy could effectively improve the adhesion strength and corrosion protection properties. •More stable and stronger interfacial bonds was obtained when treating the interface by fGO film. -- Abstract: This study introduces a novel surface treatment approach of steel substrate by covalent modification of graphene oxide (fGO) nanosheets with 3-aminopropyltriethoxysilane to improve the adhesion and corrosion protection properties of an epoxy coating. The effect of fGO film on the epoxy coating performance was studied by field-emission scanning electron microscopy (FE-SEM), X-Ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Pull-off adhesion, salt spray and cathodic delamination tests. Results revealed that deposition of fGO film on steel surface can effectively improve the adhesion strength and corrosion protection properties and reduce the cathodic delamination rate of the epoxy coating.

  17. Surface properties of indium tin oxide treated by Cl{sub 2} inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    He, Kongduo; Yang, Xilu; Yan, Hang; Gong, Junyi; Zhong, Shaofeng [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Ou, Qiongrong, E-mail: qrou@fudan.edu.cn [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China); Liang, Rongqing [Department of Light Sources and Illuminating Engineering, Fudan University, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Shanghai 200433 (China)

    2014-10-15

    Graphical abstract: - Highlights: • The work function of chlorinated ITO increases initially by up to 1 eV. • The chlorinated ITO keeps an increment of work function of 0.3 eV after 100 days. • The WF decrease curves can be fitted with double exponential functions. • The desorption of unstable Cl in the surface leads to the rapid decrease of WF. • The core levels of In 3d5 and Sn 3d5 and O 1s shift toward higher binding energies. - Abstract: The effects of Cl{sub 2} inductively coupled plasma (ICP) treatment on the time dependence of work function (WF) and surface properties of indium tin oxide (ITO) were investigated. Kelvin probe (KP) measurements show that the WF after Cl{sub 2} ICP treatment is close to 5.9 eV. The WF decrease curve of Cl{sub 2} plasma treated ITO is fitted with double exponential functions with an adjusted R-square of 0.99. The mechanism under the decrease process is discussed by X-ray photoelectron spectroscopy (XPS). The ITO WF decrease after Cl{sub 2} ICP treatment performs much better than that after O{sub 2} ICP treatment and the chlorinated ITO keeps a WF increment of 0.3 eV compared with that without plasma treatment after 100 days. Other properties of chlorinated ITO surface such as morphology and transmittance change slightly. The results are significant for the understanding of degradation of Cl{sub 2} plasma treated ITO and the fabrication of organic semiconductor devices.

  18. Effect of reacting surface density on the overall graphite oxidation rate

    International Nuclear Information System (INIS)

    Oh, Chang; Kim, Eung; Lim, Jong; Schultz, Richard; Petti, David

    2009-01-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internal pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1) Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because

  19. Ni-doped (CeO2−δ)–YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

    International Nuclear Information System (INIS)

    Somacescu, Simona; Florea, Mihaela; Osiceanu, Petre; Calderon-Moreno, Jose Maria; Ghica, Corneliu; Serra, Jose Manuel

    2015-01-01

    Ni-doped (CeO 2−δ )–YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (∼18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer—Emmett—Teller, BET; Temperature—Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N 2 sorption measurements highlighted that the mesoporous structure is formed at 600 °C and remains stable at 800 °C. At 900 °C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 °C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce 3+  + Ce 4+ ) with high percentage of Ce 3+ valence state ∼35 % and (Ni 3+ and Ni 2+ ) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies.Graphical Abstract

  20. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  1. Study on the influence of carbon monoxide to the surface oxide layer of uranium metal

    International Nuclear Information System (INIS)

    Wang Xiaolin; Duan Rongliang; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1997-01-01

    The influence of carbon monoxide to the surface oxide layer of uranium metal has been studied by X-ray photoelectron spectroscopy (XPS) and gas chromatography (GC). Carbon monoxide adsorption on the oxide layer resulted in U4f peak shifting to the lower binding energy. The content of oxygen in the oxide is decreased and the atomic ratio (O/U) is decreased by 7.2%. The amount of carbon dioxide in the atmosphere after the surface reaction is increased by 11.0%. The investigation indicates that the surface layer can prevent the further oxidation uranium metal in the atmosphere of carbon monoxide

  2. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Science.gov (United States)

    Cumerlato, Marina; de Lima, Eduardo Martinelli; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; de Menezes, Luciane Macedo; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI. PMID:28902249

  3. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Marina Cumerlato

    Full Text Available ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT on the shear bond strength (SBS of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI. Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48: Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01, result not observed with ageing (p= 0.45. Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05. SBS was greater in the groups 3 and 4 (drilling, sandblasting than in the Group 2 (grinding (p< 0.05. SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05. Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.

  4. Surface Passivation of CIGS Solar Cells Using Gallium Oxide

    KAUST Repository

    Garud, Siddhartha

    2018-02-27

    This work proposes gallium oxide grown by plasma-enhanced atomic layer deposition, as a surface passivation material at the CdS buffer interface of Cu(In,Ga)Se2 (CIGS) solar cells. In preliminary experiments, a metal-insulator-semiconductor (MIS) structure is used to compare aluminium oxide, gallium oxide, and hafnium oxide as passivation layers at the CIGS-CdS interface. The findings suggest that gallium oxide on CIGS may show a density of positive charges and qualitatively, the least interface trap density. Subsequent solar cell results with an estimated 0.5 nm passivation layer show an substantial absolute improvement of 56 mV in open-circuit voltage (VOC), 1 mA cm−2 in short-circuit current density (JSC), and 2.6% in overall efficiency as compared to a reference (with the reference showing 8.5% under AM 1.5G).

  5. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  6. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  7. A method of eliminating the surface defect in low-temperature oxidation powder added UO2 pellet

    International Nuclear Information System (INIS)

    Yoo, H. S.; Lee, S. J.; Kim, J. I.; Jeon, K. R.; Kim, J. W.

    2002-01-01

    A study on methods to eliminate surface defect shown in low-temperature oxidation powder added UO 2 pellet has been performed. Powders oxidized at 350 .deg. C for 4 hrs were prepared and mixed with UO 2 powder after crushing them. After being sintered, surfaces of the pellet were inspected both visually and optically. A large number of defects were observed on the surface of the specimens in which low-temperature oxidation powders were directly mixed or master mixed with UO 2 powder while both specimens produced from mixed powders including milled oxidation powders and powders that were milled totally after mixing had clean surfaces. However, optical examination showed considerably large defected pores in the milled oxidation powder added pellet and it was confirmed that the inner defects can be eliminated completely only when milling the entire mixture on UO 2 and low-temperature oxidation powder, but not by crushing only oxidation powder

  8. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  9. Apparatus and process for the surface treatment of carbon fibers

    Science.gov (United States)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  10. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  11. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir

    2016-07-26

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  12. Single-Site VO x Moieties Generated on Silica by Surface Organometallic Chemistry: A Way To Enhance the Catalytic Activity in the Oxidative Dehydrogenation of Propane

    KAUST Repository

    Barman, Samir; Maity, Niladri; Bhatte, Kushal; Ould-Chikh, Samy; Dachwald, Oliver; Haeß ner, Carmen; Saih, Youssef; Abou-Hamad, Edy; Llorens, Isabelle; Hazemann, Jean-Louis; Kö hler, Klaus; D’ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    We report here an accurate surface organometallic chemistry (SOMC) approach to propane oxidative dehydrogenation (ODH) using a μ2-oxo-bridged, bimetallic [V2O4(acac)2] (1) (acac = acetylacetonate anion) complex as a precursor. The identity and the nuclearity of the product of grafting and of the subsequent oxidative treatment have been systematically studied by means of FT-IR, Raman, solid-state (SS) NMR, UV-vis DRS, EPR and EXAFS spectroscopies. We show that the grafting of 1 on the silica surface under a rigorous SOMC protocol and the subsequent oxidative thermal treatment lead exclusively to well-defined and isolated monovanadate species. The resulting material has been tested for the oxidative dehydrogenation of propane in a moderate temperature range (400-525 °C) and compared with that of silica-supported vanadium catalysts prepared by the standard impregnation technique. The experimental results show that the catalytic activity in propane ODH is strongly upgraded by the degree of isolation of the VOx species that can be achieved by employing the SOMC protocol. © 2016 American Chemical Society.

  13. Alloying Au surface with Pd reduces the intrinsic activity in catalyzing CO oxidation

    KAUST Repository

    Qian, Kun

    2016-03-30

    © 2016. Various Au-Pd/SiO2 catalysts with a fixed Au loading but different Au:Pd molar ratios were prepared via deposition-precipitation method followed by H2 reduction. The structures were characterized and the catalytic activities in CO oxidation were evaluated. The formation of Au-Pd alloy particles was identified. The Au-Pd alloy particles exhibit enhanced dispersions on SiO2 than Au particles. Charge transfer from Pd to Au within Au-Pd alloy particles. Isolated Pd atoms dominate the surface of Au-Pd alloy particles with large Au:Pd molar ratios while contiguous Pd atoms dominate the surface of Au-Pd alloy particles with small Au:Pd molar ratios. Few synergetic effect of Au-Pd alloy occurs on catalyzing CO oxidation under employed reaction conditions. Alloying Au with Pd reduces the intrinsic activity in catalyzing CO oxidation, and contiguous Pd atoms on the Au-Pd alloy particles are capable of catalyzing CO oxidation while isolated Pd atoms are not. These results advance the fundamental understandings of Au-Pd alloy surfaces in catalyzing CO oxidation.

  14. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  15. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  16. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  17. Microstructure and optical appearance of anodized friction stir processed Al - Metal oxide surface composites

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Bordo, Kirill

    2014-01-01

    Multiple-pass friction stir processing (FSP) was employed to impregnate Ti, Y and Ce oxide powders into the surface of an Aluminium alloy. The FSP processed surface composite was subsequently anodized with an aim to develop optical effects in the anodized layer owing to the presence of incorporated...... oxide particles which will influence the scattering of light. This paper presents the investigations on relation between microstructure of the FSP zone and optical appearance of the anodized layer due to incorporation of metal oxide particles and modification of the oxide particles due to the anodizing...

  18. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    Science.gov (United States)

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result.

