WorldWideScience

Sample records for surface orientation sensor

  1. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2014-01-01

    Light scattering is a method for surface roughness measurements well suitable for use in a production environment thanks to its fast measurement rate, insensitivity to vibrations and to small misalignments. The method is however affected by several other factors. In this paper, the effect of angu...... of angular orientation of a commercial scattered light sensor on roughness measurements of polished cylindrical surfaces with crossed surface lay is investigated to document the robustness of the method....

  2. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  3. The effect of scattered light sensor orientation on roughness measurement of curved polished surfaces

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    with crossed surface lay to document the robustness of the method. The instrument area-integrating measuring principle (figure 1) is based on a non-coherent light beam of ∅ 0.9 mm and 670 nm wavelength illuminating the measured surface, reflection of the incident light from the surface slopes in spatial......The effect of angular orientation of a scattered light sensor with respect to main curvature and surface lay on roughness measurements is evaluated. A commercial scattered light sensor OS 500-32 from Optosurf GmbH was used. The investigation was performed on polished cylindrical surfaces...... directions, and its acquisition within ± 16º angular range with a linear detector array. From the distribution of the acquired scattered light intensity, a number of statistical parameters describing the surface texture are calculated, where the Aq parameter (variance of the scattered light distribution...

  4. A low-cost, orientation-insensitive microwave water-cut sensor printed on a pipe surface

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents a novel and contactless water fraction (also known as water cut) measurement technique, which is independent of geometric distribution of oil and water inside the pipe. The sensor is based upon a modified dual helical stub resonators implemented directly on the pipe\\'s outer surface and whose resonance frequency decreases by increasing the water content in oil. The E-fields have been made to rotate and distribute well inside the pipe, despite having narrow and curved ground plane. It makes the sensor\\'s reading dependent only on the water fraction and not on the mixture distribution inside the pipe. That is why, the presented design does not require any flow conditioner to homogenize the oil/water mixture unlike many commercial WC sensors. The presented sensor has been realized by using extremely low cost methods of screen-printing and reusable 3D printed mask. Complete characterization of the proposed WC sensor, both in horizontal and vertical orientations, has been carried out in an industrial flow loop. Excellent repeatability of the sensor\\'s response has been observed under different flow conditions. The measured performance results of the sensor show full range accuracy of ±2-3% while tested under random orientations and wide range of flow rates.

  5. The need for surface-parallel sensor orientation to address energy balance closure on mountain slopes

    Science.gov (United States)

    Serrano-Ortiz, Penelope; Sánchez-Cañete, Enrique P.; Pérez-Priego, Óscar; Carrara, Arnaud; Metzger, Stefan; Kowalski, Andrew S.

    2014-05-01

    Measurements of turbulent fluxes in varying environments are one of the tools scientists and decision makers rely on for assessing and forecasting global warming. Thus, in the last two decades eddy-covariance (EC) towers have proliferated around the globe. Yet, ideal sites are rarely found, and there is a great need to extend the EC method and its theoretical underpinning to more complex terrain. In particular, several principal challenges are aggravated by sloping terrain. Nevertheless, various studies have concluded that the EC method is a useful tool to determine ecosystem energy and CO2/H2O fluxes on mountain slopes. Following the first law of thermodynamics, the validity of EC measurements is often evaluated in terms of their ability to close the balance of energy entering [net radiation minus the soil heat flux] and leaving [sum of the latent and sensible heat, measured by EC] an ecosystem. In sloping terrain, this criterion is applied with results comparable to sites located in more ideal terrain. Arguably, fluxes perpendicular to the surface are needed to assess the energy budget. However, even in sloping terrain instrument installations are frequently referenced perpendicular to the geo-potential (e.g. using a bubble level). Here, we demonstrate several advantages of installing the net radiometer and soil heat flux instruments parallel to a 16% slope with a southwest orientation. Our results reveal a diurnal hysteresis in the energy balance closure as large as 30% when net radiometer and soil heat flux instruments are installed perpendicular to the geo-potential. Installing the net radiometer and soil heat flux instruments slope-parallel mitigates this discrepancy.

  6. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    Science.gov (United States)

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  7. APPROACH FOR IMPROVING THE INTEGRATED SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2016-06-01

    Full Text Available The direct determination of exterior orientation parameters (EOP of aerial images via integration of the Inertial Measurement Unit (IMU and GPS is often used in photogrammetric mapping nowadays. The accuracies of the EOP depend on the accurate parameters related to sensors mounting when the job is performed (offsets of the IMU relative to the projection centre and the angles of boresigth misalignment between the IMU and the photogrammetric coordinate system. In principle, when the EOP values do not achieve the required accuracies for the photogrammetric application, the approach, known as Integrated Sensor Orientation (ISO, is used to refine the direct EOP. ISO approach requires accurate Interior Orientation Parameters (IOP and standard deviation of the EOP under flight condition. This paper investigates the feasibility of use the in situ camera calibration to obtain these requirements. The camera calibration uses a small sub block of images, extracted from the entire block. A digital Vexcel UltraCam XP camera connected to APPLANIX POS AVTM system was used to get two small blocks of images that were use in this study. The blocks have different flight heights and opposite flight directions. The proposed methodology improved significantly the vertical and horizontal accuracies of the 3D point intersection. Using a minimum set of control points, the horizontal and vertical accuracies achieved nearly one image pixel of resolution on the ground (GSD. The experimental results are shown and discussed.

  8. Orientation of liquid crystalline blue phases on unidirectionally orienting surfaces

    Science.gov (United States)

    Takahashi, Misaki; Ohkawa, Takuma; Yoshida, Hiroyuki; Fukuda, Jun-ichi; Kikuchi, Hirostugu; Ozaki, Masanori

    2018-03-01

    Liquid crystalline cholesteric blue phases (BPs) continue to attract interest due to their fast response times and quasi-polarization-independent phase modulation capabilities. Various approaches have recently been proposed to control the crystal orientation of BPs on substrates; however, their basic orientation properties on standard, unidirectionally orienting alignment layers have not been investigated in detail. Through analysis of the azimuthal orientation of Kossel diagrams, we study the 3D crystal orientation of a BP material—with a phase sequence of cholesteric, BP I, and BP II—on unidirectionally orienting surfaces prepared using two methods: rubbing and photoalignment. BP II grown from the isotropic phase is sensitive to surface conditions, with different crystal planes orienting on the two substrates. On the other hand, strong thermal hysteresis is observed in BPs grown through a different liquid crystal phase, implying that the preceding structure determines the orientation. More specifically, the BP II–I transition is accompanied by a rotation of the crystal such that the crystal direction defined by certain low-value Miller indices transform into different directions, and within the allowed rotations, different azimuthal configurations are obtained in the same cell depending on the thermal process. Our findings demonstrate that, for the alignment control of BPs, the thermal process is as important as the properties of the alignment layer.

  9. Effect of mobility devices on orientation sensors that contain magnetometers.

    Science.gov (United States)

    Kendell, Cynthia; Lemaire, Edward D

    2009-01-01

    Orientation sensors containing magnetometers use the earth's magnetic field as a reference. Ferromagnetic objects may distort this magnetic field, leading to inaccurate orientation output. We explored the viability of these orientation sensors for motion analysis in an assistive mobility device rehabilitative setting. We attached two MTx orientation sensors (XSens; Enschade, the Netherlands), connected to the XBus Master data collection unit (XSens), to a plastic frame such that the relative angle between sensors was constant. We then moved a series of mobility devices in proximity to the plastic frame: two knee-ankle-foot orthoses (aluminum, stainless steel), one ankle-foot orthosis, two transtibial prostheses (exoskeletal, endoskeletal), two walkers (standard, Challenger Low Wide [Evolution Technologies; Port Coquitlam, Canada]), and two wheelchairs (Tango [OrthoFab; Quebec City, Canada], GTi [Quickie; Phoenix, Arizona]). For each mobility device, we calculated the average difference in relative angle between the baseline and peak angles for each of five trials. Errors ranged from less than 0.10 to 35.29 degrees, depending on the mobility device and frame positioning near the device. This demonstrated the large errors that can occur when magnetometer-based orientation sensors with mobility devices are used. While strategic orientation sensor placement on some mobility devices can minimize these errors to an acceptable level, testing protocols should be implemented to verify orientation sensor accuracy for these applications.

  10. An Orientation Sensor for Mobile Robots Using Differentials

    Directory of Open Access Journals (Sweden)

    Wei-Chen Lee

    2013-02-01

    Full Text Available Without access to external guidance, such as landmarks or beacons, indoor mobile robots usually orientate themselves by using magnetic compasses or gyroscopes. However, compasses face interference from steel furniture, and gyroscopes suffer from zero drift errors. This paper proposes an orientation sensor that can be used on differentially driven mobile robots to resolve these issues. The sensor innovatively combines the general differentials and an optical encoder so that it can provide only the orientation information. Such a sensor has not been described in any known literature and is cost-efficient compared to the common method of using two encoders for differentially driven mobile robots. The kinematic analysis and the mechanical design of this sensor are presented in this paper. The maximum mean error of the proposed orientation sensor was about 0.7° during the component tests. The application of the sensor on a vacuum cleaning robot was also demonstrated. The use of the proposed sensor may provide less uncertain orientation data for an indoor differentially driven mobile robot.

  11. Workflow-Oriented Cyberinfrastructure for Sensor Data Analytics

    Science.gov (United States)

    Orcutt, J. A.; Rajasekar, A.; Moore, R. W.; Vernon, F.

    2015-12-01

    Sensor streams comprise an increasingly large part of Earth Science data. Analytics based on sensor data require an easy way to perform operations such as acquisition, conversion to physical units, metadata linking, sensor fusion, analysis and visualization on distributed sensor streams. Furthermore, embedding real-time sensor data into scientific workflows is of growing interest. We have implemented a scalable networked architecture that can be used to dynamically access packets of data in a stream from multiple sensors, and perform synthesis and analysis across a distributed network. Our system is based on the integrated Rule Oriented Data System (irods.org), which accesses sensor data from the Antelope Real Time Data System (brtt.com), and provides virtualized access to collections of data streams. We integrate real-time data streaming from different sources, collected for different purposes, on different time and spatial scales, and sensed by different methods. iRODS, noted for its policy-oriented data management, brings to sensor processing features and facilities such as single sign-on, third party access control lists ( ACLs), location transparency, logical resource naming, and server-side modeling capabilities while reducing the burden on sensor network operators. Rich integrated metadata support also makes it straightforward to discover data streams of interest and maintain data provenance. The workflow support in iRODS readily integrates sensor processing into any analytical pipeline. The system is developed as part of the NSF-funded Datanet Federation Consortium (datafed.org). APIs for selecting, opening, reaping and closing sensor streams are provided, along with other helper functions to associate metadata and convert sensor packets into NetCDF and JSON formats. Near real-time sensor data including seismic sensors, environmental sensors, LIDAR and video streams are available through this interface. A system for archiving sensor data and metadata in Net

  12. Antibody orientation on biosensor surfaces: a minireview.

    Science.gov (United States)

    Trilling, Anke K; Beekwilder, Jules; Zuilhof, Han

    2013-03-21

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains - the immobilization on the biosensor surface. This minireview highlights recent approaches to immobilize and study Abs on surfaces. We first introduce Ab species used as detection elements, and discuss techniques recently used to elucidate Ab orientation by determination of layer thickness or surface topology. Then, several immobilization methods will be presented: non-covalent and covalent surface attachment, yielding oriented or random coupled Abs. Finally, protein modification methods applicable for oriented Ab immobilization are reviewed with an eye to future application.

  13. Integration Of Sensor Orientation Data Into An Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Edgaras Artemčiukas

    2014-05-01

    Full Text Available Currently, such microelectromechanical sensors as accelerome­ters, gyroscopes and magnetometers are the dominant sensors in mobile devices. The market of mobile devices is constantly expanding and focused on sensor integration process by adding supplementary functionality for the applications; therefore, it is possible to adapt these sensors for augmented reality technology solutions. Many augmented reality solutions are based on computer vision processing methods in order to identify and track markers or other objects. However, the main problem is chaotic environment, lighting conditions where object recognition and tracking in real-time becomes difficult and sometimes is an impossible process. This paper analyses possibilities to apply microelectromechanical sensors. Additionally, it investigates quaternion use for sensor data to estimate reliable and accurate camera orientation and represent virtual content in augmented reality technology.

  14. Service Oriented Architecture for Wireless Sensor Networks in Agriculture

    Science.gov (United States)

    Sawant, S. A.; Adinarayana, J.; Durbha, S. S.; Tripathy, A. K.; Sudharsan, D.

    2012-08-01

    Rapid advances in Wireless Sensor Network (WSN) for agricultural applications has provided a platform for better decision making for crop planning and management, particularly in precision agriculture aspects. Due to the ever-increasing spread of WSNs there is a need for standards, i.e. a set of specifications and encodings to bring multiple sensor networks on common platform. Distributed sensor systems when brought together can facilitate better decision making in agricultural domain. The Open Geospatial Consortium (OGC) through Sensor Web Enablement (SWE) provides guidelines for semantic and syntactic standardization of sensor networks. In this work two distributed sensing systems (Agrisens and FieldServer) were selected to implement OGC SWE standards through a Service Oriented Architecture (SOA) approach. Online interoperable data processing was developed through SWE components such as Sensor Model Language (SensorML) and Sensor Observation Service (SOS). An integrated web client was developed to visualize the sensor observations and measurements that enables the retrieval of crop water resources availability and requirements in a systematic manner for both the sensing devices. Further, the client has also the ability to operate in an interoperable manner with any other OGC standardized WSN systems. The study of WSN systems has shown that there is need to augment the operations / processing capabilities of SOS in order to understand about collected sensor data and implement the modelling services. Also, the very low cost availability of WSN systems in future, it is possible to implement the OGC standardized SWE framework for agricultural applications with open source software tools.

  15. Recognition of Walking Activities Using Wireless Inertial and Orientation Sensors: A Performance Evaluation

    NARCIS (Netherlands)

    Yalçin, Ç.; Marin Perianu, Mihai; Marin Perianu, Raluca; Havinga, Paul J.M.; Augusto, J.C.

    In this paper, we evaluate experimentally several methods for recognizing walking activities using on-body wireless nodes equipped with inertial and orientation sensors. The walking activities (walking on flat surfaces, uphill and downhill, upstairs and downstairs) are selected by healthcare experts

  16. Design and Dynamic Characterization of an Orientation Insensitive Microwave Water-Cut Sensor

    KAUST Repository

    Karimi, Muhammad Akram

    2017-06-12

    Modern reservoir management in oil and gas industry relies on accurate water fraction measurement which is produced as a by-product with oil. This paper presents a novel and contactless water fraction (also known as water-cut) measurement technique which is independent of geometric distribution of oil and water inside the pipe. The sensor is based on a modified T-resonator implemented directly on the pipe\\'s outer surface and whose resonance frequency decreases by increasing the water content in oil. The E-fields have been made to rotate and distribute well inside the pipe, despite having narrow and curved ground plane. It makes the sensor\\'s reading dependent only on the water fraction and not on the mixture distribution inside the pipe. That is why, the presented design does not require any flow conditioner to homogenize the oil/water mixture unlike many commercial water-cut (WC) sensors. The presented sensor has been realized by using extremely low-cost methods of screen printing and reusable 3-D printed mask. Complete characterization of the proposed WC sensor, both in horizontal and vertical orientations, has been carried out in an industrial flow loop. Excellent repeatability of the sensor\\'s response has been observed in \\'dispersed bubble\\' as well as in \\'stratified wavy\\' flow regimes. The performance test of the sensor confirms that the water fraction measurement is independent of the flow pattern, flow rate or orientation. The measured performance results of the sensor show full range accuracy of $± $2%-3% while tested under random orientations and wide range of flow rates.

  17. Independent encoding of surface orientation and surface curvature.

    Science.gov (United States)

    Johnston, A; Passmore, P J

    1994-11-01

    Marr [(1982) Vision, San Francisco, Calif.: Freeman] proposed that we represent surface geometry in terms of a viewer-centred description of surface orientation and distance. This description is computed by a range of independent processing systems which take as input particular kinds of information present in images, like surface texture, shading, retinal disparity and motion parallax. The outputs of these modules are integrated in order to provide a unitary representation of the layout of visible surfaces. Higher order properties of surface geometry, like surface curvature, might be computed from this symbolic representation or might be encoded independently from the visual information available at the retinae. We measured surface slant and surface curvature discrimination thresholds for surface patches defined by shading, texture and retinal disparity as a function of the elevation of the illumination. We found that observers judgements about the curvature of local surface patches were too precise to be based on a symbolic representation of surface orientation and we conclude that surface curvature is computed directly from depth cues present in the retinal images.

  18. Surface structure of oriented PET films

    CERN Document Server

    Kirov, K

    2001-01-01

    crystallinity and the level of molecular orientation of the polymer are highest at the film surface and gradually decrease away from it. The same trend for an increase in structural order nearer the film surface was observed in a series of PET films drawn uniaxially in laboratory conditions. The observed strong dependence of stratification in the oriented films on drawing ratio, lead to the conclusion, that the structural gradients arise as a result of viscous flow. The molecular mechanism of stratification is discussed and leads to the idea of enhanced chain mobility at the PET film surface. The idea is in line with recent studies showing a depression of the glass transition temperature of free polymer surfaces. In addition, the results on structure formation in PET films during drawing, give support to the existing view that polymer crystallisation is assisted by a spinodal-decomposition nucleation process. Polymer films are widely used as substrates in nano-composite materials and therefore have to possess...

  19. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Karina Lebel

    2016-07-01

    Full Text Available Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units—IMUs that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC process to assess the quality of orientation data based on features extracted from the raw inertial sensors’ signals. Joint orientation (trunk, hip, knee, ankle of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning performed under varying conditions (speed, environment. An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients’ mobility.

  20. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  1. An alternative sensor fusion method for object orientation using low-cost MEMS inertial sensors

    Science.gov (United States)

    Bouffard, Joshua L.

    This thesis develops an alternative sensor fusion approach for object orientation using low-cost MEMS inertial sensors. The alternative approach focuses on the unique challenges of small UAVs. Such challenges include the vibrational induced noise onto the accelerometer and bias offset errors of the rate gyroscope. To overcome these challenges, a sensor fusion algorithm combines the measured data from the accelerometer and rate gyroscope to achieve a single output free from vibrational noise and bias offset errors. One of the most prevalent sensor fusion algorithms used for orientation estimation is the Extended Kalman filter (EKF). The EKF filter performs the fusion process by first creating the process model using the nonlinear equations of motion and then establishing a measurement model. With the process and measurement models established, the filter operates by propagating the mean and covariance of the states through time. The success of EKF relies on the ability to establish a representative process and measurement model of the system. In most applications, the EKF measurement model utilizes the accelerometer and GPS-derived accelerations to determine an estimate of the orientation. However, if the GPS-derived accelerations are not available then the measurement model becomes less reliable when subjected to harsh vibrational environments. This situation led to the alternative approach, which focuses on the correlation between the rate gyroscope and accelerometer-derived angle. The correlation between the two sensors then determines how much the algorithm will use one sensor over the other. The result is a measurement that does not suffer from the vibrational noise or from bias offset errors.

  2. Nanomechanical membrane-type surface stress sensor.

    Science.gov (United States)

    Yoshikawa, Genki; Akiyama, Terunobu; Gautsch, Sebastian; Vettiger, Peter; Rohrer, Heinrich

    2011-03-09

    Nanomechanical cantilever sensors have been emerging as a key device for real-time and label-free detection of various analytes ranging from gaseous to biological molecules. The major sensing principle is based on the analyte-induced surface stress, which makes a cantilever bend. In this letter, we present a membrane-type surface stress sensor (MSS), which is based on the piezoresistive read-out integrated in the sensor chip. The MSS is not a simple "cantilever," rather it consists of an "adsorbate membrane" suspended by four piezoresistive "sensing beams," composing a full Wheatstone bridge. The whole analyte-induced isotropic surface stress on the membrane is efficiently transduced to the piezoresistive beams as an amplified uniaxial stress. Evaluation of a prototype MSS used in the present experiments demonstrates a high sensitivity which is comparable with that of optical methods and a factor of more than 20 higher than that obtained with a standard piezoresistive cantilever. The finite element analyses indicate that changing dimensions of the membrane and beams can substantially increase the sensitivity further. Given the various conveniences and advantages of the integrated piezoresistive read-out, this platform is expected to open a new era of surface stress-based sensing.

  3. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  4. Intelligent Machine Parts with Surface Embedded Sensors

    OpenAIRE

    Østbø, Niels Peter

    2009-01-01

    A surface embedded temperature sensor has successfully been fabricated on a customized industrial bolt. The aluminum substrate of the bolt was electrically isolated by plasma electrolytic oxidation followed by the fabrication of a type T thermocouple and finally covered by a wear resistant DLC coating. This bolt is part of our work to develop smart machine parts that are capable of reporting their current physical status under real working conditions enabling both new tools for condition base...

  5. Surface effects in segmented silicon sensors

    International Nuclear Information System (INIS)

    Kopsalis, Ioannis

    2017-05-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO 2 layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO 2 and at the Si-SiO 2 interface. In this thesis the surface radiation damage of the Si-SiO 2 system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO 2 of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO 2 ) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO 2 interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface radiation damage of silicon sensors.

  6. Surface effects in segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis

    2017-05-15

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO{sub 2} layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO{sub 2} and at the Si-SiO{sub 2} interface. In this thesis the surface radiation damage of the Si-SiO{sub 2} system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO{sub 2} of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface

  7. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei; Shih, Wei-Heng [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Shih, Wan Y., E-mail: shihwy@drexel.edu [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2016-03-28

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub 0.65}[PbTiO{sub 3}]{sub 0.35} (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  8. Direct observation of binding stress-induced crystalline orientation change in piezoelectric plate sensors

    Science.gov (United States)

    Wu, Wei; Shih, Wei-Heng; Shih, Wan Y.

    2016-03-01

    We have examined the mechanism of the detection resonance frequency shift, Δf/f, of a 1370 μm long and 537 μm wide [Pb(Mg1/3Nb2/3)O3]0.65[PbTiO3]0.35 (PMN-PT) piezoelectric plate sensor (PEPS) made of a 8-μm thick PMN-PT freestanding film. The Δf/f of the PEPS was monitored in a three-step binding model detections of (1) binding of maleimide-activated biotin to the sulfhydryl on the PEPS surface followed by (2) binding of streptavidin to the bound biotin and (3) subsequent binding of biotinylated probe deoxyribonucleic acid to the bound streptavidin. We used a PMN-PT surrogate made of the same 8-μm thick PMN-PT freestanding film that the PEPS was made of but was about 1 cm in length and width to carry out crystalline orientation study using X-ray diffraction (XRD) scan around the (002)/(200) peaks after each of the binding steps. The result of the XRD studies indicated that each binding step caused the crystalline orientation of the PMN-PT thin layer to switch from the vertical (002) orientation to the horizontal (200) orientation, and most of the PEPS detection Δf/f was due to the change in the lateral Young's modulus of the PMN-PT thin layer as a result of the crystalline orientation change.

  9. ENHANCEMENTS IN UAV FLIGHT CONTROL AND SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    M. Bäumker

    2013-08-01

    Full Text Available The acquisition of photogrammetric image data by means of Unmanned Aerial Vehicles (UAV has developed in recent years to an interesting new measurement method especially for small to medium sizes of objects. In addition the latest developments in the field of navigation systems (GNSS, of inertial sensors and other sensors in combination with powerful and easy to program microcontrollers have made a major contribution to this. In particular, the development of MEMS sensors has triggered the boom of the UAV and has given decisively influence and it is still going on. The integration of sensors on a single board not only enables a cost-effective manufacturing and mass production, but also the use in accordance with small, lightweight UAV. The latest developments on a 50 mm × 50 mm-sized circuit board combine the sensors and the microcontroller for the flight control and flight navigation. Both the board and the microcontroller are easy to program and maintain several interfaces for connecting additional sensors, such as GNSS, ultrasonic sensors and telemetry. This article presents the UAV system of the Bochum University of Applied Sciences, the used sensors and the obtained results for accurate georeferencing.

  10. Orientation of fibres in suspensions flowing over a solid surface

    OpenAIRE

    Carlsson, Allan

    2007-01-01

    The orientation of fibres suspended in a viscous fluid, flowing over a solid surface, has been studied experimentally. A shear layer was generated, by letting the suspension flow down an inclined plate. Far upstream from the measuring section the suspension was accelerated to obtain an initial orientation of the fibres aligned with the flow direction. A CCD-camera was used to visualise the fibres. The velocity profile of the fibres coincided with the theoretical expression for fully developed...

  11. Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals-magneto-elastic ribbon assembly.

    Science.gov (United States)

    Gora, Leszek; Kuhn, Jelan; Baimpos, Theodoros; Nikolakis, Vladimiros; Kapteijn, Freek; Serwicka, Ewa M

    2009-10-01

    This report presents the development of new selective gas sensors utilizing a b-oriented silicalite-1 layer-magneto-elastic ribbon assembly. The key principle for the operation of these sensors is monitoring the changes in the resonance frequency of the Metglas strip in relation to the concentration of a component in the gas phase. This technique provides a simple way for monitoring the effects of the amount of adsorbed gases in the silicalite-1 coating. The thickness of the zeolite layer is that of a single crystal. The silicalite-1 crystals are oriented in the b-direction, meaning that the straight channels are perpendicular to the sensor surface, which is confirmed by X-ray diffraction (XRD) analysis. The sensor was able to repeatedly sense carbon dioxide in air and could discriminate between linear and branched hydrocarbons. The sensor was able to detect n-butane, while it did not respond to the presence of iso-butane, indicating sensing selectivity.

  12. Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE

    National Research Council Canada - National Science Library

    Gentemann, Chelle L; Wick, Gary A; Cummings, James; Bayler, Eric

    2004-01-01

    ...) sensors and to then demonstrate the impact of these improved sea surface temperatures (SSTs) on operational ocean models, numerical weather prediction, and tropical cyclone intensity forecasting...

  13. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    is the second and main part of the project. The main challenges in developing metal oxide sensors are proper choice of the material, sensor location and fabrication technique due to lifetime and cross sensitivity issues in harsh environment where the problems like de-bonding or some kind of diffusion......SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  14. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  15. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    OpenAIRE

    Yuanyuan Li; Wenke Lu; Changchun Zhu; Qinghong Liu; Haoxin Zhang; Chenchao Tang

    2014-01-01

    Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW) based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established ...

  16. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  17. Chemical sensors based on surface charge transfer

    Science.gov (United States)

    Mohtasebi, Amirmasoud; Kruse, Peter

    2018-02-01

    The focus of this review is an introduction to chemiresistive chemical sensors. The general concept of chemical sensors is briefly introduced, followed by different architectures of chemiresistive sensors and relevant materials. For several of the most common systems, the fabrication of the active materials used in such sensors and their properties are discussed. Furthermore, the sensing mechanism, advantages, and limitations of each group of chemiresistive sensors are briefly elaborated. Compared to electrochemical sensors, chemiresistive sensors have the key advantage of a simpler geometry, eliminating the need for a reference electrode. The performance of bulk chemiresistors can be improved upon by using freestanding ultra-thin films (nanomaterials) or field effect geometries. Both of those concepts have also been combined in a gateless geometry, where charge transport though a percolation network of nanomaterials is modulated via adsorbate doping.

  18. Oil exploration oriented multi-sensor image fusion algorithm

    Directory of Open Access Journals (Sweden)

    Xiaobing Zhang

    2017-04-01

    Full Text Available In order to accurately forecast the fracture and fracture dominance direction in oil exploration, in this paper, we propose a novel multi-sensor image fusion algorithm. The main innovations of this paper lie in that we introduce Dual-tree complex wavelet transform (DTCWT in data fusion and divide an image to several regions before image fusion. DTCWT refers to a new type of wavelet transform, and it is designed to solve the problem of signal decomposition and reconstruction based on two parallel transforms of real wavelet. We utilize DTCWT to segment the features of the input images and generate a region map, and then exploit normalized Shannon entropy of a region to design the priority function. To test the effectiveness of our proposed multi-sensor image fusion algorithm, four standard pairs of images are used to construct the dataset. Experimental results demonstrate that the proposed algorithm can achieve high accuracy in multi-sensor image fusion, especially for images of oil exploration.

  19. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  20. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  2. Applicability of New Approaches of Sensor Orientation to Micro Aerial Vehicles

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2016-06-01

    This study highlights the benefits of precise aerial position and attitude control in the context of mapping with Micro Aerial Vehicles (MAVs). Accurate mapping with MAVs is gaining importance in applications such as corridor mapping, road and pipeline inspections or mapping of large areas with homogeneous surface structure, e.g. forests or agricultural fields. There, accurate aerial control plays a major role in successful terrain reconstruction and artifact-free ortophoto generation. The presented experiments focus on new approaches of aerial control. We confirm practically that the relative aerial position and attitude control can improve accuracy in difficult mapping scenarios. Indeed, the relative orientation method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified, e.g. the angular misalignment, so called boresight, between the camera and the inertial measurement unit (IMU) does not have to be determined and, second, the effect of possible systematic errors in satellite positioning (e.g. due to multipath and/or incorrect recovery of differential carrier-phase ambiguities) is mitigated. First, we present a typical mapping project over an agricultural field and second, we perform a corridor road mapping. We evaluate the proposed methods in scenarios with and without automated image observations. We investigate a recently proposed concept where adjustment is performed using image observations limited to ground control and check points, so called fast aerial triangulation (Fast AT). In this context we show that accurate aerial control (absolute or relative) together with a few image observations can deliver accurate results comparable to classical aerial triangulation with thousands of image measurements. This procedure in turns reduces the demands on processing time and the requirements on the existence of surface texture. Finally, we compare the above mentioned procedures with direct sensor

  3. Slant-tilt: the visual encoding of surface orientation.

    Science.gov (United States)

    Stevens, K A

    1983-01-01

    A specific form for the internal representation of local surface orientation is proposed, which is similar to Gibson's (1950) "amount and direction of slant". Slant amount is usually quantified by the angle sigma between the surface normal and the line of sight (0 degrees less than or equal to sigma less than or equal to 90 degrees). Slant direction corresponds to the direction of the gradient of distance from the viewer to the surface, and may be defined by the image direction tau to which the surface normal would project (0 degrees less than or equal to tau less than or equal to 360 degrees). Since the direction of slant is specified by the tilt of the projected surface normal, it is referred to as surface tilt (Stevens, 1979; Marr, 1982). The two degrees of freedom of orientation are therefore quantified by slant, an angle measured perpendicular to the image plane, and tilt, an angle measured in the image plane. The slant-tilt form provides several computational advantages relative to some other proposals and is consistent with various psychological phenomena. Slant might be encoded by various means, e.g. by the cosine of the angle, by the tangent, or linearly by the angle itself. Experimental results are reported that suggest that slant is encoded by an internal parameter that varies linearly with slant angle, with resolution of roughly one part in 100. Thus we propose that surface orientation is encoded in human vision by two quantities, one varying linearly with slant angle, the other varying linearly with tilt angle.

  4. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks

    Directory of Open Access Journals (Sweden)

    Elena Bergamini

    2014-10-01

    Full Text Available Magnetic and inertial measurement units are an emerging technology to obtain 3D orientation of body segments in human movement analysis. In this respect, sensor fusion is used to limit the drift errors resulting from the gyroscope data integration by exploiting accelerometer and magnetic aiding sensors. The present study aims at investigating the effectiveness of sensor fusion methods under different experimental conditions. Manual and locomotion tasks, differing in time duration, measurement volume, presence/absence of static phases, and out-of-plane movements, were performed by six subjects, and recorded by one unit located on the forearm or the lower trunk, respectively. Two sensor fusion methods, representative of the stochastic (Extended Kalman Filter and complementary (Non-linear observer filtering, were selected, and their accuracy was assessed in terms of attitude (pitch and roll angles and heading (yaw angle errors using stereophotogrammetric data as a reference. The sensor fusion approaches provided significantly more accurate results than gyroscope data integration. Accuracy improved mostly for heading and when the movement exhibited stationary phases, evenly distributed 3D rotations, it occurred in a small volume, and its duration was greater than approximately 20 s. These results were independent from the specific sensor fusion method used. Practice guidelines for improving the outcome accuracy are provided.

  5. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  6. Direct sensor orientation of a land-based mobile mapping system.

    Science.gov (United States)

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  7. WISDOM: wheelchair inertial sensors for displacement and orientation monitoring

    International Nuclear Information System (INIS)

    Pansiot, J; Zhang, Z; Lo, B; Yang, G Z

    2011-01-01

    Improved wheelchair design in recent years has significantly increased the mobility of people with disabilities, which has also enhanced the competitive advantage of wheelchair sports. For the latter, detailed assessment of biomechanical factors influencing individual performance and team tactics requires real-time wireless sensing and data modelling. In this paper, we propose the use of a miniaturized wireless wheel-mounted inertial sensor for wheelchair motion monitoring and tracking in an indoor sport environment. Based on a combined use of 3D microelectromechanical system (MEMS) gyroscopes and 2D MEMS accelerometers, the proposed system provides real-time velocity, heading, ground distance covered and motion trajectory of the wheelchair across the sports court. The proposed system offers a number of advantages compared to existing platforms in terms of size, weight and ease of installation. Beyond sport applications, it also has important applications for training and rehabilitation for people with disabilities

  8. Cantilever surface stress sensors with single-crystalline silicon piezoresistors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Andreas; Hansen, Ole; Boisen, Anja

    2005-01-01

    on cantilever sensors with integrated piezoresistive readout, that one finds between typical atomic force microscopy measurements and the surface stress sensors used in, e.g., biochemical measurements. We have simulated the response from piezoresistive cantilevers as a function of resistor type and placement...

  9. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors.

    Science.gov (United States)

    Faber, Gert S; Kingma, Idsart; van Dieën, Jaap H

    2010-05-07

    L5/S1, hip and knee moments during manual lifting tasks are, in a laboratory environment, frequently established by bottom-up inverse dynamics, using force plates to measure ground reaction forces (GRFs) and an optoelectronic system to measure segment positions and orientations. For field measurements, alternative measurement systems are being developed. One alternative is the use of small body-mounted inertial/magnetic sensors (IMSs) and instrumented force shoes to measure segment orientation and GRFs, respectively. However, because IMSs measure segment orientations only, the positions of segments relative to each other and relative to the GRFs have to be determined by linking them, assuming fixed segment lengths and zero joint translation. This will affect the estimated joint positions and joint moments. This study investigated the effect of using segment orientations only (orientation-based method) instead of using orientations and positions (reference method) on three-dimensional joint moments. To compare analysis methods (and not measurement methods), GRFs were measured with a force plate and segment positions and/or orientations were measured using optoelectronic marker clusters for both analysis methods. Eleven male subjects lifted a box from floor level using three lifting techniques: a stoop, a semi-squat and a squat technique. The difference between the two analysis methods remained small for the knee moments: stoop and semi-squat techniques and up to 14% for the squat technique. In conclusion, joint moments during lifting can be estimated with good accuracy at the knee joint and with reasonable accuracy at the hip and L5/S1 joints using segment orientation and GRF data only. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Performance Assessment of Integrated Sensor Orientation with a Low-Cost Gnss Receiver

    Science.gov (United States)

    Rehak, M.; Skaloud, J.

    2017-08-01

    Mapping with Micro Aerial Vehicles (MAVs whose weight does not exceed 5 kg) is gaining importance in applications such as corridor mapping, road and pipeline inspections, or mapping of large areas with homogeneous surface structure, e.g. forest or agricultural fields. In these challenging scenarios, integrated sensor orientation (ISO) improves effectiveness and accuracy. Furthermore, in block geometry configurations, this mode of operation allows mapping without ground control points (GCPs). Accurate camera positions are traditionally determined by carrier-phase GNSS (Global Navigation Satellite System) positioning. However, such mode of positioning has strong requirements on receiver's and antenna's performance. In this article, we present a mapping project in which we employ a single-frequency, low-cost (< 100) GNSS receiver on a MAV. The performance of the low-cost receiver is assessed by comparing its trajectory with a reference trajectory obtained by a survey-grade, multi-frequency GNSS receiver. In addition, the camera positions derived from these two trajectories are used as observations in bundle adjustment (BA) projects and mapping accuracy is evaluated at check points (ChP). Several BA scenarios are considered with absolute and relative aerial position control. Additionally, the presented experiments show the possibility of BA to determine a camera-antenna spatial offset, so-called lever-arm.

  11. PERFORMANCE ASSESSMENT OF INTEGRATED SENSOR ORIENTATION WITH A LOW-COST GNSS RECEIVER

    Directory of Open Access Journals (Sweden)

    M. Rehak

    2017-08-01

    Full Text Available Mapping with Micro Aerial Vehicles (MAVs whose weight does not exceed 5 kg is gaining importance in applications such as corridor mapping, road and pipeline inspections, or mapping of large areas with homogeneous surface structure, e.g. forest or agricultural fields. In these challenging scenarios, integrated sensor orientation (ISO improves effectiveness and accuracy. Furthermore, in block geometry configurations, this mode of operation allows mapping without ground control points (GCPs. Accurate camera positions are traditionally determined by carrier-phase GNSS (Global Navigation Satellite System positioning. However, such mode of positioning has strong requirements on receiver’s and antenna’s performance. In this article, we present a mapping project in which we employ a single-frequency, low-cost (< $100 GNSS receiver on a MAV. The performance of the low-cost receiver is assessed by comparing its trajectory with a reference trajectory obtained by a survey-grade, multi-frequency GNSS receiver. In addition, the camera positions derived from these two trajectories are used as observations in bundle adjustment (BA projects and mapping accuracy is evaluated at check points (ChP. Several BA scenarios are considered with absolute and relative aerial position control. Additionally, the presented experiments show the possibility of BA to determine a camera-antenna spatial offset, so-called lever-arm.

  12. Diversity-oriented fluorescence library approach (DOFLA) to the discovery of chymotrypsin sensor.

    Science.gov (United States)

    Wang, Shenliang; Kim, Yun Kyung; Chang, Young-Tae

    2008-01-01

    The diversity-oriented fluorescence library approach (DOFLA) has emerged and found applications in various fields to meet the acute demands for novel fluorescence sensors. The power of this approach has been demonstrated with the impressive discoveries of novel sensors for polymers such as DNA and heparin or for small molecules such as GTP and glutathione ( J. Am. Chem. Soc. 2003, 125, 1130- 1131 ; J. Am. Chem. Soc. 2006, 128, 10380- 10381 ; J. Am. Chem. Soc. 2007, 129, 4510- 4511 ; Chem. Commun. [Online early access]. DOI: 10.1039/b717058k. Published online Dec 11, 2008. http://www.rsc.org/publishing/journals/CC/article.asp?doi=b717058k ). Herein we report the application of this approach on quinaldinium fluorescent dye library synthesis on solid support and novel chymotrypsin sensor discovery. The new sensors are not only selective to chymotrypsin over other proteins but also only to the active conformation of chymotrypsin.

  13. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  14. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bingfei Fan

    2017-05-01

    Full Text Available Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm.

  15. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  16. Acoustic Sensors for Air and Surface Navigation Applications

    Directory of Open Access Journals (Sweden)

    Rohan Kapoor

    2018-02-01

    Full Text Available This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats. Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for intelligent transport systems (ITS, especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C sensor integration architecture is presented for possible introduction in air and surface navigation systems.

  17. Acoustic Sensors for Air and Surface Navigation Applications.

    Science.gov (United States)

    Kapoor, Rohan; Ramasamy, Subramanian; Gardi, Alessandro; Schyndel, Ron Van; Sabatini, Roberto

    2018-02-07

    This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for Intelligent Transport Systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems.

  18. Application of Service Oriented Architecture for Sensors and Actuators in District Heating Substations

    Science.gov (United States)

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-01-01

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  19. Application of service oriented architecture for sensors and actuators in district heating substations.

    Science.gov (United States)

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-08-21

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation.

  20. Effective Surface Area of Electrochemical Sensors

    Czech Academy of Sciences Publication Activity Database

    Krejčí, J.; Sajdlová, Z.; Neděla, Vilém; Flodrová, Eva; Šejnohová, R.; Vránová, H.; Plička, R.

    2014-01-01

    Roč. 161, č. 6 (2014), B147-B150 ISSN 0013-4651 R&D Projects: GA MPO FR-TI1/118 Institutional support: RVO:68081731 Keywords : scanning electron microscopy * glassy- carbon electrode * gold electrodes * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.266, year: 2014

  1. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  2. Marine Acoustic Sensor Assembly

    National Research Council Canada - National Science Library

    Ruffa, Anthony A

    2007-01-01

    A marine acoustic sensor assembly includes an acoustic panel having a forward surface and an after surface, a laser scanner oriented so as to project a laser beam onto the acoustic panel after surface...

  3. inertial orientation tracker having automatic drift compensation using an at rest sensor for tracking parts of a human body

    Science.gov (United States)

    Foxlin, Eric M. (Inventor)

    2004-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive sate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  4. Electronic structure of graphene on Ni surfaces with different orientation

    International Nuclear Information System (INIS)

    Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.

    2016-01-01

    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  5. Estimating the orientation of a rigid body moving in space using inertial sensors

    Energy Technology Data Exchange (ETDEWEB)

    He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)

    2015-09-15

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.

  6. Estimating the orientation of a rigid body moving in space using inertial sensors

    International Nuclear Information System (INIS)

    He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric

    2015-01-01

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method

  7. Object-Oriented Hierarchy Radiation Consistency for Different Temporal and Different Sensor Images.

    Science.gov (United States)

    Su, Nan; Yan, Yiming; Zhao, Chunhui; Wang, Liguo

    2018-02-25

    In the paper, we propose a novel object-oriented hierarchy radiation consistency method for dense matching of different temporal and different sensor data in the 3D reconstruction. For different temporal images, our illumination consistency method is proposed to solve both the illumination uniformity for a single image and the relative illumination normalization for image pairs. Especially in the relative illumination normalization step, singular value equalization and linear relationship of the invariant pixels is combined used for the initial global illumination normalization and the object-oriented refined illumination normalization in detail, respectively. For different sensor images, we propose the union group sparse method, which is based on improving the original group sparse model. The different sensor images are set to a similar smoothness level by the same threshold of singular value from the union group matrix. Our method comprehensively considered the influence factors on the dense matching of the different temporal and different sensor stereoscopic image pairs to simultaneously improve the illumination consistency and the smoothness consistency. The radiation consistency experimental results verify the effectiveness and superiority of the proposed method by comparing two other methods. Moreover, in the dense matching experiment of the mixed stereoscopic image pairs, our method has more advantages for objects in the urban area.

