WorldWideScience

Sample records for surface optimization technique

  1. Optimization and Application of Surface Segmentation Technique for Tomographic PIV

    Science.gov (United States)

    Ding, Liuyang; Adrian, Ronald; Wilson, Brandon; Prestridge, Kathy; Team

    2014-11-01

    Tomographic PIV is a widely used 3D flow measurement technique. It utilizes images recorded by multiple cameras to reconstruct the intensity distribution of a measured volume. The 3D3C velocity field is then computed by 3D cross-correlation. Surface segmentation aims to reduce computational cost. It extracts from a cloud of particles an image of those particles that lie on a mathematically prescribed surface. 2D2C velocity fields are computed on stacks of orthogonal surfaces, then assembled to construct the full 3D3C velocity field. We investigate the reconstruction of adaptive surfaces aligned with the main flow direction minimizing the out-of-plane motion. Numerical assessment is performed on curved-surface reconstruction for Taylor-Couette flow. An optimizing 2D interrogation scheme involving volumetric deformation is proposed to improve the accuracy of the 3D3C velocity field. The numerical test is performed on a synthetic vortex ring showing good measurement accuracy. Experimental results measuring the shock-driven turbulent mixing will also be presented. References

  2. Statistical designs and response surface techniques for the optimization of chromatographic systems.

    Science.gov (United States)

    Ferreira, Sergio Luis Costa; Bruns, Roy Edward; da Silva, Erik Galvão Paranhos; Dos Santos, Walter Nei Lopes; Quintella, Cristina Maria; David, Jorge Mauricio; de Andrade, Jailson Bittencourt; Breitkreitz, Marcia Cristina; Jardim, Isabel Cristina Sales Fontes; Neto, Benicio Barros

    2007-07-27

    This paper describes fundamentals and applications of multivariate statistical techniques for the optimization of chromatographic systems. The surface response methodologies: central composite design, Doehlert matrix and Box-Behnken design are discussed and applications of these techniques for optimization of sample preparation steps (extractions) and determination of experimental conditions for chromatographic separations are presented. The use of mixture design for optimization of mobile phases is also related. An optimization example involving a real separation process is exhaustively described. A discussion about model validation is presented. Some applications of other multivariate techniques for optimization of chromatographic methods are also summarized.

  3. Application of response surface techniques to helicopter rotor blade optimization procedure

    Science.gov (United States)

    Henderson, Joseph Lynn; Walsh, Joanne L.; Young, Katherine C.

    1995-01-01

    In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.

  4. Surface Optimization Techniques for Deployable Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this and several other programs, CTD has developed TEMBOREG deployable solid-surface reflectors (TEMBOREG Reflectors) to provide future NASA and Air Force...

  5. Optimization of freeform surfaces using intelligent deformation techniques for LED applications

    Science.gov (United States)

    Isaac, Annie Shalom; Neumann, Cornelius

    2018-04-01

    For many years, optical designers have great interests in designing efficient optimization algorithms to bring significant improvement to their initial design. However, the optimization is limited due to a large number of parameters present in the Non-uniform Rationaly b-Spline Surfaces. This limitation was overcome by an indirect technique known as optimization using freeform deformation (FFD). In this approach, the optical surface is placed inside a cubical grid. The vertices of this grid are modified, which deforms the underlying optical surface during the optimization. One of the challenges in this technique is the selection of appropriate vertices of the cubical grid. This is because these vertices share no relationship with the optical performance. When irrelevant vertices are selected, the computational complexity increases. Moreover, the surfaces created by them are not always feasible to manufacture, which is the same problem faced in any optimization technique while creating freeform surfaces. Therefore, this research addresses these two important issues and provides feasible design techniques to solve them. Finally, the proposed techniques are validated using two different illumination examples: street lighting lens and stop lamp for automobiles.

  6. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    Science.gov (United States)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  7. Optimization techniques in statistics

    CERN Document Server

    Rustagi, Jagdish S

    1994-01-01

    Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimiza

  8. Surface science techniques

    CERN Document Server

    Bracco, Gianangelo

    2013-01-01

    The book describes the experimental techniques employed to study surfaces and interfaces. The emphasis is on the experimental method. Therefore all chapters start with an introduction of the scientific problem, the theory necessary to understand how the technique works and how to understand the results. Descriptions of real experimental setups, experimental results at different systems are given to show both the strength and the limits of the technique. In a final part the new developments and possible extensions of the techniques are presented. The included techniques provide microscopic as well as macroscopic information. They cover most of the techniques used in surface science.

  9. Optimization of surface maintenance

    International Nuclear Information System (INIS)

    Oeverland, E.

    1990-01-01

    The present conference paper deals with methods of optimizing the surface maintenance of steel-made offshore installations. The paper aims at identifying important approaches to the problems regarding the long-range planning of an economical and cost effective maintenance program. The methods of optimization are based on the obtained experiences from the maintenance of installations on the Norwegian continental shelf. 3 figs

  10. Application of response surface optimization technique to the preparation of cathode electrode for the molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ozkan, G.; Basarir, E.; Ozkan, G.

    2017-01-01

    One of the fuel cells, the molten carbonate fuel cell (MCFC), comes into prominence due to its high energy potential and suitability for industrial applications. Nickel porous structures are used as anodes and cathodes for MCFC. In this study; Green sheets were obtained by means of tape casting method performing on the prepared mixtures. 23% - 37% by weight nickel oxide was used in the mixture for the purpose of synthesizing cathode green sheets. Different slurry were prepared using different ratios of polyethylene glycol (PEG) as plasticizer, polyvinyl butyral (PVB) as binder, glycerol as dispersant and butanol with hexanol as a solvent. The optimum mixture formulation for the tape casting has been determined by measuring, tensile strength on the green tape. Tensile elongation of green tape refers to resistance to dissolution, cracking and breakage for the green tape slurry. Tensile force parameters were evaluated for the green tape’s slurries. Maximum tensile force and thickness of the green tape is critical factor in order to choose the optimum mixture formulation of cathode slurries. Optimum composition was determined as 23% nickel oxide, 3% binder and 3% plasticizer according to analyze two level experimental factorial design and response surface optimization technique. (author)

  11. Surface science techniques

    CERN Document Server

    Walls, JM

    2013-01-01

    This volume provides a comprehensive and up to the minute review of the techniques used to determine the nature and composition of surfaces. Originally published as a special issue of the Pergamon journal Vacuum, it comprises a carefully edited collection of chapters written by specialists in each of the techniques and includes coverage of the electron and ion spectroscopies, as well as the atom-imaging methods such as the atom probe field ion microscope and the scanning tunnelling microscope. Surface science is an important area of study since the outermost surface layers play a crucial role

  12. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  13. OPTIMASI TEKNIK PEMBUATAN TABLET EFFERVESCENT SARI BUAH DENGAN RESPONSE SURFACE METHOD [Optimization of Processing Technique of the Fruit Juice Effervescent Tablet with Response Surface Method

    Directory of Open Access Journals (Sweden)

    Ansar1

    2009-06-01

    Full Text Available This research was aimed to study optimization of processing technique of fruit juice effervescent tablet with Response Surface Method (RSM. The research design used was central composite designs with three dependent variables including X1 (compression force, X2 (the citric acid concentration, and X3 (the sodium bicarbonate concentration, where independent variables was hardness and solubility of the tablet. The results of the research showed that the optimum tablets hardness was 40.53 N that reached at treatment compression force of 2339.8 N; the citric acid concentration of 352.82 mg/gr; and the sodium bicarbonate concentration of 561.62 mg/gr. Whereas the solubilitation of 41.99 second was resulted at treatment compression force of 1417.6 N; 334.24 mg/unit weight citric acid; and 593.90 mg/gr sodium bicarbonate. To get tablet characteristic with high hardness but solubilize quickly, was made at 1500 N compression force; the citric acid concentration 350 mg/gr; and the sodium bicarbonate concentration 500 mg/gr.

  14. Modern techniques of surface science

    CERN Document Server

    Woodruff, D Phil

    2016-01-01

    This fully revised, updated and reorganised third edition provides a thorough introduction to the characterisation techniques used in surface science and nanoscience today. Each chapter brings together and compares the different techniques used to address a particular research question, including how to determine the surface composition, surface structure, surface electronic structure, surface microstructure at different length scales (down to sub-molecular), and the molecular character of adsorbates and their adsorption or reaction properties. Readers will easily understand the relative strengths and limitations of the techniques available to them and, ultimately, will be able to select the most suitable techniques for their own particular research purposes. This is an essential resource for researchers and practitioners performing materials analysis, and for senior undergraduate students looking to gain a clear understanding of the underlying principles and applications of the different characterisation tec...

  15. Modeling and optimization of effective parameters on the size of synthesized Fe{sub 3}O{sub 4} superparamagnetic nanoparticles by coprecipitation technique using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, Mohammad Reza, E-mail: Ghazanfari.mr@gmail.com [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Jaafari, Mahmoud Reza [Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2016-05-01

    Generally, the statistical methods are defined as appropriate techniques to study the processes trends. In current research, the Fe{sub 3}O{sub 4} superparamagnetic nanoparticles were synthesized by coprecipitation method. In order to investigate the size properties of synthesized particles, the experimental design was done using central composite method (CCD) of response surface methodology (RSM) while the temperature, pH, and cation ratio of reaction were selected as influential factors. After particles synthesis based on designed runs, the different responses such as hydrodynamic size of particles (both freeze dried and air dried), size distribution, crystallite size, magnetic size, and zeta potential were evaluated by different techniques i.e. dynamic light scattering (DLS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Based on these results, the quadratic polynomial model was fitted for each response that could predict the response amounts. In following, the study of factors effects was carried out that showed the temperature, pH, and their interactions had higher effectiveness. Finally, by optimizing, it was clear that the minimum amounts of particle size (10.15 nm) and size distribution (13.01 nm) were reached in the minimum temperature (70 °C) and cation ratio (0.5) amounts and maximum pH amount (10.5). Moreover, the characterizations showed the particles size was about 10 nm while the amounts of M{sub s}, H{sub c}, and M{sub r} were equal to 60 (emu/g), 0.2 (Oe) and 0.22 (emu/g), respectively. - Highlights: • The Fe{sub 3}O{sub 4} nanoparticles were successfully synthesized by coprecipitation method. • By RSM technique, some predicted models were presented for particles size. • Temperature, pH and their interactions had most effectiveness on the particles size. • The drying techniques can effect on the size properties.

  16. Physical parameter optimization by Response Surface Methodology ...

    African Journals Online (AJOL)

    Response Surface Methodology (RSM) is an empirical technique involving the use of Design Expert software to derive a predictive model similar to regression analysis. This present study explains the significant application of RSM in optimization of lipase production by Aspergillus niger. The experimental validation of the ...

  17. Surface analysis the principal techniques

    CERN Document Server

    Vickerman, John C

    2009-01-01

    This completely updated and revised second edition of Surface Analysis: The Principal Techniques, deals with the characterisation and understanding of the outer layers of substrates, how they react, look and function which are all of interest to surface scientists. Within this comprehensive text, experts in each analysis area introduce the theory and practice of the principal techniques that have shown themselves to be effective in both basic research and in applied surface analysis. Examples of analysis are provided to facilitate the understanding of this topic and to show readers how they c

  18. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  19. Polyhedral Techniques in Combinatorial Optimization

    NARCIS (Netherlands)

    Aardal, K.I.; van Hoesel, S.

    1995-01-01

    Combinatorial optimization problems arise in several areas ranging from management to mathematics and graph theory. Most combinatorial optimization problems are compu- tationally hard due to the restriction that a subset of the variables have to take integral values. During the last two decades

  20. Description of measurement techniques for surface contaminations

    International Nuclear Information System (INIS)

    Bourrez, E.

    2001-01-01

    The needs of evaluation of the surface contamination are numerous in the processes of production and management of radioactive waste. The market of radiation protection materials proposes a lot of devices answering to the almost all these needs. These device have however their conditions and particular limits for use. To realize correct measurements it is use the device, the technique and the methods adapted to the need, by taking into account the optimization of economical aspect. (N.C.)

  1. On the manifold-mapping optimization technique

    NARCIS (Netherlands)

    D. Echeverria (David); P.W. Hemker (Piet)

    2006-01-01

    textabstractIn this paper, we study in some detail the manifold-mapping optimization technique introduced in an earlier paper. Manifold mapping aims at accelerating optimal design procedures that otherwise require many evaluations of time-expensive cost functions. We give a proof of convergence for

  2. Backscattering technique to surface inspection

    International Nuclear Information System (INIS)

    Anjos, M.J. dos; Lopes, R.T.

    1989-01-01

    A new surface inspection system, starting of the backscattering of the gamma radiation is described. A cesium 137 source of 7,4x10 10 Bq (2Ci) and one cintillation detector are used. One calibration curve of the system was obtained. This technique can be very useful when the acess to one of the side of the object in inspection is limited. The scattering angle choosed was 115 0 . The object used was composed of aluminium, brass and stainless steel. The localization of defects is simple and ummediate. (V.R.B.)

  3. Optimal Formation Trajectory-Planning Using Parameter Optimization Technique

    Directory of Open Access Journals (Sweden)

    Hyung-Chul Lim

    2004-09-01

    Full Text Available Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

  4. Efficient reanalysis techniques for robust topology optimization

    DEFF Research Database (Denmark)

    Amir, Oded; Sigmund, Ole; Lazarov, Boyan Stefanov

    2012-01-01

    The article focuses on the reduction of the computational effort involved in robust topology optimization procedures. The performance of structures designed by means of topology optimization may be seriously degraded due to fabrication errors. Robust formulations of the optimization problem were...... shown to yield optimized designs that are tolerant with respect to such manufacturing uncertainties. The main drawback of such procedures is the added computational cost associated with the need to evaluate a set of designs by performing multiple finite element analyses. In this article, we propose...... efficient robust topology optimization procedures based on reanalysis techniques. The approach is demonstrated on two compliant mechanism design problems where robust design is achieved by employing either a worst case formulation or a stochastic formulation. It is shown that the time spent on finite...

  5. Numerical derivative techniques for trajectory optimization

    Science.gov (United States)

    Hallman, Wayne P.