  19. Characterization study of native oxides on GaAs(100) surface by XPS

    Science.gov (United States)

    Feng, Liu; Zhang, Lian-dong; Liu, Hui; Gao, Xiang; Miao, Zhuang; Cheng, Hong-chang; Wang, Long; Niu, Sen

    2013-08-01

    In order to know more about the surface state of GaAs(100) epitaxial wafer during a storage period of two years, the XPS analysis was carried out four times on the surface, respectively polished by chemical etching, stored in desiccator for half a year, one year and two years. The results indicated that even after cleaned by proper etchant solutions, the fresh surface was slightly oxidized with Ga2O3, As2O3 and organic contaminant. The epi-wafer was always exposed to air during the storage period, so more and more oxides turned out. The mixed oxide layer comprised of C-OR, COOR, Ga2O3, As2O3 and As2O5 appeared after only half a year. In the ageing process of two years, the oxide types of gallium or arsenic did not change with stable content of Ga2O3 and remarkably fluctuating relative contents of As2O3 and As2O5. Based on the intensity ratio of Ga 3d-Ga2O3 to Ga 3d-GaAs, the thickness of oxide layer was estimated. The oxide layer generated after chemical polishing was very thin, just only 0.435nm thick, and then it grew rapidly, approximately 1.822nm after one year while almost no change any more subsequently. It was indicated that after the epi-wafer was stored for one year, because of volatile As2O3 or As2O5, there remained a large amount of Ga2O3 in oxide layer, which prevented the reactions between bulk material and oxide layer with oxygen. So native oxide layer plays a role as passive film to protect epi-wafer against the environment during a long storage period.

  20. XPS and ToF-SIMS investigation of nanocrystalline diamond oxidized surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Torrengo, S.; Canteri, R.; Dell’Anna, R.; Minati, L. [Fondazione Bruno Kessler, via Sommarive 18, I-38123 Trento (Italy); Pasquarelli, A. [Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, 89081 Ulm (Germany); Speranza, G., E-mail: speranza@fbk.eu [Fondazione Bruno Kessler, via Sommarive 18, I-38123 Trento (Italy)

    2013-07-01

    This work aims at studying the different chemical bonds formed on hydrogenated nanocrystalline diamond (NCD) films after oxidation. Three different oxidation treatments applied to NCD, namely oxygen plasma, ozone oxidation and piranha solution were investigated using three different analysis techniques namely X-ray photoelectron spectroscopy, UV photoelectron spectroscopy and TOF-secondary ion mass spectrometry. The combination of these techniques allowed us to better discriminate the nature of the carbon oxygen bonds produced by the different oxidation treatments. We demonstrate that the carbon-oxygen bonds induced by UV irradiation possess a different nature with respect to those generated by plasma or piranha solution. In particular the prevalent electrostatic nature of the carbon-oxygen bonds induced by UV irradiation can explain a negative electron affinity recovery upon NCD annealing, not possible in the case of the other two oxidation processes.

  1. XPS and ToF-SIMS investigation of nanocrystalline diamond oxidized surfaces

    International Nuclear Information System (INIS)

    Torrengo, S.; Canteri, R.; Dell’Anna, R.; Minati, L.; Pasquarelli, A.; Speranza, G.

    2013-01-01

    This work aims at studying the different chemical bonds formed on hydrogenated nanocrystalline diamond (NCD) films after oxidation. Three different oxidation treatments applied to NCD, namely oxygen plasma, ozone oxidation and piranha solution were investigated using three different analysis techniques namely X-ray photoelectron spectroscopy, UV photoelectron spectroscopy and TOF-secondary ion mass spectrometry. The combination of these techniques allowed us to better discriminate the nature of the carbon oxygen bonds produced by the different oxidation treatments. We demonstrate that the carbon-oxygen bonds induced by UV irradiation possess a different nature with respect to those generated by plasma or piranha solution. In particular the prevalent electrostatic nature of the carbon-oxygen bonds induced by UV irradiation can explain a negative electron affinity recovery upon NCD annealing, not possible in the case of the other two oxidation processes.

  2. Light transmittance and surface roughness of a feldspathic ceramic CAD-CAM material as a function of different surface treatments.

    Science.gov (United States)

    Ural, Çağrı; Duran, İbrahim; Evmek, Betül; Kavut, İdris; Cengiz, Seda; Yuzbasioglu, Emir

    2016-07-15

    The aim of the present study was to determine the effect of different surface treatments on light transmission of aesthetic feldspathic ceramics used in CAD-CAM chairside restorations. Forty eight feldspatic ceramic test specimens were prepared from prefabricated CAD-CAM blocks by using a slow speed diamond saw. Test specimens were prepared and divided into 4 groups (n = 12). In the control group, no surface treatments were applied on the feldspathic ceramic surfaces. In the hydrofluoric acid group, the bonding surfaces of feldspathic ceramics were etched with 9.5 % hydrofluoric acid. In the sandblasting group the feldspathic ceramic surfaces were air-abraded with 30-μm alumium oxide (Al2O3) particles and Er:YAG laser was used to irradiate the ceramic surfaces. The incident light power given by the LED device and the transmitted light power through each ceramic sample was registered using a digital LED radiometer device. Each polymerization light had a light guide with 8-mm-diameter tips. Light transmission of feldspathic ceramic samples was determined by placing it on the radiometer and irradiating the specimen for 10 s at the highest setting for each light polymerization. All specimens were coated with gold using a sputter coater and examined under a field emission scanning electron microscope. Surface roughness measurement each group were evaluated with 3D optical surface and tactile profilometers. One-way ANOVA test results revealed that both surface conditioning method significantly affect the light transmittance (F:412.437; p ceramic material below the value of 400 mW/cm(2) which is critical limit for safe polymerization.

  3. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  4. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  5. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  6. Influence of surface treatment on the biocompatibility of aluminum substrates promising for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kiradzhiyska, D. D., E-mail: denica.kiradjiiska@gmail.com; Mantcheva, R. D., E-mail: r-manch@abv.bg [Medical University - Plovdiv, Faculty of Pharmacy, Department of Chemical Science15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Feodorova, Y. N.; Draganov, M. M. [Medical University - Plovdiv, Medical Faculty, Department of Medical Biology, 15A Vassil Aprilov blvd., 4002 Plovdiv (Bulgaria); Girginov, Ch. A. [University of Chemical Technology and Metallurgy -Sofia, Department of Chemical Science, Subdepartment of Physical Chemistry, 8 Kliment Ohridski Blvd. 1756 Sofia (Bulgaria); Viraneva, A. P.; Yovcheva, T. A. [University of Plovdiv “Paisiy Hilendarski”, Faculty of Physics, Department of Experimental Physic, 24 Tsar Assen str., 4000 Plovdiv (Bulgaria)

    2016-03-25

    Materials for medical implants should have suitable mechanical properties, excellent biocompatibility and high corrosion resistance. They should not stimulate allergic and immunologic reactions and should not cause cancer. The use of aluminum as a construction material in implantology is continuously expanding. There are various methods for surface treatment to improve its biocompatibility. In this study aluminum samples anodized in 15% H{sub 2} SO{sub 4} or treated with positive or negative corona discharge were investigated. PDL-cell line of immortalized cells, precursors of periodontal ligament and RAW 264.7 cell line from mouse macrophages are used for the bioassays. The results show that 10 and 20 μm thick oxide film provides better development of the PLD cells, compared to untreated aluminum. Metal surfaces with 10 μm thick oxide film show the best properties in terms of cells vitality, proliferation and growth. Polymer treated but uncharged samples show good results.

  7. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  8. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  9. Effects of in situ plasma treatment on optical and electrical properties of index-matched transparent conducting oxide layer

    International Nuclear Information System (INIS)

    Lim, Yong Hwan; Yoo, Hana; Choi, Bum Ho; Kim, Young Baek; Lee, Jong Ho; Shin, Dong Chan

    2010-01-01

    We investigated the effects of in situ plasma-treatment on optical and electrical properties of index-matched indium tin oxide (IMITO) thin film. To render the IMITO-coated surface hydrophilic and study the optical and electrical characteristics, we performed in situ oxygen plasma post-treatment without breaking vacuum. The 94.6% transmittance in the visible wavelength range (400-700 nm) increased on average to 96.4% and the maximum transmittance reached 98% over a broad wavelength range. The surface roughness and sheet resistance improved from 0.9 nm and 200 Ω/sq to 0.0905 nm and 100 Ω/sq, respectively, by in situ plasma post-treatment. We confirmed by contact angle measurement that the hydrophobic IMITO surface was altered to hydrophilic. The improved optical and electrical characteristics of in situ plasma-treated IMITO makes it adequate for high-resolution liquid crystal on silicon displays.

  10. Surface oxidation: an effective way to induce piezoelectricity in 2D black phosphorus

    Science.gov (United States)

    Li, Jiabin; Zhao, Ting; He, Chaoyu; Zhang, Kaiwang

    2018-03-01

    In this letter, first-principles methods are employed to investigate the elastic stiffness and piezoelectric tensors of surface-oxidized black phosphorene. Our results show that the piezoelectric coefficients d 11 and d 12 for surface-oxidized black phosphorene are 88.54 pm V-1 and  -1.94 pm V-1, respectively, which are comparable to those of group-IV monochalcogenides and more remarkable than those of the experimentally viable h-BN and MoS2. These results indicate that surface-oxidization is an effective way to make black phosphorene into an excellent piezoelectric material for potential applications in sensors, actuators, electric field generators and any other applications requiring electrical and mechanical energy conversion. We expect further experimental exploration on this interesting result to confirm our predictions.

  11. Ni-doped (CeO{sub 2−δ})–YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

    Energy Technology Data Exchange (ETDEWEB)

    Somacescu, Simona, E-mail: ssimona@icf.ro [Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry (Romania); Florea, Mihaela [University of Bucharest, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry (Romania); Osiceanu, Petre; Calderon-Moreno, Jose Maria [Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry (Romania); Ghica, Corneliu [National Institute of Materials Physics (Romania); Serra, Jose Manuel [Universidad Politécnica de Valencia - Consejo Superior de Investigaciones Científicas, Instituto de Tecnología Química (Spain)

    2015-11-15

    Ni-doped (CeO{sub 2−δ})–YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (∼18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer—Emmett—Teller, BET; Temperature—Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N{sub 2} sorption measurements highlighted that the mesoporous structure is formed at 600 °C and remains stable at 800 °C. At 900 °C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 °C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce{sup 3+} + Ce{sup 4+}) with high percentage of Ce{sup 3+} valence state ∼35 % and (Ni{sup 3+} and Ni{sup 2+}) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies.Graphical Abstract.

  12. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis.