  8. Reference compensation for localized surface-plasmon resonance sensors

    Science.gov (United States)

    Nehru, Neha

    Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage---LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit the applicability and impact of the sensor. In spite of the extensive amount of work done in this field, there has been a clear absence of efforts to make LSPR sensors immune to interfering effects. The work presented in this document investigates, both experimentally and numerically, dual- and tri-mode LSPR sensors that utilize the multiple surface plasmon modes of gold nanostructures to distinguish target analyte from interfering bulk and non-specific binding effects. Finally, a series of biosensing experiments are performed to examine various regeneration assays for LSPR sensors built on indium tin oxide coated glass substrate.

  9. Novel spectral fiber optic sensor based on surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří; Čtyroký, Jiří; Brynda, Eduard

    B74, 1/3 (2001), s. 106-111 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  10. Compact Surface Plasmon Resonance Sensor for Underwater Chemical Sensing Robot

    Directory of Open Access Journals (Sweden)

    Yuichi Minagawa

    2017-01-01

    Full Text Available This paper reports on the development of compact surface plasmon resonance (SPR sensors for mobile robot olfaction. Underwater robots benefit from olfactory sensing capabilities in various tasks including the search for unexploded ordnance and undersea wreckage. Although the SPR-based chemical sensor is a promising sensing platform, the cumbersome optical setup has been limiting its use on mobile robots. The proposed sensor employs a periodic metal structure formed on a self-assembled layer of polystyrene particles of 200 nm in diameter. With the grating of this size, SPR can be excited even with a simple LED light source. The change in the absorbance is simply measured using a photodiode. Demonstration of the proposed SPR sensor is provided by mounting the sensors on an underwater crayfish robot that autonomously searches for a chemical source. The fabricated sensor shows linear response to ascorbic acid for a concentration range from 20 to 80 mM. Responses of the bare and thiol-coated gold nanostructure to different chemical substances are presented to show the change in the selectivity of the sensor by the coating. Discussions are made on the importance of sample collection for the sensor to attain sensitive chemical detection on a mobile robot.

  11. Design of Surface Modifications for Nanoscale Sensor Applications

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2015-01-01

    Full Text Available Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii. We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  12. First bulk and surface results for the ATLAS ITk stereo annulus sensors

    CERN Document Server

    Abidi, Syed Haider; The ATLAS collaboration; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy; Fernandez-Tejero, Xavi; Garcia-Argos, Carlos; Gillberg, Dag; Hara, Kazuhiko; Hunter, Robert Francis Holub

    2018-01-01

    A novel microstrip sensor geometry, the “stereo annulus”, has been developed for use in the end-cap of the ATLAS experiment’s strip tracker upgrade at the High-Luminosity Large Hadron Collider (HL- LHC). The radiation-hard, single-sided, ac-coupled, n + -in-p microstrip sensors are designed by the ITk Strip Sensor Collaboration and produced by Hamamatsu Photonics. The stereo annulus design has the potential to revolutionize the layout of end-cap microstrip trackers promising better tracking performance and more complete coverage than the contemporary configurations. These advantages are achieved by the union of equal length, radially oriented strips with a small stereo angle implemented directly into the sensor surface. The first-ever results for the stereo annulus geometry have been collected across several sites world- wide and are presented here. A number of full-size, unirradiated sensors were evaluated for their mechanical, bulk, and surface properties. The new device, the ATLAS12EC, is compared ag...

  13. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  14. Development of a modular and scalable sensor system for the gathering of position and orientation of moved objects

    International Nuclear Information System (INIS)

    Klingbeil, L.

    2006-02-01

    A modular and scalable sensor system for the estimation of position and orientation of moving objects has been developed and characterized. A sensor unit, which is mounted to the moving object, consists of acceleration -, angular rate - and magnetic field sensors for every spatial axis. Customized Kalman filter algorithms provide a robust and low latency reconstruction of the sensor's orientation. Additionally an ultrasound transducer network is used to measure the distance of a sensor unit with respect to several reference points in the room. This allows reconstruction of the absolute position using trilateration methods. The system is scalable with respect to the number of sensor units and the covered tracking volume. It is suitable for various applications for example the analysis of body movements or head tracking in augmented or virtual reality environments. (orig.)

  15. Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals– magneto-elastic ribbon assembly

    NARCIS (Netherlands)

    Gora, L.; Kuhn, J.; Baimpos, T.; Nikolakis, V.; Kapteijn, F.; Serwicka, E.M.

    2009-01-01

    This report presents the development of new selective gas sensors utilizing a b-oriented silicalite-1 layer–magneto-elastic ribbon assembly. The key principle for the operation of these sensors is monitoring the changes in the resonance frequency of the Metglas® strip in relation to the

  16. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  17. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces

    Science.gov (United States)

    Xie, Yun; Zhou, Jian; Jiang, Shaoyi

    2010-02-01

    In this work, the parallel tempering Monte Carlo (PTMC) algorithm is applied to accurately and efficiently identify the global-minimum-energy orientation of a protein adsorbed on a surface in a single simulation. When applying the PTMC method to simulate lysozyme orientation on charged surfaces, it is found that lysozyme could easily be adsorbed on negatively charged surfaces with "side-on" and "back-on" orientations. When driven by dominant electrostatic interactions, lysozyme tends to be adsorbed on negatively charged surfaces with the side-on orientation for which the active site of lysozyme faces sideways. The side-on orientation agrees well with the experimental results where the adsorbed orientation of lysozyme is determined by electrostatic interactions. As the contribution from van der Waals interactions gradually dominates, the back-on orientation becomes the preferred one. For this orientation, the active site of lysozyme faces outward, which conforms to the experimental results where the orientation of adsorbed lysozyme is co-determined by electrostatic interactions and van der Waals interactions. It is also found that despite of its net positive charge, lysozyme could be adsorbed on positively charged surfaces with both "end-on" and back-on orientations owing to the nonuniform charge distribution over lysozyme surface and the screening effect from ions in solution. The PTMC simulation method provides a way to determine the preferred orientation of proteins on surfaces for biosensor and biomaterial applications.

  18. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  19. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.

    Science.gov (United States)

    Stępień, Grzegorz

    2018-03-17

    The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  20. Secure Distributed Detection under Energy Constraint in IoT-Oriented Sensor Networks.

    Science.gov (United States)

    Zhang, Guomei; Sun, Hao

    2016-12-16

    We study the secure distributed detection problems under energy constraint for IoT-oriented sensor networks. The conventional channel-aware encryption (CAE) is an efficient physical-layer secure distributed detection scheme in light of its energy efficiency, good scalability and robustness over diverse eavesdropping scenarios. However, in the CAE scheme, it remains an open problem of how to optimize the key thresholds for the estimated channel gain, which are used to determine the sensor's reporting action. Moreover, the CAE scheme does not jointly consider the accuracy of local detection results in determining whether to stay dormant for a sensor. To solve these problems, we first analyze the error probability and derive the optimal thresholds in the CAE scheme under a specified energy constraint. These results build a convenient mathematic framework for our further innovative design. Under this framework, we propose a hybrid secure distributed detection scheme. Our proposal can satisfy the energy constraint by keeping some sensors inactive according to the local detection confidence level, which is characterized by likelihood ratio. In the meanwhile, the security is guaranteed through randomly flipping the local decisions forwarded to the fusion center based on the channel amplitude. We further optimize the key parameters of our hybrid scheme, including two local decision thresholds and one channel comparison threshold. Performance evaluation results demonstrate that our hybrid scheme outperforms the CAE under stringent energy constraints, especially in the high signal-to-noise ratio scenario, while the security is still assured.

  1. Surface noise analysis using a single-ion sensor

    Science.gov (United States)

    Daniilidis, N.; Gerber, S.; Bolloten, G.; Ramm, M.; Ransford, A.; Ulin-Avila, E.; Talukdar, I.; Häffner, H.

    2014-06-01

    We use a single-ion electric-field noise sensor in combination with in situ surface treatment and analysis tools, to investigate the relationship between electric-field noise from metal surfaces in vacuum and the composition of the surface. These experiments are performed in a setup that integrates ion trapping capabilities with surface analysis tools. We find that treatment of an aluminum-copper surface with energetic argon ions significantly reduces the level of room-temperature electric-field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The noise levels after treatment are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap at room temperature.

  2. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  3. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  4. A two-step method for spatial circle orientation with a structured light vision sensor and error analysis

    International Nuclear Information System (INIS)

    Wu, Bin; Ye, Shenghua; Xue, Ting

    2010-01-01

    A novel two-step method for spatial circle orientation with a structured light vision sensor is proposed for a 3D flexible visual inspection system guided by an industrial robot. Firstly the z coordinate of a spatial circle center is estimated, secondly the x and y coordinates are estimated with the center orientation relative to the camera optic center, and then its radius is computed. Simultaneously, the x, y and z coordinate orientation errors are analyzed in detail. It shows that the method is feasible and valid, and the orientation accuracy for the spatial circle exceeds 0.15 mm by experiment. It eliminates the bottleneck of the traditional orientation method with a stereovision sensor, and greatly expands the application of the structured light visual inspection system

  5. Effects of surface orientation on lifetime of near-surface nanoscale He bubble in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiechao; Fu, Baoqin; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2017-02-15

    In multiscale modeling of the morphological evolution of plasma facing materials in nuclear fusion reactors, the knowledge of the timescales of the involved physical processes is important. In the present study, a new method based on molecular dynamics simulations was developed to extract the lifetime of helium bubbles near tungsten surfaces. It was found that the lifetime of a helium bubble can be described by the Arrhenius equation. However, the lifetime of a helium bubble depends on the thickness of tungsten film above the helium bubble in the substrate and the bubble size. The influence of surface orientations on the lifetime of helium bubbles was also observed, and the performance of helium bubbles on the (1 1 1) surface is very different from on the (0 0 1) and (0 1 1) surfaces. The role of the helium bubble lifetime in other simulation techniques, such as in kinetic Monte Carlo methods and rate theory, is discussed.

  6. Designing wireless sensor networks for hydrological and water resource applications: A purpose-oriented approach

    Science.gov (United States)

    Mao, F.; Hannah, D. M.; Krause, S.; Clark, J.; Buytaert, W.; Ochoa-Tocachi, B. F.

    2017-12-01

    There have been a growing number of studies using low-cost wireless sensor networks (LCWSNs) in hydrology and water resources fields. By reviewing the development of sensing and wireless communication technologies, as well as the recent relevant projects and applications, we observe that the challenges in applying LCWSNs have been moving beyond technical aspects. The large pool of available low-cost network modules, such as Arduino, Raspberry Pi, Xbee and inexpensive sensors, enable us to assemble networks rather than building them from scratch. With a wide variety of costs, functions and features, these modules support customisation of hydrological monitoring network for different user groups and purposes. Therefore, more attentions are needed to be placed on how to better design tailored LCWSNs with current technologies that create more added value for users. To address this challenge, this research proposes a tool-box for what we term `purpose-oriented' LCWSN. We identify the main LCWSN application scenarios from literature, and compare them from three perspectives including (1) the major stakeholders in each scenario, (2) the purposes for stakeholders, and (3) the network technologies and settings that meet the purposes. Notably, this innovative approach designs LCWSNs for different scenarios with considerations of not only technologies, but also stakeholders and purposes that are related to the usability, maintenance and social sustainability of networks. We conclude that this new, purpose-orientated approach can further release the potential of hydrological and water resources LCWSNs to maximise benefits for users and wider society.

  7. Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.

    Science.gov (United States)

    Alshinina, Remah; Elleithy, Khaled

    2017-03-08

    Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.

  8. Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Remah Alshinina

    2017-03-01

    Full Text Available Wireless Sensor Networks (WSNs have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS issues. Service-Oriented Architecture (SOA is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.

  9. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  10. Silicon nanohybrid-based surface-enhanced Raman scattering sensors.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; Lee, Shuit-Tong; He, Yao

    2014-11-01

    Nanomaterial-based surface-enhanced Raman scattering (SERS) sensors are highly promising analytical tools, capable of ultrasensitive, multiplex, and nondestructive detection of chemical and biological species. Extensive efforts have been made to design various silicon nanohybrid-based SERS substrates such as gold/silver nanoparticle (NP)-decorated silicon nanowires, Au/Ag NP-decorated silicon wafers (AuNP@Si), and so forth. In comparison to free AuNP- and AgNP-based SERS sensors, the silicon nanohybrid-based SERS sensors feature higher enhancement factors (EFs) and excellent reproducibility, since SERS hot spots are efficiently coupled and stabilized through interconnection to the semiconducting silicon substrates. Consequently, in the past decade, giant advancements in the development of silicon nanohybrid-based SERS sensors have been witnessed for myriad sensing applications. In this review, the representative achievements related to the design of high-performance silicon nanohybrid-based SERS sensors and their use for chemical and biological analysis are reviewed in a detailed way. Furthermore, the major opportunities and challenges in this field are discussed from a broad perspective and possible future directions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A surface acoustic wave ICP sensor with good temperature stability.

    Science.gov (United States)

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  12. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    Science.gov (United States)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour

  13. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space

    Directory of Open Access Journals (Sweden)

    Grzegorz Stępień

    2018-03-01

    Full Text Available The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems—interior and exterior orientation of sensors—to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data. The accuracy of the results in the laboratory test is on the level of 10−6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author’s 2017 Total Free Station (TFS transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation—MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  14. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  15. The influence of surface on the running velocities of elite and amateur orienteer athletes

    DEFF Research Database (Denmark)

    Hébert-Losier, K; Jensen, Kurt; Mourot, L

    2014-01-01

    . Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist...... in tailoring training and identifying individual strengths and/or weaknesses in an orienteer....

  16. Long-range surface plasmons for high-resolution surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Nenninger, G. G.; Tobiška, Petr; Homola, Jiří; Yee, S. S.

    B74, 1/3 (2001), s. 145-151 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Grant - others:Department of Defense(US) DAAD13-99-C-0032 Institutional research plan: CEZ:AV0Z2067918 Keywords : sensors * surface plasmons * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  17. Study of the Integration of LIDAR and Photogrammetric Datasets by in Situ Camera Calibration and Integrated Sensor Orientation

    Science.gov (United States)

    Mitishita, E.; Costa, F.; Martins, M.

    2017-05-01

    Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  18. Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper

    CERN Document Server

    Aicheler, M; Taborelli, M; Calatroni, S; Neupert, H; Wuensch, W; Sgobba, S

    2011-01-01

    Surface degradation due to cyclic thermal loading plays a major role in the Accelerating Structures (AS) of the future Compact Linear Collider (CLIC) In this article results on surface degradation of thermally cycled polycrystalline copper as a function of the orientation of surface grains are presented Samples with different grain sizes were subjected to thermal fatigue using two different methods and were then characterized using roughness measurements and Orientation Imaging Scanning-Electron-Microscopy (OIM-SEM) Samples fatigued by a pulsed laser show the same trend in the orientation-fatigue damage accumulation as the sample fatigued by pulsed Radio-Frequency-heating (RF) it is clearly shown that 11 1 1] surface grains develop significantly more damage than the surface grains oriented in {[}100] and three reasons for this behaviour are pointed out Based on observations performed near grain boundaries their role in the crack initiation process is discussed The results are in good agreement with previous f...

  19. Orientation sensors by defocused imaging of single gold nano-bipyramids

    Science.gov (United States)

    Zhang, Fanwei; Li, Qiang; Rao, Wenye; Hu, Hongjin; Gao, Ye; Wu, Lijun

    2018-01-01

    Optical probes for nanoscale orientation sensing have attracted much attention in the field of single-molecule detections. Noble metal especially Au nanoparticles (NPs) exhibit extraordinary plasmonic properties, great photostability, excellent biocompatibility and nontoxicity, and thereby could be alternative labels to conventional applied organic dyes or quantum dots. One type of the most interesting metallic NPs is Au nanorods (AuNRs). Its anisotropic emission accompanied with anisotropic shape is potentially applicable in orientation sensing. Recently, we resolved the 3D orientation of single AuNRs within one frame by deliberately introducing an aberration (slight shift of the dipole away from the focal plane) to the imaging system1 . This defocused imaging technique is based on the electron transition dipole approximation and the fact that the dipole radiation exhibits an angular anisotropy. Since the photoluminescence quantum yield (PLQY) can be enhanced by the "lightning rod effect" (at a sharp angled surface) and localized SPR modes, that of the single Au nano-bipyramid (AuNB) with more sharp tips or edges was found to be doubled comparing to AuNRs with a same effective size2. Here, with a 532 nm excitation, we find that the PL properties of individual AuNBs can be described by three perpendicularly-arranged dipoles (with different ratios). Their PL defocused images are bright, clear and exhibit obvious anisotropy. These properties suggest that AuNBs are excellent candidates for orientation sensing labels in single molecule detections.

  20. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies

    International Nuclear Information System (INIS)

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-01-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  1. Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors

    Science.gov (United States)

    Wang, Binghao; Ding, Jinqiang; Zhu, Tao; Huang, Wei; Cui, Zequn; Chen, Jianmei; Huang, Lizhen; Chi, Lifeng

    2016-02-01

    A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors.A series of organic field-effect transistors (OFETs) with patterned ultra-thin films for NH3 detection are achieved via fast dip-coating. The morphology and packing structure of the ultra-thin films are greatly dependent on the surface energy of the substrates, geometry features of the patterned electrodes and evaporation atmosphere during the dip-coating process, which in turn results in a significant difference in the NH3 sensing properties. Based on the newly proposed mechanism, low-trap dielectric-semiconductor interfaces, a stripe-like morphology and an ultrathin film (as low as 2 nm) enable the OFET-based sensors to exhibit unprecedented sensitivity (~160) with a short response/recovery time. The efficient (2 mm s-1), reliable, and scalable patterning strategy opens a new route for solution-processed OFET-based gas sensors. Electronic supplementary information (ESI) available: Optical, SEM images of DTBDT-C6 microstripes; output characteristics of OTFTs based on DTBDT-C6 microstripes. See DOI: 10.1039/c5nr09001f

  2. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR

    Science.gov (United States)

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-01-01

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447

  3. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.

    Science.gov (United States)

    Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng

    2018-02-11

    In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.

  4. SOMM: A new service oriented middleware for generic wireless multimedia sensor networks based on code mobility.

    Science.gov (United States)

    Faghih, Mohammad Mehdi; Moghaddam, Mohsen Ebrahimi

    2011-01-01

    Although much research in the area of Wireless Multimedia Sensor Networks (WMSNs) has been done in recent years, the programming of sensor nodes is still time-consuming and tedious. It requires expertise in low-level programming, mainly because of the use of resource constrained hardware and also the low level API provided by current operating systems. The code of the resulting systems has typically no clear separation between application and system logic. This minimizes the possibility of reusing code and often leads to the necessity of major changes when the underlying platform is changed. In this paper, we present a service oriented middleware named SOMM to support application development for WMSNs. The main goal of SOMM is to enable the development of modifiable and scalable WMSN applications. A network which uses the SOMM is capable of providing multiple services to multiple clients at the same time with the specified Quality of Service (QoS). SOMM uses a virtual machine with the ability to support mobile agents. Services in SOMM are provided by mobile agents and SOMM also provides a t space on each node which agents can use to communicate with each other.

  5. SOMM: A New Service Oriented Middleware for Generic Wireless Multimedia Sensor Networks Based on Code Mobility

    Directory of Open Access Journals (Sweden)

    Mohsen Ebrahimi Moghaddam

    2011-10-01

    Full Text Available Although much research in the area of Wireless Multimedia Sensor Networks (WMSNs has been done in recent years, the programming of sensor nodes is still time-consuming and tedious. It requires expertise in low-level programming, mainly because of the use of resource constrained hardware and also the low level API provided by current operating systems. The code of the resulting systems has typically no clear separation between application and system logic. This minimizes the possibility of reusing code and often leads to the necessity of major changes when the underlying platform is changed. In this paper, we present a service oriented middleware named SOMM to support application development for WMSNs. The main goal of SOMM is to enable the development of modifiable and scalable WMSN applications. A network which uses the SOMM is capable of providing multiple services to multiple clients at the same time with the specified Quality of Service (QoS. SOMM uses a virtual machine with the ability to support mobile agents. Services in SOMM are provided by mobile agents and SOMM also provides a t space on each node which agents can use to communicate with each other.

  6. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  7. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    Science.gov (United States)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  8. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors.

    Science.gov (United States)

    Zhang, Shengzhi; Yu, Shuai; Liu, Chaojun; Yuan, Xuebing; Liu, Sheng

    2016-02-20

    To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE) of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS) with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.

  9. A Dual-Linear Kalman Filter for Real-Time Orientation Determination System Using Low-Cost MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Shengzhi Zhang

    2016-02-01

    Full Text Available To provide a long-time reliable orientation, sensor fusion technologies are widely used to integrate available inertial sensors for the low-cost orientation estimation. In this paper, a novel dual-linear Kalman filter was designed for a multi-sensor system integrating MEMS gyros, an accelerometer, and a magnetometer. The proposed filter precludes the impacts of magnetic disturbances on the pitch and roll which the heading is subjected to. The filter can achieve robust orientation estimation for different statistical models of the sensors. The root mean square errors (RMSE of the estimated attitude angles are reduced by 30.6% under magnetic disturbances. Owing to the reduction of system complexity achieved by smaller matrix operations, the mean total time consumption is reduced by 23.8%. Meanwhile, the separated filter offers greater flexibility for the system configuration, as it is possible to switch on or off the second stage filter to include or exclude the magnetometer compensation for the heading. Online experiments were performed on the homemade miniature orientation determination system (MODS with the turntable. The average RMSE of estimated orientation are less than 0.4° and 1° during the static and low-dynamic tests, respectively. More realistic tests on two-wheel self-balancing vehicle driving and indoor pedestrian walking were carried out to evaluate the performance of the designed MODS when high accelerations and angular rates were introduced. Test results demonstrate that the MODS is applicable for the orientation estimation under various dynamic conditions. This paper provides a feasible alternative for low-cost orientation determination.

  10. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  11. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  12. Path Planning Based on Ply Orientation Information for Automatic Fiber Placement on Mesh Surface

    Science.gov (United States)

    Pei, Jiazhi; Wang, Xiaoping; Pei, Jingyu; Yang, Yang

    2018-03-01

    This article introduces an investigation of path planning with ply orientation information for automatic fiber placement (AFP) on open-contoured mesh surface. The new method makes use of the ply orientation information generated by loading characteristics on surface, divides the surface into several zones according to the ply orientation information and then designs different fiber paths in different zones. This article also gives new idea of up-layer design in order to make up for defects between parts and improve product's strength.

  13. Simulation of surface dynamics during dissolution as a function of the surface orientation: Implications for non-constant dissolution rates

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Evans, L.

    2014-12-01

    An important problem in geochemistry is the understanding of how changes occurring on a surface during dissolution affect the variability of measured dissolution rates. In this study a new approach to study the effect of surface dynamics on dissolution rates is tested by coupling experimental data with a numerical model that simulates the retreat of surface profiles during dissolution. We present specific results from the simulation of dissolution of fluorite surfaces. The equations that determine the retreat of a surface are based on experimentally obtained equations that relate the retreat rate of a surface to a single variable, the crystallographic orientation of the surface. Our results show that depending on the starting orientation, different types of topography are developed, similar to those observed experimentally. During the initial dissolution phase, changes of topography are rapid and associated with fast dissolution rates. The progressively slower dissolution rates are coupled with the development of surface segments with orientations that dissolve at a slower rate. Consequently, the overall retreat rate of a profile decreases during the simulation, and tends to a near-constant value. The results show a close relationship between dissolution rates, surface orientation and surface dynamics, which suggests that the dissolution rate of a specific mineral phase is not constant but varies with dissolution time and surface structure. This variability needs to be considered in the evaluation of experimentally derived dissolution rates, future dissolution experiments, and predictive kinetic models of dissolution.

  14. Surface temperature retrieval in a temperate grassland with multiresolution sensors

    Science.gov (United States)

    Goetz, S. J.; Halthore, R. N.; Hall, F. G.; Markham, B. L.

    1995-12-01

    Radiometric surface temperatures retrieved at various spatial resolutions from aircraft and satellite measurements at the FIFE site in eastern Kansas were compared with near-surface temperature measurements to determine the accuracy of the retrieval techniques and consistency between the various sensors. Atmospheric characterizations based on local radiosonde profiles of temperature, pressure, and water vapor were used with the LOWTRAN-7 and MODTRAN atmospheric radiance models to correct measured thermal radiances of water and grassland targets for atmospheric attenuation. Comparison of retrieved surface temperatures from a helicopter-mounted modular multispectral radiometer (MMR) (˜5-m "pixel"), C-130 mounted thematic mapper simulator (TMS) (NS001, ˜20-m pixel), and the Landsat 5 thematic mapper (TM) (120-m pixel) was done. Differences between atmospherically corrected radiative temperatures and near-surface measurements ranged from less than 1°C to more than 8°C. Corrected temperatures from helicopter-MMR and NS001-TMS were in general agreement with near-surface infrared radiative thermometer (IRT) measurements collected from automated meteorological stations, with mean differences of 3.2°C and 1.7°C for grassland targets. Much better agreement (within 1°C) was found between the retrieved aircraft surface temperatures and near-surface measurements acquired with a hand-held mast equipped with a MMR and IRT. The NS001-TMS was also in good agreement with near-surface temperatures acquired over water targets. In contrast, the Landsat 5 TM systematically overestimated surface temperature in all cases. This result has been noted previously but not consistently. On the basis of the results reported here, surface measurements were used to provide a calibration of the TM thermal channel. Further evaluation of the in-flight radiometric calibration of the TM thermal channel is recommended.

  15. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.

    Science.gov (United States)

    Martin, Lewis J; Akhavan, Behnam; Bilek, Marcela M M

    2018-01-24

    Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.

  16. Optical monitoring of surface anchoring changes for nematic liquid crystal based chemical and biological sensors

    Science.gov (United States)

    Zou, Yang

    In this dissertation, optically monitoring the surface anchoring changes of liquid crystal (LC) due to the chemical or biological bindings is presented. The deformation of LC director with different anchoring energies is simulated using Finite Element Method and continuum theory of nematic LC. The optical properties of the LC film are simulated using the Finite Difference Time Domain method. First, the interference color method was used to monitor the anchoring change. The calculated and experimental interference colors of liquid crystal films due to the optical retardation of two orthogonal electromagnetic components at different surface anchoring conditions and applied voltages are studied. The calculated colors were converted into sRGB parameters so that the corresponding colors can be displayed on a color computer monitor and printed out on a color printer. A gold micro-structure was fabricated and used to control the optical retardation. Polarizing micrographs were collected and compared with the calculated colors. Second, the influence of a bias voltage on the surface-driven orientational transition of liquid crystals resulted from the weakening anchoring and anchoring transition is analyzed theoretically and experimentally. The same interdigitated Au micro-structure was used in the nematic LC based chemical and biological sensors. With a suitable bias electric field, the process of the weakening anchoring energy and the uniform surface-driven orientational transition due to targeted molecules binding to a functionalized surface were observed optically. Finally, measurement of optical transmission was used to monitor the anchoring change. Polarizing micrographs were collected and compared with simulated textures. Experimental and simulation results both demonstrate the optical method can effectively monitor the surface anchoring change due to the presence of targeted analytes. These results show that these optical techniques are suitable for LC based sensing

  17. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation.

    Science.gov (United States)

    Fan, Bingfei; Li, Qingguo; Liu, Tao

    2017-12-28

    With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.

  18. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    Science.gov (United States)

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Observation of a distinct surface molecular orientation in films of a high mobility conjugated polymer.

    Science.gov (United States)

    Schuettfort, Torben; Thomsen, Lars; McNeill, Christopher R

    2013-01-23

    The molecular orientation and microstructure of films of the high-mobility semiconducting polymer poly(N,N-bis-2-octyldodecylnaphthalene-1,4,5,8-bis-dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) (P(NDI2OD-T2)) are probed using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. In particular a novel approach is used whereby the bulk molecular orientation and surface molecular orientation are simultaneously measured on the same sample using NEXAFS spectroscopy in an angle-resolved transmission experiment. Furthermore, the acquisition of bulk-sensitive NEXAFS data enables a direct comparison of the information provided by GIWAXS and NEXAFS. By comparison of the bulk-sensitive and surface-sensitive NEXAFS data, a distinctly different molecular orientation is observed at the surface of the film compared to the bulk. While a more "face-on" orientation of the conjugated backbone is observed in the bulk of the film, consistent with the lamella orientation observed by GIWAXS, a more "edge-on" orientation is observed at the surface of the film with surface-sensitive NEXAFS spectroscopy. This distinct edge-on surface orientation explains the high in-plane mobility that is achieved in top-gate P(NDI2OD-T2) field-effect transistors (FETs), while the bulk face-on texture explains the high out-of-plane mobilities that are observed in time-of-flight and diode measurements. These results also stress that GIWAXS lacks the surface sensitivity required to probe the microstructure of the accumulation layer that supports charge transport in organic FETs and hence may not necessarily be appropriate for correlating film microstructure and FET charge transport.

  20. Combining Surface Analytical and Computational Techniques to Investigate Orientation Effects of Immobilized Proteins

    Science.gov (United States)

    Harrison, Elisa Turla

    Controlling how proteins are immobilized (e.g. controlling their orientation and conformation) is essential for developing and optimizing the performance of in vitro protein-binding devices, such as enzyme-linked immunosorbent assays. The objective of this work is to develop new methodologies to study proteins and complex mixtures of proteins immobilized onto surfaces. The focus of this study was to control and characterize the orientation of protein G B1, an IgG antibody-binding domain of protein G, on well-defined surfaces as well as measure the effect of protein G B1 orientation on IgG antibody binding using a variety of surface analytical and computational techniques. The surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to distinguish between different proteins and their orientation by monitoring the changes in intensity of characteristic amino acid mass fragments. Amino acids distributed asymmetrically were used to calculate peak intensity ratios from ToF-SIMS data to determine the orientation of five different cysteine mutants of protein G B1 covalently attached to a maleimide surface. To study the effect of protein orientation on antibody binding, we formed multilayer protein films by binding IgG to protein G B1 films. Quartz crystal microbalance with dissipation monitoring (QCM-D) detected protein coverages of 69-130 ng/cm2 (theoretical mass of a monolayer of protein G B1 is 110-160 ng/cm2). QCM-D and X-ray photoelectron spectroscopy analysis revealed that packing density along with orientation affected the antibody binding process. Spectra from ToF-SIMS using large Ar gas cluster ion sources distinguished between different proteins in multilayer protein systems. A Monte Carlo algorithm was developed to predict protein orientation on surfaces. Two distinct orientations of protein G B1 adsorbed onto a hydrophobic surface were found and characterized as two mutually exclusive sets of amino acids on the outermost

  1. Application of Ultrasonic Sensors in Road Surface Condition Distinction Methods

    Directory of Open Access Journals (Sweden)

    Shota Nakashima

    2016-10-01

    Full Text Available The number of accidents involving elderly individuals has been increasing with the increase of the aging population, posing increasingly serious challenges. Most accidents are caused by reduced judgment and physical abilities, which lead to severe consequences. Therefore, studies on support systems for elderly and visually impaired people to improve the safety and quality of daily life are attracting considerable attention. In this study, a road surface condition distinction method using reflection intensities obtained by an ultrasonic sensor was proposed. The proposed method was applied to movement support systems for elderly and visually impaired individuals to detect dangerous road surfaces and give an alarm. The method did not perform well in previous studies of puddle detection, because the alert provided by the method did not enable users to avoid puddles. This study extended the method proposed by previous studies with respect to puddle detection ability. The findings indicate the effectiveness of the proposed method by considering four road surface conditions. The proposed method could detect puddle conditions. The effectiveness of the proposed method was verified in all four conditions, since users could differentiate between road surface conditions and classify the conditions as either safe or dangerous.

  2. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  3. [Cotton identification and extraction using near infrared sensor and object-oriented spectral segmentation technique].

    Science.gov (United States)

    Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Li-Su; Wang, Ke; Zhu, Jin-Xia

    2009-07-01

    The real-time, effective and reliable method of identifying crop is the foundation of scientific management for crop in the precision agriculture. It is also one of the key techniques for the precision agriculture. However, this expectation cannot be fulfilled by the traditional pixel-based information extraction method with respect to complicated image processing and accurate objective identification. In the present study, visible-near infrared image of cotton was acquired using high-resolution sensor. Object-oriented segmentation technique was performed on the image to produce image objects and spatial/spectral features of cotton. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify cotton according to various features. Finally, 300 random samples and an error matrix were applied to undertake the accuracy assessment of identification. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 96.33% and a KAPPA coefficient of 0.926 7, which can meet the demand of automatic management and decision-making in precision agriculture.

  4. An Orientation Sensor-Based Head Tracking System for Driver Behaviour Monitoring

    Directory of Open Access Journals (Sweden)

    Yifan Zhao

    2017-11-01

    Full Text Available Although at present legislation does not allow drivers in a Level 3 autonomous vehicle to engage in a secondary task, there may become a time when it does. Monitoring the behaviour of drivers engaging in various non-driving activities (NDAs is crucial to decide how well the driver will be able to take over control of the vehicle. One limitation of the commonly used face-based head tracking system, using cameras, is that sufficient features of the face must be visible, which limits the detectable angle of head movement and thereby measurable NDAs, unless multiple cameras are used. This paper proposes a novel orientation sensor based head tracking system that includes twin devices, one of which measures the movement of the vehicle while the other measures the absolute movement of the head. Measurement error in the shaking and nodding axes were less than 0.4°, while error in the rolling axis was less than 2°. Comparison with a camera-based system, through in-house tests and on-road tests, showed that the main advantage of the proposed system is the ability to detect angles larger than 20° in the shaking and nodding axes. Finally, a case study demonstrated that the measurement of the shaking and nodding angles, produced from the proposed system, can effectively characterise the drivers’ behaviour while engaged in the NDAs of chatting to a passenger and playing on a smartphone.

  5. Towards a Formal Framework for Mobile, Service-Oriented Sensor-Actuator Networks

    Directory of Open Access Journals (Sweden)

    Helena Gruhn

    2013-02-01

    Full Text Available Service-oriented sensor-actuator networks (SOSANETs are deployed in health-critical applications like patient monitoring and have to fulfill strong safety requirements. However, a framework for the rigorous formal modeling and analysis of SOSANETs does not exist. In particular, there is currently no support for the verification of correct network behavior after node failure or loss/addition of communication links. To overcome this problem, we propose a formal framework for SOSANETs. The main idea is to base our framework on the π-calculus, a formally defined, compositional and well-established formalism. We choose KLAIM, an existing formal language based on the π-calculus as the foundation for our framework. With that, we are able to formally model SOSANETs with possible topology changes and network failures. This provides the basis for our future work on prediction, analysis and verification of the network behavior of these systems. Furthermore, we illustrate the real-life applicability of this approach by modeling and extending a use case scenario from the medical domain.

  6. Experimental investigations of sensor-based surface following tasks by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1993-10-01

    This paper discusses experimental investigations of the feasibility and requirements of simultaneous external-sensor-based-control of the wheeled platform and the manipulator of a mobile robot. The experiments involve 3-D arbitrary surface following by the manipulator while the platform moves along a predefined trajectory. A variety of concave and convex surfaces were used in the experiments, during which target and measured values of the platform and arm positions and orientations, together with the surface absolute location and normal estimates, were logged at 10 Hz. For all experiments, the data logs showed significant noise, at high frequency, in the calculated surface normal values despite smooth tracking of their target values by the arm and the platform, with typical closed loop delays between target and achieved values of the order of 100 msec. This high-frequency noise in the calculated values is conjectured to result mainly from the arm`s transmission cables compliance and backlash in the spherical wrist gears. On the other hand, the end-effector distance to the surface showed some low frequency errors of the order of {plus_minus}20%The two major sources of these low frequency errors appeared to reside respectively in the low values of the velocity bound and gain parameters utilized to filter the high frequency noise in the calculated normal values prior to using them as input to the arm control, and in the rolling contact of the platform`s rubber-coated wheels on the ground where significant errors in the platform`s positions and orientations can accumulate.

  7. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  8. Micro-lubrication of Directionally Oriented Contact Surfaces

    Directory of Open Access Journals (Sweden)

    O. Maršálek

    2014-12-01

    Full Text Available A description of the set of software tools for detailed computational modelling of thin lubrication layers behaviour is presented in this paper. Individual chapters outline reasons for realization of its each part, explain the functionality of each software tool and the given mathematical definition or digital implementation of all important equations or formulae. The following are examples of partial results of the analysis carried out and the resulting flow factors databases for some kinds of rough surfaces, together with an example of the analysis result of the connecting rod sliding bearing of supercharged internal combustion engine.

  9. Orienting Block Copolymer Thin Films via Entropy and Surface Plasma Treatment

    Science.gov (United States)

    Ho, Rong-Ming; Lu, Kai-Yuan; Lo, Ting-Ya; Dehghan, Ashkan; Shi, An-Chang; Prokopios, Georgopanos; Avgeropoulos, Apostolos

    Controlling the orientation of nanostructured thin films of block copolymers (BCPs) is essential for next generation lithography. In the thin-film state, how to achieve the perpendicular orientation of the nanostructured microdomains remains challenging due to the interfacial effects from the air and also the substrate, especially for the blocks with silicon containing segments which usually have different surface energies, favoring parallel microdomain orientation. Here, we show that entropic effect can be used to control the orientation of BCP thin films. Specifically, we used the architecture of star-block copolymers consisting of polystyrene (PS) and poly(dimethylsiloxane) (PDMS) blocks to regulate the entropic contribution to the self-assembled nanostructures. Moreover, we aim to achieve the formation of perpendicular orientation from the air surface via surface plasma treatment to neutralize the interfacial energy difference. By combining the architecture effect (entropy effect) on BCP self-assembly and the surface plasma treatment (enthalpy effect), well-defined perpendicular PDMS microdomains in the PS-b-PDMS thin film can be formed from the bottom of non-neutral substrate and the top of the thin film surface, giving great potential for lithographic applications.

  10. The Surface Measurement of Fibre Orientation Anisotropy and Misalignment Angle by Laser Diffraction

    OpenAIRE

    Pereira, Mário José Teixeira; Fiadeiro, Paulo Torrão; Jesus, M. E. P.; Silvy, Jacques

    2010-01-01

    The dimensional stability in fibre webs mainly depends of the fibre anisotropy and its orientation on the surfaces. These parameters are influenced during the manufacturing process, where the length and type of the fibres is determinant. The web quality control, in general, is performed based on the measurement of these parameters in the bulk of the fibre webs. This paper presents an optical laser diffraction method to measure the fibre anisotropy and the fibre orientation distribution only a...

  11. Exploration mode affects visuohaptic integration of surface orientation.

    Science.gov (United States)

    Plaisier, Myrthe A; van Dam, Loes C J; Glowania, Catharina; Ernst, Marc O

    2014-11-20

    We experience the world mostly in a multisensory fashion using a combination of all of our senses. Depending on the modality we can select different exploration strategies for extracting perceptual information. For instance, using touch we can enclose an object in our hand to explore parts of the object in parallel. Alternatively, we can trace the object with a single finger to explore its parts in a serial fashion. In this study we investigated whether the exploration mode (parallel vs. serial) affects the way sensory signals are combined. To this end, participants visually and haptically explored surfaces that varied in roll angle and indicated which side of the surface was perceived as higher. In Experiment 1, the exploration mode was the same for both modalities (i.e., both parallel or both serial). In Experiment 2, we introduced a difference in exploration mode between the two modalities (visual exploration was parallel while haptic exploration was serial or vice versa). The results showed that visual and haptic signals were combined in a statistically optimal fashion only when the exploration modes were the same. In case of an asymmetry in the exploration modes across modalities, integration was suboptimal. This indicates that spatial-temporal discrepancies in the acquisition of information in the two senses (i.e., haptic and visual) can lead to the breakdown of sensory integration. © 2014 ARVO.

  12. Service-oriented multi-agent systems: architecture for the sensor web

    CSIR Research Space (South Africa)

    Terhorst, AL

    2006-03-01

    Full Text Available capability. The Sensor Web opens up avenues to fast assimilation of data from various sensors and to accurate analysis and informed decision making. In this poster, authors present reference architecture for the Sensor Web that could serve as a potential...

  13. ROI-ORIENTATED SENSOR CORRECTION BASED ON VIRTUAL STEADY REIMAGING MODEL FOR WIDE SWATH HIGH RESOLUTION OPTICAL SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Y. Zhu

    2017-09-01

    Full Text Available To meet the requirement of high accuracy and high speed processing for wide swath high resolution optical satellite imagery under emergency situation in both ground processing system and on-board processing system. This paper proposed a ROI-orientated sensor correction algorithm based on virtual steady reimaging model for wide swath high resolution optical satellite imagery. Firstly, the imaging time and spatial window of the ROI is determined by a dynamic search method. Then, the dynamic ROI sensor correction model based on virtual steady reimaging model is constructed. Finally, the corrected image corresponding to the ROI is generated based on the coordinates mapping relationship which is established by the dynamic sensor correction model for corrected image and rigours imaging model for original image. Two experimental results show that the image registration between panchromatic and multispectral images can be well achieved and the image distortion caused by satellite jitter can be also corrected efficiently.

  14. Evaluating road surface conditions using dynamic tire pressure sensor

    Science.gov (United States)

    Zhao, Yubo; Wu, H. Felix; McDaniel, J. Gregory; Wang, Ming L.

    2014-03-01

    In order to best prioritize road maintenance, the level of deterioration must be known for all roads in a city's network. Pavement Condition Index (PCI) and International Roughness Index (IRI) are two standard methods for obtaining this information. However, IRI is substantially easier to measure. Significant time and money could be saved if a method were developed to estimate PCI from IRI. This research introduces a new method to estimate IRI and correlate IRI with PCI. A vehicle-mounted dynamic tire pressure sensor (DTPS) system is used. The DTPS measures the signals generated from the tire/road interaction while driving. The tire/road interaction excites surface waves that travel through the road. DTPS, which is mounted on the tire's valve stem, measures tire/road interaction by analyzing the pressure change inside the tire due to the road vibration, road geometry and tire wall vibration. The road conditions are sensible to sensors in a similar way to human beings in a car. When driving on a smooth road, tire pressure stays almost constant and there are minimal changes in the DTPS data. When driving on a rough road, DTPS data changes drastically. IRI is estimated from the reconstructed road profile using DTPS data. In order to correlate IRI with PCI, field tests were conducted on roads with known PCI values in the city of Brockton, MA. Results show a high correlation between the estimated IRI values and the known PCI values, which suggests that DTPS-based IRI can provide accurate predictions of PCI.