    1990-01-01

    The adoption of robust numerical optimization techniques in trajectory simulation programs has resulted in powerful design and analysis tools. These trajectory simulation/optimization programs are widely used, and a representative list includes the GTS system, the POST program, and newer collocation methods such as OTIS and FONPAC. All of these programs rely on optimization algorithms which require objective function and constraint gradient data during the iteration process. However, most trajectory optimization problems lack simple analytical expressions for these derivatives. In the general case a function evaluation involves integrating aerodynamic, propulsive, and gravity forces over multiple trajectory phases with complex control models. With the newer collocation methods, the integration is replaced by defect constraints and cubic approximations for the state. While analytic gradient expressions can sometimes be derived for trajectory optimization problems, the derivation is cumbersome, time consuming, and prone to mistakes. Fortunately, an alternate method exists for the gradient evaluation, namely finite difference approximations. In this paper some finite difference gradient techniques developed for use with the GTS system are presented. These techniques include methods for computing first and second partial derivatives of single and multiple sets of functions. A key feature of these methods is an error control mechanism which automatically adjusts the perturbation size to obtain accurate derivative values.

  6. Optimization techniques using MODFLOW-GWM

    Science.gov (United States)

    Grava, Anna; Feinstein, Daniel T.; Barlow, Paul M.; Bonomi, Tullia; Buarne, Fabiola; Dunning, Charles; Hunt, Randall J.

    2015-01-01

    An important application of optimization codes such as MODFLOW-GWM is to maximize water supply from unconfined aquifers subject to constraints involving surface-water depletion and drawdown. In optimizing pumping for a fish hatchery in a bedrock aquifer system overlain by glacial deposits in eastern Wisconsin, various features of the GWM-2000 code were used to overcome difficulties associated with: 1) Non-linear response matrices caused by unconfined conditions and head-dependent boundaries; 2) Efficient selection of candidate well and drawdown constraint locations; and 3) Optimizing against water-level constraints inside pumping wells. Features of GWM-2000 were harnessed to test the effects of systematically varying the decision variables and constraints on the optimized solution for managing withdrawals. An important lesson of the procedure, similar to lessons learned in model calibration, is that the optimized outcome is non-unique, and depends on a range of choices open to the user. The modeler must balance the complexity of the numerical flow model used to represent the groundwater-flow system against the range of options (decision variables, objective functions, constraints) available for optimizing the model.

  7. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  8. Techniques for removing contaminated concrete surfaces

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.

    1981-01-01

    This discussion compares various techniques that have been used to clean concrete surfaces by removing the surface. Three techniques which have been investigated by the Pacific Northwest Laboratory for removing surfaces are also described: the water cannon, the concrete spaller, and high-pressure water jet. The equipment was developed with the assumption that removal of the top 1/8 to 1/4 in. of surface would remove most of the contamination. If the contamination has gone into cracks or deep voids in the surface, the removal processes can be repeated until the surface is acceptable

  9. Optimal Control Surface Layout for an Aeroservoelastic Wingbox

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This paper demonstrates a technique for locating the optimal control surface layout of an aeroservoelastic Common Research Model wingbox, in the context of maneuver load alleviation and active utter suppression. The combinatorial actuator layout design is solved using ideas borrowed from topology optimization, where the effectiveness of a given control surface is tied to a layout design variable, which varies from zero (the actuator is removed) to one (the actuator is retained). These layout design variables are optimized concurrently with a large number of structural wingbox sizing variables and control surface actuation variables, in order to minimize the sum of structural weight and actuator weight. Results are presented that demonstrate interdependencies between structural sizing patterns and optimal control surface layouts, for both static and dynamic aeroelastic physics.

  10. Parametric optimization of inverse trapezoid oleophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-01-01

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...

  11. Technique for measuring very high surface velocities

    International Nuclear Information System (INIS)

    Maron, Y.

    1977-01-01

    An interferometric technique for measuring displacements of surfaces moving at velocities in the range of a few millimeters per microsecond is presented. The Doppler shift of frequency of light scattered from such surfaces is too high to be detectable by known devices. The present technique is based upon monitoring the signal resulting from the interference between two beams reflected from the surface at different incidence angles. Measurement systems for specularly as well as diffusely reflecting surfaces are described. Light source with very modest temporal coherence delivering about 100 mw power is required. The accuracy of the technique is discussed. (author)

  12. Machine Learning Techniques in Optimal Design

    Science.gov (United States)

    Cerbone, Giuseppe

    1992-01-01

    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution

  13. Cache Energy Optimization Techniques For Modern Processors

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Sparsh [ORNL

    2013-01-01

    newcomers and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.

  14. Evolutionary optimization technique for site layout planning

    KAUST Repository

    El Ansary, Ayman M.

    2014-02-01

    Solving the site layout planning problem is a challenging task. It requires an iterative approach to satisfy design requirements (e.g. energy efficiency, skyview, daylight, roads network, visual privacy, and clear access to favorite views). These design requirements vary from one project to another based on location and client preferences. In the Gulf region, the most important socio-cultural factor is the visual privacy in indoor space. Hence, most of the residential houses in this region are surrounded by high fences to provide privacy, which has a direct impact on other requirements (e.g. daylight and direction to a favorite view). This paper introduces a novel technique to optimally locate and orient residential buildings to satisfy a set of design requirements. The developed technique is based on genetic algorithm which explores the search space for possible solutions. This study considers two dimensional site planning problems. However, it can be extended to solve three dimensional cases. A case study is presented to demonstrate the efficiency of this technique in solving the site layout planning of simple residential dwellings. © 2013 Elsevier B.V. All rights reserved.

  15. Application of the Taguchi technique for the optimization of surface roughness and tool life during the milling of Hastelloy C22

    Energy Technology Data Exchange (ETDEWEB)

    Kivak, Turgay; Mert, Senol [Duezce Univ. (Turkey). Dept. of Manufacturing Engineering

    2017-02-01

    In this study, the effects of machining parameters on surface roughness (Ra) and tool life (Tl) were investigated in the milling of Hastelloy C22 alloy with TiAlN-coated carbide inserts. A number of milling experiments were conducted using the L{sub 27} (3{sup 3}) Taguchi orthogonal array on a CNC milling machine under different cutting conditions (dry, compressed air and wet). The cutting condition, cutting speed and feed rate were determined as the essential machining parameters. Analysis of variance (ANOVA) and signal-to-noise (S/N) ratio were employed to evaluate the effects of the machining parameters on Ra and Tl, and prediction models were created using quadratic regression analyses. The results revealed that the feed rate and cutting condition were the most influential factors on surface roughness and flank wear. The maximum tool life was achieved under wet cutting condition using a cutting speed of 30 x min{sup -1} and a feed rate of 0.08 mm x rev{sup -1}, while the minimum surface roughness value was obtained under wet cutting condition using a cutting speed of 50 m x min{sup -1} and the same feed rate. Using the optimum cutting parameters for Tl (30 m x min{sup -1}, 0.08 mm x rev{sup -1}), increases of 234 % and 67 % in tool life were observed under wet and compressed air cutting conditions, respectively, compared to the dry cutting condition.

  16. Surface Reconstruction and Optimization of Cerebral Cortex for Application Use.

    Science.gov (United States)

    Shin, Dong Sun; Park, Sang Kyu

    2016-03-01

    For the purposes of virtual surgery, medical education, medical communication, and realistic surface models of anatomic structures are required. In the most involved method, surface models can be made using segmentation and three-dimensional reconstruction procedures. Such models, however, are computationally expensive, and can be difficult to use. Therefore, optimization is often performed manually, but this is a time-consuming job that requires considerable artistic talent. In this article, the authors describe a method that uses Maya and ZBrush to construct optimized surface models of anatomic structures. The authors take 235 anatomic images generated from a cadaver, and perform segmentation and surface reconstruction using Photoshop and Mimics. Reconstructed surface models of the cerebral cortex are then optimized and divided by a morphing technique in Maya and ZBrush for use in medical applications. The optimized surface models do not require significant storage space, and are easily manufactured and modified. The resulting surface models can be displayed off-line and on-line in real time, as well as on smart phones. Using commercial software with the specialized functions described in this study, it is expected that the efficiencies produced by the proposed method will enable researchers to conveniently create surface models from serially sectioned images such as computed tomographs and magnetic resonance images. The surface models created in this research will also have widespread applications in both medical education and communication.

  17. Nonlinear optical techniques for surface studies

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed

  18. An Improved Response Surface Methodology Algorithm with an Application to Traffic Signal Optimization for Urban Networks

    Science.gov (United States)

    1995-01-01

    Prepared ca. 1995. This paper illustrates the use of the simulation-optimization technique of response surface methodology (RSM) in traffic signal optimization of urban networks. It also quantifies the gains of using the common random number (CRN) va...

  19. Parallel halftoning technique using dot diffusion optimization

    Science.gov (United States)

    Molina-Garcia, Javier; Ponomaryov, Volodymyr I.; Reyes-Reyes, Rogelio; Cruz-Ramos, Clara

    2017-05-01

    In this paper, a novel approach for halftone images is proposed and implemented for images that are obtained by the Dot Diffusion (DD) method. Designed technique is based on an optimization of the so-called class matrix used in DD algorithm and it consists of generation new versions of class matrix, which has no baron and near-baron in order to minimize inconsistencies during the distribution of the error. Proposed class matrix has different properties and each is designed for two different applications: applications where the inverse-halftoning is necessary, and applications where this method is not required. The proposed method has been implemented in GPU (NVIDIA GeForce GTX 750 Ti), multicore processors (AMD FX(tm)-6300 Six-Core Processor and in Intel core i5-4200U), using CUDA and OpenCV over a PC with linux. Experimental results have shown that novel framework generates a good quality of the halftone images and the inverse halftone images obtained. The simulation results using parallel architectures have demonstrated the efficiency of the novel technique when it is implemented in real-time processing.

  20. Bayesian techniques for surface fuel loading estimation

    Science.gov (United States)

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  1. Strategies for optimizing DNA hybridization on surfaces.

    Science.gov (United States)

    Ravan, Hadi; Kashanian, Soheila; Sanadgol, Nima; Badoei-Dalfard, Arastoo; Karami, Zahra

    2014-01-01

    Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Wettability Switching Techniques on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Verplanck Nicolas

    2007-01-01

    Full Text Available Abstract The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  3. Topology optimization of robust superhydrophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    In this paper we apply topology optimization to micro-structured superhydrophobic surfaces for the first time. It has been experimentally observed that a droplet suspended on a brush of micrometric posts shows a high static contact angle and low roll-off angle. To keep the fluid from penetrating...

  4. Robust technique allowing manufacturing superoleophobic surfaces

    Science.gov (United States)

    Bormashenko, Edward; Grynyov, Roman; Chaniel, Gilad; Taitelbaum, Haim; Bormashenko, Yelena

    2013-04-01

    We report the robust technique allowing manufacturing of superhydrophobic and oleophobic (omniphobic) surfaces with industrial grade low density polyethylene. The reported process includes two stages: (1) hot embossing of polyethylene with micro-scaled steel gauzes; (2) treatment of embossed surfaces with cold radiofrequency plasma of tetrafluoromethane. The reported surfaces demonstrate not only pronounced superhydrophobicity but also superoleophobicity. Superoleophobicity results from the hierarchical nano-scaled topography of fluorinated polyethylene surface. The observed superoleophobicity is strengthened by the hydrophobic recovery. The stability of the Cassie wetting regime was studied.

  5. Surface Optimization Techniques for Deployable Reflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing communications systems for spacecraft provide a choice between either large aperture (>3m) or high frequency (>X-band), but not both. These systems...

  6. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  7. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  8. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    Science.gov (United States)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  9. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... of dentin chips were obtained from the cavity walls, and the number of bacteria recovered was counted. Kruskal–Wallis ... Keywords: Antibacterial effect, cavity surface pretreatment techniques, cavity preparation, dental, dental ... wavelengths for removing oral soft and dental hard tissues without pain relief, ...

  10. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  11. Multidisciplinary design optimization using response surface analysis

    Science.gov (United States)

    Unal, Resit

    1992-01-01

    Aerospace conceptual vehicle design is a complex process which involves multidisciplinary studies of configuration and technology options considering many parameters at many values. NASA Langley's Vehicle Analysis Branch (VAB) has detailed computerized analysis capabilities in most of the key disciplines required by advanced vehicle design. Given a configuration, the capability exists to quickly determine its performance and lifecycle cost. The next step in vehicle design is to determine the best settings of design parameters that optimize the performance characteristics. Typical approach to design optimization is experience based, trial and error variation of many parameters one at a time where possible combinations usually number in the thousands. However, this approach can either lead to a very long and expensive design process or to a premature termination of the design process due to budget and/or schedule pressures. Furthermore, one variable at a time approach can not account for the interactions that occur among parts of systems and among disciplines. As a result, vehicle design may be far from optimal. Advanced multidisciplinary design optimization (MDO) methods are needed to direct the search in an efficient and intelligent manner in order to drastically reduce the number of candidate designs to be evaluated. The payoffs in terms of enhanced performance and reduced cost are significant. A literature review yields two such advanced MDO methods used in aerospace design optimization; Taguchi methods and response surface methods. Taguchi methods provide a systematic and efficient method for design optimization for performance and cost. However, response surface method (RSM) leads to a better, more accurate exploration of the parameter space and to estimated optimum conditions with a small expenditure on experimental data. These two methods are described.

  12. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  13. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface......, but they do not provide quantitative information about surface roughness. Laser profilometry and AFM on the other hand provide quantitative roughness data from two different scales, laser profilometer from 1 mm and atomic force microscope from 90 microm scale. AFM is a powerful technique but other imaging...

  14. Advanced Aerostructural Optimization Techniques for Aircraft Design

    Directory of Open Access Journals (Sweden)

    Yingtao Zuo

    2015-01-01

    Full Text Available Traditional coupled aerostructural design optimization (ASDO of aircraft based on high-fidelity models is computationally expensive and inefficient. To improve the efficiency, the key is to predict aerostructural performance of the aircraft efficiently. The cruise shape of the aircraft is parameterized and optimized in this paper, and a methodology named reverse iteration of structural model (RISM is adopted to get the aerostructural performance of cruise shape efficiently. A new mathematical explanation of RISM is presented in this paper. The efficiency of RISM can be improved by four times compared with traditional static aeroelastic analysis. General purpose computing on graphical processing units (GPGPU is adopted to accelerate the RISM further, and GPU-accelerated RISM is constructed. The efficiency of GPU-accelerated RISM can be raised by about 239 times compared with that of the loosely coupled aeroelastic analysis. Test shows that the fidelity of GPU-accelerated RISM is high enough for optimization. Optimization framework based on Kriging model is constructed. The efficiency of the proposed optimization system can be improved greatly with the aid of GPU-accelerated RISM. An unmanned aerial vehicle (UAV is optimized using this framework and the range is improved by 4.67% after optimization, which shows effectiveness and efficiency of this framework.

  15. Fermi surface mapping: Techniques and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, E. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Denlinger, J. D. [Univ. of Wisconsin, Milwaukee, WI (United States); Kevan, S. D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Goodman, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mankey, G. J. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics

    1997-04-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS`s. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS`s, both bulk and surface.