    Science.gov (United States)

    Roum, J H; Borok, Z; McElvaney, N G; Grimes, G J; Bokser, A D; Buhl, R; Crystal, R G

    1999-07-01

    Cystic fibrosis (CF) is characterized by accumulation of activated neutrophils and macrophages on the respiratory epithelial surface (RES); these cells release toxic oxidants, which contribute to the marked epithelial derangements seen in CF. These deleterious consequences are magnified, since reduced glutathione (GSH), an antioxidant present in high concentrations in normal respiratory epithelial lining fluid (ELF), is deficient in CF ELF. To evaluate the feasibility of increasing ELF GSH levels and enhancing RES antioxidant protection, GSH aerosol was delivered (600 mg twice daily for 3 days) to seven patients with CF. ELF total, reduced, and oxidized GSH increased (P < 0.05, all compared with before GSH therapy), suggesting adequate RES delivery and utilization of GSH. Phorbol 12-myristate 13-acetate-stimulated superoxide anion (O2-.) release by ELF inflammatory cells decreased after GSH therapy (P < 0.002). This paralleled observations that GSH added in vitro to CF ELF inflammatory cells suppressed O2-. release (P < 0.001). No adverse effects were noted during treatment. Together, these observations demonstrate the feasibility of using GSH aerosol to restore RES oxidant-antioxidant balance in CF and support the rationale for further clinical evaluation.

  13. Evidence concerning oxidation as a surface reaction in Baltic amber

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2012-01-01

    , obtained from pressed amber powder, were subjected to accelerated thermal ageing. Cross-sections of the pellets were analyzed by infrared micro-spectroscopy, in order to identify and quantify changes in chemical properties. The experimental results showed strong oxidation exclusively at the exterior part...... of cross-sections from samples subjected to long-term thermal ageing, confirming that oxidation of Baltic amber starts from the surface....

  14. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  15. Physics and Chemistry on Well-Defined Semiconductor and Oxide Surfaces

    Science.gov (United States)

    Chen, Peijun

    High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH_3, PH_3 and B_ {10}H_{14} on Si(111)-(7 x 7); NH_3 on Si(100) -(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al_2O_3 and Sn on SiO_2.. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allows the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate molecules such as NH_3 and PH_3, the nature of the initial low temperature (100 -300 K) adsorption is found to be dissociative, while that for B_{10}H_ {14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH_3 on Si(111)-(7 x 7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure in controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111) -(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H. This discovery is potentially meaningful to the technology of gas-phase silicon etching. The

  16. Influence of surface defects on the tensile strength of carbon fibers

    Science.gov (United States)

    Vautard, F.; Dentzer, J.; Nardin, M.; Schultz, J.; Defoort, B.

    2014-12-01

    The mechanical properties of carbon fibers, especially their tensile properties, are affected by internal and surface defects. In order to asses in what extent the generation of surface defects can result in a loss of the mechanical properties, non-surface treated carbon fibers were oxidized with three different surface treatment processes: electro-chemical oxidation, oxidation in nitric acid, and oxidation in oxygen plasma. Different surface topographies and surface chemistries were obtained, as well as different types and densities of surface defects. The density of surface defects was measured with both a physical approach (Raman spectroscopy) and a chemical approach (Active Surface Area). The tensile properties were evaluated by determining the Weibull modulus and the scale parameter of each reference, after measuring the tensile strength for four different gauge lengths. A relationship between the tensile properties and the nature and density of surface defects was noticed, as large defects largely control the value of the tensile strength. When optimized, some oxidation surface treatment processes can generate surface functional groups as well as an increase of the mechanical properties of the fibers, because of the removal of the contamination layer of pyrolytic carbon generated during the carbonization of the polyacrylonitrile precursor. Oxidation in oxygen plasma revealed to be a promising technology for alternative surface treatment processes, as high levels of functionalization were achieved and a slight improvement of the mechanical properties was obtained too.

  17. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  18. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris [Drexel Univ., Philadelphia, PA (United States); Zhang, Yu [Vanderbilt Univ., Nashville, TN (United States); Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kolesnikov, Alexander I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cummings, Peter T. [Vanderbilt Univ., Nashville, TN (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  19. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  20. Building 107 for surface treatment

    CERN Multimedia

    Brice, Maximilien

    2018-01-01

    A brand new state-of-the-art building hosting laboratories for the surface treatment of vacuum equipment and workshops for the manufacturing and treatment of printed circuit boards was completed in 2017.

  1. Band energy control of molybdenum oxide by surface hydration

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T., E-mail: k.t.butler@bath.ac.uk; Walsh, Aron [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Crespo-Otero, Rachel [School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS (United Kingdom); Buckeridge, John; Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Bovill, Edward; Lidzey, David [Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-12-07

    The application of oxide buffer layers for improved carrier extraction is ubiquitous in organic electronics. However, the performance is highly susceptible to processing conditions. Notably, the interface stability and electronic structure is extremely sensitive to the uptake of ambient water. In this study we use density functional theory calculations to asses the effects of adsorbed water on the electronic structure of MoO{sub x}, in the context of polymer-fullerene solar cells based on PCDTBT. We obtain excellent agreement with experimental values of the ionization potential for pristine MoO{sub 3} (010). We find that IP and EA values can vary by as much as 2.5 eV depending on the oxidation state of the surface and that adsorbed water can either increase or decrease the IP and EA depending on the concentration of surface water.

  2. On the role of Nb-related sites of an oxidized β-TiNb alloy surface in its interaction with osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jirka, Ivan, E-mail: Ivan.Jirka@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Frank, Otakar [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Tolde, Zdeněk [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic); Plšek, Jan [J. Heyrovský Institute of Physical Chemistry, Acad. Sci. CR, v.v.i. Dolejškova 3, 182 23 Prague 8 (Czech Republic); Luxbacher, Thomas [Anton Paar GmbH, Anton Paar Str. 20, 8054 Graz (Austria); Bačáková, Lucie [Institute of Physiology, Acad. Sci. CR, v.v.i., Vídeňská 1083, Prague 4 (Czech Republic); Starý, Vladimír [Faculty of Mechanical Engineering, Czech Technical University in Prague, Institute of Materials Engineering, Karlovo nám. 13, Prague 2 (Czech Republic)

    2013-04-01

    β-Stabilized titanium (Ti) alloys containing non-toxic elements, particularly niobium (Nb), are promising materials for the construction of bone implants. Their biocompatibility can be further increased by oxidation of their surface. Therefore, in this study, the adhesion, growth and viability of human osteoblast-like MG 63 cells in cultures on oxidized surfaces of a β-TiNb alloy were investigated and compared with the cell behavior on thermally oxidized Ti, i.e. a metal commonly used for constructing bone implants. Four experimental groups of samples were prepared: Ti or TiNb samples annealed to 600 °C for 60 min in a stream of dry air, and Ti and TiNb samples treated in Piranha solution prior to annealing. We found that on all TiNb-based samples, the cell population densities on days 1, 3 and 7 after seeding were higher than on the corresponding Ti-based samples. As revealed by XPS and Raman spectroscopy, and also by isoelectric point measurements, these results can be attributed to the presence of T-Nb{sub 2}O{sub 5} oxide phase in the surface of the alloy sample, which decreased its negative zeta (ζ)-potential in comparison with zeta (ζ)-potential of the Ti sample at physiological pH. This effect was tentatively explained by the presence of positively charged defects acting as Lewis sites of the surface Nb{sub 2}O{sub 5} phase. Piranha treatment slightly decreases the biocompatibility of the samples, which for the alloy samples may be explained by a decrease in the number of defective sites with this treatment. Thus, the presence of Nb and thermal oxidation of β-stabilized Ti alloys play a significant role in the increased biocompatibility of TiNb alloys. - Highlights: ► T-Nb{sub 2}O{sub 5} and rutile are the main components of the oxidized β-TiNb alloy surface. ► Negative value of ζ potential is reduced by presence of Nb in the alloy surface. ► Less negative ζ potential is beneficial for interaction of the alloy with cells. ► The β-TiNb alloy

  3. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  4. Surface enrichment of Pt in stable Pt-Ir nano-alloy particles on MgAl 2 O 4 spinel in oxidizing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weizhen; Nie, Lei; Chen, Ying; Kovarik, Libor; Liu, Jun; Wang, Yong

    2017-04-01

    With the capability of MgAl2O4 spinel {111} nano-facets in stabilizing small Rh, Ir and Pt particles, bimetallic Ir-Pt catalysts on the same support were investigated, aiming at further lowering the catalyst cost by substituting expensive Pt with cheaper Ir in the bulk. Small Pt-Ir nano-alloy particles (< 2nm) were successfully stabilized on the spinel {111} nano-facets as expected. Interestingly, methanol oxidative dehydrogenation (ODH) rate on the surface Pt atoms increases with oxidizing aging but decreases upon reducing treatment, where Ir is almost inactive under the same reaction conditions. Up to three times enhancement in Pt exposure was achieved when the sample was oxidized at 800 °C in air for 1 week and subsequently reduced by H2 for 2 h, demonstrating successful surface enrichment of Pt on Pt-Ir nano-alloy particles. A dynamic stabilization mechanism involving wetting\

  5. Effect of beta phase composition and surface machining on the oxidation behavior of Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Nouduru, S.K.; Kiran Kumar, M.; Kain, V.; Khanna, A.S.

    2015-01-01

    Zr-2.5Nb is commonly used as the pressure tube material in pressurized heavy water reactors. it is also the pressure tube material for Advanced Heavy Water Reactor (AHWR) being developed indigenously in India with light water as coolant and water chemistry similar to Boiling Water Reactors (BWR). Oxidation of the pressure tube depends on various factors like material composition, microstructure, fabrication route, and water chemistry. In the present research, the role of the composition and morphology of second phase β on the high temperature and pressure oxidation behavior of Zr-2.5Nb pressure tube material in steam was systematically studied. The as-received pressure tube material (fabricated through cold worked and stress relieved, CWSR route) was subjected to selective heat treatments to generate microstructures containing predominantly β(Zr) (∼ 20% Nb) and β(Nb) (∼ 80% Nb) phases. The presence of such phases was characterized by X-ray diffraction and transmission electron microscopy-energy dispersive spectroscopy. Subsequently both the heat treated materials were subjected to surface machining. The Zr-2.5Nb material in different microstructural conditions was subjected to accelerated oxidation exposures in steam at 400 C. degrees, and 10 MPa pressure up to 30 days. Raman spectroscopy was carried out on the oxide surfaces to observe the variation in tetragonal versus monoclinic phase fractions with oxidation duration. The microstructure consisting of predominantly β(Nb) showed a relatively improved oxidation resistance as compared to the one with predominantly β(Zr). The tetragonal phase fraction in the oxide film decreased with oxidation time in all microstructural conditions and was found to be the least in the microstructure containing β(Zr) after 10 days of exposures. The explanation for the observed higher oxidation resistance of β(Nb) microstructure lies in the context of depleted matrix Nb content in the case of β(Nb). Surface machining

  6. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  7. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Sohair I. Abou-Elela

    2016-07-01

    Full Text Available The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC. The effects of operating condition on Fenton oxidation process such as hydrogen peroxide and iron concentration were investigated. In addition, kinetic study of the adsorption process was elaborated. The obtained results indicated that degradation of organic matters follows a pseudo-first order reaction with regression coefficient of 0.98. The kinetic model suggested that the rate of reaction was highly affected by the concentration of hydrogen peroxide. Moreover, the results indicated that the treatment module was very efficient in removing the organic and inorganic pollutants. The average percentage removal of chemical oxygen demand (COD, total suspended solid (TSS, oil, and grease was 98.60%, 86.60%, and 94.22% with residual values of 44, 20, and 5 mg/L, respectively. The treated effluent was complying with the National Regulatory Standards for wastewater discharge into surface water or reuse in the retting process.