  15. Binding and dissociation kinetics using fractals: an analysis of electrostatic effects and randomly coupled and oriented coupled receptors on biosensor surfaces.

    Science.gov (United States)

    Butala, Harshala D; Sadana, Ajit

    2004-03-15

    A fractal analysis is used to analyze the influence of: (a) electrostatic interactions on binding and dissociation rate coefficients for antibodies HH8, HH10, and HH26 in solution to hen egg-white lysozyme (HEL) immobilized on a sensor chip surface [Biophys. J. 83 (2002) 2946]; and (b) the binding and dissociation of recombinant Fab in solution to random NHS-coupled Cys-HEL and oriented thiol-coupled Cys-HEL immobilized on a sensor chip surface [Methods 20 (2000) 310]. Single- and dual-fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s) and the fractal dimensions were obtained from a regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited, Ottawa, Canada. 1997). The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. It is of interest to compare the results obtained by the fractal analysis with that of the original analysis [Biophys. J. 83 (2002) 2946]. For example, as one goes from the binding of 21 nM HH10/HEL to the binding of 640 nM HH10/HEL(K97A), Sinha et al. [Biophys. J. 83 (2002) 29461 indicate that the enhancement of diffusional encounter rates may be due to 'electrostatic steering' (a long-range interaction). Our analysis indicates that there is an increase in the value of the fractal dimension, Df1 by a factor of 1.12 from a value of 2.133-2.385. This increase in the degree of heterogeneity on the surface leads to an increase in the binding rate coefficient, k1 by a factor of 1.59 from 12.92 to 20.57. The fractal analysis of binding and dissociation of recombinant Fab in solution to random NHS-coupled Cys-HEL and oriented thiol-coupled Cys-HEL immobilized on a sensor chip [Methods 20 (2000) 310] surface are consistent with the degree of heterogeneity present on the sensor chip surface for the random and the oriented case. As expected, the random case will exhibit a higher degree of heterogeneity than the oriented case

  16. On-chip surface modified nanostructured ZnO as functional pH sensors

    Science.gov (United States)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  17. Miniaturized thermal flow sensor with planar-integrated sensor structures on semicircular surface channels

    NARCIS (Netherlands)

    Dijkstra, Marcel; de Boer, Meint J.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt

    2008-01-01

    A calorimetric miniaturized flow sensor was realized with a linear sensor response measured for water flow up to flow rates in the order of 300 nl min-1. A versatile technological concept is used to realize a sensor with a thermally isolated freely suspended silicon-rich silicon-nitride microchannel

  18. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  19. A Harsh Environment-Oriented Wireless Passive Temperature Sensor Realized by LTCC Technology

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-03-01

    Full Text Available To meet measurement needs in harsh environments, such as high temperature and rotating applications, a wireless passive Low Temperature Co-fired Ceramics (LTCC temperature sensor based on ferroelectric dielectric material is presented in this paper. As a LC circuit which consists of electrically connected temperature sensitive capacitor and invariable planar spiral inductor, the sensor has its resonant frequency shift with the variation in temperature. Within near-filed coupling distance, the variation in resonant frequency of the sensor can be detected contactlessly by extracting the impedance parameters of an external antenna. Ferroelectric ceramic, which has temperature sensitive permittivity, is used as the dielectric. The fabrication process of the sensor, which differs from conventional LTCC technology, is described in detail. The sensor is tested three times from room temperature to 700 °C, and considerable repeatability and sensitivity are shown, thus the feasibility of high performance wireless passive temperature sensor realized by LTCC technology is demonstrated.

  20. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology.

    Science.gov (United States)

    Tan, Qiulin; Luo, Tao; Xiong, Jijun; Kang, Hao; Ji, Xiaxia; Zhang, Yang; Yang, Mingliang; Wang, Xiaolong; Xue, Chenyang; Liu, Jun; Zhang, Wendong

    2014-03-03

    To meet measurement needs in harsh environments, such as high temperature and rotating applications, a wireless passive Low Temperature Co-fired Ceramics (LTCC) temperature sensor based on ferroelectric dielectric material is presented in this paper. As a LC circuit which consists of electrically connected temperature sensitive capacitor and invariable planar spiral inductor, the sensor has its resonant frequency shift with the variation in temperature. Within near-filed coupling distance, the variation in resonant frequency of the sensor can be detected contactlessly by extracting the impedance parameters of an external antenna. Ferroelectric ceramic, which has temperature sensitive permittivity, is used as the dielectric. The fabrication process of the sensor, which differs from conventional LTCC technology, is described in detail. The sensor is tested three times from room temperature to 700 °C, and considerable repeatability and sensitivity are shown, thus the feasibility of high performance wireless passive temperature sensor realized by LTCC technology is demonstrated.

  1. GITEWS, an extensible and open integration platform for manifold sensor systems and processing components based on Sensor Web Enablement and the principles of Service Oriented Architectures

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Fleischer, Jens; Herrnkind, Stefan; Schwarting, Herrmann

    2010-05-01

    The German Indonesian Tsunami Early Warning System (GITEWS) is a multifaceted system consisting of various sensor types like seismometers, sea level sensors or GPS stations, and processing components, all with their own system behavior and proprietary data structure. To operate a warning chain, beginning from measurements scaling up to warning products, all components have to interact in a correct way, both syntactically and semantically. Designing the system great emphasis was laid on conformity to the Sensor Web Enablement (SWE) specification by the Open Geospatial Consortium (OGC). The technical infrastructure, the so called Tsunami Service Bus (TSB) follows the blueprint of Service Oriented Architectures (SOA). The TSB is an integration concept (SWE) where functionality (observe, task, notify, alert, and process) is grouped around business processes (Monitoring, Decision Support, Sensor Management) and packaged as interoperable services (SAS, SOS, SPS, WNS). The benefits of using a flexible architecture together with SWE lead to an open integration platform: • accessing and controlling heterogeneous sensors in a uniform way (Functional Integration) • assigns functionality to distinct services (Separation of Concerns) • allows resilient relationship between systems (Loose Coupling) • integrates services so that they can be accessed from everywhere (Location Transparency) • enables infrastructures which integrate heterogeneous applications (Encapsulation) • allows combination of services (Orchestration) and data exchange within business processes Warning systems will evolve over time: New sensor types might be added, old sensors will be replaced and processing components will be improved. From a collection of few basic services it shall be possible to compose more complex functionality essential for specific warning systems. Given these requirements a flexible infrastructure is a prerequisite for sustainable systems and their architecture must be

  2. Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; van Dieen, J.H.

    2010-01-01

    L5/S1, hip and knee moments during manual lifting tasks are, in a laboratory environment, frequently established by bottom-up inverse dynamics, using force plates to measure ground reaction forces (GRFs) and an optoelectronic system to measure segment positions and orientations. For field

  3. Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization

    Science.gov (United States)

    Rohrbaugh, Nathaniel W.

    As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without

  4. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  5. Built-In Device Orientation Sensors for Ad-Hoc Pairing and Spatial Awareness

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; O'Hara, Kenton

    Mobile devices are equipped with multiple sensors. The ubiquity of these sensors is key in their ability to support in-the-wild application and use. Building on the ubiquity we look at how we can use this existing sensing infrastructure combined with user mediation to support ad-hoc sharing...

  6. Computational study on the interactions and orientation of monoclonal human immunoglobulin G on a polystyrene surface

    Directory of Open Access Journals (Sweden)

    Javkhlantugs N

    2013-07-01

    Full Text Available Namsrai Javkhlantugs,1,2 Hexig Bayar,3 Chimed Ganzorig,1 Kazuyoshi Ueda2 1Center for Nanoscience and Nanotechnology and Department of Chemical Technology, School of Chemistry and Chemical Engineering, National University of Mongolia, Ulaanbaatar, Mongolia; 2Department of Advanced Materials Chemistry, Graduate School of Engineering, Yokohama National University, Yokohama, Japan; 3The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, People's Republic of China Abstract: Having a theoretical understanding of the orientation of immunoglobulin on an immobilized solid surface is important in biomedical pathogen-detecting systems and cellular analysis. Despite the stable adsorption of immunoglobulin on a polystyrene (PS surface that has been applied in many kinds of immunoassays, there are many uncertainties in antibody-based clinical and biological experimental methods. To understand the binding mechanism and physicochemical interactions between immunoglobulin and the PS surface at the atomic level, we investigated the binding behavior and interactions of the monoclonal immunoglobulin G (IgG on the PS surface using the computational method. In our docking simulation with the different arrangement of translational and rotational orientation of IgG onto the PS surface, three typical orientation patterns of the immunoglobulin G on the PS surface were found. We precisely analyzed these orientation patterns and clarified how the immunoglobulin G interacts with the PS surface at atomic scale in the beginning of the adsorption process. Major driving forces for the adsorption of IgG onto the PS surface come from serine (Ser, aspartic acid (Asp, and glutamic acid (Glu residues. Keywords: bionano interface, immunoassay, polystyrene, IgG, physical adsorption, simulation

  7. Experimental Validation of a Sensor Monitoring Ice Formation over a Road Surface

    OpenAIRE

    Troiano, Amedeo; Pasero, Eros Gian Alessandro; Mesin, Luca

    2012-01-01

    The reliable detection of ice over road surfaces is an important issue for reducing maintenance costs and improving traffic safety. An innovative capacitive sensor was developed to detect the presence of ice on its surface, and its repeatability, stability and reliability were assessed in simulations and experiments described in previous papers. The indications of the sensor are compared in this paper with the objective identification of ice formation or melting over a road surface in laborat...

  8. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  9. The influence of surface on the running velocities of elite and amateur orienteer athletes.

    Science.gov (United States)

    Hébert-Losier, K; Jensen, K; Mourot, L; Holmberg, H-C

    2014-12-01

    We compared the reduction in running velocities from road to off-road terrain in eight elite and eight amateur male orienteer athletes to investigate whether this factor differentiates elite from amateur athletes. On two separate days, each subject ran three 2-km time trials and three 20-m sprints "all-out" on a road, on a path, and in a forest. On a third day, the running economy and maximal aerobic power of individuals were assessed on a treadmill. The elite orienteer ran faster than the amateur on all three surfaces and at both distances, in line with their better running economy and aerobic power. In the forest, the elites ran at a slightly higher percentage of their 2-km (∼3%) and 20-m (∼4%) road velocities. Although these differences did not exhibit traditional statistical significance, magnitude-based inferences suggested likely meaningful differences, particularly during 20-m sprinting. Of course, cognitive, mental, and physical attributes other than the ability to run on different surfaces are required for excellence in orienteering (e.g., a high aerobic power). However, we suggest that athlete-specific assessment of running performance on various surfaces and distances might assist in tailoring training and identifying individual strengths and/or weaknesses in an orienteer. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Yu, Q.; Chen, S.; Taylor, A. D.; Homola, Jiří; Hock, B.; Jiang, S.

    2005-01-01

    Roč. 107, č. 1 (2005), s. 193-201 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CTS-0092699 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.646, year: 2005

  11. Elite and amateur orienteers' running biomechanics on three surfaces at three speeds.

    Science.gov (United States)

    Hébert-Losier, Kim; Mourot, Laurent; Holmberg, Hans-Christer

    2015-02-01

    Orienteering athletes must adapt to running on various surfaces, with biomechanics likely contributing to performance. Here, our aims were to identify the effect of athletic status and of surface on the running biomechanics of orienteers. Seven elite and seven amateur male orienteers ran 20 m on road, path, and forest surfaces at maximal, 3.8 m·s, and 85% of maximal speeds. A three-dimensional motion capturing system monitored temporal gait and lower extremity kinematic parameters. Data were analyzed using mixed effects models that considered surface (road-path-forest), group (elite-amateur), and surface-group interaction effects. Forest running at maximal speed was slower and involved longer step and cycle times, greater knee extension at foot strike, smaller peak hip flexion and dorsiflexion during stance, and increased ranges of vertical pelvis motion compared with those observed on the road. Elites specifically exhibited greater hip extension at foot strike, larger dorsiflexion at toe-off, and lower pelvis at foot strike and toe-off, whereas amateurs displayed longer stance, greater plantarflexion at foot strike, and greater knee with lesser ankle motion. At the slowest speed, subjects exhibited greater knee flexion at foot strike, greater dorsiflexion at toe-off, shorter strides, smaller peak dorsiflexion during stance, and greater hip, knee, and vertical pelvis motions on forest than on road surfaces. Elites specifically demonstrated shorter stance, step, and cycle times whereas amateurs did not. Orienteering athletes adjusted their running biomechanics when off-road, with distinct adaptations observed in elite versus amateur competitors. The vertical pelvis motion was consistently greater when running off-road, coherent with reported increases in energy expenditure. However, our athletes did not exhibit more crouched lower limb postures when sprinting in the forest, indicating alternative responses to off-road running to that previously proposed by "Groucho

  12. A Finger-Shaped Tactile Sensor for Fabric Surfaces Evaluation by 2-Dimensional Active Sliding Touch

    Directory of Open Access Journals (Sweden)

    Haihua Hu

    2014-03-01

    Full Text Available Sliding tactile perception is a basic function for human beings to determine the mechanical properties of object surfaces and recognize materials. Imitating this process, this paper proposes a novel finger-shaped tactile sensor based on a thin piezoelectric polyvinylidene fluoride (PVDF film for surface texture measurement. A parallelogram mechanism is designed to ensure that the sensor applies a constant contact force perpendicular to the object surface, and a 2-dimensional movable mechanical structure is utilized to generate the relative motion at a certain speed between the sensor and the object surface. By controlling the 2-dimensional motion of the finger-shaped sensor along the object surface, small height/depth variation of surface texture changes the output charge of PVDF film then surface texture can be measured. In this paper, the finger-shaped tactile sensor is used to evaluate and classify five different kinds of linen. Fast Fourier Transformation (FFT is utilized to get original attribute data of surface in the frequency domain, and principal component analysis (PCA is used to compress the attribute data and extract feature information. Finally, low dimensional features are classified by Support Vector Machine (SVM. The experimental results show that this finger-shaped tactile sensor is effective and high accurate for discriminating the five textures.

  13. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  14. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  15. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase II SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  16. High Sensitivity Semiconductor Sensor Skins for Multi-Axis Surface Pressure Characterization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate high sensitivity semiconductor nanomembrane 'sensor skins' capable of multi-axis surface pressure characterization on...

  17. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  18. An atlas of the smaller maps in orientable and nonorientable surfaces

    CERN Document Server

    Jackson, David

    2000-01-01

    Maps are beguilingly simple structures with deep and ubiquitous properties. They arise in an essential way in many areas of mathematics and mathematical physics, but require considerable time and computational effort to generate. Few collected drawings are available for reference, and little has been written, in book form, about their enumerative aspects. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces is the first book to provide complete collections of maps along with their vertex and face partitions, number of rootings, and an index number for cross referencing. It provides an explanation of axiomatization and encoding, and serves as an introduction to maps as a combinatorial structure. The Atlas lists the maps first by genus and number of edges, and gives the embeddings of all graphs with at most five edges in orientable surfaces, thus presenting the genus distribution for each graph. Exemplifying the use of the Atlas, the authors explore two substantial conjectures with origins in ...

  19. Development of a fieldable rugged TATP surface-enhanced Raman spectroscopy sensor

    Science.gov (United States)

    Spencer, Kevin M.; Clauson, Susan L.; Sylvia, James M.

    2011-06-01

    Surface-enhanced Raman spectroscopy (SERS) has repeatedly been shown to be capable of single molecule detection in laboratory controlled environments. However, superior detection of desired compounds in complex situations requires optimization of factors in addition to sensitivity. For example, SERS sensors are metals with surface roughness in the nm scale. This metallic roughness scale may not adsorb the analyte of interest but instead cause a catalytic reaction unless stabilization is designed into the sensor interface. In addition, the SERS sensor needs to be engineered sensitive only to the desired analyte(s) or a small subset of analytes; detection of every analyte would saturate the sensor and make data interpretation untenable. Finally, the SERS sensor has to be a preferable adsorption site in passive sampling applications, whether vapor or liquid. In this paper, EIC Laboratories will discuss modifications to SERS sensors that increase the likelihood of detection of the analyte of interest. We will then demonstrate data collected for TATP, a compound that rapidly decomposes and is undetected on standard silver SERS sensors. With the modified SERS sensor, ROC curves for room temperature TATP vapor detection, detection of TATP in a non equilibrium vapor environment in 30 s, detection of TATP on a sensor exposed to a ventilation duct, and detection of TATP in the presence of fuel components were all created and will be presented herein.

  20. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles

    Czech Academy of Sciences Publication Activity Database

    Lübben, J.F.; Baše, Tomáš; Rupper, P.; Künniger, T.; Macháček, Jan; Guimond, S.

    2011-01-01

    Roč. 354, č. 1 (2011), s. 168-174 ISSN 0021-9797 R&D Projects: GA AV ČR(CZ) IAA400320901 Keywords : Adsorption * Thiolated carboranes * Silver surface * Surface potential * X-ray photoelectron spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  1. Development of a Kalman Filter in the Gauss-Helmert Model for Reliability Analysis in Orientation Determination with Smartphone Sensors.

    Science.gov (United States)

    Ettlinger, Andreas; Neuner, Hans; Burgess, Thomas

    2018-01-31

    The topic of indoor positioning and indoor navigation by using observations from smartphone sensors is very challenging as the determined trajectories can be subject to significant deviations compared to the route travelled in reality. Especially the calculation of the direction of movement is the critical part of pedestrian positioning approaches such as Pedestrian Dead Reckoning ("PDR"). Due to distinct systematic effects in filtered trajectories, it can be assumed that there are systematic deviations present in the observations from smartphone sensors. This article has two aims: one is to enable the estimation of partial redundancies for each observation as well as for observation groups. Partial redundancies are a measure for the reliability indicating how well systematic deviations can be detected in single observations used in PDR. The second aim is to analyze the behavior of partial redundancy by modifying the stochastic and functional model of the Kalman filter. The equations relating the observations to the orientation are condition equations, which do not exhibit the typical structure of the Gauss-Markov model ("GMM"), wherein the observations are linear and can be formulated as functions of the states. To calculate and analyze the partial redundancy of the observations from smartphone-sensors used in PDR, the system equation and the measurement equation of a Kalman filter as well as the redundancy matrix need to be derived in the Gauss-Helmert model ("GHM"). These derivations are introduced in this article and lead to a novel Kalman filter structure based on condition equations, enabling reliability assessment of each observation.

  2. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  3. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  4. Object-oriented classification using quasi-synchronous multispectral images (optical and radar) over agricultural surface

    Science.gov (United States)

    Marais Sicre, Claire; Baup, Frederic; Fieuzal, Remy

    2015-04-01

    In the context of climate change (with consequences on temperature and precipitation patterns), persons involved in agricultural management have the imperative to combine: sufficient productivity (as a response of the increment of the necessary foods) and durability of the resources (in order to restrain waste of water, fertilizer or environmental damages). To this end, a detailed knowledge of land use will improve the management of food and water, while preserving the ecosystems. Among the wide range of available monitoring tools, numerous studies demonstrated the interest of satellite images for agricultural mapping. Recently, the launch of several radar and optical sensors offer new perspectives for the multi-wavelength crop monitoring (Terrasar-X, Radarsat-2, Sentinel-1, Landsat-8…) allowing surface survey whatever the cloud conditions. Previous studies have demonstrated the interest of using multi-temporal approaches for crop classification, requiring several images for suitable classification results. Unfortunately, these approaches are limited (due to the satellite orbit cycle) and require waiting several days, week or month before offering an accurate land use map. The objective of this study is to compare the accuracy of object-oriented classification (random forest algorithm combined with vector layer coming from segmentation) to map winter crop (barley, rapeseed, grasslands and wheat) and soil states (bare soils with different surface roughness) using quasi-synchronous images. Satellite data are composed of multi-frequency and multi-polarization (HH, VV, HV and VH) images acquired near the 14th of April, 2010, over a studied area (90km²) located close to Toulouse in France. This is a region of alluvial plains and hills, which are mostly mixed farming and governed by a temperate climate. Remote sensing images are provided by Formosat-2 (04/18), Radarsat-2 (C-band, 04/15), Terrasar-X (X-band, 04/14) and ALOS (L-band, 04/14). Ground data are collected

  5. Experimental investigations of sensor-based surface following performed by a mobile manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Reister, D.B.; Unseren, M.A.; Baker, J.E.; Pin, F.G.

    1994-10-01

    We discuss a series of surface following experiments using a range finder mounted on the end of an arm that is mounted on a vehicle. The goal is to keep the range finder at a fixed distance from an unknown surface and to keep the orientation of the range finder perpendicular to the surface. During the experiments, the vehicle moves along a predefined trajectory while planning software determines the position and orientation of the arm. To keep the range finder perpendicular to the surface, the planning software calculates the surface normal for the unknown surface. We assume that the unknown surface is a cylinder (the surface depends on x and y but does not depend on z). To calculate the surface normal, the planning software must calculate the locations (x,y) of points on the surface in world coordinates. The calculation requires data on the position and orientation of the vehicle, the position and orientation of the arm, and the distance from the range finder to the surface. We discuss four series of experiments. During the first series of experiments, the calculated surface normal values had large high frequency random variations. A filter was used to produce an average value for the surface normal and we limited the rate of change in the yaw angle target for the arm. We performed the experiment for a variety of concave and convex surfaces. While the experiments were qualitative successes, the measured distance to the surface was significantly different than the target. The distance errors were systematic, low frequency, and had magnitudes up to 25 mm. During the second series of experiments, we reduced the variations in the calculated surface normal values. While reviewing the data collected while following the surface of a barrel, we found that the radius of the calculated surface was significantly different than the measured radius of the barrel.

  6. A New Sensor for Surface Process Quantification in the Geosciences - Image-Assisted Tacheometers

    Science.gov (United States)

    Vicovac, Tanja; Reiterer, Alexander; Rieke-Zapp, Dirk

    2010-05-01

    The quantification of earth surface processes in the geosciences requires precise measurement tools. Typical applications for precise measurement systems involve deformation monitoring for geo-risk management, detection of erosion rates, etc. Often employed for such applications are laser scanners, photogrammetric sensors and image-assisted tacheometers. Image-assisted tacheometers offer the user (metrology expert) an image capturing system (CCD/CMOS camera) in addition to 3D point measurements. The images of the telescope's visual field are projected onto the camera's chip. The camera is capable of capturing panoramic image mosaics through camera rotation if the axes of the measurement system are driven by computer controlled motors. With appropriate calibration, these images are accurately geo-referenced and oriented since the horizontal and vertical angles of rotation are continuously measured and fed into the computer. The oriented images can then directly be used for direction measurements with no need for control points in object space or further photogrammetric orientation processes. In such a system, viewing angles must be addressed to chip pixels inside the optical field of view. Hence dedicated calibration methods have to be applied, an autofocus unit has to be added to the optical path, and special digital image processing procedures have to be used to detect the points of interest on the objects to be measured. We present such a new optical measurement system for measuring and describing 3D surfaces for geosciences. Besides the technique and methods some practical examples will be shown. The system was developed at the Vienna University of Technology (Institute of Geodesy and Geophysics) - two interdisciplinary research project, i-MeaS and SedyMONT, have been launched with the purpose of measuring and interpreting 3D surfaces and surface processes. For the in situ measurement of bed rock erosion the level of surveying accuracy required for recurring sub

  7. In the Field Application of a New Sensor for Monitoring Road and Runway Surfaces

    Directory of Open Access Journals (Sweden)

    Amedeo TROIANO

    2011-02-01

    Full Text Available Water and ice detection over road and runway surfaces is important to improve traffic safety and to reduce maintenance costs. An innovative low cost capacitive sensor was developed to estimate the dry, wet, or icy state of surfaces. The reliability and repeatability of the indications of the sensor were investigated in a previous work based on simulations and experiments in laboratory, together with a preliminary short test in the field. This work is devoted to the study of the indications of 4 sensors (standard or bituminized during continuous data acquisition in the field (at the Turin Airport lasted 8 months. The indications of different sensors were highly correlated. As one important problem when measuring in the field is due to dirt and salt spread over the road, a preliminary study on the effect of different salt concentrations in the water covering the surface of the sensor was performed. Both simulations and laboratory tests showed that the sensor is not affected by the presence of salt in the water. Considering data measured in the field, the estimated condition of the road provided by the sensors was found to be consistent with the METAR (METeorological Aerodrome Report message of the Turin Airport, for the whole period of investigation. Correlation was found between data from the sensors and rain, fog, and snowfall. The beginning formation of ice identified by the sensor was found to be in some agreement with the indication of a mathematical model of ice prediction from meteorological data. The possibility of using the indications of the sensor together with weather data to train an algorithm providing a more precise prediction of ice formation is discussed.

  8. Influence of substrate microcrystallinity on the orientation of laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Nürnberger, P.; Reinhardt, H.; Kim, H-C.; Yang, F. [Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg (Germany); Peppler, K.; Janek, J. [Department of Physical-Chemistry, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Hampp, N. [Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg (Germany); Materials Science Center, 35032 Marburg (Germany)

    2015-10-07

    The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grain size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.

  9. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  10. Standoff ultracompact micro-Raman sensor for planetary surface explorations.

    Science.gov (United States)

    Abedin, M Nurul; Bradley, Arthur T; Misra, Anupam K; Bai, Yingxin; Hines, Glenn D; Sharma, Shiv K

    2018-01-01

    We report the development of an innovative standoff ultracompact micro-Raman instrument that would solve some of the limitations of traditional micro-Raman systems to provide a superior instrument for future NASA missions. This active remote sensor system, based on a 532 nm laser and a miniature spectrometer, is capable of inspection and identification of minerals, organics, and biogenic materials within several centimeters (2-20 cm) at a high 10 μm resolution. The sensor system is based on inelastic (Raman) light scattering and laser-induced fluorescence. We report on micro-Raman spectroscopy development and demonstration of the standoff Raman measurements by acquiring Raman spectra in daylight at a 10 cm target distance with a small line-shaped laser spot size of 17.3 μm (width) by 5 mm (height).

  11. ACCURACY ANALYSIS FOR AUTOMATIC ORIENTATION OF A TUMBLING OBLIQUE VIEWING SENSOR SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Stebner

    2014-03-01

    Full Text Available Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera’s orientation greatly influence the projection of oblique images. In this publication these effects – originating from the kinematic chain of a dynamic camera system – are analysed and validated. A member of the Modular Airborne Camera System family – MACS-TumbleCam – consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  12. FUNCTIONAL SURFACE MICROGEOMETRY PROVIDING THE DESIRED PERFORMANCE OF AN AIRCRAFT VIBRATION SENSOR

    Directory of Open Access Journals (Sweden)

    Yuriy S. Andreev

    2016-11-01

    Full Text Available Subject of Research. The paper deals with the methods of efficiency improving for piezoelectric vibration sensors used in aircraft industry to control the level of vibration of gas turbine engines. The study looks into the matter of surface microgeometry effect of the vibro sensor part on its transverse sensitivity ratio. Measures are proposed to improve the sensor performance without cost supplement by optimization of the functional surface microgeometry. Method. A method for determination of the best possible surface microgeometry within the specific production conditions is shown. Also, a method for microgeometry estimation of the functional surfaces using graphical criteria is used. Taguchi method is used for design of experiment for functional surfaces machining. The use of this method reduces significantly the number of experiments without validity loss. Main Results. The relationship between technological factors of manufacturing the vibration sensor parts and its sensitivity has been found out. The optimal surface machining methods and process conditions for parts ensuring the best possible sensitivity have been determined. Practical Relevance. Research results can be used by instrument-making companies to improve the process of piezoelectric vibration sensor design and manufacturing.

  13. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Science.gov (United States)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  14. Procedure for definition of end-effector orientation in planar surfaces robot applications

    Directory of Open Access Journals (Sweden)

    Vidaković Jelena Z.

    2017-01-01

    Full Text Available Design of user-friendly and at the same time powerful robot programming methods is the subject of significant efforts undertaken by the international robotics community. For the purpose of facilitating robot programming, with regard to the most common present-day applications in industry, it would be useful to develop programming procedures for frequently used manipulator tasks which could be easily implemented and used as ready-made application software. Important class of industrial robot applications involves end-effector trajectories in planar surfaces. Development of robot programming language procedure intended for determination of object plane normal with respect to frame of interest, as well as programming of end-effector orientation is presented in this paper. This procedure can be used as integral part of task oriented robot programing applications as well as a procedure for explicit programming languages, and it is illustrated in practical example with the robot Lola 15.

  15. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  16. Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents

    NARCIS (Netherlands)

    Nieuwenhuizen, M.S.; Harteveld, J.L.N.

    1997-01-01

    As a follow-up of previous work on a Surface Acoustic Wave (SAW) sensor for nerve agents, irreversible response effects have been studied in more detail. Surface analytical studies indicated that degradation products are responsible for the effects observed. In addition it was tried to explore these

  17. Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors

    Directory of Open Access Journals (Sweden)

    Borja Fernández

    2012-02-01

    Full Text Available Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.

  18. Sunlight intensity based global positioning system for near-surface underwater sensors.

    Science.gov (United States)

    Gómez, Javier V; Sandnes, Frode E; Fernández, Borja

    2012-01-01

    Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.

  19. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    Science.gov (United States)

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  20. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor

    Science.gov (United States)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.

    2017-12-01

    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  1. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Ali Saghafinia

    2013-12-01

    Full Text Available Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM drive. This paper presents a novel boundary layer fuzzy controller (NBLFC based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC of an induction motor (IM drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  2. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    Science.gov (United States)

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  3. Development of a Kalman Filter in the Gauss-Helmert Model for Reliability Analysis in Orientation Determination with Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Andreas Ettlinger

    2018-01-01

    Full Text Available The topic of indoor positioning and indoor navigation by using observations from smartphone sensors is very challenging as the determined trajectories can be subject to significant deviations compared to the route travelled in reality. Especially the calculation of the direction of movement is the critical part of pedestrian positioning approaches such as Pedestrian Dead Reckoning (“PDR”. Due to distinct systematic effects in filtered trajectories, it can be assumed that there are systematic deviations present in the observations from smartphone sensors. This article has two aims: one is to enable the estimation of partial redundancies for each observation as well as for observation groups. Partial redundancies are a measure for the reliability indicating how well systematic deviations can be detected in single observations used in PDR. The second aim is to analyze the behavior of partial redundancy by modifying the stochastic and functional model of the Kalman filter. The equations relating the observations to the orientation are condition equations, which do not exhibit the typical structure of the Gauss-Markov model (“GMM”, wherein the observations are linear and can be formulated as functions of the states. To calculate and analyze the partial redundancy of the observations from smartphone-sensors used in PDR, the system equation and the measurement equation of a Kalman filter as well as the redundancy matrix need to be derived in the Gauss-Helmert model (“GHM”. These derivations are introduced in this article and lead to a novel Kalman filter structure based on condition equations, enabling reliability assessment of each observation.

  4. Identification of Hydraulic Fracture Orientation from Ground Surface Using the Seismic Moment Tensor

    Directory of Open Access Journals (Sweden)

    E.V. Birialtcev

    2017-09-01

    Full Text Available Microseismic monitoring from ground surface is applied in the development of hard-to-recover reserves, especially in the process of hydraulic fracturing (HF. This paper compares several methods of HF microseismic monitoring from the surface, including diffraction stacking, time reverse modeling, and spectral methods. In (Aki and Richards, 1980 it is shown that signal enhancement from seismic events under correlated noises significantly improves when applying the maximum likelihood method. The maximum likelihood method allows to exclude influence of the correlated noise, and also to estimate the seismic moment tensor from ground surface. Estimation of the seismic moment tensor allows to detect type and orientation of source. Usually, the following source types are identified: “Explosion Point” (EXP, “Tensile Crack” (TC, “Double-Couple” (DC and “Compensated Linear Vector Dipole” (CLVD. The orientation of the hydraulic fracture can be estimated even when there is no obvious asymmetry of the spatial distribution of the cloud of events. The features of full-wave location technology are presented. The paper also reviews an example of microseismic monitoring of hydraulic fracturing when there is no obvious asymmetry of microseismic activity cloud, but due to the estimation of the seismic moment tensor it becomes possible to identify with confidence the dominant direction of the fracture.

  5. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2017-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker. In order to minimise the amount of material in the detector, circuit boards with readout electronics will be glued on to the active area of the sensor. Several adhesives investigated to be used for the construction of detector modules were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high- radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By pointing the beam both inside the sensor and parallel to the sensor surface, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibility of silicon strip sensors to light contamination from fluorescent mate...

  6. Signals from fluorescent materials on the surface of silicon micro-strip sensors

    CERN Document Server

    Sperlich, Dennis; The ATLAS collaboration

    2018-01-01

    For the High-Luminosity Upgrade of the Large Hadron Collider at CERN, the ATLAS Inner Detector will be replaced with a new, all-silicon tracker (ITk). In order to minimise the amount of material in the ITk, circuit boards with readout electronics will be glued onto the active area of the sensor. Several adhesives, investigated to be used for the construction of detector modules, were found to become fluorescent when exposed to UV light. These adhesives could become a light source in the high-radiation environment of the ATLAS detector. The effect of fluorescent material covering the sensor surface in a high-radiation environment has been studied for a silicon micro-strip sensor using a micro-focused X-ray beam. By positioning the beam parallel to the sensor surfave and pointing it both inside the sensor and above the sensor surface inside the deposited glue, the sensor responses from direct hits and fluorescence can be compared with high precision. This contribution presents a setup to study the susceptibilit...

  7. Surface acoustic wave sensors with Graphene/PANI nanocomposites for nitric oxide detection

    Science.gov (United States)

    Wang, Beibei; Zheng, Lei; Zhou, Lingling

    2017-12-01

    Surface acoustic wave sensors with grapheme/PANI nanocomposite sensitive films for detecting nitric oxide (NO) were fabricated and experimentally studied. Morphological characterization and functionalization of the sensing material were explored using SEM and FTIR, respectively. The study of sensor response compared film sensitivity, response time, reversibility, and limit of detection for nanocomposite films, pure grapheme and pure PANI to the detection of NO. The response and recovery times were 40s and 20s when detecting 4ppm NO, respectively. The frequency response was discovered to be linear in the NO concentration range 1-50 ppm. The nanocomposite sensors had improved sensitivities compared to the polymer devices, and better response times.

  8. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  9. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  10. A Novel Particulate Matter 2.5 Sensor Based on Surface Acoustic Wave Technology

    Directory of Open Access Journals (Sweden)

    Jiuling Liu

    2018-01-01

    Full Text Available Design, fabrication and experiments of a miniature particulate matter (PM 2.5 sensor based on the surface acoustic wave (SAW technology were proposed. The sensor contains a virtual impactor (VI for particle separation, a thermophoretic precipitator (TP for PM2.5 capture and a SAW sensor chip for PM2.5 mass detection. The separation performance of the VI was evaluated by using the finite element method (FEM model and the PM2.5 deposition characteristic in the TP was obtained by analyzing the thermophoretic theory. Employing the coupling-of-modes (COM model, a low loss and high-quality SAW resonator was designed. By virtue of the micro electro mechanical system (MEMS technology and semiconductor technology, the SAW based PM2.5 sensor detecting probe was fabricated. Then, combining a dual-port SAW oscillator and an air sampler, the experimental platform was set up. Exposing the PM2.5 sensor to the polystyrene latex (PSL particles in a chamber, the sensor performance was evaluated. The results show that by detecting the PSL particles with a certain diameter of 2 μm, the response of the SAW based PM2.5 sensor is linear, and in accordance with the response of the light scattering based PM2.5 monitor. The developed SAW based PM2.5 sensor has great potential for the application of airborne particle detection.

  11. Contrast investigations of surface acoustic waves by stroboscopic topography. 1. Orientation contrast

    Energy Technology Data Exchange (ETDEWEB)

    Cerva, H.; Graeff, W.

    1984-03-16

    Surface acoustic waves are investigated by stroboscopic topography using synchrotron radiation from the storage ring DORIS. The observed contrast of the acoustic displacements of the lattice planes has the same periods as the acoustic wave. It is demonstrated that the major part of the contrast is due to orientation contrast of the curved net planes. Intensity maxima correspond to troughs of the acoustic wave, minima to crests. A numerical treatment yielding ray tracing maps, intensity curves as well as focusing conditions which are in quantitative agreement with the experimental data is presented.

  12. Hybrid surface platform for the simultaneous detection of proteins and DNA using a surface plasmon resonance (SPR) imaging sensor

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Ladd, J.; Taylor, A.; Shaoyi, J.

    2008-01-01

    Roč. 80, č. 11 (2008), s. 4231-4236 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * DNA -directed immobilization * protein array Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.712, year: 2008

  13. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  14. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    Science.gov (United States)

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  15. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor

    Directory of Open Access Journals (Sweden)

    Huayu Zhang

    2017-07-01

    Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  16. A Finite Element Model of a MEMS-based Surface Acoustic Wave Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Walied A. Moussa

    2010-02-01

    Full Text Available Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT patterned on the surface. A thin palladium (Pd film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.

  17. Specific capture of target bacteria onto sensor surfaces for infectious disease diagnosis

    International Nuclear Information System (INIS)

    Kim, Jong-Hoon; Inoue, Shinnosuke; Chung, Jae-Hyun; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2014-01-01

    A long-sought goal for infectious disease care is a rapid and accurate diagnostic tool that is compatible with the needs of low-resource settings. To identify target biomarkers of infectious diseases, immunoassays utilizing the binding affinity between antigen and antibody have been widely used. In immunoassays, the interaction between antigen and antibody on sensor surfaces should be precisely controlled for specific identification of targets. This paper studies the specific capturing mechanisms of target bacteria onto sensor surfaces through investigation of combined effects of capillary action and binding affinity. As a model system, cells of both Escherichia coli and the Bacillus Calmette-Guérin strain of Mycobacterium bovis were used to study specific and nonspecific capturing mechanisms onto a microtip sensor. The capillary action was observed to arrange the concentrated cells onto the two-dimensional sensor surface. Due to the capillary-induced organization of target cells on the antibody-functionalized sensor surface, the number of the captured target cells was three times greater than that of the non-targeted cells. The capturing and detection capabilities varied with the width of a microtip. The specific capturing mechanism can be used to enhance the sensitivity and specificity of an immunoassay. (paper)

  18. The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

    Directory of Open Access Journals (Sweden)

    Jinliang Zhuang

    2012-08-01

    Full Text Available A metal–organic framework (MOF material, [Zn2(adc2(dabco] (adc = anthracene-9,10-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]­octane, the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs. For the latter, we used self-assembled monolayers (SAMs bearing functional groups, such as carboxylate and pyridyl groups, capable of coordinating to the constituents of the MOF. It could be demonstrated that this directed coordination also orients the nanocrystals deposited at the surface. Using two different patterning methods, i.e., microcontact printing and electron-beam lithography, the lateral distribution of the functional groups could be determined in such a way that the highly localized deposition of the SURMOF films became possible.

  19. Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces.

    Science.gov (United States)

    Borghetti, Patrizia; Mouchaal, Younes; Dai, Zongbei; Cabailh, Gregory; Chenot, Stéphane; Lazzari, Rémi; Jupille, Jacques

    2017-04-19

    Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L 3 (L 2 )M 45 M 45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO 2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZn x O y + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO 2 -like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

  20. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    Science.gov (United States)

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  1. Solvent effect on polystyrene surface roughness on top of QCM sensor

    International Nuclear Information System (INIS)

    Sakti, Setyawan P.; Rahmawati, Eka; Robiandi, Fadli

    2016-01-01

    Quartz Crystal Microbalance (QCM) has been used as a basis for many chemical sensors and biosensor. Its sensitivity to mass change which can detect a mass change on its surface down to sub ng/cm2 is one of its interesting aspects. Another interesting feature is its ability to work in liquid environment. However, there are many aspects which influence QCM sensor properties in contact with liquid. One of the aspects is surface roughness of the matrix layer where on top of it a biological sensitive layer will be immobilized. One of matrix layers in the immobilizing biological sensitive layer was polystyrene. Polystyrene was coated on the QCM sensor by using the spin coating method. During the coating process, polystyrene was solved using non-polar solvent. It is known that the physical and chemical properties of the solvent affect a transition process from soluble polymer becoming rigid polymer layer. In this work, we show that polystyrene solved in chloroform has a higher surface roughness compare to one solved in toluene, xylene, or tetrahydrofuran. Surface roughness of the polystyrene coating were measured using a non-contact profilometer. However, we also found that there is no difference on the electrical impedance of the QCM sensor coated with polystyrene resulted from differing solvent when the sensor was in contact with air and water. Thus, all of the mentioned solvent can be used to solve the polystyrene as a coating material for QCM sensor without affecting the electrical performance of the sensor, but the choice of the solution can be used as a simple method to control the difference roughness of the polystyrene coating.

  2. Solvent effect on polystyrene surface roughness on top of QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sakti, Setyawan P., E-mail: sakti@ub.ac.id; Rahmawati, Eka; Robiandi, Fadli [Advanced System and Material Technology, Laboratory of Instrumentation and Measurement Department of Physics, Brawijaya University (Indonesia)

    2016-03-11

    Quartz Crystal Microbalance (QCM) has been used as a basis for many chemical sensors and biosensor. Its sensitivity to mass change which can detect a mass change on its surface down to sub ng/cm2 is one of its interesting aspects. Another interesting feature is its ability to work in liquid environment. However, there are many aspects which influence QCM sensor properties in contact with liquid. One of the aspects is surface roughness of the matrix layer where on top of it a biological sensitive layer will be immobilized. One of matrix layers in the immobilizing biological sensitive layer was polystyrene. Polystyrene was coated on the QCM sensor by using the spin coating method. During the coating process, polystyrene was solved using non-polar solvent. It is known that the physical and chemical properties of the solvent affect a transition process from soluble polymer becoming rigid polymer layer. In this work, we show that polystyrene solved in chloroform has a higher surface roughness compare to one solved in toluene, xylene, or tetrahydrofuran. Surface roughness of the polystyrene coating were measured using a non-contact profilometer. However, we also found that there is no difference on the electrical impedance of the QCM sensor coated with polystyrene resulted from differing solvent when the sensor was in contact with air and water. Thus, all of the mentioned solvent can be used to solve the polystyrene as a coating material for QCM sensor without affecting the electrical performance of the sensor, but the choice of the solution can be used as a simple method to control the difference roughness of the polystyrene coating.