  16. Optimization of Technique Factors for full-Field Digital Mammography and Comparison of Optimized Techniques to Screen-Film Mammography

    National Research Council Canada - National Science Library

    Berns, Eric

    2002-01-01

    The technical objectives of this study are to determine optimum techniques for a flat-panel Cesium- iodide silicon-diode full-field digital mammography system and to compare those optimized techniques...

  17. Optimization of Technique Factors for Full-Field Digital Mammography and Comparison of Optimized Techniques to Screen-Film Mammography

    National Research Council Canada - National Science Library

    Berns, Eric

    2001-01-01

    The technical objectives of this study are to determine optimum techniques for a flat-panel Cesium-iodide silicon-diode full-field digital mammography system and to compare those optimized techniques...

  18. Optimal placement of FACTS devices using optimization techniques: A review

    Science.gov (United States)

    Gaur, Dipesh; Mathew, Lini

    2018-03-01

    Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.

  19. Power system design optimization using Lagrange multiplier techniques

    Science.gov (United States)

    Yu, Y.; Lee, F. C.

    1981-01-01

    An optimization technique using the Lagrange Multiplier Method is proposed to facilitate design of switching power converter systems. The essence of the optimization is to identify the optimal battery voltage level and switching frequency along with the detailed converter design so that the total system weight including the battery and the packaged converter is minimized, and concurrently all specified power circuit performances are satisfied.

  20. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  1. 9th International Conference on Optimization : Techniques and Applications

    CERN Document Server

    Wang, Song; Wu, Soon-Yi

    2015-01-01

    This book presents the latest research findings and state-of-the-art solutions on optimization techniques and provides new research direction and developments. Both the theoretical and practical aspects of the book will be much beneficial to experts and students in optimization and operation research community. It selects high quality papers from The International Conference on Optimization: Techniques and Applications (ICOTA2013). The conference is an official conference series of POP (The Pacific Optimization Research Activity Group; there are over 500 active members). These state-of-the-art works in this book authored by recognized experts will make contributions to the development of optimization with its applications.

  2. Query Optimization Techniques in Microsoft SQL Server

    Directory of Open Access Journals (Sweden)

    Costel Gabriel CORLATAN

    2014-09-01

    Full Text Available Microsoft SQL Server is a relational database management system, having MS-SQL and Transact-SQL as primary structured programming languages. They rely on relational algebra which is mainly used for data insertion, modifying, deletion and retrieval, as well as for data access controlling. The problem with getting the expected results is handled by the management system which has the purpose of finding the best execution plan, this process being called optimization. The most frequently used queries are those of data retrieval through SELECT command. We have to take into consideration that not only the select queries need optimization, but also other objects, such as: index, view or statistics.

  3. Polyhredral techniques in combinatorial optimization I: theory

    NARCIS (Netherlands)

    Aardal, K.; Hoesel, S. van

    1995-01-01

    Combinatorial optimization problems appear in many disciplines ranging from management and logistics to mathematics, physics, and chemistry. These problems are usually relatively easy to formulate mathematically, but most of them are computationally hard due to the restriction that a subset of

  4. Computational optimization techniques applied to microgrids planning

    DEFF Research Database (Denmark)

    Gamarra, Carlos; Guerrero, Josep M.

    2015-01-01

    ), their planning process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually planning goals conflict each other and, as a consequence, different optimization problems...

  5. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  6. Optimization of Technique Factors for Conventional Mammography

    National Research Council Canada - National Science Library

    Hendrick, R

    1997-01-01

    .... Methods of evaluating film, processing, and technique factor selection for screen-film mammography were applied to approximately one dozen clinical sites involved in the Colorado Mammography Advocacy Project (CMAP...

  7. Simple techniques for optimal smile modification.

    Science.gov (United States)

    Romano, Rafi

    2008-05-01

    Orthodontics is no longer a treatment modality for moderate or severe malocclusion. Patients of all age groups seek help in tooth repositioning. Esthetic demands are extremely high and clinicians need to be more creative and more open to alternative techniques that will suit the demand for invisible treatment, at reasonable costs, maximum accuracy, and with relative comfort. A few simple techniques are described for very common orthodontic problems.

  8. Optimal estimation of sea surface temperature from AMSR-E

    DEFF Research Database (Denmark)

    Nielsen-Englyst, Pia; Høyer, Jacob L.; Pedersen, Leif Toudal

    2018-01-01

    The Optimal Estimation (OE) technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI) to retrieve subskin Sea Surface Temperature (SST) from AQUA's Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). A comprehensive matchup database with drift......The Optimal Estimation (OE) technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI) to retrieve subskin Sea Surface Temperature (SST) from AQUA's Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E). A comprehensive matchup database...... with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current...... and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most...

  9. A novel technique for active vibration control, based on optimal

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  10. optimal assembly line balancing using simulation techniques

    African Journals Online (AJOL)

    user

    The typical problems facing with garment manufacturing are: short product cycle for fashion articles, long production lead time, bottlenecking, and low productivity. To alleviate the problems, different types of line balancing techniques have been used for many years in the garment industry. However, garment industries ...

  11. Complex energy system management using optimization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Stuart; Hurdowar-Castro, Diana; Allen, Rick; Olason, Tryggvi; Welt, Francois

    2010-09-15

    Modern energy systems are often very complex with respect to the mix of generation sources, energy storage, transmission, and avenues to market. Historically, power was provided by government organizations to load centers, and pricing was provided in a regulatory manner. In recent years, this process has been displaced by the independent system operator (ISO). This complexity makes the operation of these systems very difficult, since the components of the system are interdependent. Consequently, computer-based large-scale simulation and optimization methods like Decision Support Systems are now being used. This paper discusses the application of a DSS to operations and planning systems.

  12. Hybrid Techniques for Optimizing Complex Systems

    Science.gov (United States)

    2009-12-01

    probabilistic faults is fundamentally different from existing testing techniques. Probabilistic testing requires a multiset (a set with repetitions) of test...vector sensitivity information computed in the previous section to generate compact multisets of test vectors for detecting transient faults. Test...testing for soft errors, tests may have to be repeated to increase the probability of fault detection, therefore multisets of tests are selected

  13. Surface roughness optimization in machining of AZ31 magnesium alloy using ABC algorithm

    Directory of Open Access Journals (Sweden)

    Abhijith

    2018-01-01

    Full Text Available Magnesium alloys serve as excellent substitutes for materials traditionally used for engine block heads in automobiles and gear housings in aircraft industries. AZ31 is a magnesium alloy finds its applications in orthopedic implants and cardiovascular stents. Surface roughness is an important parameter in the present manufacturing sector. In this work optimization techniques namely firefly algorithm (FA, particle swarm optimization (PSO and artificial bee colony algorithm (ABC which are based on swarm intelligence techniques, have been implemented to optimize the machining parameters namely cutting speed, feed rate and depth of cut in order to achieve minimum surface roughness. The parameter Ra has been considered for evaluating the surface roughness. Comparing the performance of ABC algorithm with FA and PSO algorithm, which is a widely used optimization algorithm in machining studies, the results conclude that ABC produces better optimization when compared to FA and PSO for optimizing surface roughness of AZ 31.

  14. Advanced memory optimization techniques for low-power embedded processors

    CERN Document Server

    Verma, Manish

    2007-01-01

    The complete application, including data variables and code segments, is optimizedComprehensive architecture-level exploration for real-life applicationsDemonstration of architecture-aware compilation techniques.

  15. Acceleration techniques in the univariate Lipschitz global optimization

    Science.gov (United States)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela

    2016-10-01

    Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.

  16. A GIS-Based Optimization Technique for Spatial Location of ...

    African Journals Online (AJOL)

    GIS)-based package; TransCAD v. 5.0 was used to determine the optimal locations of one to ten waste bins. This optimization technique requires less computational time and the output of ten computer runs showed that partial service coverage ...

  17. Manifold mapping: a two-level optimization technique

    NARCIS (Netherlands)

    Echeverría, D.; Hemker, P.W.

    2008-01-01

    In this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107--136, 2005]. Manifold mapping aims at accelerating optimal design procedures that otherwise

  18. Manifold mapping: a two-level optimization technique

    NARCIS (Netherlands)

    D. Echeverria (David); P.W. Hemker (Piet)

    2008-01-01

    textabstractIn this paper, we analyze in some detail the manifold-mapping optimization technique introduced recently [Echeverría and Hemker in space mapping and defect correction. Comput Methods Appl Math 5(2): 107-–136, 2005]. Manifold mapping aims at accelerating optimal design procedures

  19. Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs

    Science.gov (United States)

    Unal, Resit; Lepsch, Roger A.; McMillin, Mark L.

    1998-01-01

    This paper discusses response surface methods for approximation model building and multidisciplinary design optimization. The response surface methods discussed are central composite designs, Bayesian methods and D-optimal designs. An over-determined D-optimal design is applied to a configuration design and optimization study of a wing-body, launch vehicle. Results suggest that over determined D-optimal designs may provide an efficient approach for approximation model building and for multidisciplinary design optimization.

  20. Optimization using surrogate models - by the space mapping technique

    DEFF Research Database (Denmark)

    Søndergaard, Jacob

    2003-01-01

    Surrogate modelling and optimization techniques are intended for engineering design in the case where an expensive physical model is involved. This thesis provides a literature overview of the field of surrogate modelling and optimization. The space mapping technique is one such method for constr......Surrogate modelling and optimization techniques are intended for engineering design in the case where an expensive physical model is involved. This thesis provides a literature overview of the field of surrogate modelling and optimization. The space mapping technique is one such method...... conditions are satisfied. So hybrid methods, combining the space mapping technique with classical optimization methods, should be used if convergence to high accuracy is wanted. Approximation abilities of the space mapping surrogate are compared with those of a Taylor model of the expensive model. The space...... mapping surrogate has a lower approximation error for long steps. For short steps, however, the Taylor model of the expensive model is best, due to exact interpolation at the model origin. Five algorithms for space mapping optimization are presented and the numerical performance is evaluated. Three...

  1. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  2. Tabu search, a versatile technique for the functions optimization

    International Nuclear Information System (INIS)

    Castillo M, J.A.

    2003-01-01

    The basic elements of the Tabu search technique are presented, putting emphasis in the qualities that it has in comparison with the traditional methods of optimization known as in descending pass. Later on some modifications are sketched that have been implemented in the technique along the time, so that this it is but robust. Finally they are given to know some areas where this technique has been applied, obtaining successful results. (Author)

  3. OPTIMIZATION OF GRANULATION TECHNIQUES FOR DEVELOPMENT OF TABLET DOSAGE FORM

    OpenAIRE

    V. B. Khot*, D.A. Bhagwat, J. I. D'Souza, S. S. Shelake, S. V. Patil

    2017-01-01

    The purpose of this study was to optimize the best granulation techniques for development of tablet dosage form. The present study explains comparative study of different wet granulation techniques including Planetary mixer granulation, Rapid mixer granulation, Fluid bed granulation with Direct compression method. Similar formulations were used to evaluate Planetary mixer granulation, Rapid mixer granulation and Fluid bed granulation method. The granules prepared by different techniques were ...

  4. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    International Nuclear Information System (INIS)

    Bokrantz, Rasmus; Miettinen, Kaisa

    2015-01-01

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan

  5. Projections onto the Pareto surface in multicriteria radiation therapy optimization.

    Science.gov (United States)

    Bokrantz, Rasmus; Miettinen, Kaisa

    2015-10-01

    To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose-volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose-volume histogram constraints were used. No consistent improvements in target homogeneity were observed. There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.

  6. Computer simulation, nuclear techniques and surface analysis

    Directory of Open Access Journals (Sweden)

    Reis, A. D.

    2010-02-01

    Full Text Available This article is about computer simulation and surface analysis by nuclear techniques, which are non-destructive. The “energy method of analysis” for nuclear reactions is used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. Details of prediction stages are given for thick flat target yields. Predictions are made for non-flat targets having asymmetric triangular surface contours. The method is successfully applied to depth profiling of 12C and 18O nuclei in thick targets, by deuteron (d,p and proton (p,α induced reactions, respectively.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energía” para reacciones nucleares. Se simulan en ordenador espectros en energía que se comparan con datos experimentales, de lo que resulta la obtención de información sobre la composición y los perfiles de concentración de la muestra. Se dan detalles de las etapas de las predicciones de espectros para muestras espesas y planas. Se hacen predicciones para muestras no planas que tienen contornos superficiales triangulares asimétricos. Este método se aplica con éxito en el cálculo de perfiles en profundidad de núcleos de 12C y de 18O en muestras espesas a través de reacciones (d,p y (p,α inducidas por deuterones y protones, respectivamente.

  7. A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

    Science.gov (United States)

    Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung

    2015-01-01

    Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237

  8. Hip joint contact forces calculated using different muscle optimization techniques

    OpenAIRE

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2013-01-01

    The goal of this study was to calculate muscle forces using different optimization techniques and investigate their effect on hip joint contact forces in gait and sit to stand. These contact forces were compared to measured hip contact forces [3]. The results showed that contact forces were overestimated, especially when muscle forces were calculated using computed muscle control. For static optimization, results were closest to measured contact forces. Also, differences between measured and ...

  9. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  10. Surface analysis and techniques in biology

    CERN Document Server

    Smentkowski, Vincent S

    2014-01-01

    This book highlights state-of-the-art surface analytical instrumentation, advanced data analysis tools, and the use of complimentary surface analytical instrumentation to perform a complete analysis of biological systems.

  11. Hip joint contact forces calculated using different muscle optimization techniques

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2013-01-01

    The goal of this study was to calculate muscle forces using different optimization techniques and investigate their effect on hip joint contact forces in gait and sit to stand. These contact forces were compared to measured hip contact forces [3]. The results showed that contact forces were

  12. Techniques applied in design optimization of parallel manipulators

    CSIR Research Space (South Africa)

    Modungwa, D

    2011-11-01

    Full Text Available the process of optimization a cumbersome and time-consuming endeavour, especially when the variables are diverse and objective functions are excessively complex. Thus, several techniques devised by researchers to solve the problem are reviewed in this paper....

  13. Adaptive Response Surface Techniques in Reliability Estimation

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Faber, M. H.; Sørensen, John Dalsgaard

    1993-01-01

    Problems in connection with estimation of the reliability of a component modelled by a limit state function including noise or first order discontinuitics are considered. A gradient free adaptive response surface algorithm is developed. The algorithm applies second order polynomial surfaces...