  8. The surface oxidation kinetics of zirconium-niobium alloys and aα-Fe with prevailing cubical texture

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Kargin, D.B.; Chalaya, O. V.; Berber, N.N.

    2002-01-01

    It is known, that the kinetics of oxidation of zirconium at formed heating is characterized by two consecutive stages. At the initial stage the thin protecting film will be derived. The relation of its depth from time h (t) is described predominantly by parabolic law. Some time later there can be a transition to the linear law of oxidation. The time moment divided these areas on the kinetic relation is called as a point of break. The film is formed at the second stage, has a developed grid of pores or cracks, can be flake away and be crumbled by losing its protective properties. At the oxidation of the surface shells of the heat generating elements and the technological channels of atomic boilers both stages are proceeded simultaneously. This phenomenon is called modular corrosion. Its consequences can be dangerous for the equipment. Its mechanism is not clear till now. Similar dependencies h(t), with the break point, beginning from which the thin film is transformed into the thick one were found by us at the oxidation α-Fe with prevailing cubical texture. The task of the work was to study the oxide film growth laws in order to clarify the mechanisms of transition of the thin film into the oxide layer on the α-Fe surface and Zr-Nb alloy modular corrosion emergence. Low-carbonate steel with contents 99.43 % of α-Fe was used as a model object of our research. In the texture of the steel surface planar direction [100] was prevalent. Its part accounted for about 40 %. The isothermal air oxidation was carried out in the interval of 450-500 deg. C . Phase composition of the film was determined with X-ray diffraction. The mathematical treatment of the dependencies h(t) obtained by experiment showed that the kinetics of the film growth can be conditionally divided into 4-stages. The initial stage is described by function logarithmic function, the other stages - by the power mode h n =A n ·t, namely, the second stage - is described by function close to cubical (n≅3

  9. Metal/metal-oxide interfaces: A surface science approach to the study of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C.H.F.; Kidd, K.B.; Shinn, N.D. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (USA))

    1991-05-01

    Metal-oxide/metal interfaces play an important role, for example, in the joining of an oxide ceramic to a metal for sealing applications. In order to probe the chemical and physical properties of such an interface, we have performed Auger electron spectroscopic (AES) and temperature programed desorption (TPD) experiments on a model system composed of very thin films of Cr, Fe, Ni, or Cu evaporated onto a very thin thermally grown oxide on a W single crystal. Monolayer films of Fe and Cr were found (by AES) to completely wet the oxide surface upon deposition, and were stable up to temperatures at which the films desorbed ({approx}1300 K). In contrast, monolayer Ni and Cu films formed three-dimensional islands exposing the oxidized W surface either upon annealing (Ni) or even upon room-temperature deposition (Cu). The relative interfacial interaction between the overlayer metal and the oxide, as assessed by TPD, increases in the series Cu{lt}Ni{lt}Fe{lt}Cr. This trend follows the heats of formation of the various oxides of these metals.

  10. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  11. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T

    2004-05-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters {psi} and {delta} at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance.

  12. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    International Nuclear Information System (INIS)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T.

    2004-01-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters Ψ and Δ at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance

  13. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  14. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Maciej, E-mail: maciej.sowa@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Woszczak, Maja; Kazek-Kęsik, Alicja [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland); Dercz, Grzegorz [Institute of Materials Science, University of Silesia, 75 Pułku Piechoty Street 1A, 41-500 Chorzów (Poland); Korotin, Danila M. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Zhidkov, Ivan S. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Kurmaev, Ernst Z. [M.N. Mikheev Institute of Metal Physics of the Ural Branch of Russian Academy of Sciences, S. Kovalevskoi Street 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg (Russian Federation); Basiaga, Marcin [Faculty of Biomedical Engineering, Silesian University of Technology, Gen. de Gaulle’a Street 66, 41-800 Zabrze (Poland); Simka, Wojciech, E-mail: wojciech.simka@polsl.pl [Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice (Poland)

    2017-06-15

    Highlights: • 2-step plasma electrolytic oxidation (PEO) of tantalum was investigated. • PEO coatings surface composition were reflected by the composition of anodizing baths. • Hydrophobic surfaces were obtained from acetate and formate containing baths. • Bioactive phases were identified. - Abstract: This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm{sup −2}) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H{sub 2}PO{sub 2}){sub 2} solution, which was then modified by the addition of 1.15 M Ca(HCOO){sub 2} as well as 1.15 M and 1.5 M Mg(CH{sub 3}COO){sub 2}. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO{sup −} and CH{sub 3}COO{sup −} ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  15. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  16. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymuş, Zeynep; Gundogdu, Mustafa

    2014-01-01

    Acrylic resin denture fracture is common in prosthodontic practice. When fractured denture bases are repaired, recurrent fractures frequently occur at the repair surface interface or adjacent areas. The purpose of this study was to evaluate the effect of different surface treatments on the flexural strength of the acrylic resin denture base repaired with heat-polymerized acrylic resin, autopolymerizing resin, and light-polymerized acrylic resin. Ninety-six specimens of heat-polymerized acrylic resin were prepared according to the American Dental Association Specification No. 12 (65.0 × 10.0 × 2.5 mm) and sectioned into halves to create a repair gap (3.0 × 10 × 2.5 mm). The sectioned specimens were divided into 3 groups according to their repair materials. The specimens from each group were divided into 4 subgroups according to their surface treatments: a control group without any surface treatment; an experimental group treated with methyl methacrylate monomer (MMA group); an experimental group treated with airborne-particle abrasion with aluminum oxide particles of 250-μm particle size (abrasion group); and an experimental group treated with erbium:yttrium-aluminum-garnet laser (laser group). After the surface treatments, the 3 materials were placed into the repair gaps and then polymerized. After all of the specimens had been ground and polished, they were stored in distilled water at 37°C for 1 week and subjected to a 3-point bend test. Data were analyzed with a 2-way analysis of variance, and the Tukey honestly significant difference test was performed to identify significant differences (α=.05). The effects of the surface treatments and repair resins on the surface of the denture base resin were examined with scanning electron microscopy. Significant differences were found among the groups in terms of repair resin type (P<.001). All surface-treated specimens had higher flexural strength than controls, except the surface treated with the methyl

  17. Inhibition of methane oxidation in slurry surface crust by inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun-Feng; Elsgaard, Lars; Petersen, Søren O

    2013-01-01

    Livestock slurry is an important source of methane (CH4). Depending on dry matter content, a floating crust may form where methane-oxidizing bacteria (MOB) and CH4 oxidation activity have been found, suggesting that surface crusts may reduce CH4 emissions from slurry. However, it is not known how...... MOB in this environment interact with inorganic nitrogen (N). We studied inhibitory effects of ammonium (NH4+), nitrate (NO3–) and nitrite (NO2–) on potential CH4 oxidation in a cattle slurry surface crust. Methane oxidation was assayed at salt concentrations up to 500 mM at 100 and 10,000 ppmv...... headspace CH4. First-order rate constants were used to evaluate the strength of inhibition. Nitrite was the most potent inhibitor, reducing methanotrophic activity by up to 70% at only 1 mM NO2–. MOB were least sensitive to NO3–, tolerating up to 30 mM NO3– at 100 ppmv CH4 and 50 mM NO3– at 10,000 ppmv CH4...

  18. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Science.gov (United States)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-11-01

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal-oxygen-carbon bonding and not a metal-carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  19. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-01-01

    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  20. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  1. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    Science.gov (United States)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  2. The role of Ar plasma treatment in generating oxygen vacancies in indium tin oxide thin films prepared by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Deuk-Kyu [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Misra, Mirnmoy; Lee, Ye-Eun [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of); Baek, Sung-Doo [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Myoung, Jae-Min, E-mail: jmmyoung@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722 (Korea, Republic of); Lee, Tae Il, E-mail: t2.lee77@gachon.ac.kr [Department of BioNano Technology, Gachon University, 1342 Seong-nam dae-ro, Seong-nam si, Gyeonggi-do, 13120 (Korea, Republic of)

    2017-05-31

    Highlights: • Indium tin oxide thin film with about 41 nm thickness was obtained by the sol-gel process. • Thin film exhibited low resistivity. • Sheet resistance of thin film decreases with Ar plasma treatment time. • Ar plasma treatment on thin film does not alter the crystal structure and optical properties of the ITO thin-film. • There is no significant change in oxygen vacancies after 20 min of plasma treatment. - Abstract: Argon (Ar) plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. The Ar plasma treatment did not cause any significant changes to the crystal structure, surface morphology, or optical properties of the ITO thin films. However, an X-ray photoelectron spectroscopy study confirmed that the concentration of oxygen vacancies in the film dramatically increased with the plasma treatment time. Thus, we concluded that the decrease in the sheet resistance was caused by the increase in the oxygen vacancy concentration in the film. Furthermore, to verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. The oxygen vacancies were found to be created by surface heating via the outward thermal diffusion of oxygen atoms from inside the film.