  3. Photometric stereo sensor for robot-assisted industrial quality inspection of coated composite material surfaces

    Science.gov (United States)

    Weigl, Eva; Zambal, Sebastian; Stöger, Matthias; Eitzinger, Christian

    2015-04-01

    While composite materials are increasingly used in modern industry, the quality control in terms of vision-based surface inspection remains a challenging task. Due to the often complex and three-dimensional structures, a manual inspection of these components is nearly impossible. We present a photometric stereo sensor system including an industrial robotic arm for positioning the sensor relative to the inspected part. Two approaches are discussed: stop-and-go positioning and continuous positioning. Results are presented on typical defects that appear on various composite material surfaces in the production process.

  4. Quantitative measurement of in-plane acoustic field components using surface-mounted fiber sensors

    Science.gov (United States)

    Claus, Richard O.; Dhawan, Rajat R.; Gunther, Michael F.; Murphy, Kent A.

    1993-01-01

    Extrinsic Fabry-Perot interferometric sensors have been used to obtain calibrated, quantitative measurements of the in-plane displacement components associated with the propagation of ultrasonic elastic stress waves on the surfaces of solids. The frequency response of the sensor is determined by the internal spacing between the two reflecting fiber endface surfaces which form the Fabry-Perot cavity, a distance which is easily controlled during fabrication. With knowledge of the material properties of the solid, the out-of-plane displacement component of the wave may also be determined, giving full field data.

  5. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  6. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  7. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Aruguete, Deborah Michiko [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are

  8. Development of a Magnetostrictive FeNi Coated Surface Acoustic Wave Current Sensor

    Directory of Open Access Journals (Sweden)

    Jie Tong

    2017-07-01

    Full Text Available A magnetostrictive FeNi-coated surface acoustic wave (SAW-based current sensor was proposed in this work. The weak remanence and hysteresis effect of the FeNi itself contributes to suppress the asymmetry in sensor response at increasing and decreasing current. The sensor response was simulated by solving the coupled electromechanical field equation in layered structure considering the magnetostrictive effect and an approach of effective dielectric constant. The effects from the aspect ratio and thickness of the FeNi film on sensor response were analyzed to determine the optimal design parameters. Differential oscillation structure was used to form the sensor, in which, the FeNi thin film was deposited along the SAW propagation of the sensor chip by using RF magnetron sputtering. The magnetostrictive effect of the FeNi coating induced by the magnetic loading generates the perturbation in SAW velocity, and corresponding oscillation frequency. High sensitivity of 10.7 KHz/A, good linearity and repeatability, lower hysteresis error of 0.97% were obtained from the developed prototype 150 MHz SAW FeNi coated current sensor.

  9. Volume estimation from multiplanar 2D ultrasound images using a remote electromagnetic position and orientation sensor.

    Science.gov (United States)

    Hughes, S W; D'Arcy, T J; Maxwell, D J; Chiu, W; Milner, A; Saunders, J E; Sheppard, R J

    1996-01-01

    A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polhemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 mL), 10 kidneys (147-200 mL) and 16 fetal livers (8-37 mL) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 +/- 2.4%, 2.7 +/- 2.3%, 6.6 +/- 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.

  10. Screening model for nanowire surface-charge sensors in liquid

    DEFF Research Database (Denmark)

    Sørensen, Martin Hedegård; Mortensen, Asger; Brandbyge, Mads

    2007-01-01

    The conductance change of nanowire field-effect transistors is considered a highly sensitive probe for surface charge. However, Debye screening of relevant physiological liquid environments challenge device performance due to competing screening from the ionic liquid and nanowire charge carriers....

  11. Experimental Validation of a Sensor Monitoring Ice Formation over a Road Surface

    Directory of Open Access Journals (Sweden)

    Amedeo TROIANO

    2012-03-01

    Full Text Available The reliable detection of ice over road surfaces is an important issue for reducing maintenance costs and improving traffic safety. An innovative capacitive sensor was developed to detect the presence of ice on its surface, and its repeatability, stability and reliability were assessed in simulations and experiments described in previous papers. The indications of the sensor are compared in this paper with the objective identification of ice formation or melting over a road surface in laboratory, under dynamic or stationary conditions, using tap water or a solution with 5 % of salt concentration. The sensor provides indications which are in line with the condition of the road surface, with a mean error in the identification of the time instants of ice-wet and wet-ice transitions lower than about 10 and 40 minutes in the case of tap water and salt water, respectively, both under different temperature gradients or in stationary conditions. Moreover, the indication provided by the sensor always anticipates the formation of ice over the road surface.

  12. Surface plasmon resonance based optical fiber riboflavin sensor by using molecularly imprinted gel

    Science.gov (United States)

    Verma, Roli; Gupta, Banshi D.

    2013-05-01

    We report the fabrication and characterization of surface plasmon resonance (SPR) based optical fiber riboflavin/vitamin B2 sensor using combination of colloidal crystal templating and molecularly imprinted gel. The sensor works on spectral interrogation method. The operating range of the sensor lies from 0 μg/ml to 320 μg/ml, the suitable amount of intakes of riboflavin recommended for different age group. The SPR spectra show blue shift with increasing concentration of riboflavin, which is due to the interaction of riboflavin molecule over specific binding sites caused by molecular imprinting. The present sensor has many advantageous features such as fast response, small probe size, low cost and can be used for remote/online monitoring.

  13. Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer

    Science.gov (United States)

    Arasu, P. T.; Noor, A. S. M.; Shabaneh, A. A.; Yaacob, M. H.; Lim, H. N.; Mahdi, M. A.

    2016-12-01

    A single mode fiber Bragg grating (FBG) is used to generate Surface Plasmon Resonance (SPR). The uniform gratings of the FBG are used to scatter light from the fiber optic core into the cladding thus enabling the interaction between the light and a thin gold film in order to generate SPR. Applying this technique, the cladding around the FBG is left intact, making this sensor very robust and easy to handle. A thin film of graphene oxide (GO) is deposited over a 45 nm gold film to enhance the sensitivity of the SPR sensor. The gold coated sensor demonstrated high sensitivity of approximately 200 nm/RIU when tested with different concentrations of ethanol in an aqueous medium. A 2.5 times improvement in sensitivity is observed with the GO enhancement compared to the gold coated sensor.

  14. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    International Nuclear Information System (INIS)

    Yu, Xia; Zhang, Ying; Pan, Shanshan; Shum, Ping; Yan, Min; Leviatan, Yehuda; Li, Changming

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor

  15. Vibration analysis of a plate with an arbitrarily orientated surface crack

    Science.gov (United States)

    Ismail, Rainah

    This research presents a vibration analysis for a thin isotropic plate containing an arbitrarily orientated surface crack. The work has been motivated by the well known applicability of various vibrational techniques for structural damage detection in which the detection and localisation of damage to thin plate structures at the earliest stage of development can optimise subsystem performance and assure a safer life, and is intended to be an enhancement to previous work on cracked plates for which the orientation of the crack angle was not included. The novelty of this research activity has been in the assimilation of a significantly enhanced crack model within the analytical model of the plate, in modal space, and taking the form of a specialised Duffing equation. The governing equation of motion of the plate model with enhanced crack modelling is proposed to represent the vibrational response of the plate and is based on classical plate theory into which a developed crack model has been assimilated.. The formulation of the angled crack is based on a simplified line-spring model, and the cracked plate is subjected to transverse harmonic excitation with arbitrarily chosen boundary conditions. In addition, the nonlinear behaviour of the cracked plate model is investigated analytically from the amplitude-frequency equation by use of the multiple scales perturbation method. For both cracked square and rectangular plate models, the influence of the boundary conditions, the crack orientation angle, crack length, and location of the point load is demonstrated. It is found that the vibration characteristics and nonlinear characteristics of the cracked plate structure can be greatly affected by the orientation of the crack in the plate. The dynamics and stability of the cracked plate model are also examined numerically using dynamical systems tools for representing the behaviour of this system for a range of parameters. Finally the validity of the developed model is shown

  16. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces

    Directory of Open Access Journals (Sweden)

    Zhenguo Sun

    2016-06-01

    Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  17. A Liquid-Surface-Based Three-Axis Inclination Sensor for Measurement of Stage Tilt Motions.

    Science.gov (United States)

    Shimizu, Yuki; Kataoka, Satoshi; Ishikawa, Tatsuya; Chen, Yuan-Liu; Chen, Xiuguo; Matsukuma, Hiraku; Gao, Wei

    2018-01-30

    In this paper a new concept of a liquid-surface-based three-axis inclination sensor for evaluation of angular error motion of a precision linear slide, which is often used in the field of precision engineering such as ultra-precision machine tools, coordinate measuring machines (CMMs) and so on, is proposed. In the liquid-surface-based three-axis inclination sensor, a reference float mounting a line scale grating having periodic line grating structures is made to float over a liquid surface, while its three-axis angular motion is measured by using an optical sensor head based on the three-axis laser autocollimation capable of measuring three-axis angular motion of the scale grating. As the first step of research, in this paper, theoretical analysis on the angular motion of the reference float about each axis has been carried out based on simplified kinematic models to evaluate the possibility of realizing the proposed concept of a three-axis inclination sensor. In addition, based on the theoretical analyses results, a prototype three-axis inclination sensor has been designed and developed. Through some basic experiments with the prototype, the possibility of simultaneous three-axis inclination measurement by the proposed concept has been verified.

  18. First Results for a Superconducting Imaging-Surface Sensor Array for Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlachov, A.; Overton, W.; Wood, C.C.; Peters, M.V.; Ruminer, P.

    1998-08-28

    The authors have completed fabrication and preliminary testing of a 12-channel SQUID array using the superconducting image-surface gradiometer concept. Sensor response to point dipole magnetic sources, and uniform fields used to simulate ambient magnetic fields followed predicted values to high precision. Edge effects were not observed for sources, within 5cm of the center of the imaging surface independent of whether the source is close or far from the surface. The superconducting imaging-surface also reduced uniform ambient fields at the SQUID sensors by approximately a factor of ten. Finally, a high degree of symmetry was observed between sides of the imaging surface for uniform fields. This symmetry, together with the very small sensitivity of sensors on the back side of the imaging surface to sources close to the front side provides an excellent circumstance for implementing either digital or analog background rejection. Their goal is to implement a higher density array with the superconducting imaging surface, together with background rejection, and utilize this system for MCG and other biomagnetic studies.

  19. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  20. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration

    Science.gov (United States)

    Esteban, Óscar; Díaz-Herrera, Natalia; Navarrete, María-Cruz; González-Cano, Agustín

    2006-10-01

    We present a configuration for surface plasmon resonance sensors based on uniform-waist tapered optical fibers and reflective elements. Once the fiber is tapered fulfilling the adiabatic criterion, a multilayer including a metallic medium is asymmetrically deposited on the uniform waist of the fiber. This feature provides the resonant excitation of multiple surface plasma waves. In addition, a mirror is produced at the fiber tip by a chemical Tollens reaction. In this way, the sensor operates in a reflective mode, more convenient for dip probes. When these sensors are spectrally interrogated, a high sensitivity of 10-4 refractive index units per nanometer is attained. These devices can be advantageously used for any kind of chemical sensing and biosensing.

  1. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR sensor applications

    Directory of Open Access Journals (Sweden)

    Samsuri Nurul Diyanah

    2017-01-01

    Full Text Available Gold nanoparticles (GNPs have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  2. Observations of orientation dependence of surface morphology in tungsten implanted by low energy and high flux D plasma

    DEFF Research Database (Denmark)

    Xu, H.Y.; Zhang, Yubin; Yuan, Y.

    2013-01-01

    Surface modification by formation of blistering and nanostructures with pronounced orientation dependence has been observed on surfaces of rolled tungsten and recrystallized tungsten after exposure to a low energy (38 eV) deuterium (D) plasma with a high flux of 1024 m-2 s -1. The correlation bet...

  3. Surface plasmon resonance sensor for detection of bisphenol A in drinking water

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Homola, Jiří

    2010-01-01

    Roč. 151, č. 1 (2010), s. 177-179 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * drinking water Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  4. Optimization of capacitive membrane sensors for surface-stress-based measurements

    NARCIS (Netherlands)

    Sajadi, B.; Goosen, J.F.L.; van Keulen, A.

    2017-01-01

    Surface stress-based measurement is a relatively new mechanism in biological and chemical sensing. The viability of this mechanism depends on the maximum sensitivity, accuracy, and precision that can be achieved with these sensors. In this paper, an analytical approximate solution and a

  5. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5 ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre -optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  6. Apparatus and process for an off-surface cone penetrometer sensor

    Science.gov (United States)

    Smail, Timothy R.; French, Phillip J.; Huffman, Russell K.

    2003-04-29

    A cone penetrometer is provided having a pivoting arm which deploys a variable distance from the surface of the cone penetrometer. Sensors placed on the end of the deployable arm provide for data collection outside a compression zone created by the insertion of the cone penetrometer.

  7. Modelling and characterisation of surface plasmon based sensors for the detection of E. coli

    Czech Academy of Sciences Publication Activity Database

    Rajarajan, M.; Dar, T.; Themistos, Ch.; Rahman, A.; Grattan, K.; Homola, Jiří

    2009-01-01

    Roč. 56, č. 4 (2009), s. 564-571 ISSN 0950-0340 Institutional research plan: CEZ:AV0Z20670512 Keywords : SPR sensor * long-range surface plasmon * bacterium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.942, year: 2009

  8. Ultrahigh resolution long range surface plasmon-based sensor

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří

    2007-01-01

    Roč. 123, č. 1 (2007), s. 10-12 ISSN 0925-4005 R&D Projects: GA ČR GP202/04/P141; GA ČR GA203/02/1326; GA ČR(CZ) GA303/03/0249 Grant - others:European Commission(XE) QLK4-CT-2002-02323; US FDA (US) FD-U-002250 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * refractive index Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.934, year: 2007

  9. First Results for a Novel Superconducting Imaging-Surface Sensor Array

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.R.; Flynn, E.R.; Espy, M.A.; Matlashov, A.; Overton, W.; Peters, M.V.; Ruminer, P.

    1998-09-13

    A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the ''back'' side of the superconducting imaging-plane to study the field symmetry for our system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (a) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (b) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (d) compare superconducting materials for the imaging plane. A phantom source field was measured at the sensors as a function of phantom distance from the sensor array to verify the imaging theory. Both the shape and absolute value of the measured and predicted curves agree very well indicating the system is behaving as a gradiometer in accordance with theory. The output from SQUIDs located behind the imaging surface that sense background fields can be used for software or analog background cancellation. Fields arising from sources close to the imaging plane were shielded form the background sensors by more than a factor of 1000. Measurement of the symmetry of sensor sensitivity to uniform fields exactly followed theoretical predictions.

  10. First results for a novel superconducting imaging-surface sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlashov, A.; Overton, W.; Peters, M.V.; Ruminer, P.

    1998-12-31

    A superconducting imaging-surface system was constructed using 12 coplanar thin-film SQUID magnetometers located parallel to and spaced 2 cm from a 25 cm diameter lead imaging-plane. Some measurements included two additional sensors on the back side of the superconducting imaging-plane to study the field symmetry for the system. Performance was measured in a shielded can and in the open laboratory environment. Data from this system has been used to: (1) understand the noise characteristics of the dewar-SQUID imaging plate arrangement, (2) to verify the imaging principle, (c) measure the background rejection factor of the imaging plane, and (4) compare superconducting materials for the imaging plane. A phantom source field was measured at the sensors as a function of phantom distance from the sensor array to verify the imaging theory. Both the shape and absolute values of the measured and predicted curves agree very well indicating the system is behaving as a gradiometer in accordance with theory. The output from SQUIDs located behind the imaging surface that sense background fields can be used for software or analog background cancellation. Fields arising from sources close to the imaging plane were shielded from the background sensors by more than a factor of 1000. Measurement of the symmetry of sensor sensitivity to uniform fields exactly followed theoretical predictions.

  11. Graphene Surface Acoustic Wave Sensor for Simultaneous Detection of Charge and Mass.

    Science.gov (United States)

    Okuda, Satoshi; Ono, Takao; Kanai, Yasushi; Ikuta, Takashi; Shimatani, Masaaki; Ogawa, Shinpei; Maehashi, Kenzo; Inoue, Koichi; Matsumoto, Kazuhiko

    2018-01-26

    We have combined a graphene field-effect transistor (GFET) and a surface acoustic wave (SAW) sensor on a LiTaO 3 substrate to create a graphene surface acoustic wave (GSAW) sensor. When a SAW propagates in graphene, an acoustoelectric current (I A ) flows between two attached electrodes. This current has unique electrical characteristics, having both positive and negative peak values with respect to the electrolyte-gate voltage (V Eg ) in solution. We found that I A is controlled by V Eg and the amplitude of the SAW. It was also confirmed that the GSAW sensor detects changes of electrical charge in solution like conventional GFET sensors. Furthermore, the detection of amino-group-modified microbeads was performed by employing a GSAW sensor in a phthalate buffer solution at pH 4.1. The hole current peak shifted to the lower left in the I A -V Eg characteristics. The left shift was caused by charge detection by the GFET and can be explained by an increase of amino groups that have positive charges at pH 4.1. In contrast, the downward shift is thought to be due to a reduction in the amplitude of the propagating SAW because of an increase in the mass loading of microbeads. This mass loading was detected by the SAW sensor. Thus, we have demonstrated that the GSAW sensor is a transducer capable of the simultaneous detection of charge and mass, which indicates that it is an attractive platform for highly sensitive and multifunctional solution sensing.

  12. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    Science.gov (United States)

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: t_ghodselahi@yahoo.com [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Hoornam, S. [Nano Mabna Iranian Inc., PO Box 1676664116, Tehran (Iran, Islamic Republic of); School of Physics, Institute for Research in Fundamental Sciences, PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Science, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Vesaghi, M.A. [Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran (Iran, Islamic Republic of); Ranjbar, B.; Azizi, A. [Department of Biophysics, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mobasheri, H. [Laboratory of Membrane Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, PO Box 13145-1384, Tehran (Iran, Islamic Republic of); Biomaterials Research Institute (BRC), University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • We synthesized localized surface plasmon resonance sensor of gold nanoparticles by RF-sputtering and RF-PECVD. • LSPR sensor was characterized by TEM, XPS, AFM. • LSPR sensor was utilized to detect interaction between sorbitol and trehalose, with Pesudomonace Cepacia Lipase (PCL). • Unlike to trehalose, sorbitol interacts with the PCL. • Refractive index of PCL was obtained by Mie theory modeling. - Abstract: Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO{sub 2} substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was

  14. Enhancement of Spatial Orientation Capability of Astronauts on the Lunar Surface

    Data.gov (United States)

    National Aeronautics and Space Administration — The achievements over the third year have fulfilled the designated tasks in the proposal. 1. Data processing and sensor integration Based on the integrated sensor...

  15. Preoperative tibial mechanical axis orientation and articular surface design influence on the coronal joint line orientation relative to the ground during gait after total knee arthroplasties.

    Science.gov (United States)

    Murakami, Koji; Hamai, Satoshi; Okazaki, Ken; Ikebe, Satoru; Higaki, Hidehiko; Shimoto, Takeshi; Nakashima, Yasuharu

    2018-03-20

    Neutral lower limb alignment does not necessarily produce a horizontal joint line after total knee arthroplasty (TKA). The orientation of the pre- and postoperative tibial mechanical axes (TMAs-G), tibial component, and joint line relative to the ground were evaluated. The study group included 46 knees, 23 posterior-stabilized (PS) and 23 bicruciate-stabilized (BCS) TKAs. Using whole-leg standing radiographs, the static orientation of the pre- and postoperative TMAs-G and the tibial component as well as the postoperative alignment were measured. Applying image-matching techniques, the dynamic coronal orientation of the tibial component and joint line over the stance phase of gait were analysed. The correlation between static and dynamic orientation of the tibial component and differences in the joint line between the PS and BCS TKAs were evaluated. In standing, the postoperative TMA-G (0.8° ± 2.8°) and tibial component (1.5° ± 2.4°) were laterally tilted with a strong correlation. The preoperative lateral tilt of the TMA-G (7.9° ± 5.1°) was a significant predictor of the postoperative TMA-G. The lateral tilt of the tibial component increased to 5.1° ± 2.4° on dynamic analysis, and was moderately correlated to static orientation. The dynamic orientation of the joint line was smaller for the BCS (1.8° ± 2.4°) compared to the PS (5.5° ± 2.7°) TKA. Even with a mechanically well-aligned TKA, a lateral tilt of the tibial component was identified due to the lateral tilt of the postoperative TMA-G and the stance phase of gait. The BCS can better accommodate the residual lateral tilt of the joint line due to the 3° medial inclination of the joint surfaces of the implant. This study increases the awareness of surgeons regarding the possibility of the coronal joint line orientation to influence preoperative TMA-G and be accommodated by articular surface design, even in mechanically aligned TKA. IV.

  16. Surface Acoustic WaveAmmonia Sensors Based on ST-cut Quartz under Periodic Al Structure

    Directory of Open Access Journals (Sweden)

    Ming-Yau Su

    2009-02-01

    Full Text Available Surface acoustic wave (SAW devices are key components for sensing applications. SAW propagation under a periodic grating was investigated in this work. The theoretical method used here is the space harmonic method. We also applied the results of SAW propagation studied in this work to design a two-port resonator with an Al grating on ST-cut quartz. The measured frequency responses of the resonator were similar to the simulation ones. Then, the chemical interface of polyaniline/WO3 composites was coated on the SAW sensor for ammonia detection. The SAW sensor responded to ammonia gas and could be regenerated using dry nitrogen.

  17. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  18. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  19. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-09-01

    Full Text Available In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS. The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT.

  20. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  1. Semiconductor Sensors Application for Definition of Factor of Ozone Heterogeneous Destruction on Teflon Surface

    Directory of Open Access Journals (Sweden)

    Nataliya V. Finogenova

    2003-12-01

    Full Text Available In our paper we present the results of our research, which was carried out by means of semiconductor sensor techniques (SCS, which allowed evaluating heterogeneous death-rate of ozone (γ Teflon surface. When ozone concentration is near to Ambient Air Standard value, γ is assessed to be equal to 6,57*10-7. High technique response provide possibility to determine ozone contents in the air media and the percentage of ozone, decomposed on the communication surfaces and on the surfaces of installation in the low concentration range (1–100 ppb.

  2. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  3. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  4. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}, {110}, and {111}, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  5. Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers

    Directory of Open Access Journals (Sweden)

    Jian-Quan Yao

    2013-01-01

    Full Text Available A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10−5–9.4 × 10−5 RIU, the confinement loss can be increased dramatically.

  6. Evaluation of Bulk and Surface Radiation Damage of Silicon Sensors for the ATLAS Upgrade

    CERN Document Server

    Mikeštíková, Marcela; Št'astný, Jan

    2015-01-01

    The electrical characteristics of different types of end-cap miniature n + -in- p strip sensors, ATLAS12A, were evaluated in Institute of Physics in Prague before and after proton and gamma irradiation. We report here on the bulk damage aspects, including the increase of leakage current and evaluation of the full depletion voltage and the surface damage, including the decrease of inter-strip resistance, changes in inter-strip capacitance and the effectiveness of punch-through protection structure. It was verified that different geometries of end-cap sensors do not influence their stability; the sensors should provide acceptable strip isolation and n ew gate PTP structure functions well even at the highest tested proton fluence 2× 10 15 n eq / cm 2

  7. Smell identification of spices using nanomechanical membrane-type surface stress sensors

    Science.gov (United States)

    Imamura, Gaku; Shiba, Kota; Yoshikawa, Genki

    2016-11-01

    Artificial olfaction, that is, a chemical sensor system that identifies samples by smell, has not been fully achieved because of the complex perceptional mechanism of olfaction. To realize an artificial olfactory system, not only an array of chemical sensors but also a valid feature extraction method is required. In this study, we achieved the identification of spices by smell using nanomechanical membrane-type surface stress sensors (MSS). Features were extracted from the sensing signals obtained from four MSS coated with different types of polymers, focusing on the chemical interactions between polymers and odor molecules. The principal component analysis (PCA) of the dataset consisting of the extracted parameters demonstrated the separation of each spice on the scatter plot. We discuss the strategy for improving odor identification based on the relationship between the results of PCA and the chemical species in the odors.

  8. Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder

    KAUST Repository

    Li, Bodong

    2012-03-09

    Passive and remote sensing technology has many potential applications in implantable devices, automation, or structural monitoring. In this paper, a tri-layer thin film giant magnetoimpedance (GMI) sensor with the maximum sensitivity of 16%/Oe and GMI ratio of 44% was combined with a two-port surface acoustic wave(SAW) transponder on a common substrate using standard microfabrication technology resulting in a fully integrated sensor for passive and remote operation. The implementation of the two devices has been optimized by on-chip matching circuits. The measurement results clearly show a magnetic field response at the input port of the SAW transponder that reflects the impedance change of the GMI sensor.

  9. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  10. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  11. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Antonio M. Pozo

    2016-05-01

    Full Text Available A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU.

  12. Simultaneous measurement of gas concentration and temperature by the ball surface acoustic wave sensor

    Science.gov (United States)

    Yamanaka, Kazushi; Akao, Shingo; Takeda, Nobuo; Tsuji, Toshihiro; Oizumi, Toru; Tsukahara, Yusuke

    2017-07-01

    We have developed a ball surface acoustic wave (SAW) trace moisture sensor with an amorphous silica sensitive film and realized wide-range measurement from 0.017 ppmv [a frost point (FP) of -99 °C] to 6.0 × 103 ppmv (0 °C FP). However, since the sensitivity of the sensor depends on the temperature, measurement results are disturbed when the temperature largely changes. To overcome this problem, we developed a method to simultaneously measure temperature and gas concentration using a ball SAW sensor. Temperature and concentration is derived by solving equations for the delay time change at two frequencies. When the temperature had a large jump, the delay time change was significantly disturbed, but the water concentration was almost correctly measured, by compensating the sensitivity change using measured temperature. The temperature measured by a ball SAW sensor will also be used to control the ball temperature. This method will make a ball SAW sensor reliable in environments of varying temperatures.

  13. Surface-type humidity sensor based on cellulose-PEPC for telemetry systems

    International Nuclear Information System (INIS)

    Karimov, Kh. S.; Saleem, M.; Qasuria, T. A.; Farooq, M.

    2011-01-01

    Au/cellulose-PEPC/Au surface-type humidity sensors were fabricated by drop-casting cellulose and poly-N-epoxypropylcarbazole (PEPC) blend thin films. A blend of 2wt% of each cellulose and PEPC in benzol was used for the deposition of humidity sensing films. Blend films were deposited on glass substrates with preliminary deposited surface-type gold electrodes. Films of different thicknesses of cellulose and PEPC composite were deposited by drop-casting technique. A change in electrical resistance and capacitance of the fabricated devices was observed by increasing the relative humidity in the range of 0-95% RH. It was observed that the capacitances of the sensors increase, while their resistances decrease with increasing the relative humidity. The sensors were connected to op-amp square wave oscillators. It was observed that with increasing the relative humidity, the oscillator's frequencies were also increased in the range of 4.2-12.0 kHz for 65 μm thick film sample, 4.1-9.0 kHz for 88 μm thick film sample, and 4.2-9.0 kHz for 210 μm sample. Effects of film thickness on the oscillator's frequency with respect to humidity were also investigated. This polymer humidity sensor controlled oscillator can be used for short-range and long-range remote systems at environmental monitoring and assessment of the humidity level. (semiconductor integrated circuits)

  14. The Influence of Sub-Block Position on Performing Integrated Sensor Orientation Using In Situ Camera Calibration and Lidar Control Points

    Directory of Open Access Journals (Sweden)

    Felipe A. L. Costa

    2018-02-01

    Full Text Available The accuracy of photogrammetric and Lidar dataset integration is dependent on the quality of a group of parameters that models accurately the conditions of the system at the moment of the survey. In this sense, this paper aims to study the effect of the sub-block position in the entire image block to estimate the interior orientation parameters (IOP in flight conditions to be used in integrated sensor orientation (ISO. For this purpose, five sub-blocks were extracted in different regions of the entire block. Then, in situ camera calibrations were performed using sub-blocks and sets of Lidar control points (LCPs, computed by a three planes’ intersection extracted from the Lidar point cloud on building roofs. The ISO experiments were performed using IOPs from in situ calibrations, the entire image block, and the exterior orientation parameters (EOP from the direct sensor orientation (DSO. Analysis of the results obtained from the ISO experiments performed show that the IOP from the sub-block positioned at the center of the entire image block can be recommended.

  15. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  16. Surface plasmon resonance sensors a materials guide to design and optimization

    CERN Document Server

    Oliveira, Leiva Casemiro; Thirstrup, Carsten; Neff, Helmut Franz

    2015-01-01

    This book addresses the important physical phenomenon of Surface Plasmon Resonance or Surface Plasmon Polaritons in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and outlined in detail. The text covers the selection of nanometer thin metal films, ranging from free-electron to the platinum type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Furthermore, as-yet hardly explored SPR features of selected metal–metal and metal–dielectric super lattices are included in this report. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.

  17. Fully-drawn carbon-based chemical sensors on organic and inorganic surfaces.

    Science.gov (United States)

    Frazier, Kelvin M; Mirica, Katherine A; Walish, Joseph J; Swager, Timothy M

    2014-10-21

    Mechanical abrasion is an extremely simple, rapid, and low-cost method for deposition of carbon-based materials onto a substrate. However, the method is limited in throughput, precision, and surface compatibility for drawing conductive pathways. Selective patterning of surfaces using laser-etching can facilitate substantial improvements to address these current limitations for the abrasive deposition of carbon-based materials. This study demonstrates the successful on-demand fabrication of fully-drawn chemical sensors on a wide variety of substrates (e.g., weighing paper, polymethyl methacrylate, silicon, and adhesive tape) using single-walled carbon nanotubes (SWCNTs) as sensing materials and graphite as electrodes. Mechanical mixing of SWCNTs with solid or liquid selectors yields sensors that can detect and discriminate parts-per-million (ppm) quantities of various nitrogen-containing vapors (pyridine, aniline, triethylamine).

  18. A variable pressure method for characterizing nanoparticle surface charge using pore sensors.

    Science.gov (United States)

    Vogel, Robert; Anderson, Will; Eldridge, James; Glossop, Ben; Willmott, Geoff

    2012-04-03

    A novel method using resistive pulse sensors for electrokinetic surface charge measurements of nanoparticles is presented. This method involves recording the particle blockade rate while the pressure applied across a pore sensor is varied. This applied pressure acts in a direction which opposes transport due to the combination of electro-osmosis, electrophoresis, and inherent pressure. The blockade rate reaches a minimum when the velocity of nanoparticles in the vicinity of the pore approaches zero, and the forces on typical nanoparticles are in equilibrium. The pressure applied at this minimum rate can be used to calculate the zeta potential of the nanoparticles. The efficacy of this variable pressure method was demonstrated for a range of carboxylated 200 nm polystyrene nanoparticles with different surface charge densities. Results were of the same order as phase analysis light scattering (PALS) measurements. Unlike PALS results, the sequence of increasing zeta potential for different particle types agreed with conductometric titration.

  19. Detection of botulinum neurotoxins in buffer and hney using a surface plasmon resonance (SPR) sensor

    Czech Academy of Sciences Publication Activity Database

    Ladd, J.; Taylor, A.; Homola, Jiří; Jiang, S.

    2008-01-01

    Roč. 130, č. 1 (2008), s. 129-134 ISSN 0925-4005 Grant - others:US FDA (US) FD-U-002250; National Science Foundation(US) CBET-0528605 Institutional research plan: CEZ:AV0Z20670512 Source of funding: N - neverejné zdroje ; N - neverejné zdroje Keywords : surface plasmons * biosensors * toxicology Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.122, year: 2008

  20. Using Metal-Multilayer-Dielectric Structure to Increase Sensitivity of Surface Plasmon Resonance Sensor

    Science.gov (United States)

    Ilchenko, Svitlana G.; Lymarenko, Ruslan A.; Taranenko, Victor B.

    2017-04-01

    We propose using a specially designed metal-multilayer-dielectric structure deposited on glass substrate to enhance the evanescent field and improve the sensitivity of the surface plasmon resonance sensor. The proposed structure supports both hybrid plasmonic transverse magnetic modes and conventional waveguide transverse electric modes. We show numerically the significant enhancement of the evanescent field and improvement of the sensitivity for the waveguide transverse electric mode.

  1. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    Science.gov (United States)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity

  2. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    International Nuclear Information System (INIS)

    Jung, Satbyoul; Kim, Hyungdae

    2016-01-01

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  3. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae, E-mail: hdkims@khu.ac.kr

    2016-08-15

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  4. Effects of a surface oriented travelling screen and water abstraction practices on downstream migrating Salmonidae smolts in a lowland stream

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Aarestrup, Kim; Deacon, Michael G.

    2010-01-01

    Downstream migration of immature salmonids (smolts) may be associated with severe mortalities in anthropogenically altered channels. In Pacific salmon, several investigations have suggested the use of the dominating surface orientation of smolts to improve fish by-pass structures in large and dee...

  5. Numerical investigation into a surface plasmon resonance sensor based on optical fiber microring

    Science.gov (United States)

    Zhao, Chunliu; Wang, Yanru; Wang, Dongning; Ding, Zhewen

    2017-06-01

    A reflective surface plasmon resonance (SPR) sensor based on optical fiber microring is proposed. In such a sensor, plasmons on the outer surface of the metallized channels containing analyte can be excited by a fundamental mode of a thin-core fiber (TCF). The refractive index (RI) sensing can be achieved as the surface plasmons are sensitive to changes in the refrective index of the analyte. Numerical simulation results show that the resonance spectrum shifts toward the shorter wavelength gradually when the analyte refractive index increases from 1.0 to 1.33, whereas it shifts toward the longer wavelength gradually when the analyte refractive index increases from 1.33 to 1.43, and there is a turning point at the refractive index value of 1.33. The highest sensitivity achieved is up to 2.30×103 nm/RIU near the refractive index value of 1.0. Such a compact sensor has potential in gaseous substance monitoring.

  6. Comparison of E-coli O157 : H7 preparation methods used for detection with surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Taylor, A. D.; Yu, Q.; Chen, S.; Homola, Jiří; Jiang, S.

    2005-01-01

    Roč. 107, č. 1 (2005), s. 202-208 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] Grant - others:US FDA(US) FD-U-002250 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.646, year: 2005

  7. Shock tunnel measurements of surface pressures in shock induced separated flow field using MEMS sensor array

    International Nuclear Information System (INIS)

    Sriram, R; Jagadeesh, G; Ram, S N; Hegde, G M; Nayak, M M

    2015-01-01

    Characterized not just by high Mach numbers, but also high flow total enthalpies—often accompanied by dissociation and ionization of flowing gas itself—the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times—typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 μs, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg −1 ) and 8.67 (total enthalpy 1.6 MJ kg −1 ), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone. (paper)

  8. A Gaussian Process Data Modelling and Maximum Likelihood Data Fusion Method for Multi-Sensor CMM Measurement of Freeform Surfaces

    Directory of Open Access Journals (Sweden)

    Mingyu Liu

    2016-12-01

    Full Text Available Nowadays, the use of freeform surfaces in various functional applications has become more widespread. Multi-sensor coordinate measuring machines (CMMs are becoming popular and are produced by many CMM manufacturers since their measurement ability can be significantly improved with the help of different kinds of sensors. Moreover, the measurement accuracy after data fusion for multiple sensors can be improved. However, the improvement is affected by many issues in practice, especially when the measurement results have bias and there exists uncertainty regarding the data modelling method. This paper proposes a generic data modelling and data fusion method for the measurement of freeform surfaces using multi-sensor CMMs and attempts to study the factors which affect the fusion result. Based on the data modelling method for the original measurement datasets and the statistical Bayesian inference data fusion method, this paper presents a Gaussian process data modelling and maximum likelihood data fusion method for supporting multi-sensor CMM measurement of freeform surfaces. The datasets from different sensors are firstly modelled with the Gaussian process to obtain the mean surfaces and covariance surfaces, which represent the underlying surfaces and associated measurement uncertainties. Hence, the mean surfaces and the covariance surfaces are fused together with the maximum likelihood principle so as to obtain the statistically best estimated underlying surface and associated measurement uncertainty. With this fusion method, the overall measurement uncertainty after fusion is smaller than each of the single-sensor measurements. The capability of the proposed method is demonstrated through a series of simulations and real measurements of freeform surfaces on a multi-sensor CMM. The accuracy of the Gaussian process data modelling and the influence of the form error and measurement noise are also discussed and demonstrated in a series of experiments

  9. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.

    Science.gov (United States)

    Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-12-05

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.

  10. Fabrication of surface plasmon resonance sensor surface with control of the nonspecific adsorption and affinity for the detection of 2,4,6-trinitrotoluene using an antifouling copolymer

    Directory of Open Access Journals (Sweden)

    Rui eYatabe

    2014-04-01

    Full Text Available We fabricated a surface plasmon resonance (SPR sensor using a hydrophilic polymer for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT. The hydrophilic polymer was made from mono-2-(methacryloyloxyethylsuccinate (MES and 2-hydroxyethylmethacrylate (HEMA by surface-initiated atom transfer radical polymerization (SI-ATRP. The detection of TNT was carried out by displacement assay with the SPR measurement. In displacement assay, the affinity between anti-TNT antibody and the sensor surface, affects to the sensitivity. In the SPR measurement, nonspecific adsorption should be controlled because SPR sensor cannot discriminate between specific and nonspecific adsorption. Therefore, the affinity and nonspecific adsorption were controlled by changing the ratio of HEMA to MES. A detection limit of 0.4 ng/ml (ppb for TNT was achieved using a sensor surface with the lowest affinity without nonspecific adsorption.

  11. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  12. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    Science.gov (United States)

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    Science.gov (United States)

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  14. An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xianchao Yang

    2015-07-01

    Full Text Available To solve the problem of air hole coating and analyte filling in microstructured optical fiber-based surface plasmon resonance (SPR sensors, we designed an exposed-core grapefruit fiber (EC-GFs-based SPR sensor. The exposed section of the EC-GF is coated with a SPR, supporting thin silver film, which can sense the analyte in the external environment. The asymmetrically coated fiber can support two separate resonance peaks (x- and y-polarized peaks with orthogonal polarizations and x-polarized peak, providing a much higher peak loss than y-polarized, also the x-polarized peak has higher wavelength and amplitude sensitivities. A large analyte refractive index (RI range from 1.33 to 1.42 is calculated to investigate the sensing performance of the sensor, and an extremely high wavelength sensitivity of 13,500 nm/refractive index unit (RIU is obtained. The silver layer thickness, which may affect the sensing performance, is also discussed. This work can provide a reference for developing a high sensitivity, real-time, fast-response, and distributed SPR RI sensor.

  15. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor

    Science.gov (United States)

    Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping

    2017-12-01

    Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10‑5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.

  16. Detection of biomolecules in complex media using surface plasmon resonance sensors

    Science.gov (United States)

    Malone, Michael R.; Masson, Jean-Francois; Barhnart, Margaret; Beaudoin, Stephen; Booksh, Karl S.

    2005-11-01

    Detection of multiple biologically relevant molecules was accomplished at sub-ng/mL levels in highly fouling media using fiber- optic based surface plasmon resonance sensors. Myocardial infarction markers, myoglobin and cTnI, were quantified in full serum with limits of detection below 1 ng/mL. Biologically relevant levels are between 15-30 ng/mL and 1-5 ng/mL for myoglobin and cTnI respectively. Cytokines involved in chronic wound healing, Interleukin 1, Interleukin 6, and tumor necrosis factor α, were detected at around 1 ng/mL in cell culture media. Preliminary results in monitoring these cytokines in cell cultures expressing the cytokines were obtained. The protein diagnostic of spinal muscular atrophy, survival motor neuron protein, was quantified from cell lysate. To obtain such results in complex media, the sensor's stability to non-specific protein adsorption had to be optimized. A layer of the N-hydroxysuccinimide ester of 16-mercaptohexadecanoic acid is attached to the sensor. This layer optimizes the antibody attachment to the sensor while minimizing the non-specific signal from serum proteins.

  17. Surface Crack Detection in Prestressed Concrete Cylinder Pipes Using BOTDA Strain Sensors

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available Structural deterioration after a period of service can induce the failure of prestressed concrete cylinder pipes (PCCPs, with microcracks in the coating leading to the corrosion of the prestressed wires. In this paper, we propose the use of Brillouin optical time-domain analysis (BOTDA strain sensors for detecting the onset of microcracking in PCCP coating: the BOTDA strain sensors are mounted on the surface of the PCCP, and distributed strain measurements are employed to assess the cracks in the mortar coating and the structural state of the pipe. To validate the feasibility of the proposed approach, experimental investigations were conducted on a prototype PCCP segment, wherein the inner pressure was gradually increased to 1.6 MPa. Two types of BOTDA strain sensors—the steel wire packaged fiber optic sensor and the polyelastic packaged fiber optic sensor—were employed in the experiments. The experimental distributed measurements agreed well with the finite element computations, evidencing that the investigated strain sensors are sensitive to localized deterioration behaviors such as PCCP microcracking.

  18. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor.