  14. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    Science.gov (United States)

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  15. TECHNIQUE OF OPTIMAL AUDIT PLANNING FOR INFORMATION SECURITY MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    F. N. Shago

    2014-03-01

    Full Text Available Complication of information security management systems leads to the necessity of improving the scientific and methodological apparatus for these systems auditing. Planning is an important and determining part of information security management systems auditing. Efficiency of audit will be defined by the relation of the reached quality indicators to the spent resources. Thus, there is an important and urgent task of developing methods and techniques for optimization of the audit planning, making it possible to increase its effectiveness. The proposed technique gives the possibility to implement optimal distribution for planning time and material resources on audit stages on the basis of dynamics model for the ISMS quality. Special feature of the proposed approach is the usage of a priori data as well as a posteriori data for the initial audit planning, and also the plan adjustment after each audit event. This gives the possibility to optimize the usage of audit resources in accordance with the selected criteria. Application examples of the technique are given while planning audit information security management system of the organization. The result of computational experiment based on the proposed technique showed that the time (cost audit costs can be reduced by 10-15% and, consequently, quality assessments obtained through audit resources allocation can be improved with respect to well-known methods of audit planning.

  16. Designing Solutions using Response Surface Technique

    Directory of Open Access Journals (Sweden)

    COMAN Ovidiu

    2014-05-01

    Full Text Available In the present study a design of experiments method was used to obtain the most suitable responses. The variables that occur in the optimization are the movement of a dielectric material on Oy and Oz axis of a waveguide and the microwave power. The responses refer to the thermal field distribution, the reflected power, dielectric's temperature and the absorbed power.

  17. Optimization of Hydraulic Machinery Bladings by Multilevel CFD Techniques

    Directory of Open Access Journals (Sweden)

    Thum Susanne

    2005-01-01

    Full Text Available The numerical design optimization for complex hydraulic machinery bladings requires a high number of design parameters and the use of a precise CFD solver yielding high computational costs. To reduce the CPU time needed, a multilevel CFD method has been developed. First of all, the 3D blade geometry is parametrized by means of a geometric design tool to reduce the number of design parameters. To keep geometric accuracy, a special B-spline modification technique has been developed. On the first optimization level, a quasi-3D Euler code (EQ3D is applied. To guarantee a sufficiently accurate result, the code is calibrated by a Navier-Stokes recalculation of the initial design and can be recalibrated after a number of optimization steps by another Navier-Stokes computation. After having got a convergent solution, the optimization process is repeated on the second level using a full 3D Euler code yielding a more accurate flow prediction. Finally, a 3D Navier-Stokes code is applied on the third level to search for the optimum optimorum by means of a fine-tuning of the geometrical parameters. To show the potential of the developed optimization system, the runner blading of a water turbine having a specific speed n q = 41 1 / min was optimized applying the multilevel approach.

  18. Fitting Nonlinear Curves by use of Optimization Techniques

    Science.gov (United States)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  19. Optimization of surface roughness in CNC end milling using ...

    African Journals Online (AJOL)

    Optimization of surface roughness in CNC end milling using response surface methodology and genetic algorithm. ... International Journal of Engineering, Science and Technology ... using RSM. The response surface (RS) model is interfaced with the genetic algorithm (GA) to find the optimum machining parameter values.

  20. A teaching learning based optimization technique for optimal location and size of DG in distribution network

    Directory of Open Access Journals (Sweden)

    Banaja Mohanty

    2016-05-01

    Full Text Available DGs are placed for the purpose of real power loss minimization and voltage improvement in distribution network system. This paper presents a recent optimization technique, i.e. teaching learning based optimization (TLBO technique for finding the optimal size and location of Distributed generation (DG in radial distribution system (RDS. The optimal location and size of DG is analyzed considering voltage stability index as an objective function. The superiority of the proposed approach has been shown by comparing the results with GA and PSO methods in RDS. The comparison is done using system performances such as the real power loss and voltage profile of RDS. In this paper, performance analysis is carried out considering IEEE 33 bus and 69 buses as the test system.

  1. Structural optimization of super-repellent surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    the liquid phase on a brush of micro- and nano-posts. In this way the contact with the substrate is minimized, and so is the adhesion force. While a lot of experimental work has been carried out in this field, relatively little has been done from a theoretical point in rationalizing and optimizing...

  2. The Generalized Direct Optimization Technique for Printed Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sørensen, Stig Busk; Kim, Oleksiy S.

    2014-01-01

    A generalized direct optimization technique (GDOT) for the design of printed reflectarrays using arbitrarily shaped elements with irregular orientation and position is presented. The GDOT is based on the spectral domain method of moments (SDMoM) assuming local periodicity (LP) and a minimax...... designed: a broadband design, a circularly polarized design using the variable rotation technique, and a design with irregularly positioned array elements. The latter has been manufactured and measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. An very good agreement between simulated...

  3. Material saving by means of CWR technology using optimization techniques

    Science.gov (United States)

    Pérez, Iñaki; Ambrosio, Cristina

    2017-10-01

    Material saving is currently a must for the forging companies, as material costs sum up to 50% for parts made of steel and up to 90% in other materials like titanium. For long products, cross wedge rolling (CWR) technology can be used to obtain forging preforms with a suitable distribution of the material along its own axis. However, defining the correct preform dimensions is not an easy task and it could need an intensive trial-and-error campaign. To speed up the preform definition, it is necessary to apply optimization techniques on Finite Element Models (FEM) able to reproduce the material behaviour when being rolled. Meta-models Assisted Evolution Strategies (MAES), that combine evolutionary algorithms with Kriging meta-models, are implemented in FORGE® software and they allow reducing optimization computation costs in a relevant way. The paper shows the application of these optimization techniques to the definition of the right preform for a shaft from a vehicle of the agricultural sector. First, the current forging process, based on obtaining the forging preform by means of an open die forging operation, is showed. Then, the CWR preform optimization is developed by using the above mentioned optimization techniques. The objective is to reduce, as much as possible, the initial billet weight, so that a calculation of flash weight reduction due to the use of the proposed preform is stated. Finally, a simulation of CWR process for the defined preform is carried out to check that most common failures (necking, spirals,..) in CWR do not appear in this case.

  4. Selection of a suitable multiresponse optimization technique for turning operation

    Directory of Open Access Journals (Sweden)

    I. Nayak

    2016-01-01

    Full Text Available The present work deals with the comparison of four multi response optimization methods, viz. multiple response signal-to-noise (MRSN ratio, weighted signal-to-noise (WSN ratio, Grey relational analysis (GRA, and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje in Serbian methods taking a case study in turning mild steel specimen using HSS cutting tool. The various factors like cutting speed, feed rate, depth of cut and coolant flow rate are considered as the input process variables, while the material removal rate (MRR, surface roughness (SR and specific energy consumption (SEC are considered as various performance characteristics. One set of experimental data is analyzed using the standardized procedures. The optimization performances of these four methods are compared. The results show that MRSN ratio method proves to be the best optimization method. It is found that the feed rate has a highest impact on the overall performance as compared to other process parameters.

  5. Design Optimization of a Speed Reducer Using Deterministic Techniques

    OpenAIRE

    Lin, Ming-Hua; Tsai, Jung-Fa; Hu, Nian-Ze; Chang, Shu-Chuan

    2013-01-01

    The optimal design problem of minimizing the total weight of a speed reducer under constraints is a generalized geometric programming problem. Since the metaheuristic approaches cannot guarantee to find the global optimum of a generalized geometric programming problem, this paper applies an efficient deterministic approach to globally solve speed reducer design problems. The original problem is converted by variable transformations and piecewise linearization techniques. The reformulated prob...

  6. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    Directory of Open Access Journals (Sweden)

    Eman Hassan Beshr

    Full Text Available This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs, Diesel Generator (DG, a Wind Turbine Generator (WTG, Photovoltaic (PV arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  7. Novel optimization technique of isolated microgrid with hydrogen energy storage.

    Science.gov (United States)

    Beshr, Eman Hassan; Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm.

  8. Novel optimization technique of isolated microgrid with hydrogen energy storage

    Science.gov (United States)

    Abdelghany, Hazem; Eteiba, Mahmoud

    2018-01-01

    This paper presents a novel optimization technique for energy management studies of an isolated microgrid. The system is supplied by various Distributed Energy Resources (DERs), Diesel Generator (DG), a Wind Turbine Generator (WTG), Photovoltaic (PV) arrays and supported by fuel cell/electrolyzer Hydrogen storage system for short term storage. Multi-objective optimization is used through non-dominated sorting genetic algorithm to suit the load requirements under the given constraints. A novel multi-objective flower pollination algorithm is utilized to check the results. The Pros and cons of the two optimization techniques are compared and evaluated. An isolated microgrid is modelled using MATLAB software package, dispatch of active/reactive power, optimal load flow analysis with slack bus selection are carried out to be able to minimize fuel cost and line losses under realistic constraints. The performance of the system is studied and analyzed during both summer and winter conditions and three case studies are presented for each condition. The modified IEEE 15 bus system is used to validate the proposed algorithm. PMID:29466433

  9. Screening technique for loading pattern optimization by simulated annealing

    International Nuclear Information System (INIS)

    Park, Tong Kyu; Kim, Chang Hyo; Lee, Hyun Chul; Joo, Hyung Kook

    2005-01-01

    Lots of efforts have been devoted to developing the fuel assembly (FA) loading pattern (LP) optimization code using various optimization algorithms. Among them the simulated annealing (SA) algorithm appears very promising because of its robustness in the optimization calculations. However, SA algorithm has a major drawback of long computing time because it requires the neutronics evaluation of several tens of thousands of the trial LPs in the course of the optimization. In order to reduce computing time, a simple two-dimensional (2D) neutronics evaluation model has been used. Unfortunately, however, the final LP obtained from the 2D SA calculation often turns out to be unsatisfactory when it was evaluated by 3D neutronics evaluation model. A simple and straightforward way of resolving this problem would be to adopt 3D evaluation model instead of 2D model during the optimization procedure but this would take a long computing time. In this paper we propose a screening technique based on 2D evaluation model aimed at reducing computing time in SA calculation with 3D neutronics evaluation model

  10. Antibacterial effect of surface pretreatment techniques against ...

    African Journals Online (AJOL)

    (CFU/ml), respectively, among the groups evaluated (P < 0.05). Er:YAG laser irradiation and its combinations with other antibacterial surface pretreatment applications also inhibited the bacterial growth with, respectively, 1444, 406, and 294 CFU/ml bacterial recovery being more efficient than KTP laser irradiation and ozone ...

  11. Response surface optimization of D(-)-lactic acid production by ...

    African Journals Online (AJOL)

    Response surface optimization of D(-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. CJ Bolner de Lima, LF Coelho, KC Blanco, J Contiero ...

  12. Optimizing the Recognition of Surface Crystallography

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mika, Filip; Müllerová, Ilona

    2015-01-01

    Roč. 21, S4 (2015), s. 124-129 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : surface crystallography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  13. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane...

  14. Tip vorticity reduction and optimization of lifting surfaces

    NARCIS (Netherlands)

    Sparenberg, JA

    In linearized optimization theory, lifting surfaces, moving in an inviscid and incompressible fluid, shed tip vorticity of which the strength has infinite square-root singularities. Here we discuss that an optimization procedure can be coupled to constraints so that the strength of the shed

  15. Response surface method applied to optimization of estradiol ...

    Indian Academy of Sciences (India)

    An optimization process based on response surface methodology was carried out in order to develop a statistical model which describes the relationship between active independent variables and estradiol flux. This model can be used to find out a combination of factor levels during response optimization. Possible options ...

  16. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  17. A novel technique for the visualization of tablet punch surfaces: Characterization of surface modification, wear and sticking.

    Science.gov (United States)

    Al-Karawi, Claudia; Kaiser, Thomas; Leopold, Claudia S

    2017-09-15

    The surface quality of tablets is strongly related to the surface quality of the tablet punch. Therefore, regular control of the punch surfaces is needed to determine the surface properties, the wear status and sticking tendency of the punches. The aim of the present study was to develop and evaluate a new technique to visualize and evaluate tablet punch surfaces using high-resolution impression molding combined with 3D surface analysis. Standardized 3D surface texture parameters were analyzed by principal component analysis (PCA) to characterized differently surface-modified punches, punches with different wear status and the sticking pattern on the punch surfaces. It could be shown that the presented technique was precise enough to differentiate between differently coated and texturized punches, to evaluate the abrasive wear status of the investigated punches, and to visualize and assess punch tip sticking behavior. In conclusion, this novel technique may serve as a valuable tool for systematic punch surface characterization, wear status check-up and optimization of the punch surface quality e.g. for improvement of the anti-sticking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Innovative techniques for removing concrete surfaces

    International Nuclear Information System (INIS)

    McFarland, J.M.

    1980-01-01

    This report centers on the use of heat to decompose contaminated concrete to facilitate its removal. It discusses the use of electrical resistance heating and induction heating to cause differential expansion between the reinforcing steel and the concrete in order to spall the concrete. It introduces the concept of using induction heating to both decompose and spall steel impregnated concrete, acknowledging the work of Charles H. Henager in this field. The techniques are offered as theoretical and untested possibilities. Their practical application depends upon the effectiveness of alternatives and upon further development of these concepts

  19. Optimization Techniques for 3D Graphics Deployment on Mobile Devices

    Science.gov (United States)

    Koskela, Timo; Vatjus-Anttila, Jarkko

    2015-03-01

    3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.

  20. Greenhouse Environmental Control Using Optimized MIMO PID Technique

    Directory of Open Access Journals (Sweden)

    Fateh BOUNAAMA

    2011-10-01

    Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.

  1. Machine learning techniques for energy optimization in mobile embedded systems

    Science.gov (United States)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  2. Multivariate Analysis Techniques for Optimal Vision System Design

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara

    The present thesis considers optimization of the spectral vision systems used for quality inspection of food items. The relationship between food quality, vision based techniques and spectral signature are described. The vision instruments for food analysis as well as datasets of the food items...... and simplifcation of the design of practical vision systems....... used in this thesis are described. The methodological strategies are outlined including sparse regression and pre-processing based on feature selection and extraction methods, supervised versus unsupervised analysis and linear versus non-linear approaches. One supervised feature selection algorithm...

  3. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  4. Response Ant Colony Optimization of End Milling Surface Roughness

    Directory of Open Access Journals (Sweden)

    Ahmed N. Abd Alla

    2010-03-01

    Full Text Available Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6 with Response Ant Colony Optimization (RACO. The approach is based on Response Surface Method (RSM and Ant Colony Optimization (ACO. The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth. The first order model indicates that the feedrate is the most significant factor affecting surface roughness.

  5. Modeling marine surface microplastic transport to assess optimal removal locations

    OpenAIRE

    Sherman, P; Van Sebille, E

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the ...

  6. Characterization of thin films and surfaces by ion-beam analytical techniques

    International Nuclear Information System (INIS)

    Pelicon, P.; Budnar, M.; Zorko, B.; Razpet, A.