  3. Nanoporous silver cathode surface treated by atomic layer deposition of CeO_x for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-01-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO_x) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C–450 °C. Our work confirms that ALD CeO_x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO_x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO_x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO_x-treated Ag cathodes related to the microstructure of the layers. (paper)

  4. Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts

    International Nuclear Information System (INIS)

    Kweun, Joshua Minwoo; Li, Chenzhe; Zheng, Yongping; Cho, Maenghyo; Kim, Yoon Young; Cho, Kyeongjae

    2016-01-01

    Graphical abstract: - Highlights: • Bulk-surface relationship was predicted by the ligand field nature of metal oxides. • Antibonding and bonding d-bands occupancy clarified the bulk-surface relationship. • Different surface relaxations were explained by the bulk electronic structures. • Transition from the bulk to the surface state was simulated by oxygen adsorption. - Abstract: Designing metal-oxides consisting of earth-abundant elements has been a crucial issue to replace precious metal catalysts. To achieve efficient screening of metal-oxide catalysts via bulk descriptors rather than surface descriptors, we investigated the relationship between the electronic structure of bulk and that of the surface for lanthanum-based perovskite oxides, LaMO_3 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu). Through density functional theory calculations, we examined the d-band occupancy of the bulk and surface transition-metal atoms (n_B_u_l_k and n_S_u_r_f) and the adsorption energy of an oxygen atom (E_a_d_s) on (001), (110), and (111) surfaces. For the (001) surface, we observed strong correlation between the n_B_u_l_k and n_S_u_r_f with an R-squared value over 94%, and the result was interpreted in terms of ligand field splitting and antibonding/bonding level splitting. Moreover, the E_a_d_s on the surfaces was highly correlated with the n_B_u_l_k with an R-squared value of more than 94%, and different surface relaxations could be explained by the bulk electronic structure (e.g., LaMnO_3 vs. LaTiO_3). These results suggest that a bulk-derived descriptor such as n_B_u_l_k can be used to screen metal-oxide catalysts.

  5. Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Sung; Xing Piao, Ming; Jang, Ho-Kyun; Kim, Gyu-Tae, E-mail: gtkim@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Joo, Min-Kyu [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); IMEP-LAHC, Grenoble INP, Minatec, CS 50257, 38016 Grenoble (France); Ahn, Seung-Eon [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Samsung Advanced Institute of Technology, Samsung Electronics Corporations, Yongin, Gyeonggi-Do 446-712 (Korea, Republic of); Choi, Yong-Hee [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Semiconductor R and D Center, Samsung Electronics, Hwasung, Gyeonggi-do 445-701 (Korea, Republic of)

    2014-03-21

    Various plasma treatment effects such as oxygen (O{sub 2}), nitrogen (N{sub 2}), and argon (Ar) on amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs) are investigated. To study oxygen stoichiometry in a-IGZO TFTs with respect to various plasma environments, X-ray photoelectron spectroscopy was employed. The results showed that oxygen vacancies were reduced by O{sub 2} and N{sub 2} plasmas while they were increased after Ar plasma treatment. Additionally, the effects of plasma treatment on trap distribution in bulk and surface channels were explored by means of low-frequency noise analysis. Details of the mechanisms used for generating and restoring traps on the surface and bulk channel are presented.

  6. Treatment of Some Hazardous Industrial Pollutants by Simple Oxidation Techniques

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.

    1999-01-01

    Central treatment of Industrial wastewater requires pretreatment of some specific pollutants which may be not effectively degraded in down stream processes in central treatment unit. Some of the hazardous pollutants in industrial wastewater including acrylonitrile, pesticides and some commonly used dyes (active and acid dyes) have been subjected individually to oxidation using hydrogen peroxide catalyzed by ferrous ions in acidic solution. Treatment efficiency was monitored by chemical oxygen demand (COD) removal using a specially developed concentration/COD curves. Initial concentrations (in terms of COD) were 910 PPM, 1348 and 530 ppm and the respective COD reductions were 91, 98 and 99%, for the pesticide, acrylonitrile and the reactive dye. Oxidative degradation of polared and acid green also reduced COD by 99 and 100% respectively. The obtained results confirm the appropriateness of oxidative degradation as a pretreatment for some hazardous pollutants prior to treatment in central facilities or municipal activated sludge stations

  7. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  8. Nitrous Oxide for Treatment-Resistant Major Depression: A Proof-of-Concept Trial.

    Science.gov (United States)

    Nagele, Peter; Duma, Andreas; Kopec, Michael; Gebara, Marie Anne; Parsoei, Alireza; Walker, Marie; Janski, Alvin; Panagopoulos, Vassilis N; Cristancho, Pilar; Miller, J Philip; Zorumski, Charles F; Conway, Charles R

    2015-07-01

    N-methyl-D-aspartate receptor antagonists, such as ketamine, have rapid antidepressant effects in patients with treatment-resistant depression (TRD). We hypothesized that nitrous oxide, an inhalational general anesthetic and N-methyl-D-aspartate receptor antagonist, may also be a rapidly acting treatment for TRD. In this blinded, placebo-controlled crossover trial, 20 patients with TRD were randomly assigned to 1-hour inhalation of 50% nitrous oxide/50% oxygen or 50% nitrogen/50% oxygen (placebo control). The primary endpoint was the change on the 21-item Hamilton Depression Rating Scale (HDRS-21) 24 hours after treatment. Mean duration of nitrous oxide treatment was 55.6 ± 2.5 (SD) min at a median inspiratory concentration of 44% (interquartile range, 37%-45%). In two patients, nitrous oxide treatment was briefly interrupted, and the treatment was discontinued in three patients. Depressive symptoms improved significantly at 2 hours and 24 hours after receiving nitrous oxide compared with placebo (mean HDRS-21 difference at 2 hours, -4.8 points, 95% confidence interval [CI], -1.8 to -7.8 points, p = .002; at 24 hours, -5.5 points, 95% CI, -2.5 to -8.5 points, p nitrous oxide and placebo, p nitrous oxide compared with one patient (5%) and none after placebo (odds ratio for response, 4.0, 95% CI, .45-35.79; OR for remission, 3.0, 95% CI, .31-28.8). No serious adverse events occurred; all adverse events were brief and of mild to moderate severity. This proof-of-concept trial demonstrated that nitrous oxide has rapid and marked antidepressant effects in patients with TRD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  10. Surface passivation function of indium-tin-oxide-based nanorod structural sensors

    International Nuclear Information System (INIS)

    Lin, Tzu-Shun; Lee, Ching-Ting; Lee, Hisn-Ying; Lin, Chih-Chien

    2012-01-01

    Employing self-shadowing traits of an oblique-angle electron-beam deposition system, various indium tin oxide (ITO) nanorod arrays were deposited on a silicon substrate and used as extended-gate field-effect-transistor (EGFET) pH sensors. The length and morphology of the deposited ITO nanorod arrays could be changed and controlled under different deposition conditions. The ITO nanorod structural EGFET pH sensors exhibited high sensing performances owing to the larger sensing surface area. The sensitivity of the pH sensors with 150-nm-length ITO nanorod arrays was 53.96 mV/pH. By using the photoelectrochemical treatment of the ITO nanorod arrays, the sensitivity of the pH sensors with 150-nm-length passivated ITO nanorod arrays was improved to 57.21 mV/pH.

  11. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  12. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    Science.gov (United States)

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  13. Effect of process parameters on surface oxides on chromium-alloyed steel powder during sintering

    International Nuclear Information System (INIS)

    Chasoglou, D.; Hryha, E.; Nyborg, L.

    2013-01-01

    The use of chromium in the PM steel industry today puts high demands on the choice and control of the atmosphere during the sintering process due to its high affinity to oxygen. Particular attention is required in order to control the surface chemistry of the powder which in turn is the key factor for the successful sintering and production of PM parts. Different atmosphere compositions, heating rates and green densities were employed while performing sintering trials on water atomized steel powder pre-alloyed with 3 wt.% Cr in order to evaluate the effect on surface chemical reactions. Fracture surfaces of sintered samples were examined using high resolution scanning electron microscopy combined with X-ray microanalysis. The investigation was complemented with thermogravimetric (TG) studies. Reaction products in particulate form containing strong-oxide forming elements such as Cr, Si and Mn were formed during sintering for all conditions. Processing in vacuum results in intensive inter-particle neck development during the heating stage and consequently in the excessive enclosure of surface oxide which is reflected in less good final mechanical properties. Enhanced oxide reduction was observed in samples processed in hydrogen-containing atmospheres independent of the actual content in the range of 3–10 vol.%. An optimum heating rate was required for balancing reduction/oxidation processes. A simple model for the enclosure and growth of oxide inclusions during the sinter-neck development is proposed. The obtained results show that significant reduction of the oxygen content can be achieved by adjusting the atmosphere purity/composition. - Highlights: ► A local atmosphere microclimate is very important for sintering of PM steels. ► High risk of surface oxide enclosure between 800 and 1000 °C. ► Coalescence and agglomeration of enclosed oxides take place during sintering. ► The effect of different process parameters on the oxide reduction is examined. ► A

  14. NO oxidation on Zeolite Supported Cu Catalysts: Formation and Reactivity of Surface Nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2016-04-18

    The comparative activities of a small-pore Cu-CHA and a large-pore Cu-BEA catalyst for the selective catalytic reduction (SCR) of NOx with NH3, and for the oxidation of NO to NO2 and the subsequent formation of surface nitrates were investigated. Although both catalysts are highly active in SCR reactions, they exhibit very low NO oxidation activity. Furthermore, Cu-CHA is even less active than Cu-BEA in catalyzing NO oxidation but is clearly more active for SCR reactions. Temperature-programed desorption (TPD) experiments following the adsorption of (NO2 + NO + O2) with different NO2:NO ratios reveal that the poor NO oxidation activity of the two catalysts is not due to the formation of stable surface nitrates. On the contrary, NO is found to reduce and decompose the surface nitrates on both catalysts. To monitor the reaction pathways, isotope exchange experiments were conducted by using 15NO to react with 14N-nitrate covered catalyst surfaces. The evolution of FTIR spectra during the isotope exchange process demonstrates that 14N-nitrates are simply displaced with no formation of 15N-nitrates on the Cu-CHA sample, which is clearly different from that observed on the Cu-BEA sample where formation of 15N-nitrates is apparent. The results suggest that the formal oxidation state of N during the NO oxidation on Cu-CHA mainly proceeds from its original +2 to a +3 oxidation state, whereas reaching a higher oxidation state for N, such as +4 or +5, is possible on Cu-BEA. The authors at PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  15. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  16. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  17. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  18. A Classical Potential to Model the Adsorption of Biological Molecules on Oxidized Titanium Surfaces.