    Science.gov (United States)

    Kim, Dong-Hyung; Cho, Il-Hoon; Park, Ji-Na; Paek, Sung-Ho; Cho, Hyun-Mo; Paek, Se-Hwan

    2017-02-15

    Although label-free immunosensors based on, for example, surface plasmon resonance (SPR) provide advantages of real-time monitoring of the analyte concentration, its application to routine clinical analysis in a semi-continuous manner is problematic because of the high cost of the sensor chip. The sensor chip is in most cases regenerated by employing an acidic pH. However, this causes gradual deterioration of the activity of the capture antibody immobilized on the sensor surface. To use sensor chips repeatedly, we investigated a novel surface modification method that enables regeneration of the sensor surface under mild conditions. We introduced a monoclonal antibody (anti-CBP Ab) that detects the conformational change in calcium binding protein (CBP) upon Ca 2+ binding (>1mM). To construct a regenerable SPR-based immunosensor, anti-CBP Ab was first immobilized on the sensor surface, and CBP conjugated to the capture antibody (specific for creatine kinase-MB isoform (CK-MB); CBP-CAb) then bound in the presence of Ca 2+ . A serum sample was mixed with the detection antibody to CK-MB, which generated an SPR signal proportional to the analyte concentration. After each analysis, the sensor surface was regenerated using medium (pH 7) without Ca 2+ , and then adding fresh CBP-CAb in the presence of Ca 2+ for the subsequent analysis. Analysis of multiple samples using the same sensor was reproducible at a rate >98.7%. The dose-response curve was linear for 1.75-500.75ng/mL CK-MB, with an acceptable coefficient of variation of 96%), and exhibited analytical stability for 1 month. To our knowledge, this is the first report of a renewal of a sensor surface with fresh antibody after each analysis, providing high consistency in the assay during a long-term use (e.g., a month at least). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development of a modular and scalable sensor system for the gathering of position and orientation of moved objects; Entwicklung eines modularen und skalierbaren Sensorsystems zur Erfassung von Position und Orientierung bewegter Objekte

    Energy Technology Data Exchange (ETDEWEB)

    Klingbeil, L.

    2006-02-15

    A modular and scalable sensor system for the estimation of position and orientation of moving objects has been developed and characterized. A sensor unit, which is mounted to the moving object, consists of acceleration -, angular rate - and magnetic field sensors for every spatial axis. Customized Kalman filter algorithms provide a robust and low latency reconstruction of the sensor's orientation. Additionally an ultrasound transducer network is used to measure the distance of a sensor unit with respect to several reference points in the room. This allows reconstruction of the absolute position using trilateration methods. The system is scalable with respect to the number of sensor units and the covered tracking volume. It is suitable for various applications for example the analysis of body movements or head tracking in augmented or virtual reality environments. (orig.)

  20. The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy

    International Nuclear Information System (INIS)

    Stoudt, M.R.; Levine, L.E.; Creuziger, A.; Hubbard, J.B.

    2011-01-01

    Highlights: ► AA6022 samples are characterized in situ during tensile deformation. ► Scanning laser confocal images and electron backscatter diffraction results are overlaid. ► Strain localization is correlated with Taylor factors, grain orientations, and grain sizes. - Abstract: Polycrystalline AA6022 tensile specimens were cut from sheet stock, mechanically polished, and uniaxially strained in situ under a scanning laser confocal microscope (SLCM) using a sub-sized universal testing apparatus. Prior to deformation, electron backscatter diffraction (EBSD) was performed on the gauge sections of one specimen in the rolling direction of the sheet and one in the transverse direction. Maps of the largest displacements in the surface morphology were constructed from the SLCM data and overlaid onto maps derived from the crystallographic orientation data to examine the strength of the influence that grain orientation effects have on critical strain localization. The roles of Taylor factors, grain boundary misorientation, largest Schmid factors, grain sizes, coincident site lattice orientations, and local grain breakup were considered. The largest surface displacements were observed to be concentrated at triple junctions where there is a large difference between the Taylor factors of the individual grains. The high degree of correlation between the density and location of these large surface displacements and the local plasticity conditions indicate that a critical localization event is most likely to initiate in grain boundary regions where unfavorable slip interactions produce the largest plastic strains.

  1. Fabrication of hierarchical polymer surfaces with superhydrophobicity by injection molding from nature and function-oriented design

    Science.gov (United States)

    Weng, Can; Wang, Fei; Zhou, Mingyong; Yang, Dongjiao; Jiang, Bingyan

    2018-04-01

    A comparison of processes and wettability characteristics was presented for injection molded superhydrophobic polypropylene surfaces from two fabricating strategies. One is the biomimetic replication of patterns from indocalamus leaf in nature. The contact angle of water sitting on this PP surface was measured as 152 ± 2°, with comparable wetting behavior to natural indocalamus leaf surface. The other strategy is the fabrication of superhydrophobic structure by combining methods that produce structures at different length scales. Regarding both the machinability of mold inserts and function-oriented design, three micro-quadrangular arrays and one hierarchical micro-nano cylinder array were designed with the goal of superhydrophobicity. Particularly, a simple approach to the fabrication of hierarchical structures was proposed by combining the anodized plate and the punching plate. The function-oriented design targets as superhydrophobicity were all reached for the designed four structures. The measured contact angles of droplet for these structures were almost consistent with the calculated equilibrium contact angles from thermodynamic analysis. Among them, the contact angle of droplet on the surface of designed hierarchical structure reached about 163° with the sliding angle of 5°, resulting in self-cleaning characteristic. The superhydrophobicity of function-oriented designed polymer surfaces could be modified and controlled, which is exactly the limitation of replicating from natural organisms.

  2. Evaluation of Surface Slope Effects on Ripple Orientations Observed on Sand Dunes in the Terra Tyrrhena Region of Mars

    Science.gov (United States)

    Zimbelman, J. R.; Johnson, M. B.

    2014-12-01

    The High Resolution Imaging Science Experiment (HiRISE) has revealed abundant wind ripples on sand dunes across Mars. Ripple orientations have been documented using HiRISE images of sand dunes at 24 widely distributed sites across Mars, in order to identify the last significant wind directions at these locations. Howard (GSAB, 1977) gives a mathematical expression for how surface slopes on a sand dune can affect the orientation of ripples with respect to the formative winds. In order to evaluate this mechanism for measured ripple orientations on Mars, quantitative data for surface slopes on the sand dunes is required. Stereo pairs of HiRISE images are used to generate Digital Terrain Models (DTMs) with postings of one meter. In June 2014 we produced a DTM of sand dunes in the Terra Tyrrhena region of Mars (14.55° S, 97.77° E) using SOCET SET at the Astrogeology Branch, USGS-Flagstaff. Typically it is difficult for feature matching software to work well on sand dunes, but our stereo images (ESP_022609_1655 and ESP_026675_1655) were obtained only six Earth days apart under excellent illumination conditions. The Terra Tyrrhena DTM had remarkably few artifacts on the sand dunes (except at slip faces, where the average slope between slip face crest and base was interpolated) and excellent control from irregular terrain exposed in interdune areas. Slopes on the stoss sides of sand dunes are generally ripple deflection angles should be ripple orientations to account for surface slopes utilizing the DTM data, and so far we do not see major changes to inferred surface wind directions that would be derived directly from the ripple orientations.

  3. Automatic centroid detection and surface measurement with a digital Shack–Hartmann wavefront sensor

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Zhao, Liping; Li, Xiang; Fang, Zhongping

    2010-01-01

    With the breakthrough of manufacturing technologies, the measurement of surface profiles is becoming a big issue. A Shack–Hartmann wavefront sensor (SHWS) provides a promising technology for non-contact surface measurement with a number of advantages over interferometry. The SHWS splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. So the accuracy of the centroid measurement determines the accuracy of the SHWS. In this paper, we have presented a new centroid measurement algorithm based on an adaptive thresholding and dynamic windowing method by utilizing image-processing techniques. Based on this centroid detection method, we have developed a digital SHWS system which can automatically detect centroids of focal spots, reconstruct the wavefront and measure the 3D profile of the surface. The system has been tested with various simulated and real surfaces such as flat surfaces, spherical and aspherical surfaces as well as deformable surfaces. The experimental results demonstrate that the system has good accuracy, repeatability and immunity to optical misalignment. The system is also suitable for on-line applications of surface measurement

  4. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  5. Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers

    Science.gov (United States)

    Cherifi, Abdellatif; Bouhafs, Benamar

    2017-12-01

    In this work, the surface plasmon resonance (SPR) device with two porous left handed metamaterial (LHM) layers separated by an insulator gap, is investigated. The effect of the insulator gap thickness and its refractive index (RI) on the angular response of the device is analyzed. The results show that the sensitivity of the SPR sensor is enhanced compared to the standard SPR sensors. Here, the multilayer structure is probed with 738 nm-wavelength, and electromagnetic properties of active porous LHM layers are described from the effective medium theory (EMT). Furthermore, in the increase of the porosity from 0 to 0.6, the designed nanocavity exhibits a fundamental SPR mode long-range (LR) type and it can be of interest in high-performance SPR sensing.

  6. Discriminating crop, weeds and soil surface with a terrestrial LIDAR sensor.

    Science.gov (United States)

    Andújar, Dionisio; Rueda-Ayala, Victor; Moreno, Hugo; Rosell-Polo, Joan Ramón; Escolá, Alexandre; Valero, Constantino; Gerhards, Roland; Fernández-Quintanilla, César; Dorado, José; Griepentrog, Hans-Werner

    2013-10-29

    In this study, the evaluation of the accuracy and performance of a light detection and ranging (LIDAR) sensor for vegetation using distance and reflection measurements aiming to detect and discriminate maize plants and weeds from soil surface was done. The study continues a previous work carried out in a maize field in Spain with a LIDAR sensor using exclusively one index, the height profile. The current system uses a combination of the two mentioned indexes. The experiment was carried out in a maize field at growth stage 12-14, at 16 different locations selected to represent the widest possible density of three weeds: Echinochloa crus-galli (L.) P.Beauv., Lamium purpureum L., Galium aparine L.and Veronica persica Poir.. A terrestrial LIDAR sensor was mounted on a tripod pointing to the inter-row area, with its horizontal axis and the field of view pointing vertically downwards to the ground, scanning a vertical plane with the potential presence of vegetation. Immediately after the LIDAR data acquisition (distances and reflection measurements), actual heights of plants were estimated using an appropriate methodology. For that purpose, digital images were taken of each sampled area. Data showed a high correlation between LIDAR measured height and actual plant heights (R2 = 0.75). Binary logistic regression between weed presence/absence and the sensor readings (LIDAR height and reflection values) was used to validate the accuracy of the sensor. This permitted the discrimination of vegetation from the ground with an accuracy of up to 95%. In addition, a Canonical Discrimination Analysis (CDA) was able to discriminate mostly between soil and vegetation and, to a far lesser extent, between crop and weeds. The studied methodology arises as a good system for weed detection, which in combination with other principles, such as vision-based technologies, could improve the efficiency and accuracy of herbicide spraying.

  7. Implementation of a multi-modal mobile sensor system for surface and subsurface assessment of roadways

    Science.gov (United States)

    Wang, Ming; Birken, Ralf; Shahini Shamsabadi, Salar

    2015-03-01

    There are more than 4 million miles of roads and 600,000 bridges in the United States alone. On-going investments are required to maintain the physical and operational quality of these assets to ensure public's safety and prosperity of the economy. Planning efficient maintenance and repair (M&R) operations must be armed with a meticulous pavement inspection method that is non-disruptive, is affordable and requires minimum manual effort. The Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project developed a technology able to cost- effectively monitor the condition of roadway systems to plan for the right repairs, in the right place, at the right time. VOTERS technology consists of an affordable, lightweight package of multi-modal sensor systems including acoustic, optical, electromagnetic, and GPS sensors. Vehicles outfitted with this technology would be capable of collecting information on a variety of pavement-related characteristics at both surface and subsurface levels as they are driven. By correlating the sensors' outputs with the positioning data collected in tight time synchronization, a GIS-based control center attaches a spatial component to all the sensors' measurements and delivers multiple ratings of the pavement every meter. These spatially indexed ratings are then leveraged by VOTERS decision making modules to plan the optimum M&R operations and predict the future budget needs. In 2014, VOTERS inspection results were validated by comparing them to the outputs of recent professionally done condition surveys of a local engineering firm for 300 miles of Massachusetts roads. Success of the VOTERS project portrays rapid, intelligent, and comprehensive evaluation of tomorrow's transportation infrastructure to increase public's safety, vitalize the economy, and deter catastrophic failures.

  8. Sublethal exposure to methoxyfenozide-treated surfaces reduces the attractiveness and responsiveness in adult oriental fruit moth (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Reinke, Michael D; Barrett, Bruce A

    2007-02-01

    The chemical communication (female attractiveness and male responsiveness) of adult oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), exposed to surfaces treated with the ecdysteroid agonist methoxyfenozide for 48 h were investigated in two laboratory wind tunnel assays. The recapture assay examined the ability of treated males to orient to a single cage of treated females, and the data gathered were mean percentage of males recaptured per treatment. The male sexual behavior assay examined some specific orientation behaviors (associated with sexual excitability) of treated males when they were given a choice of two competing pheromone sources (cages of treated females), and the data gathered were mean time males spent in upwind plume orientations and at source contact (female cage) per treatment. Data from the recapture assay suggests that exposure to methoxyfenozide impacts male responsiveness more than female attractiveness. In contrast, data from the sexual behavior assay strongly revealed that exposure to methoxyfenozide-treated surfaces does negatively impact both the ability of calling females to attract males and of aroused males to display sustained upwind flight behavior and time spent at the female cages.

  9. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    Science.gov (United States)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  10. Tunnel junction sensors for HCI-surface measurements at low kinetic energies

    Science.gov (United States)

    Pomeroy, J. M.; Lake, R. E.

    2013-12-01

    In recent years, we have developed and deployed the capability to make and use tunnel junctions sensors (TJS) as extremely sensitive tools for the measurement of surface nanofeatures created by particle-surface interactions. The focus of our interest has been highly charged ion (HCI) produced nanofeatures, which we are able to produce in situ due to a direct vacuum connection to the NIST electron beam ion trap (EBIT). Using these sensors, we make systematic studies of the role of the charge state on the size of features created by HCIs and connect those measurements to the stopping power. Recently we have begun to study reduced velocities at a fixed charge state for which little previous theoretical or experimental work has been done. Due to many technical improvements that have been made to our methods, we offer a contemporary summary of the TJS fabrication and HCI irradiation method. Further, we present early experimental results showing increased surface damage when Xe41+ is extracted at ≈4.6 kV in comparison with ≈8.1 kV.

  11. Tunnel junction sensors for HCI-surface measurements at low kinetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, J.M., E-mail: joshua.pomeroy@nist.gov [National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899 (United States); Lake, R.E. [National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD 20899 (United States); Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2013-12-15

    In recent years, we have developed and deployed the capability to make and use tunnel junctions sensors (TJS) as extremely sensitive tools for the measurement of surface nanofeatures created by particle-surface interactions. The focus of our interest has been highly charged ion (HCI) produced nanofeatures, which we are able to produce in situ due to a direct vacuum connection to the NIST electron beam ion trap (EBIT). Using these sensors, we make systematic studies of the role of the charge state on the size of features created by HCIs and connect those measurements to the stopping power. Recently we have begun to study reduced velocities at a fixed charge state for which little previous theoretical or experimental work has been done. Due to many technical improvements that have been made to our methods, we offer a contemporary summary of the TJS fabrication and HCI irradiation method. Further, we present early experimental results showing increased surface damage when Xe{sup 41+} is extracted at ≈4.6 kV in comparison with ≈8.1 kV.

  12. Tunnel junction sensors for HCI-surface measurements at low kinetic energies

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Lake, R.E.

    2013-01-01

    In recent years, we have developed and deployed the capability to make and use tunnel junctions sensors (TJS) as extremely sensitive tools for the measurement of surface nanofeatures created by particle-surface interactions. The focus of our interest has been highly charged ion (HCI) produced nanofeatures, which we are able to produce in situ due to a direct vacuum connection to the NIST electron beam ion trap (EBIT). Using these sensors, we make systematic studies of the role of the charge state on the size of features created by HCIs and connect those measurements to the stopping power. Recently we have begun to study reduced velocities at a fixed charge state for which little previous theoretical or experimental work has been done. Due to many technical improvements that have been made to our methods, we offer a contemporary summary of the TJS fabrication and HCI irradiation method. Further, we present early experimental results showing increased surface damage when Xe 41+ is extracted at ≈4.6 kV in comparison with ≈8.1 kV

  13. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  14. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  15. Modelling of the surface plasmon resonance waveguide sensor with Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří; Abdelmalek, F.; Ecke, W.; Usbeck, K.

    1999-01-01

    Roč. 31, 9/10 (1999), s. 927-941 ISSN 0306-8919. [Optical waveguide theory and numerical modelling. Hagen, 18.09.1998-19.09.1998] R&D Projects: GA ČR GA102/96/1561 Grant - others:EU COST(XE) OC 240.10; EU COST(XE) OC 268.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : Bragg gratings * optical waveguide theory * surface plasmon resonance * optical sensors * optical waveguides Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.876, year: 1999

  16. Smart Sensor Based Obstacle Detection for High-Speed Unmanned Surface Vehicle

    DEFF Research Database (Denmark)

    Hermann, Dan; Galeazzi, Roberto; Andersen, Jens Christian

    2015-01-01

    This paper describes an obstacle detection system for a high-speed and agile unmanned surface vehicle (USV), running at speeds up to 30 m/s. The aim is a real-time and high performance obstacle detection system using both radar and vision technologies to detect obstacles within a range of 175 m....... A computer vision horizon detector enables a highly accurate attitude estimation despite large and sudden vehicle accelerations. This further facilitates the reduction of sea clutter by utilising a attitude based statistical measure. Full scale sea trials show a significant increase in obstacle tracking...... performance using sensor fusion of radar and computer vision....

  17. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-02-01

    Full Text Available A new surface acoustic wave (SAW-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s−1 and good linearity were observed.

  18. Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome

    Science.gov (United States)

    Jin, Hao; Tao, Xiang; Dong, Shurong; Qin, Yiheng; Yu, Liyang; Luo, Jikui; Deen, M. Jamal

    2017-11-01

    Obstructive sleep apnea syndrome (OSAS) has received much attention in recent years due to its significant harm to human health and high morbidity rate. A respiration monitoring system is needed to detect OSAS, so that the patient can receive treatment in a timely manner. Wired and wireless OSAS monitoring systems have been developed, but they require a wire connection and batteries to operate, and they are bulky, heavy and not user-friendly. In this paper, we propose the use of a flexible surface acoustic wave (SAW) microsensor to detect and monitor OSAS by measuring the humidity change associated with the respiration of a person. SAW sensors on rigid 128° YX LiNbO3 substrate are also characterized for this application. Results show both types of SAW sensors are suitable for OSAS monitoring with good sensitivity, repeatability and reliability, and the response time and recovery time for the flexible SAW sensors are 1.125 and 0.75 s, respectively. Our work demonstrates the potential for an innovative flexible microsensor for the detection and monitoring of OSAS.

  19. Re-thinking surface enhance Raman spectroscopy (SERS) sensors with a systems perspective

    Science.gov (United States)

    White, Ian M.

    2017-02-01

    While surface enhanced Raman spectroscopy (SERS) may not compete with the standard central lab approaches for chemical and biological sensing, SERS may have the potential to provide unique capabilities for analytics away from the central lab. Raman spectrometers have evolved from benchtop systems to high-performing handheld instruments that are compatible with analysis of samples in the field. However, for SERS to truly succeed as a "point-of-sample" analytical technique, the SERS sensor must fit the needs of analysis in the field, including little or no sample preparation, minimal peripheral equipment, and ease of use. Traditional plasmonically-active rigid devices do not meet these requirements. Even microfluidic SERS devices generally are not compatible with point-of-sample analysis, as the "world-to-chip" interface presents challenges, and peripheral equipment is generally required. In this review we will discuss the advances in plasmonic substrates fabricated on porous membranes, leading to SERS sensors that can collect samples via swabbing or dipping, clean up samples through separation, concentrate analytes by lateral flow focusing, and avoid the need for peripheral equipment. In particular, we will focus on inkjet-fabricated devices, which may present the best opportunity for scale-up via roll-to-roll manufacturing. We will also discuss the directions that flexible SERS sensors are moving the field, such as simple fabrication techniques, new support materials, SERS swabs, and SERS-active tapes and films.

  20. The sensitivity of surface polaritons in LHM-antiferromagnetic waveguide sensors

    Energy Technology Data Exchange (ETDEWEB)

    El-Khozondar, Hala J., E-mail: hkhozondar@iugaza.edu [Electrical Engineering Department, Islamic University, P.O.Box 108, Gaza, Palestine (Country Unknown); Al-Sahhar, Zeyad I., E-mail: z_alsahhar@yahoo.com [Physics Department, Al-Aqsa University, Gaza, Palestine (Country Unknown); Shabat, Mohamad M., E-mail: shabat@iugaza.edu.ps [Physics Department, Islamic University, Gaza, Palestine (Country Unknown)

    2014-11-15

    A three-layer waveguide structure sensor consisting of LHMs film surrounded by dielectric cladding and antiferromagnetic substrate is proposed. Left-handed materials (LHMs) known as Metamaterials (MTMs) have simultaneous negative permeability and permittivity. The dispersion relation for the structure is derived for TE modes only. The sensitivity is calculated for surface waves at the interface between LHM film and dielectric layer. Two ranges of frequencies are chosen such that the Voigt permeability, μ{sub v}, is either negative or positive. The sensitivity is proven to be affected by different parameters including the film thickness, LHM parameters, and Voigt permittivity. The results show that the proposed structure is sensitive to small changes in the cladding indicating that the structure is working as a sensor with high sensitivity. The parameters at which maximum sensitivity occur are obtained. - Highlights: • The homogenous sensitivity is used to measure the sensitivity of the structure. • Sensitivity changes as the value of Voigt permittivity, μ{sub v}, changes sign. • The sensitivity is affected by the film thickness and the LHM parameters. • The three-layered sensor has high sensitivity and compact structure. • The parameters at which we achieved maximum sensitivity are obtained.

  1. Single-molecule characterization and engineering of the surfaces of nucleic acid sensors

    Science.gov (United States)

    Josephs, Eric Alan

    The advent of personalized medicine will require biosensors capable of reliably detecting small levels of disease biomarkers. In microarrays and sensors for nucleic acids, hybridization events between surface-tethered DNA probes and the nucleic acids of interest (targets) are transduced into a detectable signal. However, target-binding ultimately occurs as a result of molecular motions and interactions between the probe and target at the nanometer scale, and common characterization methods either lack the resolution to characterize the sensors at this scale or provide only limited information about their interactions with their nanoscale chemical environment. In this dissertation I argue that an impediment to the development of more reliable and practical biosensors is the lack of knowledge and control of the nanometer length-scale structure of biosensor surfaces, which has a profound impact on molecular recognition and reactions for detection. After reviewing the fundamental surface chemistry and structural motifs of biosensors in Chapter 1, in Chapter 2 I use electrochemical atomic force microscopy (EC-AFM) to characterize in situ a common class of model nucleic acid sensors---thiolated DNA attached to a gold electrode which has been passivated by an alkanethiol self-assembled monolayer---with single-molecule resolution. This level of detail allows me to observe both the conformations of individual probes and their spatial distribution at the nanoscale, then determine how these are affected by assembly conditions, probe structure, and interactions with co-adsorbates. I also determine how these nanoscale details affect the dynamic response of probes to electric fields, which have been commonly used in sensing schemes, and ultimately the ability of the surface-tethered probes to bind with target nucleic acids. In Chapter 3, I demonstrate and optimize the nanoscale patterning of individual DNA molecules into isolated, chemically well-defined niches on the surface

  2. Using miniature sensor coils for simultaneous measurement of orientation and position of small, fast-moving animals

    NARCIS (Netherlands)

    Schilstra, C.; Hateren, J.H. van

    1998-01-01

    A system is described that measures, with a sampling frequency of 1 kHz, the orientation and position of a blowfly (Calliphora vicina) flying in a volume of 0.4 x 0.4 x 0.4 m(3). Orientation is measured with a typical accuracy of 0.5 degrees, and position with a typical accuracy of 1 mm. This is

  3. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements

    DEFF Research Database (Denmark)

    Svec, Oldrich; Zirgulis, Giedrius; Bolander, John E.

    2014-01-01

    The influences of formwork surface on the final orientation of steel fibres immersed in self-compacting concrete and on the resulting mechanical response of the cast structural elements are investigated. Experimental observations of fibre orientation within cast slabs, obtained via computed...... tomography, indicate that fibres tend to orient according to the flow patterns during casting, but such tendencies are suppressed near rough formwork surfaces. Fibre orientation, in turn, affects the mechanical properties of the concrete as demonstrated by the load testing of beams extracted from the cast...... and the mechanical response of the structural elements. (C) 2013 Elsevier Ltd. All rights reserved....

  4. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    Science.gov (United States)

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Evidence of Giant Surface Flexoelectric Field in (111) Oriented BiFeO3 Thin Film.

    Science.gov (United States)

    Yang, Tieying; Zhang, Xingmin; Chen, Bin; Guo, Haizhong; Jin, Kuijuan; Wu, Xiaoshan; Gao, Xingyu; Li, Zhong; Wang, Can; Li, Xiaolong

    2017-02-15

    In this work, the surface structure of a single-domain epitaxial BiFeO 3 film with (111) orientation was investigated by in situ grazing incidence X-ray diffraction and X-ray reflectivity. We found that a large strain gradient exists in the surface region (2-3 nm) of the BiFeO 3 film. The strain gradient is approximately 10 7 m -1 , which is 2 or 3 orders of magnitude larger than the value inside the film. Moreover, we found that a surface layer with a lower electron density compared with the underlying BiFeO 3 layer exists on the surface of BiFeO 3 film, and this layer exhibits an irreversible surface structure transition occurs at 500 K, which should be associated with the surface flexoelectric field. We considered that this large strain gradient is originated from the surface depolarization field of ferroelectrics. Our results suggest a coupling between the surface structure and the flexoelectricity and imply that the surface layer and properties would be controlled by the strain gradient in ferroelectric films.

  6. Surface Electromyographic Sensor for Human Motion Estimation Based on Arm Wrestling Robot

    Directory of Open Access Journals (Sweden)

    Zhen GAO

    2010-06-01

    Full Text Available In this paper, the surface electromyographic (EMG sensor is developed to acquire the EMG signals from the upper limb when the participants compete with the arm wrestling robot (AWR which is fabricated to play arm wrestling game with human on a table with pegs for entertainment and human motion modeling of upper limbs muscle. As the EMG signal is a measurement of the anatomical and physiological characteristic of the specific muscle, the macroscopical movement patterns of the human body can be classified and recognized. The high-frequency noises are eliminated effectively and the characteristics of EMG signals can be extracted through wavelet packet transformation. Auto-regressive model of EMG is conducted to effectively simulate the stochastic time sequences with a series of auto-regressive coefficients. The win/lose pattern is recognized by neural network based on extracted characteristics of surface EMG signal.

  7. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  8. A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance

    Science.gov (United States)

    Kustanovich, K.; Yantchev, V.; Kirejev, V.; Jeffries, G. D. M.; Lobovkina, T.; Jesorka, A.

    2017-11-01

    We demonstrate herein a new concept for lab-on-a-chip in-liquid sensing, through integration of surface acoustic wave resonance (SAR) in a one-port configuration with a soft polymer microfluidic delivery system. In this concept, the reflective gratings of a one-port surface acoustic wave (SAW) resonator are employed as mass loading-sensing elements, while the SAW transducer is protected from the measurement environment. We describe the design, fabrication, implementation, and characterization using liquid medium. The sensor operates at a frequency of 185 MHz and has demonstrated a comparable sensitivity to other SAW in-liquid sensors, while offering quality factor (Q) value in water of about 250, low impedance and fairly low susceptibility to viscous damping. For proof of principle, sensing performance was evaluated by means of binding 40 nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer deposited over the reflectors. Frequency shifts were determined for every step of the affinity assay. Demonstration of this integrated technology highlights the potential of SAR technology for in-liquid sensing.

  9. Manual matching of perceived surface orientation is affected by arm posture–Evidence of calibration between proprioception and visual experience in near space

    Science.gov (United States)

    Li, Zhi; Durgin, Frank H.

    2011-01-01

    Proprioception of hand orientation (orientation production using the hand) is compared with manual matching of visual orientation (visual surface matching using the hand) in two experiments. In Experiment 1, using self-selected arm postures, the proportions of wrist and elbow flexion spontaneously used to orient the pitch of the hand (20% and 80% respectively) are relatively similar across both manual matching tasks and manual orientation production tasks for most participants. Proprioceptive error closely matched perceptual biases previously reported for visual orientation perception, suggesting calibration of proprioception to visual biases. A minority of participants, who attempted to use primarily wrist flexion while holding the forearm horizontal, performed poorly at the manual matching task, consistent with proprioceptive error caused by biomechanical constraints of their self-selected posture. In Experiment 2, postural choices were constrained to primarily wrist or elbow flexion without imposing biomechanical constraints (using a raised forearm). Identical relative offsets were found between the two constraint groups in manual matching and manual orientation production. The results support two claims: (1) manual orientation matching to visual surfaces is based on manual proprioception and (2) calibration between visual and proprioceptive experiences guarantees relatively accurate manual matching for surfaces within reach despite systematic visual biases in perceived surface orientation. PMID:22086494

  10. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface

    International Nuclear Information System (INIS)

    Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Okushi, Hideyo

    2007-01-01

    The properties of phosphorus incorporation for n-type doping of diamond are discussed and summarized. Doping of (0 0 1)-oriented diamond is introduced and compared with results achieved on (1 1 1) diamond. This review describes detailed procedures and conditions of plasma-enhanced chemical vapour deposition (CVD) growth and characteristics of electrical properties of phosphorus-doped diamond. The phosphorus incorporation was characterized by SIMS analysis including mapping. n-type conductivity is evaluated by Hall-effect measurements over a temperature regime of 300-1000 K. The crystal perfection of (0 0 1)-oriented n-type diamond is also evaluated by x-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction and cathodoluminescence analyses. The results show that phosphorus atoms are incorporated into the diamond network during (0 0 1) CVD diamond growth and that phosphorus acts as a donor as in (1 1 1)-oriented diamond. This result eliminates the restriction on substrate orientation, which had previously created a bottleneck in the development of diamond electronic devices. (review article)

  11. A surface acoustic wave humidity sensor with high sensitivity based on electrospun MWCNT/Nafion nanofiber films

    International Nuclear Information System (INIS)

    Lei Sheng; Chen Dajing; Chen Yuquan

    2011-01-01

    Humidity detection has been widely used in a variety of fields. A humidity sensor with high sensitivity is reported in this paper. A surface acoustic wave resonator (SAWR) with high resonance frequency was fabricated as a basic sensitive component. Various nanotechnologies were used to improve the sensor's performance. A multi-walled carbon nanotube/Nafion (MWCNT/Nafion) composite material was prepared as humidity-sensitive films, deposited on the surface of an SAWR by the electrospinning method. The electrospun MWCNT/Nafion nanofiber films showed a three-dimensional (3D) porous structure, which was profitable for improving the sensor's performance. The new nano-water-channel model of Nafion was also applied in the humidity sensing process. Compared to other research, the present sensor showed excellent sensitivity (above 400 kHz/% relative humidity (RH) in the range from 10% RH to 80% RH), good linearity (R 2 > 0.98) and a short response time (∼3 s-63%).

  12. Measurement of temperature and pressure on the surface of a blunt cone using FBG sensor in hypersonic wind tunnel

    International Nuclear Information System (INIS)

    Guru Prasad, A S; Sharath, U; Asokan, S; Nagarjun, V; Hegde, G M

    2013-01-01

    Measurement of temperature and pressure exerted on the leeward surface of a blunt cone specimen has been demonstrated in the present work in a hypersonic wind tunnel using fiber Bragg grating (FBG) sensors. The experiments were conducted on a 30° apex-angle blunt cone with 51 mm base diameter at wind flow speeds of Mach 6.5 and 8.35 in a 300 mm hypersonic wind tunnel of Indian Institute of Science, Bangalore. A special pressure insensitive temperature sensor probe along with the conventional bare FBG sensors was used for explicit temperature and aerodynamic pressure measurement respectively on the leeward surface of the specimen. computational fluid dynamics (CFD) simulation of the flow field around the blunt cone specimen has also been carried out to obtain the temperature and pressure at conditions analogous to experiments. The results obtained from FBG sensors and the CFD simulations are found to be in good agreement with each other. (paper)

  13. Modeling of magnetic fields on a cylindrical surface and associated parameter estimation for development of a size sensor

    International Nuclear Information System (INIS)

    Zhang, Song; Rajamani, Rajesh

    2016-01-01

    This paper develops analytical sensing principles for estimation of circumferential size of a cylindrical surface using magnetic sensors. An electromagnet and magnetic sensors are used on a wearable band for measurement of leg size. In order to enable robust size estimation during rough real-world use of the wearable band, three estimation algorithms are developed based on models of the magnetic field variation over a cylindrical surface. The magnetic field models developed include those for a dipole and for a uniformly magnetized cylinder. The estimation algorithms used include a linear regression equation, an extended Kalman filter and an unscented Kalman filter. Experimental laboratory tests show that the size sensor in general performs accurately, yielding sub-millimeter estimation errors. The unscented Kalman filter yields the best performance that is robust to bias and misalignment errors. The size sensor developed herein can be used for monitoring swelling due to fluid accumulation in the lower leg and a number of other biomedical applications. (paper)

  14. Dynamical Orientation of Large Molecules on Oxide Surfaces and its Implications for Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-12

    A dual experimental-computational approach utilizing near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory-molecular dynamics (DFT-MD) is presented for determining the orientation of a large adsorbate on an oxide substrate. A system of interest in the field of dye-sensitized solar cells is studied: an organic cyanoacrylic acid-based donor-π-acceptor dye (WN1) bound to anatase TiO2. Assessment of nitrogen K-edge NEXAFS spectra is supported by calculations of the electronic structure that indicate energetically discrete transitions associated with the two π systems of the C-N triple bond in the cyanoacrylic acid portion of the dye. Angle-resolved NEXAFS spectra are fitted to determine the orientation of these two orbital systems, and the results indicate an upright orientation of the adsorbed dye, 63 from the TiO2 surface plane. These experimental results are then compared to computational studies of the WN1 dye on an anatase (101) TiO2 slab. The ground state structure obtained from standard DFT optimization is less upright (45 from the surface) than the NEXAFS results. However, DFT-MD simulations, which provide a more realistic depiction of the dye at room temperature, exhibit excellent agreement - within 2 on average - with the angles determined via NEXAFS, demonstrating the importance of accounting for the dynamic nature of adsorbate-substrate interactions and DFT-MD\\'s powerful predictive abilities. © 2013 American Chemical Society.

  15. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  16. Global Sea Surface Temperature: A Harmonized Multi-sensor Time-series from Satellite Observations

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    This paper presents the methods used to obtain a new global sea surface temperature (SST) dataset spanning the early 1980s to the present, intended for use as a climate data record (CDR). The dataset provides skin SST (the fundamental measurement) and an estimate of the daily mean SST at depths compatible with drifting buoys (adjusting for skin and diurnal variability). The depth SST provided enables the CDR to be used with in situ records and centennial-scale SST reconstructions. The new SST timeseries is as independent as possible from in situ observations, and from 1995 onwards is harmonized to an independent satellite reference (namely, SSTs from the Advanced Along Track Scanning Radiometer (Advanced ATSR)). This maximizes the utility of our new estimates of variability and long-term trends in interrogating previous datasets tied to in situ observations. The new SSTs include full resolution (swath, level 2) data, single-sensor gridded data (level 3, 0.05 degree latitude-longitude grid) and a multi-sensor optimal analysis (level 4, same grid). All product levels are consistent. All SSTs have validated uncertainty estimates attached. The sensors used include all Advanced Very High Resolution Radiometers from NOAA-6 onwards and the ATSR series. AVHRR brightness temperatures (BTs) are calculated from counts using a new in-flight re-calibration for each sensor, ultimately linked through to the AATSR BT calibration by a new harmonization technique. Artefacts in AVHRR BTs linked to varying instrument temperature, orbital regime and solar contamination are significantly reduced. These improvements in the AVHRR BTs (level 1) translate into improved cloud detection and SST (level 2). For cloud detection, we use a Bayesian approach for all sensors. For the ATSRs, SSTs are derived with sufficient accuracy and sensitivity using dual-view coefficients. This is not the case for single-view AVHRR observations, for which a physically based retrieval is employed, using a hybrid

  17. Experimental and modelling study of the effect of airflow orientation with respect to strip electrode on ozone production of surface dielectric barrier discharge

    Science.gov (United States)

    Mikeš, J.; Pekárek, S.; Soukup, I.

    2016-11-01

    This study examines the effect of airflow orientation with respect to the strip active electrode on concentration of ozone and nitrogen dioxide produced in a planar generator based on the surface dielectric barrier discharge. The orientation of the airflow was tested in parallel and perpendicular with respect to the strips. It was found that in the investigated range of average discharge power, the ozone concentration increases approximately by 25% when airflow was oriented in parallel with respect to the strips in comparison with perpendicular orientation of the airflow. Similarly the increase of nitrogen dioxide concentration was observed for parallel orientation of the airflow with respect to the strips in comparison with the perpendicular orientation of the airflow. Within the range of wavelengths from 250 to 1100 nm, the changes of intensities of spectral lines associated with airflow orientation have been observed. A 3D numerical model describing ion trajectories and airflow patterns have also been developed.

  18. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers

    International Nuclear Information System (INIS)

    Lin Qianqian; Li Yang; Yang Mujie

    2012-01-01

    Highlights: ► Polyanline/poly(vinyl butyral) nanofibers are prepared by electrospinning. ► Nanofiber-based SAW humidity sensor show high sensitivity and ultrafast response. ► The SAW sensor can detect very low humidity. - Abstract: Polyaniline (PANi) composite nanofibers were deposited on surface acoustic wave (SAW) resonator with a central frequency of 433 MHz to construct humidity sensors. Electrospun nanofibers of poly(methyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(vinylidene fluoride), poly(vinyl butyral) (PVB) were characterized by scanning electron microscopy, and humidity response of corresponding SAW humidity sensors were investigated. The results indicated that PVB was suitable as a matrix to form nanofibers with PANi by electrospinning (ES). Electrospun PANi/PVB nanofibers exhibited a core–sheath structure as revealed by transmittance electron microscopy. Effects of ES collection time on humidity response of SAW sensor based on PANi/PVB nanofibers were examined at room temperature. The composite nanofiber sensor exhibited very high sensitivity of ∼75 kHz/%RH from 20 to 90%RH, ultrafast response (1 s and 2 s for humidification and desiccation, respectively) and good sensing linearity. Furthermore, the sensor could detect humidity as low as 0.5%RH, suggesting its potentials for low humidity detection. Attempts were done to explain the attractive humidity sensing performance of the sensor by considering conductivity, hydrophilicity, viscoelasticity and morphology of the polymer composite nanofibers.

  19. Highly Oriented Nanowire Thin Films with Anisotropic Optical Properties Driven by the Simultaneous Influence of Surface Templating and Shear Forces.

    Science.gov (United States)

    Probst, Patrick T; Sekar, Sribharani; König, Tobias A F; Formanek, Petr; Decher, Gero; Fery, Andreas; Pauly, Matthias

    2018-01-24

    The functional properties of nanoparticle thin films depend strongly on the arrangement of the nanoparticles within the material. In particular, anisotropic optoelectronic properties can be achieved through the aligned assembly of 1D nanomaterials such as silver nanowires (AgNWs). However, the control of the hierarchical organization of these nanoscale building blocks across multiple length scales and over large areas is still a challenge. Here, we show that the oriented deposition of AgNWs using grazing incidence spraying of the nano-object suspensions on a substrate comprising parallel surface wrinkles readily produces highly oriented monolayer thin films on macroscopic areas (>5 × 5 mm 2 ). The use of textured substrates enhances the degree of ordering as compared to flat ones and increases the area over which AgNWs are oriented. The resulting microscopic linear arrangement of AgNWs evaluated by scanning electron microscopy (SEM) reflects in a pronounced macroscopic optical anisotropy measured by conventional polarized UV-vis-NIR spectroscopy. The enhanced ordering obtained when spraying is done in the same direction as the wrinkles makes this approach more robust against small rotational offsets during preparation. On the contrary, the templating effect of the wrinkle topography can even dominate the shear-driven alignment when spraying is performed perpendicular to the wrinkles: the concomitant but opposing influence of topographic confinement (alignment along the wrinkles) and of spray-induced shear forces (orientation along the spraying direction) lead to films in which the predominant orientation of AgNWs gradually changes from one direction to its perpendicular one over the same substrate in a single processing step. This demonstrates that exploiting the subtle balance between shear forces and substrate-nanowire interactions mediated by wrinkles offers a new way to control the self-assembly of nanoparticles into more complex patterns.

  20. Adaptive Wireless Ad-hoc Sensor Networks for Long-term and Event-oriented Environmental Monitoring

    Science.gov (United States)

    Bumberger, Jan; Mollenhauer, Hannes; Remmler, Paul; Chirila, Andrei Marian; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter

    2016-04-01

    Ecosystems are often characterized by their high heterogeneity, complexity and dynamic. Hence, single point measurements are often not sufficient for their complete representation. The application of wireless sensor networks in terrestrial and aquatic environmental systems offer significant benefits as a better consideration to the local test conditions, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate. Another advantage of wireless ad-hoc sensor networks is their self-organizing behavior, resulting in a major reduction in installation and operation costs and time. In addition, individual point measurements with a sensor are significantly improved by measuring at several points continuously. In this work a concept and realization for Long-term ecosystem research is given in the field monitoring of micrometeorology and soil parameters for the interaction of biotic and abiotic processes. This long term analyses are part of the Global Change Experimental Facility (GCEF), a large field-based experimental platform to assess the effects of climate change on ecosystem functions and processes under different land-use scenarios. Regarding to the adaptive behavior of the network, also a mobile version was developed to overcome the lack of information of temporally and spatially fixed measurements for the detection and recording of highly dynamic or time limited processes. First results of different field campaigns are given to present the potentials and limitations of this application in environmental science, especially for the monitoring of the interaction of biotic and abiotic processes, soil-atmosphere interaction and the validation of remote sensing data.

  1. Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties

    Directory of Open Access Journals (Sweden)

    Liang BL

    2007-01-01

    Full Text Available AbstractInAs/GaAs heterostructures have been simultaneously grown by molecular beam epitaxy on GaAs (100, GaAs (100 with a 2° misorientation angle towards [01−1], and GaAs (n11B (n = 9, 7, 5 substrates. While the substrate misorientation angle increased from 0° to 15.8°, a clear evolution from quantum dots to quantum well was evident by the surface morphology, the photoluminescence, and the time-resolved photoluminescence, respectively. This evolution revealed an increased critical thickness and a delayed formation of InAs quantum dots as the surface orientation departed from GaAs (100, which was explained by the thermal-equilibrium model due to the less efficient of strain relaxation on misoriented substrate surfaces.