    1999-01-01

    The optimization of Rutherford Backscattering Spectroscopy (RBS) and Elastic Recoil Detection Analysis (ERDA) at the tandetron facility of J. Stefan Inst.e is reported. The most recent applications of these techniques for the analysis of thin films and surfaces are presented. The construction of the isotope - resolved Time-Of-Flight ERDA telescope for depth profiling of light elements is reviewed.(author)

  7. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2010-01-01

    Full Text Available Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and high level are considered to optimize the surface roughness for finish turning based on L9(34 orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for surface roughness are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed. Thus, the optimum general fuzzy linguistic parameters can then be received. The confirmation experiment result showed that the surface roughness from the fuzzy linguistic optimization parameters is significantly advanced compared to that from the benchmark. This paper certainly proposes a general optimization scheme using orthogonal array fuzzy linguistic approach to the surface roughness for CNC turning with profound insight.

  8. A Deep-Cutting-Plane Technique for Reverse Convex Optimization.

    Science.gov (United States)

    Moshirvaziri, K; Amouzegar, M A

    2011-08-01

    A large number of problems in engineering design and in many areas of social and physical sciences and technology lend themselves to particular instances of problems studied in this paper. Cutting-plane methods have traditionally been used as an effective tool in devising exact algorithms for solving convex and large-scale combinatorial optimization problems. Its utilization in nonconvex optimization has been also promising. A cutting plane, essentially a hyperplane defined by a linear inequality, can be used to effectively reduce the computational efforts in search of a global solution. Each cut is generated in order to eliminate a large portion of the search domain. Thus, a deep cut is intuitively superior in which it will exclude a larger set of extraneous points from consideration. This paper is concerned with the development of deep-cutting-plane techniques applied to reverse-convex programs. An upper bound and a lower bound for the optimal value are found, updated, and improved at each iteration. The algorithm terminates when the two bounds collapse or all the generated subdivisions have been fathomed. Finally, computational considerations and numerical results on a set of test problems are discussed. An illustrative example, walking through the steps of the algorithm and explaining the computational process, is presented.

  9. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  10. Optimized evaporation technique for leachate treatment: Small scale implementation.

    Science.gov (United States)

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.

  11. Surface modification and preparation techniques for textile materials

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-01-01

    Full Text Available as it improves various properties – such as softness, dyeability, absorbance and wettability. In this chapter, the most commonly used surface modification techniques, ranging from plasma treatment to nanocoatings, for both natural and synthetic fibres have been...

  12. Fuzzy Linguistic Optimization on Surface Roughness for CNC Turning

    OpenAIRE

    Lan, Tian-Syung

    2010-01-01

    Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC) machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and...

  13. Optimization of coronary optical coherence tomography imaging using the attenuation-compensated technique: a validation study.

    NARCIS (Netherlands)

    Teo, Jing Chun; Foin, Nicolas; Otsuka, Fumiyuki; Bulluck, Heerajnarain; Fam, Jiang Ming; Wong, Philip; Low, Fatt Hoe; Leo, Hwa Liang; Mari, Jean-Martial; Joner, Michael; Girard, Michael J A; Virmani, Renu; Bezerra, HG.; Costa, MA.; Guagliumi, G.; Rollins, AM.; Simon, D.; Gutiérrez-Chico, JL.; Alegría-Barrero, E.; Teijeiro-Mestre, R.; Chan, PH.; Tsujioka, H.; de Silva, R.; Otsuka, F.; Joner, M.; Prati, F.; Virmani, R.; Narula, J.; Members, WC.; Levine, GN.; Bates, ER.; Blankenship, JC.; Bailey, SR.; Bittl, JA.; Prati, F.; Guagliumi, G.; Mintz, G.S.; Costa, Marco; Regar, E.; Akasaka, T.; Roleder, T.; Jąkała, J.; Kałuża, GL.; Partyka, Ł.; Proniewska, K.; Pociask, E.; Girard, MJA.; Strouthidis, NG.; Ethier, CR.; Mari, JM.; Mari, JM.; Strouthidis, NG.; Park, SC.; Girard, MJA.; van der Lee, R.; Foin, N.; Otsuka, F.; Wong, P.K.; Mari, J-M.; Joner, M.; Nakano, M.; Vorpahl, M.; Otsuka, F.; Taniwaki, M.; Yazdani, SK.; Finn, AV.; Nakano, M.; Yahagi, K.; Yamamoto, H.; Taniwaki, M.; Otsuka, F.; Ladich, ER.; Girard, MJ.; Ang, M.; Chung, CW.; Farook, M.; Strouthidis, N.; Mehta, JS.; Foin, N.; Mari, JM.; Nijjer, S.; Sen, S.; Petraco, R.; Ghione, M.; Liu, X.; Kang, JU.; Virmani, R.; Kolodgie, F.D.; Burke, AP.; Farb, A.; Schwartz, S.M.; Yahagi, K.; Kolodgie, F.D.; Otsuka, F.; Finn, AV.; Davis, HR.; Joner, M.; Kume, T.; Akasaka, T.; Kawamoto, T.; Watanabe, N.; Toyota, E.; Neishi, Y.; Rieber, J.; Meissner, O.; Babaryka, G.; Reim, S.; Oswald, M.E.; Koenig, A.S.; Tearney, G. J.; Regar, E.; Akasaka, T.; Adriaenssens, T.; Barlis, P.; Bezerra, HG.; Yabushita, H.; Bouma, BE.; Houser, S. L.; Aretz, HT.; Jang, I-K.; Schlendorf, KH.; Guo, J.; Sun, L.; Chen, Y.D.; Tian, F.; Liu, HB.; Chen, L.; Kawasaki, M.; Bouma, BE.; Bressner, J. E.; Houser, S. L.; Nadkarni, S. K.; MacNeill, BD.; Jansen, CHP.; Onthank, DC.; Cuello, F.; Botnar, RM.; Wiethoff, AJ.; Warley, A.; von Birgelen, C.; Hartmann, A. M.; Kubo, T.; Akasaka, T.; Shite, J.; Suzuki, T.; Uemura, S.; Yu, B.; Habara, M.; Nasu, K.; Terashima, M.; Kaneda, H.; Yokota, D.; Ko, E.; Virmani, R.; Burke, AP.; Kolodgie, F.D.; Farb, A.; Takarada, S.; Imanishi, T.; Kubo, T.; Tanimoto, T.; Kitabata, H.; Nakamura, N.; Hattori, K.; Ozaki, Y.; Ismail, TF.; Okumura, M.; Naruse, H.; Kan, S.; Nishio, R.; Shinke, T.; Otake, H.; Nakagawa, M.; Nagoshi, R.; Inoue, T.; Sinclair, H.D.; Bourantas, C.; Bagnall, A.; Mintz, G.S.; Kunadian, V.; Tearney, G. J.; Yabushita, H.; Houser, S. L.; Aretz, HT.; Jang, I-K.; Schlendorf, KH.; van Soest, G.; Goderie, T.; Regar, E.; Koljenović, S.; Leenders, GL. van; Gonzalo, N.; Xu, C.; Schmitt, JM.; Carlier, SG.; Virmani, R.; van der Meer, FJ; Faber, D.J.; Sassoon, DMB.; Aalders, M.C.; Pasterkamp, G.; Leeuwen, TG. van; Schmitt, JM.; Knuttel, A.; Yadlowsky, M.; Eckhaus, MA.; Karamata, B.; Laubscher, M.; Leutenegger, M.; Bourquin, S.; Lasser, T.; Lambelet, P.; Vermeer, K.A.; Mo, J.; Weda, J.J.A.; Lemij, H.G.; Boer, JF. de

    2016-01-01

    PURPOSE To optimize conventional coronary optical coherence tomography (OCT) images using the attenuation-compensated technique to improve identification of plaques and the external elastic lamina (EEL) contour. METHOD The attenuation-compensated technique was optimized via manipulating contrast

  14. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    Science.gov (United States)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  15. Airfoil shape optimization using non-traditional optimization technique and its validation

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2014-07-01

    Full Text Available Computational fluid dynamics (CFD is one of the computer-based solution methods which is more widely employed in aerospace engineering. The computational power and time required to carry out the analysis increase as the fidelity of the analysis increases. Aerodynamic shape optimization has become a vital part of aircraft design in the recent years. Generally if we want to optimize an airfoil we have to describe the airfoil and for that, we need to have at least hundred points of x and y co-ordinates. It is really difficult to optimize airfoils with this large number of co-ordinates. Nowadays many different schemes of parameter sets are used to describe general airfoil such as B-spline, and PARSEC. The main goal of these parameterization schemes is to reduce the number of needed parameters as few as possible while controlling the important aerodynamic features effectively. Here the work has been done on the PARSEC geometry representation method. The objective of this work is to introduce the knowledge of describing general airfoil using twelve parameters by representing its shape as a polynomial function. And also we have introduced the concept of Genetic Algorithm to optimize the aerodynamic characteristics of a general airfoil for specific conditions. A MATLAB program has been developed to implement PARSEC, Panel Technique, and Genetic Algorithm. This program has been tested for a standard NACA 2411 airfoil and optimized to improve its coefficient of lift. Pressure distribution and co-efficient of lift for airfoil geometries have been calculated using the Panel method. The optimized airfoil has improved co-efficient of lift compared to the original one. The optimized airfoil is validated using wind tunnel data.

  16. Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces

    Science.gov (United States)

    Stanford, Bret K.

    2015-01-01

    This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.

  17. Essays on variational approximation techniques for stochastic optimization problems

    Science.gov (United States)

    Deride Silva, Julio A.

    This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence

  18. Optimal Estimation of Sea Surface Temperature from AMSR-E

    Directory of Open Access Journals (Sweden)

    Pia Nielsen-Englyst

    2018-02-01

    Full Text Available The Optimal Estimation (OE technique is developed within the European Space Agency Climate Change Initiative (ESA-CCI to retrieve subskin Sea Surface Temperature (SST from AQUA’s Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E. A comprehensive matchup database with drifting buoy observations is used to develop and test the OE setup. It is shown that it is essential to update the first guess atmospheric and oceanic state variables and to perform several iterations to reach an optimal retrieval. The optimal number of iterations is typically three to four in the current setup. In addition, updating the forward model, using a multivariate regression model is shown to improve the capability of the forward model to reproduce the observations. The average sensitivity of the OE retrieval is 0.5 and shows a latitudinal dependency with smaller sensitivity for cold waters and larger sensitivity for warmer waters. The OE SSTs are evaluated against drifting buoy measurements during 2010. The results show an average difference of 0.02 K with a standard deviation of 0.47 K when considering the 64% matchups, where the simulated and observed brightness temperatures are most consistent. The corresponding mean uncertainty is estimated to 0.48 K including the in situ and sampling uncertainties. An independent validation against Argo observations from 2009 to 2011 shows an average difference of 0.01 K, a standard deviation of 0.50 K and a mean uncertainty of 0.47 K, when considering the best 62% of retrievals. The satellite versus in situ discrepancies are highest in the dynamic oceanic regions due to the large satellite footprint size and the associated sampling effects. Uncertainty estimates are available for all retrievals and have been validated to be accurate. They can thus be used to obtain very good retrieval results. In general, the results from the OE retrieval are very encouraging and demonstrate that passive microwave

  19. New technique of machining high precision mirror surface press roller

    Science.gov (United States)

    Hongsen, Deng

    1991-03-01

    High precision mirror surface press roller machining technique of corrosion and grinding proof is one of the key techniques that the production enterprises as well as the machining and manufacturing of the following industries sought to resolve for a long time: plastics, papermaking, rubber, film, and chip production. In Oct. 1984, a new comprehensive machining technique of metal brush coating, grinding with abrasive belt, as well as buffing was used to conduct nearly 20 experiments. In Jan. 1985, a pair of middle convex high precision mirror surface press rollers was successfully machined. The technical process is described.

  20. Optimization of brushless direct current motor design using an intelligent technique.

    Science.gov (United States)

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Neoliberal Optimism: Applying Market Techniques to Global Health.

    Science.gov (United States)

    Mei, Yuyang

    2017-01-01

    Global health and neoliberalism are becoming increasingly intertwined as organizations utilize markets and profit motives to solve the traditional problems of poverty and population health. I use field work conducted over 14 months in a global health technology company to explore how the promise of neoliberalism re-envisions humanitarian efforts. In this company's vaccine refrigerator project, staff members expect their investors and their market to allow them to achieve scale and develop accountability to their users in developing countries. However, the translation of neoliberal techniques to the global health sphere falls short of the ideal, as profits are meager and purchasing power remains with donor organizations. The continued optimism in market principles amidst such a non-ideal market reveals the tenacious ideological commitment to neoliberalism in these global health projects.

  2. Design Optimization of a Speed Reducer Using Deterministic Techniques

    Directory of Open Access Journals (Sweden)

    Ming-Hua Lin

    2013-01-01

    Full Text Available The optimal design problem of minimizing the total weight of a speed reducer under constraints is a generalized geometric programming problem. Since the metaheuristic approaches cannot guarantee to find the global optimum of a generalized geometric programming problem, this paper applies an efficient deterministic approach to globally solve speed reducer design problems. The original problem is converted by variable transformations and piecewise linearization techniques. The reformulated problem is a convex mixed-integer nonlinear programming problem solvable to reach an approximate global solution within an acceptable error. Experiment results from solving a practical speed reducer design problem indicate that this study obtains a better solution comparing with the other existing methods.

  3. Techniques for optimizing nanotips derived from frozen taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2017-12-05

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.

  4. Optimization of surface roughness parameters in dry turning

    OpenAIRE

    R.A. Mahdavinejad; H. Sharifi Bidgoli

    2009-01-01

    Purpose: The precision of machine tools on one hand and the input setup parameters on the other hand, are strongly influenced in main output machining parameters such as stock removal, toll wear ratio and surface roughnes.Design/methodology/approach: There are a lot of input parameters which are effective in the variations of these output parameters. In CNC machines, the optimization of machining process in order to predict surface roughness is very important.Findings: From this point of view...

  5. Optimization Techniques for Dimensionally Truncated Sparse Grids on Heterogeneous Systems

    KAUST Repository

    Deftu, A.

    2013-02-01

    Given the existing heterogeneous processor landscape dominated by CPUs and GPUs, topics such as programming productivity and performance portability have become increasingly important. In this context, an important question refers to how can we develop optimization strategies that cover both CPUs and GPUs. We answer this for fastsg, a library that provides functionality for handling efficiently high-dimensional functions. As it can be employed for compressing and decompressing large-scale simulation data, it finds itself at the core of a computational steering application which serves us as test case. We describe our experience with implementing fastsg\\'s time critical routines for Intel CPUs and Nvidia Fermi GPUs. We show the differences and especially the similarities between our optimization strategies for the two architectures. With regard to our test case for which achieving high speedups is a "must" for real-time visualization, we report a speedup of up to 6.2x times compared to the state-of-the-art implementation of the sparse grid technique for GPUs. © 2013 IEEE.