    Science.gov (United States)

    Schneider, Julian; Ciacchi, Lucio Colombi

    2011-02-08

    The behavior of titanium implants in physiological environments is governed by the thin oxide layer that forms spontaneously on the metal surface and mediates the interactions with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water by means of extensive first-principles molecular dynamics simulations. Taking the obtained structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface. This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The interactions with arbitrary organic molecules are obtained via standard combination rules to established biomolecular force fields. The transferability of our potential to the case of organic molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential energy surfaces of representative systems to quantum mechanical results at the level of density functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and the detachment force of a single tyrosine residue from steered molecular dynamics simulations, finding good agreement with experimental reference data in both cases. As a first application, we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium surface, focusing particularly on the calculation of the free energy of desorption.

  19. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  20. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Descriptors and Thermodynamic Limitations of Electrocatalytic Carbon Dioxide Reduction on Rutile Oxide Surfaces

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Vegge, Tejs; Hansen, Heine Anton

    2016-01-01

    A detailed understanding of the electrochemical reduction of CO2 into liquid fuels on rutile metal oxide surfaces is developed by using DFT calculations. We consider oxide overlayer structures on RuO2(1 1 0) surfaces as model catalysts to elucidate the trends and limitations in the CO2 reduction...... and it defines the left leg of the activity volcano for CO2RR. HCOOH* is a key intermediate for products formed through further reduction, for example, methanediol, methanol, and methane. The surfaces that do not bind HCOOH* are selective towards formic acid (HCOOH) production, but hydrogen evolution limits...

  2. Influence of substrate preparation on the shaping of the topography of the surface of nanoceramic oxide layers

    Science.gov (United States)

    Bara, Marek; Kubica, Marek

    2014-02-01

    The paper discusses the shaping mechanism and changes occurring in the structure and topography of the surface of nanoceramic oxide layers during their formation. The paper presents the influence of substrate preparation on the surface topography of oxide layers. The layers were produced via hard anodizing on the EN AW-5251 aluminum alloy. The layers obtained were subjected to microscope examinations, image and chemical composition analyses, and stereometric examinations. Heredity of substrate properties in the topography of the surface of nanoceramic oxide layers formed as a result of electrochemical oxidation has been shown.

  3. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  5. High Friction Surface Treatments, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  6. Study for drifts of the oxidation in nitrous oxide of an activated coal

    International Nuclear Information System (INIS)

    Diaz Velasquez; Jose de Jesus; Carballo Suarez, Luis M; Freitas, Madalena; Farias, Joaquim Luis Faria; Figueiredo, Jose Luis

    2001-01-01

    In order to obtain materials with different surface properties, an activated carbon was modified by thermal treatment with 20% of nitrous oxide in nitrogen at 500 centigrade degrees, for different periods of time, and also with 5 % of oxygen in nitrogen at 425 centigrade degrees for 600 minutes and 100% of hydrogen at 950 centigrade degrees for 360 minutes. Drifts were used to characterize the surface chemistry of the material treated. The qualitative result s show that the treatments with N2O have larger effects on the intensity of the surface groups. These changes could be associated to the incorporation of nitrogen into the carbon matrix. In agreement with literature reports, it could be said that the gas phase oxidation of the activated carbon shows mainly superficial groups such as carboxylic anhydrides, phenols and carboxylates, lactones and quinones

  7. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  8. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    Science.gov (United States)

    Bonomo, Matteo; Marrani, Andrea Giacomo; Novelli, Vittoria; Awais, Muhammad; Dowling, Denis P.; Vos, Johannes G.; Dini, Danilo

    2017-05-01

    Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2-6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  9. Study on the bound water of several high specific surface-area oxides (beryllia, alumina, silica-alumina)

    International Nuclear Information System (INIS)

    Rouquerol, J.

    1964-11-01

    This study is concerned with the bound water of several oxides (beryllia, alumina, silica-alumina) at different steps of their dehydration (heating temperatures between 150 and 1100 deg. C). The following techniques have been used simultaneously: Thermal analysis (a new method has been developed), nitrogen adsorption (study of the texture), Diborane hydrolysis (qualitative and quantitative analysis of surface water), Infra-red spectrography (in the absorption range of water), Nuclear magnetic resonance (in the resonance range of protons). Thanks to these different techniques, five kinds of bound water have been observed. Attention is called on the great influence of the thermal treatment conditions on the evolution of the products resulting from the decomposition of alumina α-trihydrate Al(OH) 3 and beryllium α-hydroxide, in the course of the dehydration. Moreover, the author emphasizes the peculiar properties of the two kinds of oxides (alumina and beryllia) prepared through a new method of treatment under low pressure and constant speed of decomposition. Such particular features concern mainly texture, bound water, and consequently, also catalytic activity. (author) [fr

  10. Combined chemical-biological treatment for prevention/rehabilitation of clogged wells by an iron-oxidizing bacterium.

    Science.gov (United States)

    Gino, Efrat; Starosvetsky, Jeanna; Kurzbaum, Eyal; Armon, Robert

    2010-04-15

    Groundwater wells containing large concentrations of ferrous iron face serious clogging problems as a result of biotic iron oxidation. Following a short time after their start off, wells get clogged, and their production efficiency drop significantly up to a total obstruction, making cleanup and rehabilitation an economic burden. The present study was undertaken to test an experimental combined treatment (chemical and biological) for future prevention or rehabilitation of clogged wells. Sphaerotilus natans (an iron-oxidizing bacterium) freshly isolated from a deep well was grown to form biofilms on two systems: coupons and sand buried miniature wedge wire screen baskets. A combined chemical-biological treatment, applied at laboratory scale by use of glycolic acid (2%) and isolated bacteriophages against Sphaerotilus natans (SN1 and ER1-a newly isolated phage) at low multiplicity of infection (MOI), showed inhibition of biofilm formation and inactivation of the contaminant bacteria. In addition to complete inactivation of S. natans planktonic bacteria by the respective phages, earlier biofilm treatment with reduced glycolic acid concentration revealed efficient exopolysaccharide (EPS) digestion allowing phages to be increasingly efficient against biofilm matrix bacteria. Utilization of this combined treatment revealed clean surfaces of a model stainless steel wedge wire screen baskets (commonly used in wells) for up to 60 days.

  11. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Fazleev, N. G. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States) and Institute of Physics, Kazan Federal University, Kremlevskaya18, Kazan 420008 (Russian Federation); Weiss, A. H. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States)

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  12. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Md. Abdul; Oyama, Munetaka, E-mail: oyama.munetaka.4m@kyoto-u.ac.jp [Kyoto University, Department of Material Chemistry, Graduate School of Engineering (Japan)

    2013-05-15

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl{sub 4}) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 Degree-Sign C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  13. Characterization of the inside and outside oxide surfaces of irradiated pressure tubes of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Bordoni, Roberto A.; Olmedo, Ana M.

    2004-01-01

    The inside and outside surfaces of two pressure tubes (PT) removed from Embalse nuclear power plant (CNE) after 10 of effective full power years (EFPY) were characterized. The oxide thickness of both faces, in different zones, was also measured. The inside surfaces of both PTs, B-102 (A-14) and B-298 (L-12), were covered with a black oxide that replicates the original PT surface. A network of microcracks perpendicular to the inside surface in contact with the coolant was found. In some cases, near the outlet of the PT, some spalling of the oxide was also found. These small microcracks and spalling do not affect the protective character of the oxide since a thickness about 5 or 6 μm of an undamaged oxide is found at the metal/oxide interface side. The oxide thickness changes between approximately 6 to 12 μm for B-102 tube and around 7 to 15 μm for B-298 tube. The average corrosion rate is 1.16 μm/10 4 HH for B-102 tube and 1.35 μm/10 4 HH for B-298 tube at 5.8 m position for both PTs. These corrosion rates show good corrosion behaviour of CNE PTs. The average corrosion rate of the inside surface of the PTs depends on the coolant temperature but not on fast neutron flux. The outside oxide film is black, shiny, compact and protective, replicating also the original surface. The oxide thickness changes between 2 to 6.5 μm in B-102 tube and between 1.8 to 3.7 μm B-298 tube. These oxide thicknesses are within the values reported for PTs in CANDU Stations. (author) [es

  14. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  15. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Kim, Yunkyum; Lee, Joonho; Shin, Kwang-Soo; Jeon, Sun-Ho; Chin, Kwang-Geun

    2014-01-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H 2 –N 2 gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl 2 O 4 layer with a thickness of ∼ 15 nm was formed with small Mn 2 SiO 4 particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl 2 O 4 layer, Al 2 O 3 was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl 2 O 4 layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn 2 SiO 4 particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl 2 O 4 layer, Al 2 O 3 was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a O2 > ∼ 1.26 × 10 −28 , MnO, MnAl 2 O 4 , and Mn 2 SiO 4 can be formed together, and the major oxide is MnO. When a O2 is in the range of 1.26 × 10 −28 –2.51 × 10 −31 , MnO is not stable but MnAl 2 O 4 is the major oxide. When a O2 < ∼ 2.51 × 10 −31 , only Al 2 O 3 is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point during the annealing process. • The activity of oxygen is the major factor determining the oxides of TWIP steel

  16. Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic.

    Science.gov (United States)

    Salvio, Luciana A; Correr-Sobrinho, Lourenço; Consani, Simonides; Sinhoreti, Mário A C; de Goes, Mario F; Knowles, Jonathan C

    2007-01-01

    The aim of this study was to evaluate the effect of water storage (24 hours and 1 year) on the tensile bond strength between the IPS Empress 2 ceramic and Variolink II resin cement under different superficial treatments. One hundred and eighty disks with diameters of 5.3 mm at the top and 7.0 mm at the bottom, and a thickness of 2.5 mm were made, embedded in resin, and randomly divided into six groups: Groups 1 and 4 = 10% hydrofluoric acid for 20 seconds; Groups 2 and 5 = sandblasting for 5 seconds with 50 microm aluminum oxide; and Groups 3 and 6 = sandblasting for 5 seconds with 100 microm aluminum oxide. Silane was applied on the treated ceramic surfaces, and the disks were bonded into pairs with adhesive resin cement. The samples of Groups 1 to 3 were stored in distilled water at 37 degrees C for 24 hours, and Groups 4 to 6 were stored for 1 year. The samples were subjected to a tensile strength test in an Instron universal testing machine at a crosshead speed of 1.0 mm/min, until failure. The data were submitted to analysis of variance and Tukey's test (5%). The means of the tensile bond strength of Groups 1, 2, and 3 (15.54 +/- 4.53, 10.60 +/- 3.32, and 7.87 +/- 2.26 MPa) for 24-hour storage time were significantly higher than those observed for the 1-year storage (Groups 4, 5, and 6: 10.10 +/- 3.17, 6.34 +/- 1.06, and 2.60 +/- 0.41 MPa). The surface treatments with 10% hydrofluoric acid (15.54 +/- 4.53 and 10.10 +/- 3.17 MPa) showed statistically higher tensile bond strengths compared with sandblasting with 50 microm(10.60 +/- 3.32 and 6.34 +/- 1.06 MPa) and 100 microm (7.87 +/- 2.26 and 2.60 +/- 0.41 MPa) aluminum oxide for the storage time 24 hours and 1 year. Storage time significantly decreased the tensile bond strength for both ceramic surface treatments. The application of 10% hydrofluoric acid resulted in stronger tensile bond strength values than those achieved with aluminum oxide.