  2. Surface Modification for Controlling the Orientation of Block Copolymers in thin film and in Cylindrical Nanopores

    Science.gov (United States)

    Lin, Xin-Guan; Lin, Feng-Cheng; Tung, Shih-Huang

    2012-02-01

    A series of benzocyclobutene-functionalized random copolymers of styrene and 4-vinylpyridine were synthesized by nitroxide-mediated controlled radical polymerization with BPO and TEMPO. Our research was to use these random copolymers of P(S-r-BCB-r-4VP) to control the orientation of microdomains in block copolymers(BCPs) of poly(styrene-b-4-vinylpyridine)(PS-b-P4VP) thin films and in cylindrical nanopores of anodized aluminum oxide (AAO) membranes. On P(S-r-BCB-r-4VP)-modified substrate,we found that in some particular compositions of random copolymer ,the parallel orientation of the microdomains is switched to be perpendicular in PS-b-P4VP thin film. We also introduced P(S-r-BCB-r-4VP) solution into the nanopores of the AAO and nanotubes formed after solvent evaporation and pyrolysis. And then BCPs of PS-b-P4VP were drawn into the P(S-r-BCB-r-4VP)-modified nanopores in the melt via capillary action to form P(S-r-BCB-r-4VP) coated nanorods of PS-b-P4VP.Similarly,in some particular compositions of random copolymer, we observed that the interactions of the blocks with the walls are not strong or if the interactions are balanced, then the orientation of the microdomains will change from being parallel to being perpendicular to the confining walls.

  3. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2013-11-01

    Prism modules of 20 nm-, 40 nm-, and 60 nm-thick spin-coated silver films both without and with an upper 100 nm-thick spin-coated polymer layer were fabricated for surface plasmon resonance (SPR) image sensor applications. The prism modules were applied to an SPR image sensor system. The coefficients of determination (R2s) for the 20 nm-, 40 nm- and 60 nm-thick silver films without the polymer layer were 0.9231, 0.9901, and 0.9889, respectively, and with the polymer layer 0.9228, 0.9951, and 0.9880, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The upper polymer layer has no effect on the R2. The prism modules of the 40-nm-thick spin-coated silver films had the highest R2 value of approximately 0.99. The durability of the 40 nm-thick spin-coated silver film with the 100 nm-thick polymer layer is much better than that without the upper low-loss polymer layer. The developed SPR image sensor module of the 40 nm-thick spin-coated silver film with the upper 100 nm-thick low-loss polymer film is expected to be a very cost-effective and robust solution because the films are formed at low temperatures in a short period of time without requiring a vacuum system and are very durable.

  4. Evaluation of surface smoothness by a laser displacement sensor II: comparison of lateral effect photodiode and multielement array

    International Nuclear Information System (INIS)

    Sandak, J.; Tanaka, C.; Ohtani, T.

    2004-01-01

    Development of accurate surface assessment technology is of vital interest to modern wood industries. In this experiment we investigated new and fast noncontacting sensors to determine their usefulness for wood surface evaluation and to verify their accuracy. Two types of laser displacement sensors [equipped with a position sensitive detector (PSD) and a charge coupled device (CCD) detector] are compared with a conventional stylus and with theoretical profiles. Hornbeam workpieces with triangular profiles of differing slope and height were used for the evaluation. The results show that resolution of both sensors decreases as the height of the profile decreases. The error ratio of the laser-scanned profiles changes as a function of profile height, in the range 5%–33%. The CCD method is superior for accurate surface roughness evaluation, although the PSD approach can still be used for monitoring the error of form in most applications

  5. Bacteriophage T4 Nanoparticles as Materials in Sensor Applications: Variables That Influence Their Organization and Assembly on Surfaces

    Directory of Open Access Journals (Sweden)

    Jinny L. Liu

    2009-08-01

    Full Text Available Bacteriophage T4 nanoparticles possess characteristics that make them ideal candidates as materials for sensors, particularly as sensor probes. Their surface can be modified, either through genetic engineering or direct chemical conjugation to display functional moieties such as antibodies or other proteins to recognize a specific target. However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to understand and control the variables that determine their assembly and organization on a surface. The aim of this work is to discuss some of variables that we have identified as influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, substrate characteristics, nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy (AFM.

  6. Integration of surface electromyographic sensors with the transfemoral amputee socket: a comparison of four differing configurations.

    Science.gov (United States)

    Hefferman, Gerald M; Zhang, Fan; Nunnery, Michael J; Huang, He

    2015-04-01

    In recent years, there has been an increased interest in recording high-quality electromyographic signals from within the sockets of lower-limb amputees. However, successful recording presents major challenges to both researchers and clinicians. This article details and compares four prototypical integrated socket-sensor designs used to record electromyographic signals from within the sockets of transfemoral amputees. Four prototypical socket-sensor configurations were constructed and tested on a single transfemoral amputee asked to perform sitting/standing, stair ascent/descent, and level ground walking. The number of large-amplitude motion artifacts generated using each prototype was quantified, the amount of skin irritation documented, and the comfort level of each assembly subjectively assessed by the amputee subject. Of the four configurations tested, the combination of a suction socket with integrated wireless surface electrodes generated the lowest number of large-amplitude motion artifacts, the least visible skin irritation, and was judged to be most comfortable by the amputee subject. The collection of high-quality electromyographic signals from an amputee's residual limb while maximizing patient comfort holds substantial potential to enhance neuromuscular clinical assessment and as a method of intuitive control of powered lower-limb prostheses. © The International Society for Prosthetics and Orthotics 2014.

  7. Two Dimensional Array of Piezoresistive Nanomechanical Membrane-Type Surface Stress Sensor (MSS with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    Nico F. de Rooij

    2012-11-01

    Full Text Available We present a new generation of piezoresistive nanomechanical Membrane-type Surface stress Sensor (MSS chips, which consist of a two dimensional array of MSS on a single chip. The implementation of several optimization techniques in the design and microfabrication improved the piezoresistive sensitivity by 3~4 times compared to the first generation MSS chip, resulting in a sensitivity about ~100 times better than a standard cantilever-type sensor and a few times better than optical read-out methods in terms of experimental signal-to-noise ratio. Since the integrated piezoresistive read-out of the MSS can meet practical requirements, such as compactness and not requiring bulky and expensive peripheral devices, the MSS is a promising transducer for nanomechanical sensing in the rapidly growing application fields in medicine, biology, security, and the environment. Specifically, its system compactness due to the integrated piezoresistive sensing makes the MSS concept attractive for the instruments used in mobile applications. In addition, the MSS can operate in opaque liquids, such as blood, where optical read-out techniques cannot be applied.

  8. Método para Medir Indirectamente la Velocidad de Fase en Sensores Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Leonardo Andrés Pérez

    2015-10-01

    Full Text Available El sensor de temperatura Surface Acoustic Wave (SAW ofrece amplias posibilidades para ser utilizado en ambientes hostiles. En teoría, las mediciones del SAW se pueden leer inalámbricamente sin integrar circuitos electrónicos en su estructura, permitiendo funcionalidades en mediciones a muy altas temperaturas. La literatura reporta que las variaciones de temperatura del SAW ocasionan corrimientos en su frecuencia de sincronismo, efecto que se atribuye a la sensibilidad térmica de la velocidad de fase del substrato piezoeléctrico. Caracterizar  apropiadamente el SAW requiere una buena medición de la velocidad de fase. No obstante, medir esta velocidad con respecto a la temperatura no es posible con la instrumentación actual. Este artículo reporta un método indirecto para medir estas variaciones de velocidad a través de  simulaciones basadas en el Modelo de Mason y mediciones de la respuesta en frecuencia de un prototipo SAW. Identificar la velocidad de fase del SAW conlleva a graficar, con aceptable precisión, la curva de funcionamiento del sensor, la cual puede utilizarse posteriormente como curva de calibración.

  9. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    Science.gov (United States)

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no

  10. Effect of surface roughness, chemical composition, and native oxide crystallinity on the orientation of self-assembled GaN nanowires on Ti foils

    Science.gov (United States)

    Calabrese, G.; Pettersen, S. V.; Pfüller, C.; Ramsteiner, M.; Grepstad, J. K.; Brandt, O.; Geelhaar, L.; Fernández-Garrido, S.

    2017-10-01

    We report on plasma-assisted molecular beam epitaxial growth of almost randomly oriented, uniformly tilted, and vertically aligned self-assembled GaN nanowires (NWs), respectively, on different types of polycrystalline Ti foils. The NW orientation with respect to the substrate normal, which is affected by an in situ treatment of the foil surface before NW growth, depends on the crystallinity of the native oxide. Direct growth on the as-received foils results in the formation of ensembles of nearly randomly oriented NWs due to the strong roughening of the surface induced by chemical reactions between the impinging elements and Ti. Surface nitridation preceding the NW growth is found to reduce this roughening by transformation of the uppermost layers into TiN and TiO x N y species. These compounds are more stable against chemical reactions and facilitate the growth of uniformly oriented GaN NW ensembles on the surface of the individual grains of the polycrystalline Ti foils. If an amorphous oxide layer is present at the foil surface, vertically oriented NWs are obtained all across the substrate because this layer blocks the transfering of the epitaxial information from the underlying grains. The control of NW orientation and the understanding behind the achievement of vertically oriented NWs obtained in this study represent an important step towards the realization of GaN NW-based bendable devices on polycrystalline metal foils.

  11. Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups.

    Science.gov (United States)

    Mouri, Makoto; Ikawa, Taiji; Narita, Mamiko; Hoshino, Fumihiko; Watanabe, Osamu

    2010-06-11

    In our photo-induced immobilization technique for an antibody (IgG) using azopolymers, the introduction of COOH and NMe(2) into the azopolymers, which can introduce surface charges, strongly affected the immobilization properties such as the efficiency of immobilization and the activity of the immobilized IgG (i.e., the orientation of the immobilized IgG). The introduction of COOH promoted a more active orientation of the immobilized IgG. The orientation was determined during the adsorption process onto the azopolymer surface in solution before photo-immobilization, and was maintained during the photo-immobilization. The surface charge of the azopolymer appears to be an important factor for IgG orientation, which involves electrostatic interactions between its Fab and the azopolymer surface.

  12. The detection of small organic molecules based on novel functionalized surface plasmon resonance sensors

    Science.gov (United States)

    Zheng, Rui; Cameron, Brent D.

    2010-02-01

    The objective of this study was to develop rapid, inexpensive, and easily applied in vivo phenotyping strategies for characterizing drug-metabolizing phenotypes with reference to the cytochrome P450 (CYP) enzymes in biological fluids. Therefore, the accurate detection of low concentration of theophylline, which can be used as a probe for cytochrome P450 (CYP450) enzymes (e.g. CYP1A2) activity, could benefit drug-metabolizing studies. In this study, a portable, specific, and sensitive functionalized surface plasmon resonance (SPR) sensor using polyacrylamide molecularly imprinted polymers (MIPs) as the highly specific selector is developed for the detection of low concentration theophylline in the presence of other confounding components, such as, caffeine which has a very similar chemical structure.

  13. Multi sensor validation and error characteristics of Arctic satellite sea surface temperature observations

    DEFF Research Database (Denmark)

    Høyer, Jacob L.; Karagali, Ioanna; Tonbo, Rasmus

    2012-01-01

    in the satellite products related to observation techniques, data processing and cloud masking. Temporal and spatial error scales are derived for all satellite products using the satellite versus in situ match-up dataset. Temporal error scales are typically between 1 and 2 days and the characteristic spatial error......Six of the operational global satellite sea surface temperature products from infrared and microwave sensors are validated in a consistent way in waters north of 60° N. The 15-month validation with drifting buoy in situ observations shows that data from the Advanced Along-Tracking Scanning...... Radiometer (AATSR) on-board the ENVISAT satellite and NAVOCEANO data from the Advanced Very High Resolution Radiometer (AVHRR) on-board the NOAA 18 satellite are superior in terms of bias and standard deviation. The observations from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) on-board the Aqua...

  14. Impact of MODIS Sensor Calibration Updates on Greenland Ice Sheet Surface Reflectance and Albedo Trends

    Science.gov (United States)

    Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco

    2017-01-01

    We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.

  15. Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends

    Science.gov (United States)

    Casey, Kimberly A.; Polashenski, Chris M.; Chen, Justin; Tedesco, Marco

    2017-08-01

    We evaluate Greenland Ice Sheet (GrIS) surface reflectance and albedo trends using the newly released Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) products over the period 2001-2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5). Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry) and elevation (i.e., 500-2000 m, 2000 m and greater) conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.

  16. Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends

    Directory of Open Access Journals (Sweden)

    K. A. Casey

    2017-08-01

    Full Text Available We evaluate Greenland Ice Sheet (GrIS surface reflectance and albedo trends using the newly released Collection 6 (C6 MODIS (Moderate Resolution Imaging Spectroradiometer products over the period 2001–2016. We find that the correction of MODIS sensor degradation provided in the new C6 data products reduces the magnitude of the surface reflectance and albedo decline trends obtained from previous MODIS data (i.e., Collection 5, C5. Collection 5 and 6 data product analysis over GrIS is characterized by surface (i.e., wet vs. dry and elevation (i.e., 500–2000 m, 2000 m and greater conditions over the summer season from 1 June to 31 August. Notably, the visible-wavelength declining reflectance trends identified in several bands of MODIS C5 data from previous studies are only slightly detected at reduced magnitude in the C6 versions over the dry snow area. Declining albedo in the wet snow and ice area remains over the MODIS record in the C6 product, albeit at a lower magnitude than obtained using C5 data. Further analyses of C6 spectral reflectance trends show both reflectance increases and decreases in select bands and regions, suggesting that several competing processes are contributing to Greenland Ice Sheet albedo change. Investigators using MODIS data for other ocean, atmosphere and/or land analyses are urged to consider similar re-examinations of trends previously established using C5 data.

  17. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors.

    Science.gov (United States)

    Fu, Qiangqiang; Liu, Hongwu Liu; Wu, Ze; Liu, An; Yao, Cuize; Li, Xiuqing; Xiao, Wei; Yu, Shiting; Luo, Zhi; Tang, Yong

    2015-11-14

    Immunochromatographic sensors (ICSs) are inexpensive, simple, portable, and robust, thus making ICSs commonplace in clinical diagnoses, food testing, and environmental monitoring. However, commonly used gold nanoparticles (AuNPs) ICSs have low sensitivity. Therefore, we developed highly sensitive surface enhanced Raman scattering (SERS) ICSs. To enhance the sensitivity of SERS ICSs, rough surface core-shell Au@Ag nanoparticles (RSAu@AgNPs) were prepared by coating silver on the surface of gold nanoflowers (AuNFs). Then these nanoparticles were used as SERS substrate in the SERS ICSs, after which the SERS ICSs were implemented to detect haemoglobin and heavy metal cadmium ion (Cd(2+)). The limit of detection (LOD) of the SERS ICSs for detecting haemoglobin was 8 ng/mL, and the linear range of the SERS ICSs was from 31.3 to 2000 ng/mL. The LOD of the SERS ICSs for detecting Cd(2+) was 0.05 ng/mL and the linear analysis range was from 0.05 to 25 ng/mL. The cross reactivity of the SERS ICSs was studied and results showed that the SERS ICSs exhibited highly specific for detection of haemoglobin and Cd(2+), respectively. The SERS ICSs were then used to detect haemoglobin (spiked in serum and in stool) and Cd(2+) (spiked in tap water, river water, and soil leaching water), and the results showed high recovery. These characteristics indicated that SERS ICSs were ideal tools for clinical diagnosis and environmental pollution monitoring.

  18. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle.

    Science.gov (United States)

    Miura, Ryotaro; Yoshioka, Koji; Miyamoto, Toru; Nogami, Hirofumi; Okada, Hironao; Itoh, Toshihiro

    2017-05-01

    In the present study, the ventral tail base surface temperature (ST) was monitored using a wearable wireless sensor for estrus detection in cattle. Relationships among ST, behavioral estrus expression, ovulation, and changes in hormone profiles during the estrous cycle were examined. Holstein Friesian or Japanese Black female cattle were used in summer (August-September), autumn (October-November) and winter (January-February; three animals per season). On Day 11 of the estrous cycle (Day 0=the day of ovulation), the sensor was attached to the surface of the ventral tail base and ST was measured every 2min until Day 11 of the next estrous cycle. Hourly maximum ST values were used for analysis. To exclude circadian rhythm and seasonal effects, ST changes were expressed as residual temperatures (RT=actual ST - mean ST for the same hour on the previous 3days). Obvious circadian rhythms of the ST were observed and daily changes in the ST significantly differed among seasons. There was no significant seasonal difference, however, in the RT. The mean RT increased significantly ∼24 compared with ∼48h before ovulation. The mean maximum RT was 1.27±0.30°C, which was observed 5.6±2.4h after the onset of estrus, 2.4±1.3h before LH peak, and 26.9±1.2h before ovulation. The ST of the ventral tail base could be monitored throughout the estrous cycle and could detect a substantial change around the time of expression of behavioral estrus. Calculation and analysis of the RT could be useful for automatic estrous detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Transparent and Flexible Surface-Enhanced Raman Scattering (SERS) Sensors Based on Gold Nanostar Arrays Embedded in Silicon Rubber Film.

    Science.gov (United States)

    Park, Seungyoung; Lee, Jiwon; Ko, Hyunhyub

    2017-12-20

    Integration of surface-enhanced Raman scattering (SERS) sensors onto transparent and flexible substrates enables lightweight and deformable SERS sensors which can be wrapped or swabbed on various nonplanar surfaces for the efficient collection and detection of analytes on various surfaces. However, the development of transparent and flexible SERS substrates with high sensitivity is still challenging. Here, we demonstrate a transparent and flexible SERS substrate with high sensitivity based on a polydimethylsiloxane (PDMS) film embedded with gold nanostar (GNS) assemblies. The flexible SERS substrates enable conformal coverage on arbitrary surfaces, and the optical transparency allows light interaction with the underlying contact surface, thereby providing highly sensitive detection of analytes adsorbed on arbitrary metallic and dielectric surfaces which otherwise do not provide any noticeable Raman signals of analytes. In particular, when the flexible SERS substrates are covered onto metallic surfaces, the SERS enhancement is greatly improved because of the additional plasmon couplings between GNS and metal film. We achieve the detection capability of a trace amount of benzenethiol (10 -8 M) and enormous SERS enhancement factor (∼1.9 × 10 8 ) for flexible SERS substrates on Ag film. In addition, because of the embedded structure of GNS monolayers within the PDMS film, SERS sensors maintain the high sensitivity even after mechanical deformations of stretching, bending, and torsion for 100 cycles. The transparent and flexible SERS substrates introduced in this study are applicable to various SERS sensing applications on nonplanar surfaces, which are not achievable for hard SERS substrates.

  20. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure using a laser sensor

    Science.gov (United States)

    Van Berkel, Gary J [Clinton, TN; Kertesz, Vilmos [Knoxville, TN

    2012-02-21

    A system and method utilizes distance-measuring equipment including a laser sensor for controlling the collection instrument-to-surface distance during a sample collection process for use, for example, with mass spectrometric detection. The laser sensor is arranged in a fixed positional relationship with the collection instrument, and a signal is generated by way of the laser sensor which corresponds to the actual distance between the laser sensor and the surface. The actual distance between the laser sensor and the surface is compared to a target distance between the laser sensor and the surface when the collection instrument is arranged at a desired distance from the surface for sample collecting purposes, and adjustments are made, if necessary, so that the actual distance approaches the target distance.

  1. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    Science.gov (United States)

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  2. Orientation effect of ion flux splitting reflected from Wehner cone on solid surface

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    It is shown that simple geometrical model of specular reflection of particles from the surface of Wehner cone (frequently observed feature of solid surface macroscopic topography developed under ion bombardment) can describe qualitatively the essential characteristics of the reflected particles flux splitting effect predicted earlier by means of computer simulation methods.

  3. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  4. Influence of different land surfaces on atmospheric conditions measured by a wireless sensor network

    Science.gov (United States)

    Lengfeld, Katharina; Ament, Felix

    2010-05-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitations, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. Within the FLUXPAT project in August 2009 we deployed 15 stations as a twin transect near Jülich, Germany. One aim of this first experiment was to test the quality of the low cost sensors by comparing them to more accurate reference measurements. It turned out, that although the network is not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. For example, we detect a variability of ± 0.5K in the mean temperature at a distance of only 2.3 km. The transect covers different types of vegetation and a small river. Therefore, we analyzed the influence of different land surfaces and the distance to the river on meteorological conditions. On the one hand, some results meet our expectations, e.g. the relative humidity decreases with increasing

  5. Combinatorial near-edge x-ray absorption fine structure: Simultaneous determination of molecular orientation and bond concentration on chemically heterogeneous surfaces

    International Nuclear Information System (INIS)

    Genzer, Jan; Fischer, Daniel A.; Efimenko, Kirill

    2003-01-01

    We show that simultaneous molecular orientation and bond chemistry of planar chemically heterogeneous surfaces can be obtained by combining near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and rastering the incident x-ray beam on the specimen. This rastering produces serially two-dimensional NEXAFS images in space and energy, revealing information about the chemistry (including bond concentration) and orientation of the surface-bound molecules with submillimeter planar spatial resolution and submonolayer molecular sensitivity. We illustrate the power of the combinatorial NEXAFS method by simultaneously probing the concentration and molecular orientation of semifluorinated (SF) molecules in double-SF molecular gradients on flat silica substrates

  6. Influence of surface position along the working range of conoscopic holography sensors on dimensional verification of AISI 316 wire EDM machined surfaces.

    Science.gov (United States)

    Fernández, Pedro; Blanco, David; Rico, Carlos; Valiño, Gonzalo; Mateos, Sabino

    2014-03-06

    Conoscopic holography (CH) is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F) and power (P) until the quality indicators Signal-to-Noise Ratio (SNR) and signal envelope (Total) meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR). Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP) on a CMM.

  7. Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces

    Directory of Open Access Journals (Sweden)

    Pedro Fernández

    2014-03-01

    Full Text Available Conoscopic holography (CH is a non-contact interferometric technique used for surface digitization which presents several advantages over other optical techniques such as laser triangulation. Among others, the ability for the reconstruction of high-sloped surfaces stands out, and so does its lower dependence on surface optical properties. Nevertheless, similarly to other optical systems, adjustment of CH sensors requires an adequate selection of configuration parameters for ensuring a high quality surface digitizing. This should be done on a surface located as close as possible to the stand-off distance by tuning frequency (F and power (P until the quality indicators Signal-to-Noise Ratio (SNR and signal envelope (Total meet proper values. However, not all the points of an actual surface are located at the stand-off distance, but they could be located throughout the whole working range (WR. Thus, the quality of a digitized surface may not be uniform. The present work analyses how the quality of a reconstructed surface is affected by its relative position within the WR under different combinations of the parameters F and P. Experiments have been conducted on AISI 316 wire EDM machined flat surfaces. The number of high-quality points digitized as well as distance measurements between different surfaces throughout the WR allowed for comparing the metrological behaviour of the CH sensor with respect to a touch probe (TP on a CMM.

  8. Surface slope effects for ripple orientation on sand dunes in López crater, Terra Tyrrhena region of Mars

    Science.gov (United States)

    Zimbelman, James R.; Johnson, Molly B.

    2017-06-01

    Ripple orientations on small sand dunes (dunes lacking substantial slip faces) at widely distributed sites across Mars have been documented using High Resolution Imaging Science Experiment (HiRISE) images, in an effort to determine the last formative aeolian sediment transport direction experienced at these locations. Howard (1977) used field measurements and first principles to derive an expression for determining how much the surface slope on a sand dune deflects the orientation of sand ripples with respect to the formative wind direction. A Digital Terrain Model derived from stereo HiRISE images was used to assess the potential deflection of ripples on sand dunes on the floor of López crater on Mars. Three-quarters of the area covered by sand dunes within the DTM has a surface slope sand dunes on Mars that lack large slip faces. Sand ripples therefore should be good indicators of the most recent sand-transporting winds that have blown across sand dunes on Mars, as long as areas on or very near to slip faces are avoided.

  9. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli.

    Science.gov (United States)

    Lee, Yeolin; Jeong, Jiyun; Lee, Gabi; Moon, Jeong Hee; Lee, Myung Kyu

    2016-10-04

    Fc-specific antibody binding proteins (FcBPs) with the minimal domain of protein G are widely used for immobilization of well-oriented antibodies onto solid surfaces, but the noncovalently bound antibodies to FcBPs are unstable in sera containing large amounts of antibodies. Here we report novel photoactivatable FcBPs with photomethionine (pMet) expressed in E. coli, which induce Fc-specific photo-cross-linking with antibodies upon UV irradiation. Unfortunately, pMet did not support protein expression in the native E. coli system, and therefore we also developed an engineered methionyl tRNA synthetase (MRS5m). Coexpression of MRS5m proteins successfully induced photoactivatable FcBP overexpression in methionine-auxotroph E. coli cells. The photoactivatable FcBPs could be easily immobilized on beads and slides via their N-terminal cysteine residues and 6xHis tag. The antibodies photo-cross-linked onto the photoactivatable FcBP-beads were resistant from serum-antibody mediated dissociation and efficiently captured antigens in human sera. Furthermore, photo-cross-linked antibody arrays prepared using this system allowed sensitive detection of antigens in human sera by sandwich immunoassay. The photoactivatable FcBPs will be widely applicable for well-oriented antibody immobilization on various surfaces of microfluidic chips, glass slides, and nanobeads, which are required for development of sensitive immunosensors.

  10. Effects of Oriented Surface Dipole on Photoconversion Efficiency in an Alkane/Lipid-Hybrid-Bilayer-Based Photovoltaic Model System

    KAUST Repository

    Liu, Lixia

    2013-06-21

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60 % increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors.

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-09-23

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO₂ and NH₃, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  12. Design and Analysis of a Micromechanical Three-Component Force Sensor for Characterizing and Quantifying Surface Roughness

    Directory of Open Access Journals (Sweden)

    Liang Q.

    2015-10-01

    Full Text Available Roughness, which can represent the trade-off between manufacturing cost and performance of mechanical components, is a critical predictor of cracks, corrosion and fatigue damage. In order to measure polished or super-finished surfaces, a novel touch probe based on three-component force sensor for characterizing and quantifying surface roughness is proposed by using silicon micromachining technology. The sensor design is based on a cross-beam structure, which ensures that the system possesses high sensitivity and low coupling. The results show that the proposed sensor possesses high sensitivity, low coupling error, and temperature compensation function. The proposed system can be used to investigate micromechanical structures with nanometer accuracy.

  13. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.

    Science.gov (United States)

    Rifat, Ahmmed A; Mahdiraji, G Amouzad; Chow, Desmond M; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-05-19

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 × 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.

  14. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level

    Czech Academy of Sciences Publication Activity Database

    Špringer, Tomáš; Piliarik, Marek; Homola, Jiří

    2010-01-01

    Roč. 145, č. 1 (2010), s. 588-591 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : microfluidics * surface plasmon resonance * DNA detection Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.368, year: 2010

  15. The structure of sensor organic polymeric solids deposited on surfaces of interest for sensing devices

    International Nuclear Information System (INIS)

    Lemon, Paul

    2001-01-01

    For many years, electrochemically deposited polypyrrole has found application in a host of technologically significant areas. Popular applications include use in rechargeable batteries, electrochromic displays and artificial muscles. However, perhaps the most significant application of polypyrrole is as a gas sensing material. The relatively low selectivity of polypyrrole has led to it seldom being used as a 'stand alone' sensor; the ease by which the properties of polypyrrole may be subtly modified during electrochemical deposition (resulting in subtly different sensor responses) makes it ideally suited for incorporation into sensing 'arrays'. The level of understanding concerning the growth dynamics and structural characteristics of electrochemically deposited polypyrrole was poor prior to the commencement of the work presented; this thesis describes research undertaken in order to elucidate the properties of this material. As variation of the dopant group used during electrochemical deposition has been shown to result in significant structural and operational variations, the work presented focuses on polypyrrole doped with sodium benzene sulfonate (benzene sulfonic acid, sodium salt). The effects of deposition parameter variation have been studied (such as deposition potential and dopant concentration); repeatable relationships were found between deposition parameters and [a] sensor electrical conductivity, and [b] the surface morphology of the films formed. The influence of sensor substrate design is also considered; dissimilarities were found between the consistency and resistance temporal stability of elements deposited on simple 'boot' electrodes and interdigital microelectrodes. A significant proportion of the work presented concerns the study of the macrostructure of electrochemically deposited polypyrrole films. Several novel structural features have been presented, all of which have been documented in the scientific press. These include: 1) The formation

  16. Potentiometric Sensors Based on Surface Molecular Imprinting: Detection of Cancer Biomarkers and Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Zhang, Z; Jain, V; Yi, J; Mueller, S; Sokolov, J; Liu, Z; Levon, K; Rigas, B; Rafailovich, M

    2010-01-01

    The continuing discovery of cancer biomarkers necessitates improved methods for their detection. Molecular imprinting using artificial materials provides an alternative to the detection of a wide range of substances. We applied surface molecular imprinting using self-assembled monolayers to design sensing elements for the detection of cancer biomarkers and other proteins. These elements consist of a gold-coated silicon chip onto which hydroxyl-terminated alkanethiol molecules and template biomolecule are co-adsorbed, where the thiol molecules are chemically bound to the metal substrate and self-assembled into highly ordered monolayers, the biomolecules can be removed, creating the foot-print cavities in the monolayer matrix for this kind of template molecules. Re-adsorption of the biomolecules to the sensing chip changes its potential, which can be measured potentiometrically. We applied this method to the detection of carcinoembryonic antigen (CEA) in both solutions of purified CEA and in the culture medium of a CEA-producing human colon cancer cell line. The CEA assay, validated also against a standard immunoassay, was both sensitive (detection range 2.5-250 ng/mL) and specific (no cross-reactivity with hemoglobin; no response by a non-imprinted sensor). Similar results were obtained for human amylase. In addition, we detected virions of poliovirus in a specific manner (no cross-reactivity to adenovirus, no response by a non-imprinted sensor). Our findings demonstrate the application of the principles of molecular imprinting to the development of a new method for the detection of protein cancer biomarkers and to protein-based macromolecular structures such as the capsid of a virion. This approach has the potential of generating a general assay methodology that could be highly sensitive, specific, simple and likely inexpensive.

  17. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-07-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  18. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  19. Nanoscale determination of surface orientation and electrostatic properties of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departament de Fisica Aplicada i Electromagnetisme, Burjassot (Spain); Palacios-Lidon, E.; Colchero, J. [Universidad de Murcia, Departamento de Fisica, Facultad de Quimica, Campus Espinardo, Murcia (Spain)

    2007-07-15

    Scanning force microscopy related techniques are applied to study surface nanoscale properties. We show that nanogoniometry can be combined with local electrostatic measurements - electrostatic force microscopy and Kelvin probe microscopy - to identify surface planes families and to study their local electrical properties. The scanning force microscopy techniques employed are analyzed and the correct way of acquiring and interpreting data is discussed in detail. The experiments performed on ZnO films grown along the nonpolar [112 anti 0] direction show that these films completely facet into {l_brace}101 anti 11{r_brace} and {l_brace}10 anti 1 anti 1{r_brace} planes, which follow a well defined pattern of surface potential along the [0001 ] direction. This pattern is explained in terms of the different ionic termination - Zn or O ions - of the exposed facets. Finally, the presence of inversion domain boundaries is discussed. (orig.)

  20. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Mamat, Azuddin Bin; Masjuki, H. H.; Pingguan-Murphy, Belinda

    2015-06-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.

  1. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    International Nuclear Information System (INIS)

    Ghosh, Subir; Roy, Taposh; Pingguan-Murphy, Belinda; Choudhury, Dipankar; Bin Mamat, Azuddin; Masjuki, H H

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. (paper)

  2. Tribological investigation of diamond-like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid

    Science.gov (United States)

    Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Bin Mamat, Azuddin; Masjuki, H H; Pingguan-Murphy, Belinda

    2015-01-01

    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a ‘medium walking gait’ of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy. PMID:27877803

  3. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    Science.gov (United States)

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  4. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  5. Kinetic Electron Emission from Higly Oriented Pyrolytic Graphite Surfaces Induced by Singly Charged Ions

    Czech Academy of Sciences Publication Activity Database

    Cernusca, S.; Diem, A.; Winter, H. P.; Aumayr, F.; Lörinčík, Jan; Šroubek, Zdeněk

    2002-01-01

    Roč. 193, - (2002), s. 616-620 ISSN 0168-583X Institutional research plan: CEZ:AV0Z4040901 Keywords : clean metal-surface * slow * polycrystalline gold Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.158, year: 2002

  6. Effects of surface orientation, fluid chemistry and mechanical polishing on the variability of dolomite dissolution rates

    Science.gov (United States)

    Saldi, Giuseppe D.; Voltolini, Marco; Knauss, Kevin G.

    2017-06-01

    Recent studies of carbonate surface reactivity have underscored the fundamental variability of dissolution rates and the heterogeneous distribution of the reaction over the mineral surface due to the inhomogeneous distribution of surface energy. Dolomite dissolution rates relative to different cleavage planes (r-planes) and surfaces cut approximately perpendicular to the c-axis (c-planes) were studied at 50 °C as a function of pH (3.4 ≤ pH ≤ 9.0) and solution composition by vertical scanning interferometry (VSI) and atomic force microscopy (AFM), with the aim of providing an estimate of the intrinsic rate variation of dolomite single crystals and describing the surface reaction distribution and the rate controlling mechanisms. Surface normal retreat rates measured under acidic conditions increased linearly with time and were not visibly affected by the parallel increase of surface roughness. Mean total dissolution rates of r-planes decreased by over 200 times from pH 3.4 to pH 9.0 and CO32--rich solutions, whereas corresponding rate variations spanned over 3 orders of magnitude when also c-plane rate distributions were included in the analysis. At acid to near neutral pH, c-planes dissolved ∼ three times faster than the adjoining r-planes but slower at basic pH and high total carbon concentration, displaying a distinctive morphologic evolution in these two regimes. The comparison of polished and unpolished crystals showed that polished cleavage planes dissolved about three times faster than the unpolished counterpart at near neutral to basic conditions, whereas no significant difference in reactivity was observed at pH < 5. Although experimental data and observations indicate a tendency of dolomite faces to reach a low-energy topography over the course of the reaction, the evolution of the entire crystal morphology depends also on the reactivity of edge and corner regions, whose contribution to measured rates is not generally taken into account by laboratory

  7. Detection of flaws on surface of civil infrastructures and their profiling using imaging system with laser displacement sensor

    Science.gov (United States)

    Giri, Paritosh; Kharkovsky, Sergey

    2016-04-01

    Civil infrastructures such as buildings, bridges, roads and pipelines are the integral part of people's lives and their failure can have large public safety and economic consequences. Early detection of flaws in civil infrastructures and their appropriate retrofitting will aid in preventing this failure. Flaws such as cracks and impact damages initially occur on the surface and propagate inside the materials causing further degradation. There is a need to develop systems that can detect these surface flaws. Developing a system with one sensing technique which can detect the flaws is a challenging task since infrastructures are made up of diverse materials such as concrete, metal, plastics, composite and timber that have different electrical and mechanical properties. It is also desired that non-plain surfaces with complex profiles can be interrogated and surface flaws can be detected. We have proposed an imaging system capable of interrogating structures with complex surface profiles for the purpose of detection and evaluation of surface flaws such as cracks and impact damages using laser displacement sensor (LDS). The developed system consists of LDS mounted on the scanner which is able to perform raster scan over the specimen under test. The reading of displacement from the sensor head to the laser spot on the surface of the test material is then used to generate images which can be used to detect the surface flaws. The proof of concept is given by testing specimens made of metal, concrete and plastics with complex surface profiles.

  8. Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Bertel, Linda

    2016-01-01

    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical...

  9. Application of the surface azimuthal electrical resistivity survey method to determine patterns of regional joint orientation in glacial tills

    Science.gov (United States)

    Carlson, D.

    2010-01-01

    Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  10. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  11. Lab-on-a-Chip Magneto-Immunoassays: How to Ensure Contact between Superparamagnetic Beads and the Sensor Surface

    Directory of Open Access Journals (Sweden)

    Andreas Hütten

    2013-09-01

    Full Text Available Lab-on-a-chip immuno assays utilizing superparamagnetic beads as labels suffer from the fact that the majority of beads pass the sensing area without contacting the sensor surface. Different solutions, employing magnetic forces, ultrasonic standing waves, or hydrodynamic effects have been found over the past decades. The first category uses magnetic forces, created by on-chip conducting lines to attract beads towards the sensor surface. Modifications of the magnetic landscape allow for additional transport and separation of different bead species. The hydrodynamic approach uses changes in the channel geometry to enhance the capture volume. In acoustofluidics, ultrasonic standing waves force µm-sized particles onto a surface through radiation forces. As these approaches have their disadvantages, a new sensor concept that circumvents these problems is suggested. This concept is based on the granular giant magnetoresistance (GMR effect that can be found in gels containing magnetic nanoparticles. The proposed design could be realized in the shape of paper-based test strips printed with gel-based GMR sensors.

  12. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  13. Detecting surface coal mining areas from remote sensing imagery: an approach based on object-oriented decision trees

    Science.gov (United States)

    Zeng, Xiaoji; Liu, Zhifeng; He, Chunyang; Ma, Qun; Wu, Jianguo

    2017-01-01

    Detecting surface coal mining areas (SCMAs) using remote sensing data in a timely and an accurate manner is necessary for coal industry management and environmental assessment. We developed an approach to effectively extract SCMAs from remote sensing imagery based on object-oriented decision trees (OODT). This OODT approach involves three main steps: object-oriented segmentation, calculation of spectral characteristics, and extraction of SCMAs. The advantage of this approach lies in its effective integration of the spectral and spatial characteristics of SCMAs so as to distinguish the mining areas (i.e., the extracting areas, stripped areas, and dumping areas) from other areas that exhibit similar spectral features (e.g., bare soils and built-up areas). We implemented this method to extract SCMAs in the eastern part of Ordos City in Inner Mongolia, China. Our results had an overall accuracy of 97.07% and a kappa coefficient of 0.80. As compared with three other spectral information-based methods, our OODT approach is more accurate in quantifying the amount and spatial pattern of SCMAs in dryland regions.

  14. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica

    International Nuclear Information System (INIS)

    Qi, J L; Nagashio, K; Nishimura, T; Toriumi, A

    2014-01-01

    Clean, flat and orientation-identified graphene on a substrate is in high demand for graphene electronics. In this study, the hetero-epitaxial graphene growth on Cu(111)/mica(001) by chemical vapor deposition is investigated to check the applicability for top-gate insulator research on graphene, as well as graphene channel research, by transferring graphene on to SiO 2 /Si substrates. After adjusting the graphene growth conditions, the surface roughness of the graphene/Cu/mica substrate and the average smoothed areas are ∼0.34 nm and ∼100 μm 2 , respectively. The orientation of graphene in the graphene/Cu/mica substrate can be identified by the hexagonal void morphology of Cu. Moreover, we demonstrate a relatively high mobility of ∼4500 cm 2 V −1 s −1 in graphene transferred on the SiO 2 /Si substrate. These results suggest that the present graphene/Cu/mica substrate can be used for top-gate insulator research on graphene. (papers)

  15. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    Science.gov (United States)

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  16. Hydrogen bonds induced supramolecular self-assembly of azobenzene derivatives on the highly oriented pyrolytic graphite surface

    Science.gov (United States)

    Miao, Xinrui; Cheng, Zhiyu; Ren, Biye; Deng, Wenli

    2012-08-01

    The self-assembly of azobenzene derivatives (CnAzCOOH) with various lengths of peripheral alkyl chains (with carbon number of n = 8, 10, 12, 14, 16) were observed by scanning tunneling microscopy on highly oriented pyrolytic graphite (HOPG) surface. The effect of van der Waals interactions and the intermolecular hydrogen bonding on the two-dimensional self-assembly was systematically studied. No alkyl-chain length effect was observed according to the STM images. All kinds of CnAzCOOH adopting the same pattern self-assembled on the HOPG surface, suggesting the formation of the two-dimensional structures was dominated by the hydrogen bonding of the functional groups. It could be found that two CnAzCOOH molecules formed a hydrogen-bonded dimer with “head-to-head” fashion as expected; however, the dimers organized themselves in the form of relative complex lamellae. Three dimers as a group arranged side by side and formed a well-defined stripe with periodic dislocations due to the registry mechanism of the alkyl chain with the underlying HOPG surface. The hydrogen bonds between the adjacent dimers in one lamella were formed and dominated the self-assembled pattern.

  17. Influence of MgO containing strontium on the structure of ceramic film formed on grain oriented silicon steel surface

    Directory of Open Access Journals (Sweden)

    Daniela C. Leite Vasconcelos

    1999-07-01

    Full Text Available The oxide layer formed on the surface of a grain oriented silicon steel was characterized by SEM and EDS. 3% Si steel substrates were coated by two types of slurries: one formed by MgO and water and other formed by MgO, water and SrSO4. The ceramic films were evaluated by SEM, EDS and X-ray diffraction. Depth profiles of Fe, Si and Mg were obtained by GDS. The magnetic core losses (at 1.7 Tesla, 60 Hz of the coated steel samples were evaluated as well. The use of MgO containing strontium reduced the volume fraction of forsterite particles beneath the outermost ceramic layer. It was observed a reduced magnetic core loss with the use of the slurry with MgO containing strontium.

  18. Orientation and Optical Polarized Spectra (380–900 nm of Methylene Blue Crystals on a Glass Surface

    Directory of Open Access Journals (Sweden)

    Maja D. Milošević

    2013-01-01

    Full Text Available The crystallographic directions of the crystal toward the vector of polarized light can accurately be positioned, so the information that we gain from polarized spectra can be consistently interpreted according to known crystal structure. The orientation and optical properties of the methylene blue (MB crystals were analyzed by XRD, XRPD, and polarized VIS-NIR spectroscopy. Cationic dye, MB, was polymerized into crystals on a glass slate. The blue color crystals showed pronounced dichroism, twin lamellar structure and bladed to fibrous habit. According to XRD data, [010] direction lies perpendicular to the crystal surface, so we recognized it as (0k0 face, while [100] and [001] directions coincide with crystal elongation and crystal thickness respectively. In this paper, the polarized spectra of MB crystal are presented, measured with the aim of acquisition of referent values, which could be helpful for the identification of MB molecular aggregation.