  6. Optimization techniques for smart integrated sensor networks in environmental monitoring

    Science.gov (United States)

    Gandelli, A.; Grimaccia, F.; Zich, R. E.

    2007-12-01

    Sensor networks are an emerging field of research which presents significant system challenges involving the use of large numbers of resource-constrained nodes operating essentially unattended and exposed to potential local communication failures. Current sensor networks address problems of meeting standards for accuracy and also delivering data from remote locations with an appropriate level of spatial and temporal resolution. Today advances in sensor technology, wireless communications and digital electronics make it possible to produce large amount of small-size, low-cost sensors which integrate together sensing, processing, and communication capabilities. The advantages are evident not only in the reduction of size, but also in the increase of functional performance and reliability, and a unit-cost reduction in mass production lines. In this work hybrid evolutionary algorithms are applied to optimize the design of cluster formation in wireless sensor networks, guaranteeing at the same time a full network connectivity and a minimum energy consumption. The proposed techniques have been tested in respect of the most known test functions with good results obtained in all the considered cases, especially for optimization of large domain objective functions. This feature makes these algorithms suitable for a wide range of applications, capable of outperforming classical procedures.

  7. Global structual optimizations of surface systems with a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Feng-Chuan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Aln algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  8. Application of response surface methodology optimization for the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... of CQAs in tobacco waste were identified as three isomers containing chlorogenic acid (5-caffecylquinic acid ... Key words: Caffeic acid, caffeoylquinic acids (CQAs), hydrolysis reaction parameter optimization, response surface ..... Rosmarinic acid and caffeic acid produce antidepressive-like effect in.

  9. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... filometry [7–9] and monitoring of surface self-diffusion of solids under ultrahigh vacuum conditions [10]. In the present work, recording parameters, i.e. exposure time and deve- lopment time for fabrication of such holographic gratings have been optimized to obtain nearly perfect sinusoidal profiles in the ...

  10. Application of response surface methodology optimization for the ...

    African Journals Online (AJOL)

    by HPLC-PAD-ESI-MS/MS, and used as raw material for producing CA which preparation process was optimized by response surface methodology (RSM). The research results indicated the main ingredients of CQAs in tobacco waste were identified as three isomers containing chlorogenic acid (5-caffecylquinic acid, ...

  11. Response surface method to optimize the low cost medium for ...

    African Journals Online (AJOL)

    A protease producing Bacillus sp. GA CAS10 was isolated from ascidian Phallusia arabica, Tuticorin, Southeast coast of India. Response surface methodology was employed for the optimization of different nutritional and physical factors for the production of protease. Plackett-Burman method was applied to identify ...

  12. A Monte Carlo simulation technique to determine the optimal portfolio

    Directory of Open Access Journals (Sweden)

    Hassan Ghodrati

    2014-03-01

    Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.

  13. Fluid Surface Damping: A Technique for Vibration Suppression of Beams

    Directory of Open Access Journals (Sweden)

    Hany Ghoneim

    1997-01-01

    Full Text Available A fluid surface damping (FSD technique for vibration suppression of beamlikestructures is proposed. The technique is a modification of the surface layer damping method. Two viscoelastic surface layers containing fluid-filled cavities are attached symmetrically to the opposite surfaces of the beam. The cavities on one side are attached to the corresponding cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped back and forth through the connecting passages. Therefore, in addition to the viscoelastic damping provided by the surface layers, the technique offers viscous damping due to the fluid flow through the passage. A mathematical model for the proposed technique is developed, normalized, and solved in the frequency domain to investigate the effect of various parameters on the vibration suppression of a cantilever beam. The steady-state frequency response for a base white-noise excitation is calculated at the beam's free tip and over a frequency range containing the first five resonant frequencies. The parameters investigated are the flow-through passage viscous resistance, the length and location of the layers, the hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic inertance. Results indicate that the proposed technique has promising potential in the field of vibration suppression of beamlike structures. With two FSD elements, all peak vibration amplitudes can be well suppressed over the entire frequency spectrum studied.

  14. OPTIMIZATION OF TANNASE POSITIVE PROBIOTIC PRODUCTION BY SURFACE RESPONSE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Yumnam S.

    2014-10-01

    Full Text Available Study in conditions in vitro of eight Lactobacillus strains procured from culture repositories for their probiotic potential and extracellular tannase activity was the aim of the research. Based upon acid, bile salt tolerance and antibiotic resistance L. plantarum MTCC 2621 with high tannase activity was selected for production studies. Optimization of nutrient medium in 3 L bioreactor was optimized by Surface Response Methodology based on the Full Factorial Central Composite Design. A factorial design 23 augmented by 6 axial points (α = 1.68 and six replicates at the center point was implemented in 20 experiments. The optimized conditions were found to be pH 5.69, contain of lactose 128.58 g/l, peptone 8 g/l. A tenfold increase in the biomass production was observed using the optimized nutrient medium in bioreactor as compared to initial MRS medium.

  15. A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation

    International Nuclear Information System (INIS)

    Perkins, George H.; McNeese, Marsha D.; Antolak, John A.; Buchholz, Thomas A.; Strom, Eric A.; Hogstrom, Kenneth R.

    2001-01-01

    Purpose: Postmastectomy irradiation (PMI) is a technically complex treatment requiring consideration of the primary tumor location, possible risk of internal mammary node involvement, varying chest wall thicknesses secondary to surgical defects or body habitus, and risk of damaging normal underlying structures. In this report, we describe the application of a customized three-dimensional (3D) electron bolus technique for delivering PMI. Methods and Materials: A customized electron bolus was designed using a 3D planning system. Computed tomography (CT) images of each patient were obtained in treatment position and the volume to be treated was identified. The distal surface of the wax bolus matched the skin surface, and the proximal surface was designed to conform to the 90% isodose surface to the distal surface of the planning target volume (PTV). Dose was calculated with a pencil-beam algorithm correcting for patient heterogeneity. The bolus was then fabricated from modeling wax using a computer-controlled milling device. To aid in quality assurance, CT images with the bolus in place were generated and the dose distribution was computed using these images. Results: This technique optimized the dose distribution while minimizing irradiation of normal tissues. The use of a single anterior field eliminated field junction sites. Two patients who benefited from this option are described: one with altered chest wall geometry (congenital pectus excavatum), and one with recurrent disease in the medial chest wall and internal mammary chain (IMC) area. Conclusion: The use of custom 3D electron bolus for PMI is an effective method for optimizing dose delivery. The radiation dose distribution is highly conformal, dose heterogeneity is reduced compared to standard techniques in certain suboptimal settings, and excellent immediate outcome is obtained

  16. Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

    Directory of Open Access Journals (Sweden)

    In-Ju Kim

    2018-03-01

    Full Text Available Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents. Keywords: floor surface finishes, operational levels of floor surface roughness, slip resistance, wet, soapy and oily environments

  17. Optimization technique for problems with an inequality constraint

    Science.gov (United States)

    Russell, K. J.

    1972-01-01

    General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.

  18. Studying cell-surface interactions in vitro: a survey of experimental approaches and techniques.

    Science.gov (United States)

    Michaelis, Stefanie; Robelek, Rudolf; Wegener, Joachim

    2012-01-01

    A better understanding of the interactions of animal (or human) cells with in vitro surfaces is the key to the successful development, improvement and optimization of biomaterials for biomedical or biotechnological purposes. State-of-the-art experimental approaches and techniques are a prerequisite for further and deeper insights into the mechanisms and processes involved in cell-surface adhesion. This chapter provides a brief but not complete survey of optical, mechanical, electrochemical and acoustic devices that are currently used to study the structural and functional properties of the cell-surface junction. Each technique is introduced with respect to the underlying principles before example data are discussed. At the end of the chapter all techniques are compared in terms of their strengths, limitations and technical requirements.

  19. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    OpenAIRE

    Hendrik C. Swart

    2017-01-01

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and al...

  20. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  1. Optimized inspection techniques and structural analysis in lifetime management

    International Nuclear Information System (INIS)

    Aguado, M.T.; Marcelles, I.

    1993-01-01

    Preservation of the option of extending the service lifetime of a nuclear power plant beyond its normal design lifetime requires correct remaining lifetime management from the very beginning of plant operation. The methodology used in plant remaining lifetime management is essentially based on the use of standard inspections, surveillance and monitoring programs and calculations, such as thermal-stress and fracture mechanics analysis. The inspection techniques should be continuously optimized, in order to be able to detect and dimension existing defects with the highest possible degree of accuracy. The information obtained during the inspection is combined with the historical data of the components: design, quality, operation, maintenance, and transients, and with the results of destructive testing, fracture mechanics and thermal fatigue analysis. These data are used to estimate the remaining lifetime of nuclear power plant components, systems and structures with the highest degree possible of accuracy. The use of this methodology allows component repairs and replacements to be reduced or avoided and increases the safety levels and availability of the nuclear power plant. Use of this strategy avoids the need for heavy investments at the end of the licensing period

  2. Muscle optimization techniques impact the magnitude of calculated hip joint contact forces

    NARCIS (Netherlands)

    Wesseling, M.; Derikx, L.C.; de Groote, F.; Bartels, W.; Meyer, C.; Verdonschot, Nicolaas Jacobus Joseph; Jonkers, I.

    2015-01-01

    In musculoskeletal modelling, several optimization techniques are used to calculate muscle forces, which strongly influence resultant hip contact forces (HCF). The goal of this study was to calculate muscle forces using four different optimization techniques, i.e., two different static optimization

  3. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to determine the layout of cooling channels. The average temperature and temperature deviation of work surface are used to evaluate the cooling performance of hot stamping tools. On the basis of the experimental design results, quadratic response surface models are established to describe the relationship between the design variables and the evaluation objectives. The error analysis is performed to ensure the accuracy of response surface models. Then the layout of the conformal cooling channels is optimized in accordance with a multi-objective optimization method to find the Pareto optimal frontier which consists of some optimal combinations of design variables that can lead to an acceptable cooling performance.

  4. Wetting on micro-structured surfaces: modelling and optimization

    DEFF Research Database (Denmark)

    Cavalli, Andrea

    The present thesis deals with the wetting of micro-structured surfaces by various fluids, and its goal is to elucidate different aspects of this complex interaction. In this work we address some of the most relevant topics in this field such as superhydrophobicity, oleophobicity, unidirectional......-off angles. Such behaviour arises when drops are suspended on a micron or submicron texture, so that their contact with the substrate is minute. This suspended state (known as Cassie-Baxter state) is however prone to failure if the liquid-air interface is perturbed, a common situation in real life...... circumstances. We apply the numerical method of Topology Optimization to this problem, in order to find the optimal texture to support the superhydrophobic configuration. Our optimization provides designs which are consistent with strategies employed by Nature to achieve the same effect. Furthermore, our...

  5. Optimization of sustained release aceclofenac microspheres using response surface methodology

    International Nuclear Information System (INIS)

    Deshmukh, Rameshwar K.; Naik, Jitendra B.

    2015-01-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R 2 in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres were

  6. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  7. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  8. Optimization of Thermal Aspects of Friction Stir Welding – Initial Studies Using a Space Mapping Technique

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Bendsøe, Martin P.; Schmidt, Henrik Nikolaj Blicher

    2007-01-01

    The aim of this paper is to optimize a thermal model of a friction stir welding process. The optimization is performed using a space mapping technique in which an analytical model is used along with the FEM model to be optimized. The results are compared to traditional gradient based optimization...

  9. Warpage minimization on wheel caster by optimizing process parameters using response surface methodology (RSM)

    Science.gov (United States)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.

  10. Optimizing integrated airport surface and terminal airspace operations under uncertainty

    Science.gov (United States)

    Bosson, Christabelle S.

    In airports and surrounding terminal airspaces, the integration of surface, arrival and departure scheduling and routing have the potential to improve the operations efficiency. Moreover, because both the airport surface and the terminal airspace are often altered by random perturbations, the consideration of uncertainty in flight schedules is crucial to improve the design of robust flight schedules. Previous research mainly focused on independently solving arrival scheduling problems, departure scheduling problems and surface management scheduling problems and most of the developed models are deterministic. This dissertation presents an alternate method to model the integrated operations by using a machine job-shop scheduling formulation. A multistage stochastic programming approach is chosen to formulate the problem in the presence of uncertainty and candidate solutions are obtained by solving sample average approximation problems with finite sample size. The developed mixed-integer-linear-programming algorithm-based scheduler is capable of computing optimal aircraft schedules and routings that reflect the integration of air and ground operations. The assembled methodology is applied to a Los Angeles case study. To show the benefits of integrated operations over First-Come-First-Served, a preliminary proof-of-concept is conducted for a set of fourteen aircraft evolving under deterministic conditions in a model of the Los Angeles International Airport surface and surrounding terminal areas. Using historical data, a representative 30-minute traffic schedule and aircraft mix scenario is constructed. The results of the Los Angeles application show that the integration of air and ground operations and the use of a time-based separation strategy enable both significant surface and air time savings. The solution computed by the optimization provides a more efficient routing and scheduling than the First-Come-First-Served solution. Additionally, a data driven analysis is

  11. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    Science.gov (United States)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to

  12. Optimization of digital radiography techniques for specific application

    International Nuclear Information System (INIS)

    Harara, W.

    2010-12-01

    A low cost digital radiography system (DRS) for testing weld joints and castings in laboratory was assembled. The DRS is composed from X-ray source, scintillator, first surface mirror with Aluminum coating, charged coupled device (CCD) camera and lens. The DRS was used to test flawed carbon steel welded plates with thicknesses up to 12 mm. The comparison between the digital radiographs of the plates weldments and the radiographs of the same plates weldments using medium speed film type had shown that, the detection capability of the weld flaws are nearly identical for the two radiography techniques, while the sensitivity achieved in digital radiography of the plates weldments was one IQI wire less than the sensitivity achieved by conventional radiography of the same plates weldments according to EN 462-1. Further, the DRS was also successfully used to test (100 x 100 x 100) mm Aluminum casting with artificial flaws of varied dimensions and orientations. The resulted digital radiographs of the casting show that, all the flaws had been detected and their dimensions can be measured accurately, this confirm that, The proposed DRS can be used to detect and measure the flaws in the Aluminum and others light metals castings accurately. (author)

  13. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI

    2017-07-11

    Jul 11, 2017 ... an actuator weighing matrix and k f represents the final location of the vector. Optimal control that optimizes the performance index is given by [23–25] u. ∗(k) = −L(k)x. ∗(k) + Lg(k)g(k + 1). (8). Quantities with an asterisk represent optimal quantities. L(k) and Lg(k) are control gains and vector g (k) is given as.