  17. Effects of Oxidation and fractal surface roughness on the wettability and critical heat flux of glass-peened zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Nitheanandan, T.; Bullock, C.D.; Slater, L.F.; McRae, G.A.

    2003-05-01

    Glass-bead peening the outside surfaces of zirconium alloy tubes has been shown to increase the Critical Heat Flux (CHF) in pool boiling of water. The CHF is found to correlate with the fractal roughness of the metal tube surfaces. In this study on the effect of oxidation on glass-peened surfaces, test measurements for CHF, surface wettability and roughness have been evaluated using various glass-peened and oxidized zirconium alloy tubes. The results show that oxidation changes the solid-liquid contact angle (i.e., decreases wettability of the metal-oxide surface), but does not change the fractal surface roughness, appreciably. Thus, oxidation of the glass-peened surfaces of zirconium alloy tubes is not expected to degrade the CHF enhancement obtained by glass-bead peening. (author)

  18. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  19. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  20. Oxidation of 1020 steel in the abnormal glow discharge

    International Nuclear Information System (INIS)

    Zúñiga, J A García; Santos, A Sarmiento; Gómez, E Y Soto

    2017-01-01

    1020 steel is a material very used for surface treatment in the abnormal glow discharge. Because the composition of the gaseous atmosphere has an important influence on the results of plasma treatment, in this work the oxidation process of 1020 steel is verified on the abnormal glow discharge under different concentrations of air (20% to 100%) at temperatures of 600°C and 900°C. For each atmosphere used mass variation is measured during the process of surface oxidation, the structure and microstructure of the oxide film formed is observed and also its mechanical properties through its microhardness. (paper)

  1. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  2. Fatigue and Oxidative Stress in Children Undergoing Leukemia Treatment.

    Science.gov (United States)

    Rodgers, Cheryl; Sanborn, Chelse; Taylor, Olga; Gundy, Patricia; Pasvogel, Alice; Moore, Ida M Ki; Hockenberry, Marilyn J

    2016-10-01

    Fatigue is a frequent and distressing symptom in children undergoing leukemia treatment; however, little is known about factors influencing this symptom. Antioxidants such as glutathione can decrease symptom severity in adult oncology patients, but no study has evaluated antioxidants' effects on symptoms in pediatric oncology patients. This study describes fatigue patterns and associations of fatigue with antioxidants represented by reduced glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio among children receiving leukemia treatment. A repeated measures design assessed fatigue and antioxidants among 38 children from two large U.S. cancer centers. Fatigue was assessed among school-age children and by parent proxy among young children. Antioxidants (GSH and GSH/GSSG ratio) were assessed from cerebrospinal fluid at four phases during leukemia treatment. Young children had a steady decline of fatigue from the end of induction treatment through the continuation phase of treatment, but no significant changes were noted among the school-age children. Mean antioxidant scores varied slightly over time; however, the GSH/GSSG ratios in these children were significantly lower than the normal ratio. Mean GSH/GSSG ratios significantly correlated to fatigue scores of the school-age children during early phases of treatment. Children with low mean GSH/GSSG ratios demonstrated oxidative stress. The low ratios noted early in therapy were significantly correlated with higher fatigue scores during induction and postinduction treatment phases. This finding suggests that increased oxidative stress during the more intensive phases of therapy may explain the experience of fatigue children report. © The Author(s) 2016.

  3. Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures

    International Nuclear Information System (INIS)

    Zhang, Rui; Huang, Po-Chin; Lin, Ju-Chin; Takenaka, Mitsuru; Takagi, Shinichi

    2013-01-01

    The ultrathin GeO x /Ge interfaces formed on Ge (100) and (111) surfaces by applying plasma post oxidation to thin Al 2 O 3 /Ge structures are characterized in detail using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. It is found that the XPS signals assigned to Ge 1+ and the 2+ states in the GeO x layers by post plasma oxidation have oscillating behaviors on Ge (100) surfaces in a period of ∼0.3 nm with an increase in the GeO x thickness. Additionally, the oscillations of the signals assigned to Ge 1+ and 2+ states show opposite phase to each other. The similar oscillation behaviors are also confirmed on Ge (111) surfaces for Ge 1+ and 3+ states in a period of ∼0.5 nm. These phenomena can be strongly regarded as an evidence of the atomic layer-by-layer oxidation of GeO x /Ge interfaces on Ge (100) and (111) surfaces.

  4. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  5. Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel

    International Nuclear Information System (INIS)

    Herrmann, S. D.

    1999-01-01

    Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described

  6. Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment.

    Science.gov (United States)

    Huang, Guolong; Yao, Jiachao; Pan, Weilong; Wang, Jiade

    2016-09-01

    Effluents after biochemical treatment contain pollutants that are mostly non-degradable. Based upon previous pilot-scale test results, an industrial-scale electro-oxidation device was built to decompose these refractory materials in the effluent from a park wastewater treatment plant. The electro-oxidation device comprised a ditch-shaped plunger flow electrolysis cell, with mesh-plate Ti/PbO2 electrodes as the anode and the same size mesh-plate Ti as the cathode. Wastewater flowed vertically through electrodes; the effective volume of the cell was 2.8 m(3), and the surface-to-volume ratio was 17.14 m(2) m(-3). The optimal current density was 100 A m(-2), and a suitable flow velocity was 14.0 m h(-1). The removal efficiencies for chemical oxygen demand and color in the effluent were over 60.0 and 84.0 %, respectively. In addition, the electro-oxidation system offered a good disinfection capability. The specific energy consumption for this industrial-scale device was 43.5 kWh kg COD(-1), with a current efficiency of 32.8 %, which was superior to the pilot-scale one. To meet the requirements for emission or reuse, the operation cost was $0.44 per ton of effluent at an average price for electricity of $0.11 kWh(-1).

  7. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    OpenAIRE

    Carvalho Luisa; Pacquentin Wilfried; Tabarant Michel; Maskrot Hicham; Semerok Alexandre

    2017-01-01

    The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stai...

  8. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  9. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    Science.gov (United States)

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  10. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  12. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  13. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    Science.gov (United States)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  14. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  15. Investigation of 'surface donors' in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties

    Science.gov (United States)

    Ťapajna, M.; Stoklas, R.; Gregušová, D.; Gucmann, F.; Hušeková, K.; Haščík, Š.; Fröhlich, K.; Tóth, L.; Pécz, B.; Brunner, F.; Kuzmík, J.

    2017-12-01

    III-N surface polarization compensating charge referred here to as 'surface donors' (SD) was analyzed in Al2O3/AlGaN/GaN metal-oxide-semiconductor (MOS) heterojunctions using scaled oxide films grown by metal-organic chemical vapor deposition at 600 °C. We systematically investigated impact of HCl pre-treatment prior to oxide deposition and post-deposition annealing (PDA) at 700 °C. SD density was reduced down to 1.9 × 1013 cm-2 by skipping HCl pre-treatment step as compared to 3.3 × 1013 cm-2 for structures with HCl pre-treatment followed by PDA. The nature and origin of SD was then analyzed based on the correlation between electrical, micro-structural, and chemical properties of the Al2O3/GaN interfaces with different SD density (NSD). From the comparison between distributions of interface traps of MOS heterojunction with different NSD, it is demonstrated that SD cannot be attributed to interface trapped charge. Instead, variation in the integrity of the GaOx interlayer confirmed by X-ray photoelectron spectroscopy is well correlated with NSD, indicating SD may be formed by border traps at the Al2O3/GaOx interface.

  16. Surface-Activated Amorphous Alloy Fuel Electrodes for Methanol Fuel Cell

    OpenAIRE

    Asahi, Kawashima; Koji, Hashimoto; The Research Institute for Iron, Steel and Other Metals; The Research Institute for Iron, Steel and Other Metals

    1983-01-01

    Amorphous alloy electrodes for electrochemical oxidation of methanol and its derivatives were obtained by the surface activation treatment consisting of electrodeposition of zinc on as-quenched amorphous alloy substrates, heating at 200-300℃ for 30 min, and subsequently leaching of zinc in an alkaline solution. The surface activation treatment provided a new method for the preparation of a large surface area on the amorphous alloys. The best result for oxidation of methanol, sodium formate an...

  17. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  18. Suppression of Magnetoresistance in Thin WTe2 Flakes by Surface Oxidation.

    Science.gov (United States)

    Woods, John M; Shen, Jie; Kumaravadivel, Piranavan; Pang, Yuan; Xie, Yujun; Pan, Grace A; Li, Min; Altman, Eric I; Lu, Li; Cha, Judy J

    2017-07-12

    Recent renewed interest in layered transition metal dichalcogenides stems from the exotic electronic phases predicted and observed in the single- and few-layer limit. Realizing these electronic phases requires preserving the desired transport properties down to a monolayer, which is challenging. Surface oxides are known to impart Fermi level pinning or degrade the mobility on a number of different systems, including transition metal dichalcogenides and black phosphorus. Semimetallic WTe 2 exhibits large magnetoresistance due to electron-hole compensation; thus, Fermi level pinning in thin WTe 2 flakes could break the electron-hole balance and suppress the large magnetoresistance. We show that WTe 2 develops an ∼2 nm thick amorphous surface oxide, which shifts the Fermi level by ∼300 meV at the WTe 2 surface. We also observe a dramatic suppression of the magnetoresistance for thin flakes. However, due to the semimetallic nature of WTe 2 , the effects of Fermi level pinning are well screened and are not the dominant cause for the suppression of magnetoresistance, supported by fitting a two-band model to the transport data, which showed the electron and hole carrier densities are balanced down to ∼13 nm. However, the fitting shows a significant decrease of the mobilities of both electrons and holes. We attribute this to the disorder introduced by the amorphous surface oxide layer. Thus, the decrease of mobility is the dominant factor in the suppression of magnetoresistance for thin WTe 2 flakes. Our study highlights the critical need to investigate often unanticipated and sometimes unavoidable extrinsic surface effects on the transport properties of layered dichalcogenides and other 2D materials.