  19. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    Directory of Open Access Journals (Sweden)

    Wenchang Hao

    2016-04-01

    Full Text Available The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM approach was established to extract the coupling-of-modes (COM parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2 deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  20. Evaluation of electrode surface modification techniques for the development of chemical sensors

    International Nuclear Information System (INIS)

    Galiatsatos, C.

    1988-01-01

    This thesis covers several aspects of electrode surface modification techniques. The successful application of gamma-radiation to create polymer-coated electrodes, where the polymers can be ion exchangers and consequently of great analytical interest by themselves (such as the polymer poly(diallyl) dimethyl ammonium chloride) or where some other neutral polymers can function as convenient matrices for the introduction of biomolecules and/or other electrochemically interesting species is reported. This is demonstrated by using the neutral polymer poly(vinyl alcohol) (PVAL) as a matrix for immobilization of the enzyme glucose oxidase and the mediator methyl viologen. The effect of γ-radiation on PVAL is discussed, as well as swelling properties of the irradiated polymers and specific characteristics of the created chemical sensors. Results of an experiment where the various kinds of interactions between the ion-exchange polymer Nafion and some positively charged species are explored are reported, and a model system for competition (methyl viologen vs. ruthenium hexaamine) which increases significantly our understanding of the interaction is mentioned. The effect of γ-radiation on Nafion and its ion-exchange compabilities is discussed also. A system of conduction polymers primarily polypyrrole, used as a detector of electroinactive anions due to their doping-undergoing in the film is discussed. Preliminary results on a new method that involves chemical cross-linking of a triisocyane molecule with -OH containing polymers in the presence of enzymes are reported

  1. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  2. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    Science.gov (United States)

    Gupta, D.; Dutta, D.; Kumar, M.; Barman, P. B.; Som, T.; Hazra, S. K.

    2015-10-01

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C-150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C-150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  3. Tetrodotoxin Detection by a Surface Plasmon Resonance Sensor in Pufferfish Matrices and Urine

    Directory of Open Access Journals (Sweden)

    Allen D. Taylor

    2011-01-01

    Full Text Available Tetrodotoxin (TTX poisoning is most commonly associated with consumption of pufferfish. TTX is a low molecular weight (~319 Da neurotoxin that selectively blocks voltage-sensitive Na+-gated ion channels. The standard method accepted worldwide for monitoring TTX toxicity in food matrices is the mouse bioassay. Ethical concerns from live animal testing, low sample throughput, and analytical inaccuracies have led to the need for an alternative method. We have previously established that surface plasmon resonance (SPR sensors can quantify TTX in aqueous buffer samples by an antibody-based inhibition assay. In this paper, we report the extension of the assay for the detection of TTX in both clinical- and food-relevant matrices. The assay was optimized for application to three relevant complex matrices: pufferfish liver extract, pufferfish muscle extract, and human urine. Matrix effects are discussed and calibration curves are presented. Naturally contaminated pufferfish liver and muscle extracts were analyzed by the SPR method, and the data is compared to liquid-chromatography electrospray-ionization multiple reactions monitoring mass spectrometry (LC/ESI/MRM/MS data. Ten samples, including three from a poisoning incident, two control monkfish samples, and five toxic pufferfish samples, were analyzed using this method, and the data is compared to LC/ESI/MRM/MS analysis of the samples.

  4. A surface acoustic wave response detection method for passive wireless torque sensor

    Science.gov (United States)

    Fan, Yanping; Kong, Ping; Qi, Hongli; Liu, Hongye; Ji, Xiaojun

    2018-01-01

    This paper presents an effective surface acoustic wave (SAW) response detection method for the passive wireless SAW torque sensor to improve the measurement accuracy. An analysis was conducted on the relationship between the response energy-entropy and the bandwidth of SAW resonator (SAWR). A self-correlation method was modified to suppress the blurred white noise and highlight the attenuation characteristic of wireless SAW response. The SAW response was detected according to both the variation and the duration of energy-entropy ascension of an acquired RF signal. Numerical simulation results showed that the SAW response can be detected even when the signal-to-noise ratio (SNR) is 6dB. The proposed SAW response detection method was evaluated with several experiments at different conditions. The SAW response can be well distinguished from the sinusoidal signal and the noise. The performance of the SAW torque measurement system incorporating the detection method was tested. The obtained repeatability error was 0.23% and the linearity was 0.9934, indicating the validity of the detection method.

  5. Surface Plasmon-Polaritons and Transverse Spin Angular Momentum at the Boundary of Hyperbolic Metamaterial with Arbitrary Orientation of the Optical Axis

    Directory of Open Access Journals (Sweden)

    V. Belyi

    2017-10-01

    Full Text Available The possibility is established and the conditions are found for localization of plasmon-polaritons (PPs near the boundaries of hyperbolic metamaterials (HMs of both I and II types with arbitrary orientation of the optical axis. It is grounded that such surface PP has the transverse spin momentum which depends on the wavelength of the exciting wave, the orientation of the optical axis of the hyperbolic metamaterial, and dielectric properties of bordered media.

  6. Crystal Orientation and Electrical Properties of Tin Oxide Transparent Conducting Films Deposited on Rutile Surface

    Science.gov (United States)

    Sawada, Y.; Hashimoto, Y.; Hoshi, Y.; Uchida, T.; Kobayashi, S.; Sun, L.; Yue, B.

    2017-10-01

    Thin films of tin oxide (SnO2) without doping are attractive transparent conducting film since environmentally unfavorable elements of antimony or fluorine are eliminated. Tin oxide films without doping were fabricated very cheaply on (001) and (100) planes of single crystal of rutile (TiO2) by spray chemical vapor deposition (mist CVD). The film deposited on rutile (001) surface was poorly epitaxial (double domain) but with higher mobility (24 cm2 V-1 s-1) and lower resistivity (1.6×10-3 Ω cm) than that deposited on glass substrate (16 cm2 V-1 s-1 and 2.4×10-3 Ω cm) for reference. Deposition on rutile (100) surface resulted in better epitaxial growth (single domain). The mobility (39 cm2 V-1 s-1) and the carrier electron density (2.7×1020 cm-3) were much higher. The resistivity (6.2×10-4 Ω cm) was compatible with those doped with antimony or fluorine and will be the lowest among tin oxide films without doping.

  7. An S-FSCW Based Multi-Channel Reader System for Beamforming Applications using Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    C. Pfeffer

    2011-12-01

    Full Text Available Interrogating multiple surface acoustic wave (SAW sensors located within the same radar beam require techniques to separate the multiple superposing SAW sensor responses. The presented multi-channel reader features four parallel transceiver channels, which are based on the switched frequency-stepped continuous-wave principle and high-speed parallelized baseband electronics. Thus classical beamforming applications including angle of arrival measurement of single SAW tags and the angular separation of multiple SAW sensors are presented and compared to a multiple-input multiple-output (MIMO approach. Due to the larger virtual array in the MIMO approach a larger aperture can be synthesized, which leads to significantly better angular separation results. The level analysis for the given system is verified by baseband-power measurements at different readout distances, considering the hardware parameters as well as the free-space propagation aspects. Finally measurements assess the maximum interrogation distance for the system.

  8. Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End

    Directory of Open Access Journals (Sweden)

    J. Gabriel Ortega-Mendoza

    2014-10-01

    Full Text Available This paper reports the implementation of an optical fiber sensor to measure the refractive index in aqueous media based on localized surface plasmon resonance (LSPR. We have used a novel technique known as photodeposition to immobilize silver nanoparticles on the optical fiber end. This technique has a simple instrumentation, involves laser light via an optical fiber and silver nanoparticles suspended in an aqueous medium. The optical sensor was assembled using a tungsten lamp as white light, a spectrometer, and an optical fiber with silver nanoparticles. The response of this sensor is such that the LSPR peak wavelength is linearly shifted to longer wavelengths as the refractive index is increased, showing a sensitivity of 67.6 nm/RIU. Experimental results are presented.

  9. Advanced LWIR hyperspectral sensor for on-the-move proximal detection of liquid/solid contaminants on surfaces

    Science.gov (United States)

    Giblin, Jay P.; Dixon, John; Dupuis, Julia R.; Cosofret, Bogdan R.; Marinelli, William J.

    2017-05-01

    Sensor technologies capable of detecting low vapor pressure liquid surface contaminants, as well as solids, in a noncontact fashion while on-the-move continues to be an important need for the U.S. Army. In this paper, we discuss the development of a long-wave infrared (LWIR, 8-10.5 μm) spatial heterodyne spectrometer coupled with an LWIR illuminator and an automated detection algorithm for detection of surface contaminants from a moving vehicle. The system is designed to detect surface contaminants by repetitively collecting LWIR reflectance spectra of the ground. Detection and identification of surface contaminants is based on spectral correlation of the measured LWIR ground reflectance spectra with high fidelity library spectra and the system's cumulative binary detection response from the sampled ground. We present the concepts of the detection algorithm through a discussion of the system signal model. In addition, we present reflectance spectra of surfaces contaminated with a liquid CWA simulant, triethyl phosphate (TEP), and a solid simulant, acetaminophen acquired while the sensor was stationary and on-the-move. Surfaces included CARC painted steel, asphalt, concrete, and sand. The data collected was analyzed to determine the probability of detecting 800 μm diameter contaminant particles at a 0.5 g/m2 areal density with the SHSCAD traversing a surface.

  10. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    Directory of Open Access Journals (Sweden)

    Ahmmed A. Rifat

    2015-05-01

    Full Text Available We propose a surface plasmon resonance (SPR sensor based on photonic crystal fiber (PCF with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs. Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM. The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1 with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint.

  11. Development of a Non-Contact, Inductive Depth Sensor for Free-Surface, Liquid-Metal Flows

    Science.gov (United States)

    Bruhaug, Gerrit; Kolemen, Egemen; Fischer, Adam; Hvasta, Mike

    2017-10-01

    This paper details a non-contact based, inductive depth measurement system that can sit behind a layer of steel and measure the depth of the liquid metal flowing over the steel. Free-surface liquid metal depth measurement is usually done with invasive sensors that impact the flow of the liquid metal, or complex external sensors that require lasers and precise alignment. Neither of these methods is suitable for the extreme environment encountered in the diverter region of a nuclear fusion reactor, where liquid metal open channel flows are being investigated for future use. A sensor was developed that used the inductive coupling of a coil to liquid metal to measure the height of the liquid metal present. The sensor was built and tested experimentally, and modeled with finite element modeling software to further understand the physics involved. Future work will attempt to integrate the sensor into the Liquid Metal eXperiment (LMX) at the Princeton Plasma Physics Laboratory for more refined testing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  12. First bulk and surface results for the ATLAS ITk Strip stereo annulus sensors

    CERN Document Server

    Hunter, Robert Francis Holub; The ATLAS collaboration; Affolder, Tony; Bohm, Jan; Botte, James Michael; Ciungu, Bianca; Dette, Karola; Dolezal, Zdenek; Escobar, Carlos; Fadeyev, Vitaliy

    2018-01-01

    A novel microstrip sensor geometry, the stereo annulus, has been developed for use in the end-cap of the ATLAS experiment's strip tracker upgrade at the HL-LHC. Its first implementation is in the ATLAS12EC sensors a large-area, radiation-hard, single-sided, ac-coupled, \

  13. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  14. Performance evaluation of a conformal thermal monitoring sheet sensor array for measurement of surface temperature distributions during superficial hyperthermia treatments.

    Science.gov (United States)

    Arunachalam, K; Maccarini, P; Juang, T; Gaeta, C; Stauffer, P R

    2008-06-01

    This paper presents a novel conformal thermal monitoring sheet (TMS) sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self-heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. A prototype with 4 x 4 array of fiber-optic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter-based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self-heating was observed when irradiated with 915 MHz microwave and 3.4 MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease.

  15. Communication: Salt-induced water orientation at a surface of non-ionic surfactant in relation to a mechanism of Hofmeister effect

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi; Kaneko, Yohei; Okuno, Masanari; Yamamura, Yasuhisa; Ishibashi, Taka-aki; Saito, Kazuya, E-mail: kazuya@chem.tsukuba.ac.jp [Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2015-05-07

    The behavior of water molecules at the surface of nonionic surfactant (monomyristolein) and effects of monovalent ions on the behavior are investigated using the heterodyne-detected vibrational sum frequency generation spectroscopy. It is found that water molecules at the surface are oriented with their hydrogen atoms pointing to the bulk, and that the degree of orientation depends on the anion strongly but weakly on the cation. With measured surface potentials in those saline solutions, it is concluded that the heterogeneous distribution of anions and cations in combination with the nonionic surfactant causes the water orientation. This heterogeneous distribution well explains the contrasting order of anions and cations with respect to the ion size in the Hofmeister series.

  16. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    Science.gov (United States)

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-02-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO - TiO2 -3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems.

  17. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

    Science.gov (United States)

    Lettieri, S.; Avitabile, A.; Della Ventura, B.; Funari, R.; Ambrosio, A.; Maddalena, P.; Valadan, M.; Velotta, R.; Altucci, C.

    2014-10-01

    By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

  18. Impact of Molecular Orientation and Packing Density on Electronic Polarization in the Bulk and at Surfaces of Organic Semiconductors

    KAUST Repository

    Ryno, Sean

    2016-05-16

    The polarizable environment surrounding charge carriers in organic semiconductors impacts the efficiency of the charge transport process. Here, we consider two representative organic semiconductors, tetracene and rubrene, and evaluate their polarization energies in the bulk and at the organic-vacuum interface using a polarizable force field that accounts for induced-dipole and quadrupole interactions. Though both oligoacenes pack in a herringbone motif, the tetraphenyl substituents on the tetracene backbone of rubrene alter greatly the nature of the packing. The resulting change in relative orientations of neighboring molecules is found to reduce the bulk polarization energy of holes in rubrene by some 0.3 eV when compared to tetracene. The consideration of model organic-vacuum interfaces highlights the significant variation in the electrostatic environment for a charge carrier at a surface although the net change in polarization energy is small; interestingly, the environment of a charge even just one layer removed from the surface can be viewed already as representative of the bulk. Overall, it is found that in these herringbone-type layered crystals the polarization energy has a much stronger dependence on the intralayer packing density than interlayer packing density.

  19. Study of n-on-p sensors breakdown in presence of dielectrics placed on top surface

    CERN Document Server

    Helling, Cole Michael; The ATLAS collaboration

    2018-01-01

    The ATLAS Upgrade strip module design has readout flex circuits glued directly on top of the sensors’ active area to facilitate the assembly process and minimize the radiation length. The process requires radiation-hard adhesives compatible with the sensor technology. We report on the studies of the breakdown behavior with miniature versions of the prototype sensors, where candidate adhesives were placed in several locations on top of the sensor, including the strip area, guard ring region, and sensor edge. Thermal cycling tends to attenuate the observed cases of breakdown with glue on top of the guard ring. Glue reaching the sensor edge results in low breakdown voltage if it also covers AC- or DC- pads or bias ring openings. Glue placement on top of guard ring region was performed on a large-format sensor, with generally similar results to the miniature sensor tests, except for a large glue deposition, which resulted in a permanent reduction of the breakdown voltage. Post-irradiation measurements were perf...

  20. Effective Low-Power Wearable Wireless Surface EMG Sensor Design Based on Analog-Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Mohammadreza Balouchestani

    2014-12-01

    Full Text Available Surface Electromyography (sEMG is a non-invasive measurement process that does not involve tools and instruments to break the skin or physically enter the body to investigate and evaluate the muscular activities produced by skeletal muscles. The main drawbacks of existing sEMG systems are: (1 they are not able to provide real-time monitoring; (2 they suffer from long processing time and low speed; (3 they are not effective for wireless healthcare systems because they consume huge power. In this work, we present an analog-based Compressed Sensing (CS architecture, which consists of three novel algorithms for design and implementation of wearable wireless sEMG bio-sensor. At the transmitter side, two new algorithms are presented in order to apply the analog-CS theory before Analog to Digital Converter (ADC. At the receiver side, a robust reconstruction algorithm based on a combination of ℓ1-ℓ1-optimization and Block Sparse Bayesian Learning (BSBL framework is presented to reconstruct the original bio-signals from the compressed bio-signals. The proposed architecture allows reducing the sampling rate to 25% of Nyquist Rate (NR. In addition, the proposed architecture reduces the power consumption to 40%, Percentage Residual Difference (PRD to 24%, Root Mean Squared Error (RMSE to 2%, and the computation time from 22 s to 9.01 s, which provide good background for establishing wearable wireless healthcare systems. The proposed architecture achieves robust performance in low Signal-to-Noise Ratio (SNR for the reconstruction process.

  1. Structural characterization of the voltage sensor domain and voltage-gated K+- channel proteins vectorially-oriented within a single bilayer membrane at the solid/vapor and solid/liquid interfaces via neutron interferometry

    Science.gov (United States)

    Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.

    2012-01-01

    The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and

  2. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  3. Molecularly imprinted surface acoustic wave sensors: The synergy of electrochemical and gravimetric transductions in chemical recognition processes

    International Nuclear Information System (INIS)

    Lattach, Youssef; Fourati, Najla; Zerrouki, Chouki; Fougnion, Jean-Marie; Garnier, Francis; Pernelle, Christine; Remita, Samy

    2012-01-01

    Chemical sensor based on molecularly imprinted conducting polymers (MICP) is described. Polythiophenes – acetic acid thiophene MICP films with different thicknesses have been electrosynthesized over the sensing area of an original electrochemical surface acoustic wave sensor (ESAW). To investigate the sensing properties of the developed sensor, electrochemical and gravimetric combined transductions have been applied to atrazine (ATZ) detection. Films of poly(3,4-ethylenedioxythiophene) noted PEDOT as well as non imprinted conducting polymers (NICP), were also prepared, in order to lead a comparative study. The structure of all films was investigated by IR spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). Films growth and their doping/undoping processes were investigated by simultaneous gravimetric/electrochemical transduction. Real time measurements highlighted difference between the two polymers electrosynthesis kinetics. MICP and NICP films grow linearly with time, whereas PEDOT film thickness presents a limit value of 1 μm in the implied conditions. Considering ESAW sensor response towards charge “transfer”, a linear relationship between sensor phase variations and charges density have been found for PEDOT film, with a sensitivity of about 470 ° C −1 cm 2 . The same sensitivity can also be considered for MICP and NICP films up to 200 mC cm −2 . Beyond this value, saturation has been observed. This divergence have been attributed to difference in films thicknesses, which led to values of weight ratio MICP (NICP)/PEDOT included between 3 and 4.6 for electropolymerization duration going from 10 s to 30 s. Combined use of electrochemical and gravimetric transductions, using MICP as sensitive layer, have also been considered to highlight the ability of the developed ESAW sensor to detect the specific recognition of polymer functional cavities towards ATZ molecules.

  4. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    Science.gov (United States)

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  5. Probing the orientation of surface-immobilized protein G B1 using ToF-SIMS, sum frequency generation, and NEXAFS spectroscopy.

    Science.gov (United States)

    Baugh, Loren; Weidner, Tobias; Baio, J E; Nguyen, Phuong-Cac T; Gamble, Lara J; Stayton, Patrick S; Castner, David G

    2010-11-02

    The ability to orient active proteins on surfaces is a critical aspect of many medical technologies. An important related challenge is characterizing protein orientation in these surface films. This study uses a combination of time-of-flight secondary ion mass spectrometry (ToF-SIMS), sum frequency generation (SFG) vibrational spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to characterize the orientation of surface-immobilized Protein G B1, a rigid 6 kDa domain that binds the Fc fragment of IgG. Two Protein G B1 variants with a single cysteine introduced at either end were immobilized via the cysteine thiol onto maleimide-oligo(ethylene glycol)-functionalized gold and bare gold substrates. X-ray photoelectron spectroscopy was used to measure the amount of immobilized protein, and ToF-SIMS was used to measure the amino acid composition of the exposed surface of the protein films and to confirm covalent attachment of protein thiol to the substrate maleimide groups. SFG and NEXAFS were used to characterize the ordering and orientation of peptide or side chain bonds. On both substrates and for both cysteine positions, ToF-SIMS data showed enrichment of mass peaks from amino acids located at the end of the protein opposite to the cysteine surface position as compared with nonspecifically immobilized protein, indicating end-on protein orientations. Orientation on the maleimide substrate was enhanced by increasing pH (7.0-9.5) and salt concentration (0-1.5 M NaCl). SFG spectral peaks characteristic of ordered α-helix and β-sheet elements were observed for both variants but not for cysteine-free wild type protein on the maleimide surface. The phase of the α-helix and β-sheet peaks indicated a predominantly upright orientation for both variants, consistent with an end-on protein binding configuration. Polarization dependence of the NEXAFS signal from the N 1s to π* transition of β-sheet peptide bonds also indicated protein ordering

  6. Probing the Orientation of Surface Immobilized Protein G B1 using ToF SIMS, Sum Frequency Generation, and NEXAFS Spectroscopy

    Science.gov (United States)

    Baugh, Loren; Weidner, Tobias; Baio, J.E.; Nguyen, Phuong Cac; Gamble, Lara J.; Stayton, Patrick S.; Castner, David G.

    2010-01-01

    The ability to orient active proteins on surfaces is a critical aspect of many medical technologies. An important related challenge is characterizing protein orientation in these surface films. This study uses a combination of time-of-flight secondary ion mass spectrometry (ToF-SIMS), sum frequency generation (SFG) vibrational spectroscopy, and near edge x-ray absorption fine structure (NEXAFS) spectroscopy to characterize the orientation of surface-immobilized Protein G B1, a rigid 6 kDa domain that binds the Fc fragment of IgG. Two Protein G B1 variants with a single cysteine introduced at either end were immobilized via the cysteine thiol onto maleimide-oligo(ethylene glycol)-functionalized gold and bare gold substrates. X-ray photoelectron spectroscopy was used to measure the amount of immobilized protein and ToF-SIMS was used to measure the amino acid composition of the exposed surface of the protein films and to confirm covalent attachment of protein thiol to the substrate maleimide groups. SFG and NEXAFS were used to characterize the ordering and orientation of peptide or side chain bonds. On both substrates and for both cysteine positions, ToF-SIMS data showed enrichment of mass peaks from amino acids located at the end of the protein opposite the cysteine surface position compared with nonspecifically immobilized protein, indicating end-on protein orientations. Orientation on the maleimide substrate was enhanced by increasing pH (7.0 to 9.5) and salt concentration (0 to 1.5 M NaCl). SFG spectral peaks characteristic of ordered α-helix and β-sheet elements were observed for both variants but not for cysteine-free wild type protein on the maleimide surface. The phase of the α-helix and β-sheet peaks indicated a predominantly upright orientation for both variants, consistent with an end-on protein binding configuration. Polarization dependence of the NEXAFS signal from the N 1s toπ* transition of β-sheet peptide bonds also indicated protein ordering

  7. A 30-Year Multi-Sensor Vegetation Index and Land Surface Phenology Data Record: Methods Challenges and Potentials

    Science.gov (United States)

    Didan, K.; Barreto-munoz, A.; Miura, T.; Tsend-Ayush, J.

    2013-12-01

    During the last five years the Vegetation Index and Phenology Lab. (vip.arizona.edu) embarked on an effort to process a global multi-sensor Earth Science Data Record of NDVI, EVI2, and land surface Phenology. Data from AVHRR, MODIS, and SPOT-VGT, covering the period 1981 to present, were processed into a seamless and sensor independent record using a suite of community algorithms for data filtering, across-sensor continuity, Vegetation Index (NDVI and EVI2), land surface Phenology, and spatial and temporal gap filling. Currently at Version 3.0 these ESDRs are suitable for the study of land surface vegetation dynamics, long term change and trends, anomalies, and can support various ecosystem and climate modeling efforts by providing key parameters. While adapting the various algorithms to processing this new data record many challenges emerged, ranging from excessive missing and poor quality data to complex and temporally dependent divergence across the various sensors making continuity quite difficult. The first step to addressing these challenges was the adoption of very strict and low tolerance to noise data filters, where the intrinsic input data quality is used along with the long term expected dynamic range to screen for outliers and poor quality. A sophisticated and explicit per-pixel and seasonally dependent across-sensor translation algorithm was developed to address the continuity more properly. To generate the land surface phenology we adapted various community algorithms to work with and take advantage of this new record. Both the standard MODIS Vegetation dynamic algorithm and an in-house homogeneous cluster algorithm were applied to the data. We've also completed a spatially and temporally explicit error and uncertainty characterization of this record. Results indicate a VI error in the range of 5-10% VI units and a 5-40 days error in the date dependent phenology parameters, with an average error of 15 days. This VIP record accounts now for more than

  8. A regenerative label-free fiber optic sensor using surface plasmon resonance for clinical diagnosis of fibrinogen

    Directory of Open Access Journals (Sweden)

    Nguyen TT

    2015-08-01

    Full Text Available Tan Tai Nguyen,1 Sun Oh Bea,1 Dong Min Kim,2 Won Jung Yoon,3 Jin-Won Park,4 Seong Soo A An,1 Heongkyu Ju1,5,6 1Department of Bionano Technology, College of Bionano Technology, Gachon University, Seongnam, 2Department of Materials Science and Engineering, Hongik University, Sejong City, 3Department of Chemical and Bio Engineering, Gachon University, Seongnam, 4Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology, Seoul, 5Department of Nanophysics, College of Bionano Technology, Gachon University, Seongnam, 6Neuroscience Institute, Gil Hospital, Incheon, South Korea Purpose: We present the regenerative label-free fiber optical biosensor that exploits surface plasmon resonance for quantitative detection of fibrinogen (Fbg extracted from human blood plasma.Materials and methods: The sensor head was made up of a multimode optical fiber with its polymer cladding replaced by metal composite of nanometer thickness made of silver, aluminum, and nickel. The Ni layer coated allowed a direct immobilization of histidine-tagged peptide (HP on its metal surface without an additional cross-linker in between. On the coated HP layer, immunoglobulin G was then immobilized for specific capturing of Fbg.Results: We demonstrated a real-time quantitative detection of Fbg concentrations with limit of detection of ~10 ng/mL. The fact that the HP layer could be removed by imidazole with acid also permitted us to demonstrate the regeneration of the outermost metal surface of the sensor head for the sensor reusability.Conclusion: The sensor detection limit was estimated to be ~10 pM, which was believed to be sensitive enough for detecting Fbg during the clinical diagnosis of cardiovascular diseases, myocardial infarction, strokes, and Alzheimer’s diseases. Keywords: SPR, real-time assay, histidine-tagged peptide, protein sensing

  9. Sensitive Detection of Capsaicinoids Using a Surface Plasmon Resonance Sensor with Anti-Homovanillic Acid Polyclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-11-01

    Full Text Available Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  10. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic Acid polyclonal antibodies.

    Science.gov (United States)

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-11-13

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  11. Near-surface Salinity and Temperature structure Observed with Dual-Sensor Drifters in the Subtropical South Pacific

    Science.gov (United States)

    Dong, S.; Volkov, D.; Goni, G. J.; Lumpkin, R.; Foltz, G. R.

    2017-12-01

    Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of these differences. Measurements from these drifters indicate that water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths are caused by anomalies in surface freshwater and heat fluxes, modulated by wind. While surface freshening and cooling occurs during rainfall events, surface salinification is generally observed under weak wind conditions (≤4 m/s). Further examination of the drifter measurements demonstrates that (i) the amount of surface freshening and strength of the vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences for cases with surface salinification, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 6 m/s. The amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. The mean diurnal cycle of surface salinity is dominated by events with winds less than 2 m/s.

  12. Chemodynamics of Soft Nanoparticulate Metal Complexes: From the Local Particle/Medium Interface to a Macroscopic Sensor Surface.

    Science.gov (United States)

    Town, Raewyn M; Pinheiro, José Paulo; van Leeuwen, Herman P

    2017-01-17

    The lability of a complex species between a metal ion M and a binding site S, MS, is conventionally defined with respect to an ongoing process at a reactive interface, for example, the conversion or accumulation of the free metal ion M by a sensor. In the case of soft charged multisite nanoparticulate complexes, the chemodynamic features that are operative within the micro environment of the particle body generally differ substantially from those for dissolved similar single-site complexes in the same medium. Here we develop a conceptual framework for the chemodynamics and the ensuing lability of soft (3D) nanoparticulate metal complexes. The approach considers the dynamic features of MS at the intraparticulate level and their impact on the overall reactivity of free metal ions at the surface of a macroscopic sensing interface. Chemodynamics at the intraparticulate level is shown to involve a local reaction layer at the particle/medium interface, while at the macroscopic sensor level an operational reaction layer is invoked. Under a certain window of conditions, volume exclusion of the nanoparticle body near the medium/sensor interface is substantial and affects the properties of the reaction layer and the overall lability of the nanoparticulate MS complex toward the reactive surface.

  13. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Directory of Open Access Journals (Sweden)

    Konrad Maier

    2015-09-01

    Full Text Available In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high.

  14. Effect of Water Vapor and Surface Morphology on the Low Temperature Response of Metal Oxide Semiconductor Gas Sensors

    Science.gov (United States)

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Eickhoff, Martin

    2015-01-01

    In this work the low temperature response of metal oxide semiconductor gas sensors is analyzed. Important characteristics of this low-temperature response are a pronounced selectivity to acid- and base-forming gases and a large disparity of response and recovery time constants which often leads to an integrator-type of gas response. We show that this kind of sensor performance is related to the trend of semiconductor gas sensors to adsorb water vapor in multi-layer form and that this ability is sensitively influenced by the surface morphology. In particular we show that surface roughness in the nanometer range enhances desorption of water from multi-layer adsorbates, enabling them to respond more swiftly to changes in the ambient humidity. Further experiments reveal that reactive gases, such as NO2 and NH3, which are easily absorbed in the water adsorbate layers, are more easily exchanged across the liquid/air interface when the humidity in the ambient air is high. PMID:28793583

  15. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Liu, Yi; Zhang, Jun

    2016-07-01

    Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor

  16. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2016-07-01

    Full Text Available Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the “gradient effect”. This results in a positive linear error with increasing surface temperature. Another is the “substrate effect”. This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an

  17. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.

    Science.gov (United States)

    Huang, Chun-Fang; Yao, Gui-Hong; Liang, Ru-Ping; Qiu, Jian-Ding

    2013-12-15

    Carbohydrate-protein interactions mediate the important physiological and pathophysiological processes in living organism. Their study has attracted great attention due to its importance in understanding these biological processes and in fabricating biosensors for diagnostics and drug development. Here, by using concanavalin A (ConA) as a model protein, a novel surface plasmon resonance (SPR) sensor was developed for sensitive detection ConA. In this sensing platform, dextran (Dex) capped gold nanoparticles (Dex-Au NPs) were initially synthesized in one-pot and utilized as amplification reagent. After deposition of graphene oxide (GO) on the SPR gold film, phenoxy-derivatized dextran (DexP) was assembled onto the GO-modified gold chip surface through π-π interaction. The resultant GO/DexP sensing interface could specifically capture ConA which could further react with Dex-Au NPs through the specific interaction between ConA and Dex, forming a sandwich configuration. The morphologies and the electrochemistry of the formed sensing surface were investigated by using scanning electron microscopy and electrochemical techniques including electrochemical impedance spectroscopy and cyclic voltammogram. Owing to the high surface area of GO and the excellent amplification of Dex-Au NPs, the developed sandwich SPR sensor successfully fulfilled the sensitive detection of ConA in the range of 1.0-20.0 μg mL(-1) with a detection limit of 0.39 μg mL(-1). Compared to the direct assay format, the prepared sandwich SPR sensor led to an improvement of 28.7-fold in the sensitivity. The results demonstrated that the proposed method might provide a new direction in designing high-performance SPR biosensors for sensitive and selective detection of a wide spectrum of biomolecules. © 2013 Elsevier B.V. All rights reserved.

  18. Evidence of a rearrangement of the surface structure in titanium phthalocyanine sensors induced by the interaction with nitrogen oxides molecules

    International Nuclear Information System (INIS)

    Generosi, A.; Paci, B.; Albertini, V. Rossi; Perfetti, P.; Paoletti, A.M.; Pennesi, G.; Rossi, G.; Caminiti, R.

    2005-01-01

    Thin-film samples of titanium phthalocyanine, a sensor of environmental pollutants, were studied by time resolved energy-dispersive x-ray reflectivity (EDXR). This original method demonstrated to be an ideal tool to follow the evolution of the films morphology upon gas exposure, in situ, also allowing an unexpected response of the sensors to be detected. Indeed, while the increase in thickness showed the characteristic feature of a 'breathing-like' expansion, already observed in other metal-Pc, the curve of roughness versus exposure time exhibited a peak. This effect, in some cases evident by observation with the naked eye the EDXR data, was attributed to a surface structure rearrangement process

  19. Titanium Dioxide-Based 64∘ YX LiNbO3 Surface Acoustic Wave Hydrogen Gas Sensors

    Directory of Open Access Journals (Sweden)

    A. Z. Sadek

    2008-01-01

    Full Text Available Amorphous titanium dioxide (TiO2 and gold (Au doped TiO2-based surface acoustic wave (SAW sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64∘ YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310∘C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature.

  20. Monoclonal antibody-based Surface Plasmon Resonance sensors for pathogen detection

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2007-01-01

    A biosensor is an analytical device, which incorporates a biological sensing element integrated within a physicochemical transducer. The aim of a biosensor is to produce an electronic signal, which is proportional to the interaction of analytes with the sensing element. This means that the sensor......, that can detect and quantify specific plant pathogens and map these to defined positions within the field, would enable the farm manager to perform a precise and targeted application of pesticides and thereby reduce and optimise the use of agrochemicals. The ideal scenario for precision agriculture...... is to have real-time, robust and low-cost sensors, for both soil and air, which can be operated by personnel with limited or no training in plant pathology. In the present thesis focus is put on the development of immunological sensors for detection of two model plant pathogens, Puccinia striiformis f...

  1. Predicting and rationalizing the effect of surface charge distribution and orientation on nano-wire based FET bio-sensors

    DEFF Research Database (Denmark)

    De Vico, L.; Iversen, L.; Sørensen, Martin Hedegård

    2011-01-01

    changes (e.g. a positive signal change due to a net positive protein binding to a p-type conductor) can occur for certain combinations of charge distributions and Debye lengths. The new method is applied to interpret published experimental data on Streptavidin (Ishikawa et al., ACS Nano, 2009, 3, 3969......-3976) and Nucleocapsid protein (Ishikawa et al., ACS Nano, 2009, 3, 1219-1224)....

  2. Effect of Channel Orientation and Rib Pitch-to-Height Ratio on Pressure Drop in a Rotating Square Channel with Ribs on Two Opposite Surfaces

    Directory of Open Access Journals (Sweden)

    Prabhu S. V.

    2005-01-01

    Full Text Available The effect of channel orientation and rib pitch-to-height ratio on the pressure drop distribution in a rib-roughened channel is an important issue in turbine blade cooling. The present investigation is a study of the overall pressure drop distribution in a square cross-sectioned channel, with rib turbulators, rotating about an axis normal to the free stream. The ribs are configured in a symmetric arrangement on two opposite surfaces with a rib angle of 90 ∘ to the mainstream flow. The study has been conducted for three Reynolds numbers, namely, 13 000, 17 000, and 22 000 with the rotation number varying from 0– 0.38 . Experiments have been carried out for various rib pitch-to-height ratios ( P/e with a constant rib height-to-hydraulic diameter ratio ( e/D of 0.1 . The test section in which the ribs are placed on the leading and trailing surfaces is considered as the base case ( orientation angle= 0 ∘ , Coriolis force vector normal to the ribbed surfaces. The channel is turned about its axis in steps of 15 ∘ to vary the orientation angle from 0 ∘ to 90 ∘ . The overall pressure drop does not change considerably under conditions of rotation for the base case. However, for the other cases tested, it is observed that the overall pressure drop increases with an increase in the rotation number for a given orientation angle and also increases with an increase in the orientation angle for a given rotation number. This change is attributed to the variation in the separation zone downstream of the ribs due to the presence of the Coriolis force—local pressure drop data is presented which supports this idea. At an orientation angle of 90 ∘ (ribs on the top and bottom surfaces, Coriolis force vector normal to the smooth surfaces, the overall pressure drop is observed to be maximum during rotation. The overall pressure drop for a case with a rib pitch-to-height ratio of 5 on both surfaces is found to be the highest

  3. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor

    Science.gov (United States)

    Sobaszek, Michał; Dominik, Magdalena; Burnat, Dariusz; Bogdanowicz, Robert; Stranak, Viteszlav; Sezemsky, Petr; Śmietana, Mateusz

    2017-04-01

    This work presents an optical fiber sensors based on lossy-mode resonance (LMR) phenomenon supported by indium tin oxide (ITO) thin overlay for investigation of electro-polymerization effect on ITO's surface. The ITO overlays were deposited on core of polymer-clad silica (PCS) fibers using reactive magnetron sputtering (RMS) method. Since ITO is electrically conductive and electrochemically active it can be used as a working electrode in 3-electrode cyclic voltammetry setup. For fixed potential applied to the electrode current flow decrease with time what corresponds to polymer layer formation on the ITO surface. Since LMR phenomenon depends on optical properties in proximity of the ITO surface, polymer layer formation can be monitored optically in real time. The electrodeposition process has been performed with Isatin which is a strong endogenous neurochemical regulator in humans as it is a metabolic derivative of adrenaline. It was found that optical detection of Isatin is possible in the proposed configuration.

  4. Extraction and Analysis of Mega Cities’ Impervious Surface on Pixel-based and Object-oriented Support Vector Machine Classification Technology: A case of Bombay

    Science.gov (United States)

    Yu, S. S.; Sun, Z. C.; Sun, L.; Wu, M. F.

    2017-02-01

    The object of this paper is to study the impervious surface extraction method using remote sensing imagery and monitor the spatiotemporal changing patterns of mega cities. Megacity Bombay was selected as the interesting area. Firstly, the pixel-based and object-oriented support vector machine (SVM) classification methods were used to acquire the land use/land cover (LULC) products of Bombay in 2010. Consequently, the overall accuracy (OA) and overall Kappa (OK) of the pixel-based method were 94.97% and 0.96 with a running time of 78 minutes, the OA and OK of the object-oriented method were 93.72% and 0.94 with a running time of only 17s. Additionally, OA and OK of the object-oriented method after a post-classification were improved up to 95.8% and 0.94. Then, the dynamic impervious surfaces of Bombay in the period 1973-2015 were extracted and the urbanization pattern of Bombay was analysed. Results told that both the two SVM classification methods could accomplish the impervious surface extraction, but the object-oriented method should be a better choice. Urbanization of Bombay experienced a fast extending during the past 42 years, implying a dramatically urban sprawl of mega cities in the developing countries along the One Belt and One Road (OBOR).

  5. A finite state machine read-out chip for integrated surface acoustic wave sensors

    Science.gov (United States)

    Rakshit, Sambarta; Iliadis, Agis A.

    2015-01-01

    A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.

  6. Sub-surface Elasticity Imaging Sensor based on Bio-Optics with Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Jong-Ha LEE

    2015-03-01

    Full Text Available A novel tactile sensor capable of measuring material constants of the sensed object has been fabricated and demonstrated in the current study. Although many tactile sensors have been previously developed, the resolution of these measurements is still fairly low compared to the sensation of human touch. The tactile sensor we propose is comprised of an elastic optical waveguide unit, a high resolution CCD camera unit, and an LED light source. The sensing element is formed on Polydimethylsiloxane (PDMS and is illuminated along its four edges by LED light sources. The sensor operates on the principle of total internal reflection within an optical waveguide. Since the waveguide is surrounded by air, having a lower refractive index than the waveguide, the incident light directed into the waveguide remains contained within it. When an object compresses the waveguide, the contact area of the waveguide deforms and causes the light to scatter. Since the scattered light is directly captured by a CCD camera, the tactile resolution of the proposed sensor is based on the resolution of the camera. The normal force is detected from the integrated gray scale values of bright pixels emitted from the deformed area of the optical waveguide. Non-rigid point matching algorithm with Laplacian smoothing spline is used to estimate the displacement of control points between 3D rendered tactile images captured under different compression ratios. The strain experienced through the sensed object is derived from a function of the associated displacement. Experiments were conducted to demonstrate the ability of the proposed sensing strategy in measuring Young’s modulus of polymer samples within 4.23 % error.

  7. Very thin spin-coated silver films via transparent silver ink for surface plasmon resonance sensor applications.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2012-07-01

    We fabricated very thin silver films with thicknesses of 20 nm, 40 nm, and 60 nm on a prism using a spin coating method for surface plasmon resonance (SPR) image sensor module applications. An aqueous silver ionic complex solution was spin-coated and then thermally cured for 10 minutes at 150 degrees C in an oven. The spin-coated solid silver films possessed silver crystallinity. The prism modules with the 20-nm-, 40-nm- and 60-nm-thick thin silver films were applied to an SPR image sensor system. The coefficients of determination for the 20-nm-, 40-nm- and 60-nm-thick silver films were 0.923, 0.990 and 0.989, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The correlation is high-performed and the coefficients of determination are as close as 1. The spin coating method of very thin silver films for SPR image sensor modules is expected to be a very cost-effective solution because the films can be formed at a low temperature in a short period of time without requiring a vacuum system.

  8. Structure Crack Identification Based on Surface-mounted Active Sensor Network with Time-Domain Feature Extraction and Neural Network

    Directory of Open Access Journals (Sweden)

    Chunling DU

    2012-03-01

    Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.

  9. A surface-enhanced Raman scattering (SERS-active optical fiber sensor based on a three-dimensional sensing layer

    Directory of Open Access Journals (Sweden)

    Chunyu Liu

    2014-08-01

    Full Text Available To fabricate a new surface-enhanced Raman scattering (SERS-active optical fiber sensor, the design and preparation of SERS-active sensing layer is one of important topics. In this study, we fabricated a highly sensitive three-dimensional (3D SERS-active sensing layer on the optical fiber terminal via in situ polymerizing a porous polymer material on a flat optical fiber terminal through thermal-induced process, following with the photochemical silver nanoparticles growth. The polymerized polymer formed a 3D porous structure with the pore size of 0.29–0.81 μm, which were afterward decorated with abundant silver nanoparticles with the size of about 100 nm, allowing for higher SERS enhancement. This SERS-active optical fiber sensor was applied for the determination of 4-mercaptopyridine, crystal violet and maleic acid The enhancement factor of this SERS sensing layer can be reached as about 108. The optical fiber sensor with high sensitive SERS-active porous polymer is expected for online analysis and environment detection.