  14. Modeling marine surface microplastic transport to assess optimal removal locations

    International Nuclear Information System (INIS)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres. (letter)

  15. Modeling marine surface microplastic transport to assess optimal removal locations

    Science.gov (United States)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  16. Optimal fringe angle selection for digital fringe projection technique.

    Science.gov (United States)

    Wang, Yajun; Zhang, Song

    2013-10-10

    Existing digital fringe projection (DFP) systems mainly use either horizontal or vertical fringe patterns for three-dimensional shape measurement. This paper reveals that these two fringe directions are usually not optimal where the phase change is the largest to a given depth variation. We propose a novel and efficient method to determine the optimal fringe angle by projecting a set of horizontal and vertical fringe patterns onto a step-height object and by further analyzing two resultant phase maps. Experiments demonstrate the existence of the optimal angle and the success of the proposed optimal angle determination method.

  17. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    KAUST Repository

    Accardo, Angelo

    2014-06-10

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. 2014 International Union of Crystallography.

  18. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials.

    Science.gov (United States)

    Swart, Hendrik C

    2017-08-04

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS) for nanoparticle characterization is also pointed out.

  19. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    Directory of Open Access Journals (Sweden)

    Hendrik C. Swart

    2017-08-01

    Full Text Available The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES, X-ray photo electron spectroscopy (XPS, time of flight scanning ion mass spectrometry (TOF-SIMS and High resolution transmission electron microscopy (HRTEM for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS for nanoparticle characterization is also pointed out.

  20. Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface.

    Science.gov (United States)

    Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting

    2017-10-13

    Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.

  1. Optimizing Two-level Supersaturated Designs using Swarm Intelligence Techniques.

    Science.gov (United States)

    Phoa, Frederick Kin Hing; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    Supersaturated designs (SSDs) are often used to reduce the number of experimental runs in screening experiments with a large number of factors. As more factors are used in the study, the search for an optimal SSD becomes increasingly challenging because of the large number of feasible selection of factor level settings. This paper tackles this discrete optimization problem via an algorithm based on swarm intelligence. Using the commonly used E ( s 2 ) criterion as an illustrative example, we propose an algorithm to find E ( s 2 )-optimal SSDs by showing that they attain the theoretical lower bounds in Bulutoglu and Cheng (2004) and Bulutoglu (2007). We show that our algorithm consistently produces SSDs that are at least as efficient as those from the traditional CP exchange method in terms of computational effort, frequency of finding the E ( s 2 )-optimal SSD and also has good potential for finding D 3 -, D 4 - and D 5 -optimal SSDs.

  2. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  3. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    Science.gov (United States)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The

  4. Laser techniques for radioactive decontamination gives metallic surfaces

    International Nuclear Information System (INIS)

    Escobar Alracon, L.; Molina, G.; Vizuet Gonzalez, J.

    1998-01-01

    In this work it presented the prototype for system decontamination at diverse component with removable superficial contamination, using the technique gives laser ablation, for the evaporation at the pollutant. It discusses the principle in the fact that system, as well as the different elements that compose it. The are presented the obtained results when irradiating with a laser a surface without radioactive contamination to verify the system operation

  5. The surface modification of clay particles by RF plasma technique

    Science.gov (United States)

    Lee, Sang-Keol

    In this study, the surface coatings of ball clay, organoclay and exfoliated clay prepared by sol-gel process were done by RF plasma polymerization to improve the surface activity of the clay filler. Characterization of the above plasma-treated clays has been carried out by various techniques. The effects of plasma-treated clays as substitute of carbon black in styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer (EPDM) on the curing and mechanical properties were investigated. After plasma treatment, the tensile properties of organo and exfoliated clay were not unsatisfactory to that of carbon black filler system. Moreover, only 10 phr filler loading of plasma-treated organoclay in EPDM vulcanizates showed better results than 40 phr filler loading of carbon black in EPDM vulcanizates. The main objective of this study was to verify the applicability of the plasma technique for modifying clay surfaces for their use in the tire manufacturing industry. Another purpose was to reveal the advantage of the plasma technique used to obtain modified-clay and improved properties that those materials can display.

  6. Complicated problem solution techniques in optimal parameter searching

    International Nuclear Information System (INIS)

    Gergel', V.P.; Grishagin, V.A.; Rogatneva, E.A.; Strongin, R.G.; Vysotskaya, I.N.; Kukhtin, V.V.

    1992-01-01

    An algorithm is presented of a global search for numerical solution of multidimentional multiextremal multicriteria optimization problems with complicated constraints. A boundedness of object characteristic changes is assumed at restricted changes of its parameters (Lipschitz condition). The algorithm was realized as a computer code. The algorithm was realized as a computer code. The programme was used to solve in practice the different applied optimization problems. 10 refs.; 3 figs

  7. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, O., E-mail: stupak@fzu.c [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 18221 Prague (Czech Republic); Perevertov, O.; Tomas, I. [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 18221 Prague (Czech Republic); Skrbek, B. [Technical University of Liberec, Studentska 2, 46117 Liberec (Czech Republic)

    2011-06-15

    Industrially unfavorable process of steel surface decarburization was induced by annealing in air. Two methods of after-anneal surface treatment were used: an acid pickling and a sand blasting. The obtained decarburized layers were examined by optical microscope, wave dispersive spectrometer, and surface X-ray diffraction method. Magnetic Barkhausen noise technique was tested for applicability of non-destructive characterization of the decarburized layer depth. A newly introduced parameter, Barkhausen noise coercivity, was proposed for practical use due to its sensitivity to decarburization and stability to measurement conditions. Other magnetic parameters, e.g. number of Barkhausen noise counts, were found to be sensitive to the compressive residual stress caused by the sand blasting. - Research highlights: Barkhausen coercivity shows good stability and sensitivity to decarburization depth. Number of Barkhausen noise counts indicates compressive residual stress. Rms value of Barkhausen noise shows nonmonotonic dependence on decarburization depth.

  8. New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique

    International Nuclear Information System (INIS)

    Behrang, M.A.; Assareh, E.; Noghrehabadi, A.R.; Ghanbarzadeh, A.

    2011-01-01

    PSO (particle swarm optimization) technique is applied to estimate monthly average daily GSR (global solar radiation) on horizontal surface for different regions of Iran. To achieve this, five new models were developed as well as six models were chosen from the literature. First, for each city, the empirical coefficients for all models were separately determined using PSO technique. The results indicate that new models which are presented in this study have better performance than existing models in the literature for 10 cities from 17 considered cities in this study. It is also shown that the empirical coefficients found for a given latitude can be generalized to estimate solar radiation in cities at similar latitude. Some case studies are presented to demonstrate this generalization with the result showing good agreement with the measurements. More importantly, these case studies further validate the models developed, and demonstrate the general applicability of the models developed. Finally, the obtained results of PSO technique were compared with the obtained results of SRTs (statistical regression techniques) on Angstrom model for all 17 cities. The results showed that obtained empirical coefficients for Angstrom model based on PSO have more accuracy than SRTs for all 17 cities. -- Highlights: → The first study to apply an intelligent optimization technique to more accurately determine empirical coefficients in solar radiation models. → New models which are presented in this study have better performance than existing models. → The empirical coefficients found for a given latitude can be generalized to estimate solar radiation in cities at similar latitude. → A fair comparison between the performance of PSO and SRTs on GSR modeling.

  9. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  10. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low......-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40Wm-2, |latent heat flux|> 20Wm-2 and |CO2 flux|> 100 mmolm-2 d-1/ we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5–20 %) suggesting...

  11. Comparison of metaheuristic optimization techniques for BWR fuel reloads pattern design

    International Nuclear Information System (INIS)

    François, Juan-Luis; Ortiz-Servin, Juan José; Martín-del-Campo, Cecilia; Castillo, Alejandro; Esquivel-Estrada, Jaime

    2013-01-01

    Highlights: ► This paper shows a performance comparison of several optimization techniques for fuel reload in BWR. ► Genetic Algorithms, Neural Networks, Tabu Search and several Ant Algorithms were used. ► All optimization techniques were executed under same conditions: objective function and an equilibrium cycle. ► Fuel bundles with minor actinides were loaded into the core. ► Tabu search and Ant System were the best optimization technique for the studied problem. -- Abstract: Fuel reload pattern optimization is a crucial fuel management activity in nuclear power reactors. Along the years, a lot of work has been done in this area. In particular, several metaheuristic optimization techniques have been applied with good results for boiling water reactors (BWRs). In this paper, a comparison of different metaheuristics: genetic algorithms, tabu search, recurrent neural networks and several ant colony optimization techniques, were applied, in order to evaluate their performance. The optimization of an equilibrium core of a BWR, loaded with mixed oxide fuel composed of plutonium and minor actinides, was selected to be optimized. Results show that the best average values are obtained with the recurrent neural networks technique, meanwhile the best fuel reload was obtained with tabu search. However, according to the number of objective functions evaluated, the two fastest optimization techniques are tabu search and Ant System.

  12. Optimal Component Lumping: problem formulation and solution techniques

    DEFF Research Database (Denmark)

    Lin, Bao; Leibovici, Claude F.; Jørgensen, Sten Bay

    2008-01-01

    This paper presents a systematic method for optimal lumping of a large number of components in order to minimize the loss of information. In principle, a rigorous composition-based model is preferable to describe a system accurately. However, computational intensity and numerical issues restrict...... such applications in process modeling, simulation and design. A pseudo-component approach that lumps a large number of components in a system into a much smaller number of hypothetical groups reduces the dimensionality at the cost of losing information. Moreover, empirical and heuristic approaches are commonly used...... significantly reduces the number of independent variables. The application to a system with 144 components demonstrates that the optimal lumping problem can be efficiently solved with a stochastic optimization method, Tabu Search (TS) algorithm. The case study also reveals that the discrete formulation...

  13. Optimal Technique for Abdominal Fascial Closure in Liver Transplant Patients

    Directory of Open Access Journals (Sweden)

    Unal Aydin

    2010-01-01

    Conclusion: Our results indicate that the novel technique used in this study contributed to overcoming early and late postoperative complications associated with closure of the abdominal fascia in liver transplant patients. In addition, this new technique has proven to be easily applicable, faster, safer and efficient in these patients; it is also potentially useful for conventional surgery.

  14. Machine learning techniques for optical communication system optimization

    DEFF Research Database (Denmark)

    Zibar, Darko; Wass, Jesper; Thrane, Jakob

    In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction.......In this paper, machine learning techniques relevant to optical communication are presented and discussed. The focus is on applying machine learning tools to optical performance monitoring and performance prediction....

  15. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions

    Science.gov (United States)

    Akgun, Mehmet A.; Haftka, Raphael T.

    2000-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local

  16. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration.

    Science.gov (United States)

    Shibata, Yo; Tanimoto, Yasuhiro

    2015-01-01

    Titanium is a primary metallic biomaterial used in load-bearing orthopedic or dental implants because of its favorable mechanical properties and osseointegration capability. This article reviews the current status of surface optimization techniques for titanium implants, whether such concepts are in the form of sufficiently evidence-based, and highlights the related experimental tools. A strong emphasis was placed on the enhanced biological responses to titanium implants by modifying the surface finishing process. On this basis, a clear partition of surface chemistry and topography was critical. The intrinsic host tissue response to titanium implants is facilitated by the chemistry or topography of a passive oxide film, although the extent to which the surface characteristics enable rapid osseointegration is still uncertain. Besides the fundamental requirements, such as the promotion of osteogenic differentiation, the titanium implant surface should accelerate wound-healing phenomena prior to bone ingrowth toward the surface. Moreover, because initial bacterial attachment to the implant surface is unavoidable, infection control by surface modification is also an important determinant in reducing surgical failure. A desirable surface-biological relationship often needs to be characterized at the nanoscale by means of advanced technologies. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Optimization of MKID noise performance via readout technique for astronomical applications

    Science.gov (United States)

    Czakon, Nicole G.; Schlaerth, James A.; Day, Peter K.; Downes, Thomas P.; Duan, Ran P.; Gao, Jiansong; Glenn, Jason; Golwala, Sunil R.; Hollister, Matt I.; LeDuc, Henry G.; Mazin, Benjamin A.; Maloney, Philip R.; Noroozian, Omid; Nguyen, Hien T.; Sayers, Jack; Siegel, Seth; Vaillancourt, John E.; Vayonakis, Anastasios; Wilson, Philip R.; Zmuidzinas, Jonas

    2010-07-01

    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP.

  18. An improved technique for the prediction of optimal image resolution ...

    African Journals Online (AJOL)

    Past studies to predict optimal image resolution required for generating spatial information for savannah ecosystems have yielded different outcomes, hence providing a knowledge gap that was investigated in the present study. The postulation, for the present study, was that by graphically solving two simultaneous ...

  19. Optimization of an embedded rail structure using a numerical technique

    NARCIS (Netherlands)

    Markine, V.L.; De Man, A.P.; Esveld, C.

    2000-01-01

    This paper presents several steps of a procedure for design of a railway track aiming at the development of optimal track structures under various predefined service and environmental conditions. The structural behavior of the track is analyzed using a finite element model in which the track and a

  20. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique.

    Science.gov (United States)

    Zhang, Xiaoming

    2016-11-01

    The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

  1. Resent developments in high-frequency surface-wave techniques

    Science.gov (United States)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  2. Key techniques for vision measurement of 3D object surface

    Science.gov (United States)

    Yang, Huachao; Zhang, Shubi; Guo, Guangli; Liu, Chao; Yu, Ruipeng

    2006-11-01

    Digital close-range photogrammetry system and machine vision are widely used in production control, quality inspection. The main aim is to provide accurate 3D objects or reconstruction of an object surface and give an expression to an object shape. First, the key techniques of camera calibration and target image positioning for 3D object surface vision measurement were briefly reviewed and analyzed in this paper. Then, an innovative and effect method for precise space coordinates measurements was proposed. Test research proved that the thought and methods we proposed about image segmentation, detection and positioning of circular marks were effective and valid. A propriety weight value for adding parameters, control points and orientation elements in bundle adjustment with self-calibration are advantageous to gaining high accuracy of space coordinates. The RMS error of check points is less than +/-1 mm, which can meet the requirement in industrial measurement with high accuracy.

  3. Optimal PID control of a brushless DC motor using PSO and BF techniques

    Directory of Open Access Journals (Sweden)

    H.E.A. Ibrahim

    2014-06-01

    Full Text Available This paper presents a Particle Swarm Optimization (PSO technique and bacterial foraging (BF technique for determining the optimal parameters of (PID controller for speed control of a brushless DC motor (BLDC where the (BLDC motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.