  19. Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach

    International Nuclear Information System (INIS)

    Dalton, J.S.; Janes, P.A.; Jones, N.G.; Nicholson, J.A.; Hallam, K.R.; Allen, G.C.

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to study surface reactions between nitrogen oxides and TiO 2 on surfaces. - The bandgap of solid-state TiO 2 (3.2 eV) enables it to be a useful photocatalyst in the ultraviolet (λ 2 surface in the presence of sunlight therefore enables the removal of harmful NO x gases from the atmosphere by oxidation to nitrates. These properties, in addition to the whiteness, relative cheapness and non-toxicity, make TiO 2 ideal for the many de-NOX catalysts that are currently being commercially exploited both in the UK and Japan for concrete paving materials in inner cities. There is need, however, for further academic understanding of the surface reactions involved. Hence, we have used surface specific techniques, including X-ray photoelectron spectroscopy and Raman spectroscopy, to investigate the NO x adsorbate reaction at the TiO 2 substrate surface

  20. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  1. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  2. High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; Kim, Il-Hyun; Jung, Yang-Il; Kim, Hyun-Gil; Park, Dong-Jun; Choi, Byung-Kwon

    2013-01-01

    We investigated the feasibility to apply Al 3 Ti-based alloys as the surface layer for improving the oxidation resistance of Zr fuel claddings under accident conditions. Two types of Al 3 Ti-based alloys with the compositions of Al–25Ti–10Cr and Al–21Ti–23Cr in atomic percent were prepared by arc-melting followed by homogenization annealing at 1423 K for 48 h. Al–25Ti–10Cr alloy showed an L1 2 quasi-single phase microstructure with a lot of needle-shaped minor phase and pores. Al–21Ti–23Cr alloy consisted of an L1 2 matrix and Cr 2 Al as the second phase. Al 3 Ti-based alloys showed an extremely low oxidation rate in a 1473 K steam for up to 7200 s when compared to Zircaloy-4. Both alloys exhibited almost the same oxidation rate in the early stage of oxidation, but Al–25Ti–10Cr showed a little lower oxidation rate after 4000 s than Al–21Ti–23Cr. The difference in the oxidation rate between two types of Al 3 Ti-based alloys was too marginal to distinguish the oxidation behavior of each alloy. The resultant oxide exhibited almost the same characteristics in both alloys even though the microstructure was explicitly distinguished from each other. The crystal structure of the oxide formed up to 2000 s was identified as Al 2 O 3 in both alloys. The oxide morphology consisted of columnar grains whose length was almost identical to the average oxide thickness. On the basis of the results obtained, it is considered that Al 3 Ti-based alloy is one of the promising candidates for the oxidation-resistant surface layer on Zr fuel claddings

  3. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    Science.gov (United States)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  4. Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Greculeasa, S.G.; Palade, P.; Schinteie, G. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); Kuncser, A.; Stanciu, A. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, 77125, Bucharest-Magurele (Romania); Lungu, G.A. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); Porosnicu, C.; Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 77125, Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania)

    2017-04-30

    Highlights: • Engineering of Eurofer slab properties by hydrogenation treatments. • Hydrogenation modifies significantly the local atomic configurations at the surface. • Hydrogenation increases the expulsion of the Cr atoms toward the very surface. • Approaching binomial atomic distribution by hydrogenation in the next surface 100 nm. - Abstract: Reduced-activation steels such as Eurofer alloys are candidates for supporting plasma facing components in tokamak-like nuclear fusion reactors. In order to investigate the impact of hydrogen/deuterium insertion in their crystalline lattice, annealing treatments in hydrogen atmosphere have been applied on Eurofer slabs. The resulting samples have been analyzed with respect to local structure and atomic configuration both before and after successive annealing treatments, by X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The corroborated data point out for a bcc type structure of the non-hydrogenated alloy, with an average alloy composition approaching Fe{sub 0.9}Cr{sub 0.1} along a depth of about 100 nm. EDS elemental maps do not indicate surface inhomogeneities in concentration whereas the Mössbauer spectra prove significant deviations from a homogeneous alloying. The hydrogenation increases the expulsion of the Cr atoms toward the surface layer and decreases their oxidation, with considerable influence on the surface properties of the steel. The hydrogenation treatment is therefore proposed as a potential alternative for a convenient engineering of the surface of different Fe-Cr based alloys.

  5. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  6. Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.

    Science.gov (United States)

    Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J

    2016-04-21

    The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

  7. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Liu, Zhi; Grass, Michael E.; Biegalski, Michael D.; Lee, Yueh-Lin; Morgan, Dane; Christen, Hans M.; Bluhm, Hendrik; Shao-Horn, Yang

    2012-01-01

    Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situ synchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La 0.8Sr 0.2CoO 3-δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O 2 electrocatalysis relative to LSC powder-based electrodes. © 2012 The Royal Society of Chemistry.

  8. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  9. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  11. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    Science.gov (United States)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  12. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  13. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  14. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

    Science.gov (United States)

    Yang, Kai; Wan, Jianmei; Zhang, Shuai; Tian, Bo; Zhang, Youjiu; Liu, Zhuang

    2012-03-01

    Photothermal therapy as a physical treatment approach to destruct cancer has emerged as an alternative of currently used cancer therapies. Previously we have shown that polyethylene glycol (PEG) functionalized nano-graphene oxide (nGO-PEG) with strong optical absorption in the near-infrared (NIR) region was a powerful photothermal agent for in vivo cancer treatment. In this work, by using ultra-small reduced graphene oxide (nRGO) with non-covalent PEG coating, we study how sizes and surface chemistry affect the in vivo behaviors of graphene, and remarkably improve the performance of graphene-based in vivo photothermal cancer treatment. Owing to the enhanced NIR absorbance and highly efficient tumor passive targeting of nRGO-PEG, excellent in vivo treatment efficacy with 100% of tumor elimination is observed after intravenous injection of nRGO-PEG and the followed 808 nm laser irradiation, the power density (0.15 W/cm(2), 5 min) of which is an order of magnitude lower than that usually applied for in vivo tumor ablation using many other nanomaterials. All mice after treatment survive over a period of 100 days without a single death or any obvious sign of side effect. Our results highlight that both surface chemistry and sizes are critical to the in vivo performance of graphene, and show the promise of using optimized nano-graphene for ultra-effective photothermal treatment, which may potentially be combined with other therapeutic approaches to assist our fight against cancer. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  16. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  17. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  18. Targeting oxidant-dependent mechanisms for the treatment of COPD and its comorbidities.

    Science.gov (United States)

    Bernardo, Ivan; Bozinovski, Steven; Vlahos, Ross

    2015-11-01

    Chronic obstructive pulmonary disease (COPD) is an incurable global health burden and is characterised by progressive airflow limitation and loss of lung function. In addition to the pulmonary impact of the disease, COPD patients often develop comorbid diseases such as cardiovascular disease, skeletal muscle wasting, lung cancer and osteoporosis. One key feature of COPD, yet often underappreciated, is the contribution of oxidative stress in the onset and development of the disease. Patients experience an increased burden of oxidative stress due to the combined effects of excess reactive oxygen species (ROS) and nitrogen species (RNS) generation, antioxidant depletion and reduced antioxidant enzyme activity. Currently, there is a lack of effective treatments for COPD, and an even greater lack of research regarding interventions that treat both COPD and its comorbidities. Due to the involvement of oxidative stress in the pathogenesis of COPD and many of its comorbidities, a unique therapeutic opportunity arises where the treatment of a multitude of diseases may be possible with only one therapeutic target. In this review, oxidative stress and the roles of ROS/RNS in the context of COPD and comorbid cardiovascular disease, skeletal muscle wasting, lung cancer, and osteoporosis are discussed and the potential for therapeutic benefit of anti-oxidative treatment in these conditions is outlined. Because of the unique interplay between oxidative stress and these diseases, oxidative stress represents a novel target for the treatment of COPD and its comorbidities. Copyright © 2015. Published by Elsevier Inc.

  19. Effect of dew point on the formation of surface oxides of twinning-induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yunkyum [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Lee, Joonho, E-mail: joonholee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136–713 (Korea, Republic of); Shin, Kwang-Soo [Research Institute of Industrial Science and Technology, Pohang 790–600 (Korea, Republic of); Jeon, Sun-Ho; Chin, Kwang-Geun [POSCO Technical Research Laboratories, Gwangyang 545–090 (Korea, Republic of)

    2014-03-01

    The surface oxides of twinning-induced plasticity (TWIP) steel annealed at 800 °C for 43 s were investigated using transmission electron microscopy. During the annealing process, the oxygen potential was controlled by adjusting the dew point in a 15%H{sub 2}–N{sub 2} gas atmosphere. It was found that the type of surface oxides formed and the thickness of the oxide layer were determined by the dew point. In a gas mixture with a dew point of − 20 °C, a MnO layer with a thickness of ∼ 100 nm was formed uniformly on the steel surface. Under the MnO layer, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 15 nm was formed with small Mn{sub 2}SiO{sub 4} particles that measured ∼ 70 nm in diameter. Approximately 500 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was formed at the grain boundaries. On the other hand, in a gas mixture with a dew point of − 40 °C, a MnAl{sub 2}O{sub 4} layer with a thickness of ∼ 5 nm was formed on most parts of the surface. On some parts of the surface, Mn{sub 2}SiO{sub 4} particles were formed irregularly up to a thickness of ∼ 50 nm. Approximately 200 nm below the MnAl{sub 2}O{sub 4} layer, Al{sub 2}O{sub 3} was found at the grain boundaries. Thermodynamic calculations were performed to explain the experimental results. The calculations showed that when a{sub O2} > ∼ 1.26 × 10{sup −28}, MnO, MnAl{sub 2}O{sub 4}, and Mn{sub 2}SiO{sub 4} can be formed together, and the major oxide is MnO. When a{sub O2} is in the range of 1.26 × 10{sup −28}–2.51 × 10{sup −31}, MnO is not stable but MnAl{sub 2}O{sub 4} is the major oxide. When a{sub O2} < ∼ 2.51 × 10{sup −31}, only Al{sub 2}O{sub 3} is stable. Consequently, the effective activity of oxygen is considered the dominant factor in determining the type and shape of surface oxides of TWIP steel. - Highlights: • The surface oxides of TWIP steel annealed at 800 °C were investigated using TEM. • The surface oxides were determined by the dew point

  20. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)