  10. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors.

    Science.gov (United States)

    Wu, Jian; Sun, Lu; Jafari, Roozbeh

    2016-09-01

    A sign language recognition system translates signs performed by deaf individuals into text/speech in real time. Inertial measurement unit and surface electromyography (sEMG) are both useful modalities to detect hand/arm gestures. They are able to capture signs and the fusion of these two complementary sensor modalities will enhance system performance. In this paper, a wearable system for recognizing American Sign Language (ASL) in real time is proposed, fusing information from an inertial sensor and sEMG sensors. An information gain-based feature selection scheme is used to select the best subset of features from a broad range of well-established features. Four popular classification algorithms are evaluated for 80 commonly used ASL signs on four subjects. The experimental results show 96.16% and 85.24% average accuracies for intra-subject and intra-subject cross session evaluation, respectively, with the selected feature subset and a support vector machine classifier. The significance of adding sEMG for ASL recognition is explored and the best channel of sEMG is highlighted.

  11. All-Weather Sounding of Moisture and Temperature From Microwave Sensors Using a Coupled Surface/Atmosphere Inversion Algorithm

    Science.gov (United States)

    Boukabara, S. A.; Garrett, K.

    2014-12-01

    A one-dimensional variational retrieval system has been developed, capable of producing temperature and water vapor profiles in clear, cloudy and precipitating conditions. The algorithm, known as the Microwave Integrated Retrieval System (MiRS), is currently running operationally at the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS), and is applied to a variety of data from the AMSU-A/MHS sensors on board the NOAA-18, NOAA-19, and MetOp-A/B polar satellite platforms, as well as SSMI/S on board both DMSP F-16 and F18, and from the NPP ATMS sensor. MiRS inverts microwave brightness temperatures into atmospheric temperature and water vapor profiles, along with hydrometeors and surface parameters, simultaneously. This atmosphere/surface coupled inversion allows for more accurate retrievals in the lower tropospheric layers by accounting for the surface emissivity impact on the measurements. It also allows the inversion of the soundings in all-weather conditions thanks to the incorporation of the hydrometeors parameters in the inverted state vector as well as to the inclusion of the emissivity in the same state vector, which is accounted for dynamically for the highly variable surface conditions found under precipitating atmospheres. The inversion is constrained in precipitating conditions by the inclusion of covariances for hydrometeors, to take advantage of the natural correlations that exist between temperature and water vapor with liquid and ice cloud along with rain water. In this study, we present a full assessment of temperature and water vapor retrieval performances in all-weather conditions and over all surface types (ocean, sea-ice, land, and snow) using matchups with radiosonde as well as Numerical Weather Prediction and other satellite retrieval algorithms as references. An emphasis is placed on retrievals in cloudy and precipitating atmospheres, including extreme weather events

  12. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    Science.gov (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  13. NEWTON - NEW portable multi-sensor scienTific instrument for non-invasive ON-site characterization of rock from planetary surface and sub-surfaces

    Science.gov (United States)

    Díaz-Michelena, M.; de Frutos, J.; Ordóñez, A. A.; Rivero, M. A.; Mesa, J. L.; González, L.; Lavín, C.; Aroca, C.; Sanz, M.; Maicas, M.; Prieto, J. L.; Cobos, P.; Pérez, M.; Kilian, R.; Baeza, O.; Langlais, B.; Thébault, E.; Grösser, J.; Pappusch, M.

    2017-09-01

    In space instrumentation, there is currently no instrument dedicated to susceptibly or complete magnetization measurements of rocks. Magnetic field instrument suites are generally vector (or scalar) magnetometers, which locally measure the magnetic field. When mounted on board rovers, the electromagnetic perturbations associated with motors and other elements make it difficult to reap the benefits from the inclusion of such instruments. However, magnetic characterization is essential to understand key aspects of the present and past history of planetary objects. The work presented here overcomes the limitations currently existing in space instrumentation by developing a new portable and compact multi-sensor instrument for ground breaking high-resolution magnetic characterization of planetary surfaces and sub-surfaces. This new technology introduces for the first time magnetic susceptometry (real and imaginary parts) as a complement to existing compact vector magnetometers for planetary exploration. This work aims to solve the limitations currently existing in space instrumentation by means of providing a new portable and compact multi-sensor instrument for use in space, science and planetary exploration to solve some of the open questions on the crustal and more generally planetary evolution within the Solar System.

  14. LIBS Sensor for Sub-surface CO2 Leak Detection in Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Jinesh JAIN

    2017-07-01

    Full Text Available Monitoring carbon sequestration poses numerous challenges to the sensor community. For example, the subsurface environment is notoriously harsh, with large potential mechanical, thermal, and chemical stresses, making long-term stability and survival a challenge to any potential in situ monitoring method. Laser induced breakdown spectroscopy (LIBS has been demonstrated as a promising technology for chemical monitoring of harsh environments and hard to reach places. LIBS has a real- time monitoring capability and can be used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of the probe design and the use of fiber- optics has made LIBS particularly suited for remote measurements. The paper focuses on developing a LIBS instrument for downhole high-pressure, high-temperature brine experiments, where CO2 leakage could result in changes in the trace mineral composition of an aquifer. The progress in fabricating a compact, robust, and simple LIBS sensor for widespread subsurface leak detection is presented.

  15. Monoclonal antibody-based Surface Plasmon Resonance sensors for pathogen detection

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2007-01-01

    essentially transforms molecular interactions into a digital signal, thereby making detection of analytes label-free. Biosensors are used for detection of analytes ranging from small drug molecules to food- and waterborne microorganisms as well as biowarfare pathogens. In future farming, plant production......, that can detect and quantify specific plant pathogens and map these to defined positions within the field, would enable the farm manager to perform a precise and targeted application of pesticides and thereby reduce and optimise the use of agrochemicals. The ideal scenario for precision agriculture...... is to have real-time, robust and low-cost sensors, for both soil and air, which can be operated by personnel with limited or no training in plant pathology. In the present thesis focus is put on the development of immunological sensors for detection of two model plant pathogens, Puccinia striiformis f...

  16. The structure of sensor organic polymeric solids deposited on surfaces of interest for sensing devices

    CERN Document Server

    Lemon, P

    2001-01-01

    For many years, electrochemically deposited polypyrrole has found application in a host of technologically significant areas. Popular applications include use in rechargeable batteries, electrochromic displays and artificial muscles. However, perhaps the most significant application of polypyrrole is as a gas sensing material. The relatively low selectivity of polypyrrole has led to it seldom being used as a 'stand alone' sensor; the ease by which the properties of polypyrrole may be subtly modified during electrochemical deposition (resulting in subtly different sensor responses) makes it ideally suited for incorporation into sensing 'arrays'. The level of understanding concerning the growth dynamics and structural characteristics of electrochemically deposited polypyrrole was poor prior to the commencement of the work presented; this thesis describes research undertaken in order to elucidate the properties of this material. As variation of the dopant group used during electrochemical deposition has been sho...

  17. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Análise comparativa de sensores de velocidade de deslocamento em função da superfície Analysis of speed sensors performance on different surfaces

    Directory of Open Access Journals (Sweden)

    José P. Molin

    2005-12-01

    Full Text Available Um dos fatores que influencia diretamente no desempenho de sistemas mecanizados é a velocidade de deslocamento pela sua importância no planejamento e na execução das operações agrícolas. O objetivo deste trabalho foi avaliar a acurácia de quatro sensores de velocidade, em condições de superfície asfáltica, solo com cobertura vegetal, aclives e declives, acelerações e desacelerações, submetidos a velocidades representativas para aplicações agrícolas. Foram ensaiados dois modelos comerciais de sensores de radar, um sensor de GPS e um sensor óptico. Foram identificadas diferenças significativas para as situações de solo com cobertura vegetal, acelerações e desacelerações. Para a superfície asfáltica, em situação de velocidade constante, os sensores avaliados não apresentaram desempenho com diferença significativa. Os sensores tipo radar demonstraram ser influenciados pela superfície com cobertura vegetal. Na superfície asfáltica, sob condições de aceleração e desaceleração, o sensor de GPS apresentou retardo nos valores de velocidade quando comparado com os demais.One of the factors that influence directly the performance of mechanized systems is the forward speed that is important on planning and managing agricultural operations. The objective of this work was to evaluate the accuracy of four speed sensors, on paved road, vegetated surface, hills, increasing and reducing representative speeds for agricultural applications. Two commercial radars, a GPS sensor and an optical sensor were tested. For the paved road surface, under constant speed, no significant differences were observed on the performance. Radars were influenced by the vegetated surface. On paved road and under acceleration and deceleration the GPS sensor presented delay on its speed values when compared with the other sensors.

  19. Safety and security monitoring of dams using nano-micromachined-based surface acoustic wave (SAW) sensors

    Science.gov (United States)

    Ross, Wayne, Jr.; Saafi, Mohamed; Romine, Peter; Xiao, Zhigang; Pett, Dave

    2006-03-01

    Concerns about the safety of concrete dams have increased during recent years, partly because the population at risk in locations downstream of major dams continues to expand and also because these old dams are experiencing long-term damage and the seismic design concepts used to build them were inadequate. Reliable techniques for continuous monitoring of certain key parameters affecting the dams' integrity are currently nonexistent and this is because of the lack of sensing technology capable to function in a hostile environment such as low temperatures and high moisture level. This paper presents new low cost, passive and wireless micro-machined SAW-based sensors to monitor the safety and security of dams. These SAW sensors are composed of MEMS transducers, Nano-polymer actuators and an antenna, and are deposited on a thin film substrate. The sensors are passive, do not require power on-board and can be interrogated wireless using a radar. When embedded into concrete dams, the devices will be able to detect and locate internal cracks and measure certain key parameters affecting the durability of dams such as temperature, moisture, pH, chloride and carbon dioxide.

  20. Study of n-on-p sensors breakdown in presence of dielectrics placed on top surface

    CERN Document Server

    Affolder, Tony; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment at LHC will have several upgrade projects for High Luminosity LHC operations. Its tracking system will be replaced to cope with the higher interaction rate and radiation levels. The Strip portion of the tracker will be significantly expanded in radius and instrumented area to control the occupancy and momentum resolution. The strip modules are based on large-area n-on-p sensors with short strips, designed to work with the larger particle fluxes and radiation hardness requirements. The strip module design has readout flex circuit glued directly on top of the sensors’ active area to facilitate the assembly process and minimize the radiation length. Adhesive spread outward to the guard ring (GR) region is typically avoided to control the sensor breakdown. However, due to the large number of modules to be constructed, on the order of 20000, such occasions may in principle happen, depending on the process precision control. Therefore, the adhesive influence on the sensor breakdown and the br...

  1. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  2. A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra; Verma, Nidhi [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C., E-mail: balchandra_yadav@rediffmail.com [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Prakash, Rajiv [School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Flower-like, elliptical and spherical shaped surface morphologies of Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The structural and surface morphological investigations. Black-Right-Pointing-Pointer The relationship between the surface morphology and sensing property. Black-Right-Pointing-Pointer Advancement in sensitivity of LPG sensor in comparison to prior work. - Abstract: In the present work nanostructured ferric oxides were synthesized via hydroxide precipitation method without using any surfactant and size selection medium. The surface morphologies and structure of samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The structural analysis confirmed the formation of Fe{sub 2}O{sub 3} with {alpha}-phase and rhombohedral structure. Optical and thermal properties were investigated by using UV-visible absorption spectroscopy and differential scanning calorimetry (DSC) techniques. Pelletizations of materials were done using hydraulic press and these pellets were investigated with the exposition of liquefied petroleum gas. Variations in resistance of the pellet with time for different concentrations of LPG were recorded at room temperature (27 Degree-Sign C). The maximum value of average sensitivity was found {approx}5 for 5 vol.% of LPG. Our results show that the LPG sensing behavior was inspired by the different kinds of surface morphologies of Fe{sub 2}O{sub 3} and inferred that the spherical porous nanoparticles synthesized via hydroxide precipitation process (S-3) had best response to LPG.

  3. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    Science.gov (United States)

    Kashan, M. A. M.; Kalavally, V.; Lee, H. W.; Ramakrishnan, N.

    2016-05-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface.

  4. Angular scanning and variable wavelength surface plasmon resonance allowing free sensor surface selection for optimum material- and bio-sensing

    NARCIS (Netherlands)

    Lakayan, Dina; Tuppurainen, Jussipekka; Albers, Martin; van Lint, Matthijs J.; van Iperen, Dick J.; Weda, Jelmer J.A.; Kuncova-Kallio, Johana; Somsen, Govert W.; Kool, Jeroen

    2018-01-01

    A variable-wavelength Kretschmann configuration surface plasmon resonance (SPR) apparatus with angle scanning is presented. The setup provides the possibility of selecting the optimum wavelength with respect to the properties of the metal layer of the sensorchip, sample matrix, and biomolecular

  5. On-Site Detection of Aflatoxin B1 in Grains by a Palm-Sized Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Jeong Moon

    2018-02-01

    Full Text Available Aflatoxins (AFs are highly toxic compounds that can cause both acute and chronic toxicity in humans. Aflatoxin B1 (AFB1 is considered the most toxic of AFs. Therefore, the rapid and on-site detection of AFB1 is critical for food safety management. Here, we report the on-site detection of AFB1 in grains by a portable surface plasmon resonance (SPR sensor. For the detection of AFB1, the surface of an SPR Au chip was sequentially modified by cysteine-protein G, AFB1 antibody, and bovine serum albumin (BSA. Then, the sample solution and AFB1-BSA conjugate were flowed onto the Au chip in serial order. In the absence of AFB1, the SPR response greatly increased due to the binding of AFB1-BSA on the Au chip. In the presence of AFB1, the SPR response showed little change because the small AFB1 molecule binds on the Au chip instead of the large AFB1-BSA molecule. By using this portable SPR-based competitive immunoassay, the sensor showed low limits of detection (2.51 ppb and quantification (16.32 ppb. Furthermore, we successfully detected AFB1 in rice, peanut, and almond samples, which suggests that the proposed sensing method can potentially be applied to the on-site monitoring of mycotoxins in food.

  6. Classification of reflected signals from cavitated tooth surfaces using an artificial intelligence technique incorporating a fiber optic displacement sensor

    Science.gov (United States)

    Rahman, Husna Abdul; Harun, Sulaiman Wadi; Arof, Hamzah; Irawati, Ninik; Musirin, Ismail; Ibrahim, Fatimah; Ahmad, Harith

    2014-05-01

    An enhanced dental cavity diameter measurement mechanism using an intensity-modulated fiber optic displacement sensor (FODS) scanning and imaging system, fuzzy logic as well as a single-layer perceptron (SLP) neural network, is presented. The SLP network was employed for the classification of the reflected signals, which were obtained from the surfaces of teeth samples and captured using FODS. Two features were used for the classification of the reflected signals with one of them being the output of a fuzzy logic. The test results showed that the combined fuzzy logic and SLP network methodology contributed to a 100% classification accuracy of the network. The high-classification accuracy significantly demonstrates the suitability of the proposed features and classification using SLP networks for classifying the reflected signals from teeth surfaces, enabling the sensor to accurately measure small diameters of tooth cavity of up to 0.6 mm. The method remains simple enough to allow its easy integration in existing dental restoration support systems.

  7. A versatile optical profilometer based on conoscopic holography sensors for acquisition of specular and diffusive surfaces in artworks

    Science.gov (United States)

    Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia

    2017-07-01

    Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.

  8. Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2

    Science.gov (United States)

    Marikutsa, Artem; Rumyantseva, Marina; Baranchikov, Alexander; Gaskov, Alexander

    2015-01-01

    Nanocrystalline perovskite-type BaSnO3 was obtained via microwave-assisted hydrothermal route followed by annealing at variable temperature. The samples composition and microstructure were characterized. Particle size of 18–23 nm was unaffected by heat treatment at 275–700 °C. Materials DC-conduction was measured at variable temperature and oxygen concentration. Barium stannate exhibited n-type semiconductor behavior at 150–450 °C with activation energy being dependent on the materials annealing temperature. Predominant ionosorbed oxygen species types were estimated. They were shown to change from molecular to atomic species on increasing temperature. Comparative test of sensor response to various inorganic target gases was performed using nanocrystalline SnO2-based sensors as reference ones. Despite one order of magnitude smaller surface area, BaSnO3 displayed higher sensitivity to SO2 in comparison with SnO2. DRIFT spectroscopy revealed distinct interaction routes of the oxides surfaces with SO2. Barium-promoted sulfate formation favoring target molecules oxidation was found responsible for the increased BaSnO3 sensitivity to ppm-range concentrations of SO2 in air. PMID:28793573

  9. Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-09-01

    Full Text Available Nanocrystalline perovskite-type BaSnO3 was obtained via microwave-assisted hydrothermal route followed by annealing at variable temperature. The samples composition and microstructure were characterized. Particle size of 18–23 nm was unaffected by heat treatment at 275–700 °C. Materials DC-conduction was measured at variable temperature and oxygen concentration. Barium stannate exhibited n-type semiconductor behavior at 150–450 °C with activation energy being dependent on the materials annealing temperature. Predominant ionosorbed oxygen species types were estimated. They were shown to change from molecular to atomic species on increasing temperature. Comparative test of sensor response to various inorganic target gases was performed using nanocrystalline SnO2-based sensors as reference ones. Despite one order of magnitude smaller surface area, BaSnO3 displayed higher sensitivity to SO2 in comparison with SnO2. DRIFT spectroscopy revealed distinct interaction routes of the oxides surfaces with SO2. Barium-promoted sulfate formation favoring target molecules oxidation was found responsible for the increased BaSnO3 sensitivity to ppm-range concentrations of SO2 in air.

  10. A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin.

    Science.gov (United States)

    Liu, Chunbo; Song, Zhilong; Pan, Jianming; Yan, Yongsheng; Cao, Zhijing; Wei, Xiao; Gao, Lin; Wang, Juan; Dai, Jiangdong; Meng, Minjia; Yu, Ping

    2014-07-01

    In this study, surface molecularly imprinted YVO4:Eu(3+) nanoparticles with molecular recognitive optosensing activity were successfully prepared by precipitation polymerization using λ-Cyhalothrin (LC) as template molecules, methacrylic acid and ethylene glycol dimethacrylate as the polymerization precursors which could complex with template molecules, and the material has been characterized by SEM, TEM, FT-IR, XRD, TGA and so on. Meanwhile, the as-prepared core-shell structured nanocomposite (YVO4:Eu(3+)@MIPs), which was composed of lanthanide doped YVO4:Eu(3+) as fluorescent signal and surface molecular imprinted polymers as molecular selective recognition sites, could selectively and sensitively optosense the template molecules. After the experimental conditions were optimized, two linear relationship were obtained covering the concentration range of 2.0-10.0 μM and 10.0-90.0 μM, and the limit of detection (LOD) for LC was found to be 1.76 μM. Furthermore, a possible mechanism was put forward to explain the fluorescence quenching of YVO4:Eu(3+)@MIPs. More importantly, the obtained sensor was proven to be suitable for the detection of residues of LC in real examples. And the excellent performance of this sensor will facilitate future development of rapid and high-efficiency detection of LC. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nanocrystalline BaSnO₃ as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO₂.

    Science.gov (United States)

    Marikutsa, Artem; Rumyantseva, Marina; Baranchikov, Alexander; Gaskov, Alexander

    2015-09-18

    Nanocrystalline perovskite-type BaSnO₃ was obtained via microwave-assisted hydrothermal route followed by annealing at variable temperature. The samples composition and microstructure were characterized. Particle size of 18-23 nm was unaffected by heat treatment at 275-700 °C. Materials DC-conduction was measured at variable temperature and oxygen concentration. Barium stannate exhibited n -type semiconductor behavior at 150-450 °C with activation energy being dependent on the materials annealing temperature. Predominant ionosorbed oxygen species types were estimated. They were shown to change from molecular to atomic species on increasing temperature. Comparative test of sensor response to various inorganic target gases was performed using nanocrystalline SnO₂-based sensors as reference ones. Despite one order of magnitude smaller surface area, BaSnO₃ displayed higher sensitivity to SO₂ in comparison with SnO₂. DRIFT spectroscopy revealed distinct interaction routes of the oxides surfaces with SO₂. Barium-promoted sulfate formation favoring target molecules oxidation was found responsible for the increased BaSnO₃ sensitivity to ppm-range concentrations of SO₂ in air.

  12. The use of reverse iontophoresis based surface plasmon resonance for the development of a noninvasive real time transdermal biomarker sensor

    Science.gov (United States)

    Gupta, Niraj K.; Hwang, Yongsoon; Cameron, Brent D.

    2016-03-01

    Recent developments in the identification of biomarkers offer a potential means to facilitate early disease detection, gauge treatment in drug therapy clinical trials, and to assess the impact of fatigue and/or stress as related to human physical and cognitive performance. For practical implementation, however, real-time sensing and quantification of such physiological biomarkers is preferred. Some key aspects in this process are continuous sample collection and real time detection. Traditionally, blood is considered the gold standard for samples but frequent phlebotomy is painful and inconvenient. Other sources like saliva and passive sweat cannot be precisely controlled and are affected by other limitations. Some of these can be addressed by reverse iontophoresis which is a noninvasive technique capable of facilitating controlled transport of biomolecules up to 20kDa in size across the skin barrier by passing a low level current between two dermal electrodes. The samples collected at the electrode site can then be monitored at site or transported via a microfluidic channel towards a sensor. In the case reported here, the sensor is based on surface plasmon resonance (SPR), which is a label free, real time, and highly sensitive optical sensing technique. The real time SPR detection of targeted biomarkers is then achieved through the use of aptamer surface modification. In this experiment, extraction and detection of orexin A, a stress related biomarker, is used for demonstration purposes.

  13. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    Science.gov (United States)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l by the antigen-antibody reaction was spectroscopically measured on the fabricated optical interferometer, and the deflection amount of the movable membrane after 10 min treatment was 2.4 times larger than that of nonspecific adsorption with the avidin molecules. This result indicated that the proposed sensor can be used for selective detection of low-concentration target antigen molecules.

  14. Sensitive and rapid detection of anti-PEG in blood using surface plasmon resonance sensor (Conference Presentation)

    Science.gov (United States)

    Sun, Fang; Jiang, Shaoyi; Yu, Qiuming

    2016-03-01

    Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.

  15. Relationship between open-circuit voltage in Cu(In,Ga)Se2 solar cell and peak position of (220/204) preferred orientation near its absorber surface

    International Nuclear Information System (INIS)

    Chantana, J.; Minemoto, T.; Watanabe, T.; Teraji, S.; Kawamura, K.

    2013-01-01

    Cu(In,Ga)Se 2 (CIGS) absorbers with various Ga/III, Ga/(In+Ga), profiles are prepared by the so-called “multi-layer precursor method” using multi-layer co-evaporation of material sources. It is revealed that open-circuit voltage (V OC ) of CIGS solar cell is primarily dependent on averaged Ga/III near the surface of its absorber. This averaged Ga/III is well predicted by peak position of (220/204) preferred orientation of CIGS film near its surface investigated by glancing-incidence X-ray diffraction with 0.1° incident angle. Finally, the peak position of (220/204) preferred orientation is proposed as a measure of V OC before solar cell fabrication

  16. MAARGHA: A Prototype System for Road Condition and Surface Type Estimation by Fusing Multi-Sensor Data

    Directory of Open Access Journals (Sweden)

    Deepak Rajamohan

    2015-07-01

    Full Text Available Road infrastructure in countries like India is expanding at a rapid pace and is becoming increasingly difficult for authorities to identify and fix the bad roads in time. Current Geographical Information Systems (GIS lack information about on-road features like road surface type, speed breakers and dynamic attribute data like the road quality. Hence there is a need to build road monitoring systems capable of collecting such information periodically. Limitations of satellite imagery with respect to the resolution and availability, makes road monitoring primarily an on-field activity. Monitoring is currently performed using special vehicles that are fitted with expensive laser scanners and need skilled resource besides providing only very low coverage. Hence such systems are not suitable for continuous road monitoring. Cheaper alternative systems using sensors like accelerometer and GPS (Global Positioning System exists but they are not equipped to achieve higher information levels. This paper presents a prototype system MAARGHA (MAARGHA in Sanskrit language means an eternal path to solution, which demonstrates that it can overcome the disadvantages of the existing systems by fusing multi-sensory data like camera image, accelerometer data and GPS trajectory at an information level, apart from providing additional road information like road surface type. MAARGHA has been tested across different road conditions and sensor data characteristics to assess its potential applications in real world scenarios. The developed system achieves higher information levels when compared to state of the art road condition estimation systems like Roadroid. The system performance in road surface type classification is dependent on the local environmental conditions at the time of imaging. In our study, the road surface type classification accuracy reached 100% for datasets with near ideal environmental conditions and dropped down to 60% for datasets with shadows and

  17. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    Science.gov (United States)

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  18. Terrain following of arbitrary surfaces using a high intensity LED proximity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.E.

    1992-01-01

    Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely a priori unknown, real-time robotic system. 7 refs.

  19. DIORAMA Model of Satellite Body Orientation

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-04

    The DIORAMA GPS satellite platform orientation model is described. Satellites need to keep sensors pointed towards the earth and solar panels oriented to face the sun (when not in the earth’s shadow) while they orbit the earth.

  20. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors

    Science.gov (United States)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  1. UV Climate at Mars Surface: A Proposed Sensor for Both Orbit and Ground Stations

    Science.gov (United States)

    Gillotay, D.; Depiesse, C.; Daerden, F.; This, N.; Muller, C.

    2012-06-01

    The UV conditions on the surface of Mars are of paramount importance for the human exploration of Mars. We propose to measure spectrally the solar direct and diffuse UV and visible radiations from both Mars orbit and surface with light instruments.

  2. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array

    Directory of Open Access Journals (Sweden)

    Dengpeng Yuan

    2015-07-01

    Full Text Available Based on silicon-on-insulator (SOI rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors’ output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm−1. For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10−7 RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10−5 RIU can be detected by the SPR sensor array.

  3. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  4. Improved Aerosol Optical Thickness, Columnar Water Vapor, and Surface Reflectance Retrieval from Combined CASI and SASI Airborne Hyperspectral Sensors

    Directory of Open Access Journals (Sweden)

    Hang Yang

    2017-02-01

    Full Text Available An increasingly common requirement in remote sensing is the integration of hyperspectral data collected simultaneously from different sensors (and fore-optics operating across different wavelength ranges. Data from one module are often relied on to correct information in the other, such as aerosol optical thickness (AOT and columnar water vapor (CWV. This paper describes problems associated with this process and recommends an improved strategy for processing remote sensing data, collected from both visible to near-infrared and shortwave infrared modules, to retrieve accurate AOT, CWV, and surface reflectance values. This strategy includes a workflow for radiometric and spatial cross-calibration and a method to retrieve atmospheric parameters and surface reflectance based on a radiative transfer function. This method was tested using data collected with the Compact Airborne Spectrographic Imager (CASI and SWIR Airborne Spectrographic Imager (SASI from a site in Huailai County, Hebei Province, China. Various methods for retrieving AOT and CWV specific to this region were assessed. The results showed that retrieving AOT from the remote sensing data required establishing empirical relationships between 465.6 nm/659 nm and 2105 nm, augmented by ground-based reflectance validation data, and minimizing the merit function based on AOT@550 nm optimization. The paper also extends the second-order difference algorithm (SODA method using Powell’s methods to optimize CWV retrieval. The resulting CWV image has fewer residual surface features compared with the standard methods. The derived remote sensing surface reflectance correlated significantly with the ground spectra of comparable vegetation, cement road and soil targets. Therefore, the method proposed in this paper is reliable enough for integrated atmospheric correction and surface reflectance retrieval from hyperspectral remote sensing data. This study provides a good reference for surface

  5. Surface plasmon resonance sensor based on golden nanoparticles and cold vapour generation technique for the detection of mercury in aqueous samples

    Science.gov (United States)

    Castillo, Jimmy; Chirinos, José; Gutiérrez, Héctor; La Cruz, Marie

    2017-09-01

    In this work, a surface plasmon resonance sensor for determination of Hg based on golden nanoparticles was developed. The sensor follows the change of the signal from solutions in contact with atomic mercury previously generated by the reaction with sodium borohydride. Mie theory predicts that Hg film, as low as 5 nm, induced a significant reduction of the surface plasmon resonance signal of 40 nm golden nanoparticles. This property was used for quantification purposes in the sensor. The device provide limits of detection of 172 ng/L that can compared with the 91 ng/L obtained with atomic fluorescence, a common technique used for Hg quantification in drinking water. This result was relevant, considering that it was not necessary to functionalize the nanoparticles or use nanoparticles deposited in a substrate. Also, thanks that Hg is released from the matrix, the surface plasmon resonance signal was not affected by concomitant elements in the sample.

  6. Development of a laser-based sensor to measure true road surface deflection.

    Science.gov (United States)

    2017-04-01

    The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...

  7. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  8. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces

    KAUST Repository

    Shekhah, Osama

    2013-01-01

    Highly-oriented ZIF-8 thin films with controllable thickness were grown on an -OH-functionalized Au substrate using the liquid phase epitaxy method at room temperature, as evidenced by SEM and PXRD. The adsorption-desorption properties of the resulting ZIF-8 thin film were investigated for various VOCs using the QCM technique. © The Royal Society of Chemistry 2013.

  9. ANALYSIS OF ROAD SURFACE TEMPERATURE VARIATION ALONG THE ROAD SEGMENTATION USING MOBILE THERMAL SENSOR

    OpenAIRE

    Dukgeun Yun; Jaehong Park

    2016-01-01

    According to the road accidents statistics of Korea, 33% of fatalities occurred in winter. As many factors can be the causes of the accidents in winter season, road freezing is the most important factor among them. Even though the road surface temperature is more important than air temperature, generally the drivers and road manager get the air temperature from the weather forecast. If a road manager has information or can predict the road surface condition or temperature, the accidents relat...

  10. Monoclonal antibody-based Surface Plasmon Resonance sensors for pathogen detection

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2007-01-01

    essentially transforms molecular interactions into a digital signal, thereby making detection of analytes label-free. Biosensors are used for detection of analytes ranging from small drug molecules to food- and waterborne microorganisms as well as biowarfare pathogens. In future farming, plant production......A biosensor is an analytical device, which incorporates a biological sensing element integrated within a physicochemical transducer. The aim of a biosensor is to produce an electronic signal, which is proportional to the interaction of analytes with the sensing element. This means that the sensor.......sp. tritici, the cause of wheat yellow rust and Phytophthora infestans, the cause of late blight disease in potato. As no antibody existed against urediniospores from P. striiformis, mouse monoclonal antibodies (mAbs) were produced and characterised. IgM-isotype mAbs from nine hybridoma cell lines were...

  11. QuakeSim: a Web Service Environment for Productive Investigations with Earth Surface Sensor Data

    Science.gov (United States)

    Parker, J. W.; Donnellan, A.; Granat, R. A.; Lyzenga, G. A.; Glasscoe, M. T.; McLeod, D.; Al-Ghanmi, R.; Pierce, M.; Fox, G.; Grant Ludwig, L.; Rundle, J. B.

    2011-12-01

    The QuakeSim science gateway environment includes a visually rich portal interface, web service access to data and data processing operations, and the QuakeTables ontology-based database of fault models and sensor data. The integrated tools and services are designed to assist investigators by covering the entire earthquake cycle of strain accumulation and release. The Web interface now includes Drupal-based access to diverse and changing content, with new ability to access data and data processing directly from the public page, as well as the traditional project management areas that require password access. The system is designed to make initial browsing of fault models and deformation data particularly engaging for new users. Popular data and data processing include GPS time series with data mining techniques to find anomalies in time and space, experimental forecasting methods based on catalogue seismicity, faulted deformation models (both half-space and finite element), and model-based inversion of sensor data. The fault models include the CGS and UCERF 2.0 faults of California and are easily augmented with self-consistent fault models from other regions. The QuakeTables deformation data include the comprehensive set of UAVSAR interferograms as well as a growing collection of satellite InSAR data.. Fault interaction simulations are also being incorporated in the web environment based on Virtual California. A sample usage scenario is presented which follows an investigation of UAVSAR data from viewing as an overlay in Google Maps, to selection of an area of interest via a polygon tool, to fast extraction of the relevant correlation and phase information from large data files, to a model inversion of fault slip followed by calculation and display of a synthetic model interferogram.

  12. Maritime over the Horizon Sensor Integration: High Frequency Surface-Wave-Radar and Automatic Identification System Data Integration Algorithm.

    Science.gov (United States)

    Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola

    2018-04-09

    To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.

  13. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  14. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  15. Surface-Micromachined Neural Sensors with Integrated Double Side Recordings on Dry-Etch Benzocyclobutene(BCB) Substrate.

    Science.gov (United States)

    Zhu, Haixin; He, Jiping; Kim, Bruce

    2005-01-01

    a neural sensor with novel structure and capable of double side recordings has been designed and fabricated using surface micromachining technique. Dry-etch Benzocyclobutene (BCB) was selected as the substrate and packaging material for its excellent electrical, mechanical and thermal properties. Positive photoresist (AZ4620) was used as the sacrificial layer during the formation of backside recording sites, and the lift-off process combined with BCB dry etch technique was developed to open the recording sites on the backside. The finished device has intracortical recording sites on both sides, and also epidural recording sites on the front side. The total channel number doubled compared to that of single side electrode structure. Three dry-etch BCB layers were applied to insulate the front side conduction traces from the backside trace layer, and package the entire devices. The developed process shows reliable and high fabrication yield, and results suggest that this newly developed neural sensor could improve the performance and efficiency of neural recording.

  16. Far Eastern Pacific Fresh Pool surface salinity variability observed by SMOS and Aquarius sensors over the period 2010-2012

    Science.gov (United States)

    Reul, Nicolas; Alory, Gael; Maes, Christophe; Illig, Serena; Chapron, Bertrand

    2013-04-01

    The seasonal and interannual variability of the Sea Surface Salinity (SSS) deduced from SMOS and Aquarius/SAC-D satellite missions are analyzed over the period 2010-2012 in the Far Eastern Pacific Fresh Pool. The lowest values of salinity in surface layers (migration of the Intertropical Convergence Zone (ITCZ) over Central America (Alory et al., 2012). During the boreal winter, as the ITCZ moves southward, the north-easterly Panama gap wind creates a south-westward jet-like current in its path with a dipole of Ekman pumping/eddies on its flanks. As a result, upwelling in the Panama Bight brings cold and salty waters to the surface which erode the fresh pool on its eastern side while surface currents stretch the pool westward. The present study focuses on the fresh pool patterns ranging from the seasonal and interannual variability over the last 3 year period. Each year, satellite SSS products reveal the erosion of the fresh pool by the Panama upwelling. Compared to the SSS climatology from the World Ocean Atlas, satellite SSS data systematically exhibit fresher surface water (by ~0.5 to 1 unit in SSS) just after the occurrence of the maximum SSS reached in the region during the Panama upwelling events (April-May). Using Tropical Rainfall Measuring Mission (TRMM) data, we found that these fresh anomalies coincide with local excess precipitation. Moreover, except during the boreal winter 2011, saltier surface waters than in the climatology were observed during the intensification phase of the Panama upwelling events (Fev-March). Using ASCAT sensor surface winds, TRMM data, surface current deduced from altimeter data combined with the satellite SSS, the study will analyze how these observed SSS anomalies could be related to the interannual variability in the dominant physical mechanisms involved in the freshpool dynamics. A particular focus will be set on the consistency between SMOS and Aquarius observations and on the potential role of the surface freshwater

  17. Investigation on effects of surface morphologies on response of LPG sensor based on nanostructured copper ferrite system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satyendra [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C., E-mail: balchandra_yadav@rediffmail.com [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Gupta, V.D. [Nanomaterials and Sensors Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Dwivedi, Prabhat K. [DST Unit on Nanosciences, Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, U.P. (India)

    2012-11-15

    Graphical abstract: Figure shows the variations in resistance with time for copper ferrite system synthesized in various molar ratio. A maximum variation in resistance was observed for copper ferrite prepared in 1:1 molar ratio. Highlights: ► Evaluation of structural, optical and surface morphologies. ► Significant variation in LPG sensing properties. ► Surface modification of ferric oxide pellet by copper ferrite. ► CuFe{sub 2}O{sub 4} pellets for LPG sensing at room temperature. -- Abstract: Synthesis of a copper ferrite system (CuFe{sub 2}O{sub 4}) via chemical co-precipitation method is characterized by X-ray diffraction, surface morphology (scanning electron microscope) and optical absorption spectroscopy. These characteristics show their dependence on the relative compositions of the two subsystems. They are further confirmed by the variation in the band gap. A study of gas sensing properties shows the spinel CuFe{sub 2}O{sub 4} synthesized in 1:1 molar ratio exhibit best response to LPG adsorption/resistance measurement. Thus resistance based LPG sensor is found robust, cheap and may be applied for kitchens and industrial applications.

  18. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  19. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  20. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Homola, Jiří

    2009-01-01

    Roč. 17, č. 25 (2009), s. 23254-23264 ISSN 1094-4087 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor * Coupled mode theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.278, year: 2009

  1. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  2. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  3. Accommodation of repetitive sensor faults - applied to surface faults on compact discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2008-01-01

    Surface defects such as scratches and fingerprints on compact discs (CDs) can cause CD players to lose focus and tracking on the discs. A scheme for handling these defects has previously been proposed. In this brief, adaptive and predictive versions of this scheme are developed. The adaptive sche...

  4. An Observation Task Chain Representation Model for Disaster Process-Oriented Remote Sensing Satellite Sensor Planning: A Flood Water Monitoring Application

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-03-01

    Full Text Available An accurate and comprehensive representation of an observation task is a prerequisite in disaster monitoring to achieve reliable sensor observation planning. However, the extant disaster event or task information models do not fully satisfy the observation requirements for the accurate and efficient planning of remote-sensing satellite sensors. By considering the modeling requirements for a disaster observation task, we propose an observation task chain (OTChain representation model that includes four basic OTChain segments and eight-tuple observation task metadata description structures. A prototype system, namely OTChainManager, is implemented to provide functions for modeling, managing, querying, and visualizing observation tasks. In the case of flood water monitoring, we use a flood remote-sensing satellite sensor observation task for the experiment. The results show that the proposed OTChain representation model can be used in modeling process-owned flood disaster observation tasks. By querying and visualizing the flood observation task instances in the Jinsha River Basin, the proposed model can effectively express observation task processes, represent personalized observation constraints, and plan global remote-sensing satellite sensor observations. Compared with typical observation task information models or engines, the proposed OTChain representation model satisfies the information demands of the OTChain and its processes as well as impels the development of a long time-series sensor observation scheme.

  5. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  6. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  7. Toward single-molecule detection with sensors based on propagating surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Kvasnička, Pavel; Chadt, Karel; Vala, Milan; Bocková, Markéta; Homola, Jiří

    2012-01-01

    Roč. 37, č. 2 (2012), s. 163-165 ISSN 0146-9592 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA MŠk(CZ) LH11102 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * single molecule * surface plasmon microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.385, year: 2012

  8. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor

    Directory of Open Access Journals (Sweden)

    Marlia Morsin

    2017-04-01

    Full Text Available Localized surface plasmon resonance (LSPR properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR and the longitudinal surface plasmon resonance (l-SPR at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.

  9. Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)

    Science.gov (United States)

    Abdelmonem, Ahmed; Backus, Ellen H. G.; Hoffmann, Nadine; Sánchez, M. Alejandra; Cyran, Jenée D.; Kiselev, Alexei; Bonn, Mischa

    2017-06-01

    Surface charge is one of the surface properties of atmospheric aerosols, which has been linked to heterogeneous ice nucleation and hence cloud formation, microphysics, and optical properties. Despite the importance of surface charge for ice nucleation, many questions remain on the molecular-level mechanisms at work. Here, we combine droplet-freezing assay studies with vibrational sum frequency generation (SFG) spectroscopy to correlate interfacial water structure to surface nucleation strength. We study immersion freezing of aqueous solutions of various pHs on the atmospherically relevant aluminum oxide α-Al2O3 (0001) surface using an isolated droplet on the surface. The high-pH solutions freeze at temperatures higher than that of the low-pH solution, while the neutral pH has the highest freezing temperature. On the molecular level, the SFG spectrum of the interfacial water changes substantially upon freezing. At all pHs, crystallization leads to a reduction of intensity of the 3400 cm-1 water resonance, while the 3200 cm-1 intensity drops for low pH but increases for neutral and high pHs. We find that charge-induced surface templating suppresses nucleation, irrespective of the sign of the surface charge. Heterogeneous nucleation is most efficient for the nominally neutral surface.

  10. Integration of multi-sensor data to measure soil surface changes

    Science.gov (United States)

    Eltner, Anette; Schneider, Danilo

    2016-04-01

    Digital elevation models (DEM) of high resolution and accuracy covering a suitable sized area of interest can be a promising approach to help understanding the processes of soil erosion. Thereby, the plot under investigation should remain undisturbed. The fragile marl landscape in Andalusia (Spain) is especially prone to soil detachment and transport with unique sediment connectivity characteristics due to the soil properties and climatic conditions. A 600 m² field plot is established and monitored during three field campaigns (Sep. 2013, Nov. 2013 and Feb. 2014). Unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are suitable tools to generate high resolution topography data that describe soil surface changes at large field plots. Thereby, the advantages of both methods are utilised in a synergetic manner. On the one hand, TLS data is assumed to comprise a higher reliability regarding consistent error behaviour than DEMs derived from overlapping UAV images. Therefore, global errors (e.g. dome effect) and local errors (e.g. DEM blunders due to erroneous image matching) within the UAV data are assessed with the DEMs produced by TLS. Furthermore, TLS point clouds allow for fast and reliable filtering of vegetation spots, which is not as straightforward within the UAV data due to known image matching problems in areas displaying plant cover. On the other hand, systematic DEM errors linked to TLS are detected and possibly corrected utilising the DEMs reconstructed from overlapping UAV images. Furthermore, TLS point clouds are filtered corresponding to the degree of point quality, which is estimated from parameters of the scan geometry (i.e. incidence angle and footprint size). This is especially relevant for this study because the area of interest is located at gentle hillslopes that are prone to soil erosion. Thus, the view of the scanning device onto the surface results in an adverse angle, which is solely slightly improved by the

  11. Thermal Transmission through Existing Building Enc