  4. Optimal PID control of a brushless DC motor using PSO and BF techniques

    OpenAIRE

    H.E.A. Ibrahim; F.N. Hassan; Anas O. Shomer

    2014-01-01

    This paper presents a Particle Swarm Optimization (PSO) technique and bacterial foraging (BF) technique for determining the optimal parameters of (PID) controller for speed control of a brushless DC motor (BLDC) where the (BLDC) motor is modeled in simulink in Matlab. The proposed technique was more efficient in improving the step response characteristics as well as reducing the steady-state error, rise time, settling time and maximum overshoot.

  5. Purchasing and inventory management techniques for optimizing inventory investment

    International Nuclear Information System (INIS)

    McFarlane, I.; Gehshan, T.

    1993-01-01

    In an effort to reduce operations and maintenance costs among nuclear plants, many utilities are taking a closer look at their inventory investment. Various approaches for inventory reduction have been used and discussed, but these approaches are often limited to an inventory management perspective. Interaction with purchasing and planning personnel to reduce inventory investment is a necessity in utility efforts to become more cost competitive. This paper addresses the activities that purchasing and inventory management personnel should conduct in an effort to optimize inventory investment while maintaining service-level goals. Other functions within a materials management organization, such as the warehousing and investment recovery functions, can contribute to optimizing inventory investment. However, these are not addressed in this paper because their contributions often come after inventory management and purchasing decisions have been made

  6. Optimal fuel loading pattern design using artificial intelligence techniques

    International Nuclear Information System (INIS)

    Kim, Han Gon; Chang, Soon Heung; Lee, Byung Ho

    1993-01-01

    The Optimal Fuel Shuffling System (OFSS) is developed for optimal design of PWR fuel loading pattern. OFSS is a hybrid system that a rule based system, a fuzzy logic, and an artificial neural network are connected each other. The rule based system classifies loading patterns into two classes using several heuristic rules and a fuzzy rule. A fuzzy rule is introduced to achieve more effective and fast searching. Its membership function is automatically updated in accordance with the prediction results. The artificial neural network predicts core parameters for the patterns generated from the rule based system. The back-propagation network is used for fast prediction of core parameters. The artificial neural network and the fuzzy logic can be used as the tool for improvement of existing algorithm's capabilities. OFSS was demonstrated and validated for cycle 1 of Kori unit 1 PWR. (Author)

  7. Intelligent Heuristic Techniques for the Optimization of the Transshipment and Storage Operations at Maritime Container Terminals

    Directory of Open Access Journals (Sweden)

    Christopher Expósito-Izquierdo

    2017-02-01

    Full Text Available This paper summarizes the main contributions of the Ph.D. thesis of Christopher Exp\\'osito-Izquierdo. This thesis seeks to develop a wide set of intelligent heuristic and meta-heuristic algorithms aimed at solving some of the most highlighted optimization problems associated with the transshipment and storage of containers at conventional maritime container terminals. Under the premise that no optimization technique can have a better performance than any other technique under all possible assumptions, the main point of interest in the domain of maritime logistics is to propose optimization techniques superior in terms of effectiveness and computational efficiency to previous proposals found in the scientific literature when solving individual optimization problems under realistic scenarios. Simultaneously, these optimization techniques should be enough competitive to be potentially implemented in practice. }}

  8. Optimized nonlinear inversion of surface-wave dispersion data

    International Nuclear Information System (INIS)

    Raykova, Reneta B.

    2014-01-01

    A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software

  9. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    ... structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-dampersystem is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law ...

  10. Optimizing Nuclear Reactor Operation Using Soft Computing Techniques

    NARCIS (Netherlands)

    Entzinger, J.O.; Ruan, D.; Kahraman, Cengiz

    2006-01-01

    The strict safety regulations for nuclear reactor control make it di±cult to implement new control techniques such as fuzzy logic control (FLC). FLC however, can provide very desirable advantages over classical control, like robustness, adaptation and the capability to include human experience into

  11. Response surface optimization of electrochemical treatment of textile dye wastewater

    International Nuclear Information System (INIS)

    Koerbahti, Bahadir K.

    2007-01-01

    The electrochemical treatment of textile dye wastewater containing Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive dyes was studied on iron electrodes in the presence of NaCl electrolyte in a batch electrochemical reactor. The wastewater was synthetically prepared in relatively high dye concentrations between 400 mg/L and 2000 mg/L. The electrochemical treatment of textile dye wastewater was optimized using response surface methodology (RSM), where current density and electrolyte concentration were to be minimized while dye removal and turbidity removal were maximized at 28 deg. C reaction temperature. Optimized conditions under specified cost driven constraints were obtained for the highest desirability at 6.7 mA/cm 2 , 5.9 mA/cm 2 and 5.4 mA/cm 2 current density and 3.1 g/L, 2.5 g/L and 2.8 g/L NaCl concentration for Levafix Blue CA, Levafix Red CA and Levafix Yellow CA reactive textile dyes, respectively

  12. Electric power systems advanced forecasting techniques and optimal generation scheduling

    CERN Document Server

    Catalão, João P S

    2012-01-01

    Overview of Electric Power Generation SystemsCláudio MonteiroUncertainty and Risk in Generation SchedulingRabih A. JabrShort-Term Load ForecastingAlexandre P. Alves da Silva and Vitor H. FerreiraShort-Term Electricity Price ForecastingNima AmjadyShort-Term Wind Power ForecastingGregor Giebel and Michael DenhardPrice-Based Scheduling for GencosGovinda B. Shrestha and Songbo QiaoOptimal Self-Schedule of a Hydro Producer under UncertaintyF. Javier Díaz and Javie

  13. Heuristic Optimization Techniques for Determining Optimal Reserve Structure of Power Generating Systems

    DEFF Research Database (Denmark)

    Ding, Yi; Goel, Lalit; Wang, Peng

    2012-01-01

    the required level of supply reliability to its customers. In previous research, Genetic Algorithm (GA) has been used to solve most reliability optimization problems. However, the GA is not very computationally efficient in some cases. In this chapter a new heuristic optimization technique—the particle swarm...

  14. Improved Nanomechanical Test Techniques for Surface Engineered Materials

    Directory of Open Access Journals (Sweden)

    Stephen R. Goodes

    2010-06-01

    Full Text Available The development and implementation of a wide range of innovative nanomechanical test techniques to solve tribological problems in applications as diverse as biomedical and automotive are described in this review. For improved wear resistance and durability, the importance of understanding the system response rather than the coating-only properties is emphasized. There are many applications involving mechanical contact where the key to understanding the problem is to test at higher load and to combine reliable measurements taken across different length scales using both nano- and micro-indentation and related wear measurement techniques which more closely simulate contact conditions to fully understand the mechanical behaviour and hence deliver improved application performance. Results are presented with the NanoTest platform for applications for biomedical devices and surface engineering of lightweight alloys for the automotive industry. By combining results with different techniques it is possible to postulate predictive design rules – based on the elastic and plastic deformation energies involved in contact - to aid the reliable optimisation of mechanical properties in the various contact situations in the different applications.

  15. Efficiency Optimization by Considering the High Voltage Flyback Transformer Parasitics using an Automatic Winding Layout Technique

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    .The energy efficiency is optimized using a proposed new automatic winding layout (AWL) technique and a comprehensive loss model.The AWL technique generates a large number of transformer winding layouts.The transformer parasitics such as dc resistance, leakage inductance and self-capacitance are calculated...... for each winding layout.An optimization technique is formulated to minimize the sum of energy losses during charge and discharge operations.The efficiency and energy loss distribution results from the optimization routine provide a deep insight into the high voltage transformer designand its impact...

  16. Recent advances in the surface forces apparatus (SFA) technique

    Science.gov (United States)

    Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

    2010-03-01

    The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

  17. Advanced Techniques for Monitoring, Simulation and Optimization of Machining Processes

    OpenAIRE

    Keshari, Anupam

    2011-01-01

    In today’s manufacturing industry, pressure for productivity, higher quality and cost saving is heavier than ever. Surviving in today’s highly competitive world is not an easy task, contemporary technology updates and heavy investments are needed in state of the art machinery and modern cutting tool systems. If the machining resources are underutilized, feasible techniques are needed to utilize resources efficiently. The new enhancements in the machine tools sector have enabled opportunit...

  18. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    Science.gov (United States)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  19. OPTIMAL DATA REPLACEMENT TECHNIQUE FOR COOPERATIVE CACHING IN MANET

    Directory of Open Access Journals (Sweden)

    P. Kuppusamy

    2014-09-01

    Full Text Available A cooperative caching approach improves data accessibility and reduces query latency in Mobile Ad hoc Network (MANET. Maintaining the cache is challenging issue in large MANET due to mobility, cache size and power. The previous research works on caching primarily have dealt with LRU, LFU and LRU-MIN cache replacement algorithms that offered low query latency and greater data accessibility in sparse MANET. This paper proposes Memetic Algorithm (MA to locate the better replaceable data based on neighbours interest and fitness value of cached data to store the newly arrived data. This work also elects ideal CH using Meta heuristic search Ant Colony Optimization algorithm. The simulation results shown that proposed algorithm reduces the latency, control overhead and increases the packet delivery rate than existing approach by increasing nodes and speed respectively.

  20. Calibration and verification of surface contamination meters --- Procedures and techniques

    International Nuclear Information System (INIS)

    Schuler, C; Butterweck, G.; Wernli, C.; Bochud, F.; Valley, J.-F.

    2007-03-01

    A standardised measurement procedure for surface contamination meters (SCM) is presented. The procedure aims at rendering surface contamination measurements to be simply and safely interpretable. Essential for the approach is the introduction and common use of the radionuclide specific quantity 'guideline value' specified in the Swiss Radiation Protection Ordinance as unit for the measurement of surface activity. The according radionuclide specific 'guideline value count rate' can be summarized as verification reference value for a group of radionuclides ('basis guideline value count rate'). The concept can be generalized for SCM of the same type or for SCM of different types using he same principle of detection. A SCM multi source calibration technique is applied for the determination of the instrument efficiency. Four different electron radiation energy regions, four different photon radiation energy regions and an alpha radiation energy region are represented by a set of calibration sources built according to ISO standard 8769-2. A guideline value count rate representing the activity per unit area of a surface contamination of one guideline value can be calculated for any radionuclide using instrument efficiency, radionuclide decay data, contamination source efficiency, guideline value averaging area (100 cm 2 ), and radionuclide specific guideline value. n this way, instrument responses for the evaluation of surface contaminations are obtained for radionuclides without available calibration sources as well as for short-Iived radionuclides, for which the continuous replacement of certified calibration sources can lead to unreasonable costs. SCM verification is based on surface emission rates of reference sources with an active area of 100 cm 2 . The verification for a given list of radionuclides is based on the radionuclide specific quantity guideline value count rate. Guideline value count rates for groups of radionuclides can be represented within the maximum

  1. Biochar production from coffee residues: Optimization of surface characteristics and sorptive behavior

    Science.gov (United States)

    Fotopoulou, Kalliopi; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2015-04-01

    Biochar with high surface area is a promising sorbent for environmental remediation and is produced by heating biomass in an oxygen-limited environment. Knowing the surface characteristics increases our understanding of biochar interactions with pollutants. The hypothesis of the present study is that by controlling pyrolysis conditions, the surface characteristics and subsequently the sorption behavior of produced biochars can be optimized. Coffee residues were dried overnight at 50oC and then pyrolized into a gradient furnace at 850oC. Different solid/oxygen ratios during pyrolysis were tested as well as the up scaling of the process. The biochars produced were systematically characterized for their surface characteristics such as BET surface area, open surface area, pore and micropore volume, and average pore size. The effect of pyrolysis on the biochar suspension pH was examined with the mass addition technique that involves the addition of increasing amounts of the biochar to bottles containing 0.1 M NaNO3. FTIR analysis was used in order to determine the functional groups of the coffee residue and of the biochars. The macrostructure of the biochars was visualized by Scanning Electron Microscopy (SEM). Total Carbon (TC) in the samples was determined by Carlo Erba Elemental Analyzer CHNS, EO 1108 after calibration with standard samples. The sorption behavior of produced biochars was tested with two different pollutants (Hg(II), phenanthrene) using batch reactors with the same initial single-compound solution and the same mass of coffee residue and different biochars. The biochars produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area due to macropores from 21 to 65 m2/g. This suggests that the surface area in the biochars with high surface area results from the formation of pores. Actually for the biochar with the highest surface area, it was calculated that up to 90

  2. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies

    Science.gov (United States)

    Sreekanta Murthy, T.

    1992-01-01

    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  3. Textured surface structures formed using new techniques on transparent conducting Al-doped zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Miyata, Toshihiro; Uozaki, Ryousuke; Sai, Hitoshi; Koida, Takashi

    2016-01-01

    Surface-textured Al-doped ZnO (AZO) films formed using two new techniques based on magnetron sputtering deposition were developed by optimizing the light scattering properties to be suitable for transparent electrode applications in thin-film silicon solar cells. Scrambled egg-like surface-textured AZO films were prepared using a new texture formation technique that post-etched pyramidal surface-textured AZO films prepared under deposition conditions suppressing c-axis orientation. In addition, double surface-textured AZO films were prepared using another new texture formation technique that completely removed, by post-etching, the pyramidal surface-textured AZO films previously prepared onto the initially deposited low resistivity AZO films; simultaneously, the surface of the low resistivity films was slightly etched. However, the obtained very high haze value in the range from the near ultraviolet to visible light in the scrambled egg-like surface-textured AZO films did not contribute significantly to the obtainable photovoltaic properties in the solar cells fabricated using the films. Significant light scattering properties as well as a low sheet resistance could be achieved in the double surface-textured AZO films. In addition, a significant improvement of external quantum efficiency in the range from the near ultraviolet to visible light was achieved in superstrate-type n-i-p μc-Si:H solar cells fabricated using a double surface-textured AZO film prepared under optimized conditions as the transparent electrode. - Highlights: • Double surface-textured AZO films prepared using a new texture formation technique • Extensive light scattering properties with low sheet resistance achieved in the double surface-textured AZO films • Improved external quantum efficiency of μc-Si:H solar cells using a double surface-textured AZO film

  4. Local versus global optimal sports techniques in a group of athletes.

    Science.gov (United States)

    Huchez, Aurore; Haering, Diane; Holvoët, Patrice; Barbier, Franck; Begon, Mickael

    2015-01-01

    Various optimization algorithms have been used to achieve optimal control of sports movements. Nevertheless, no local or global optimization algorithm could be the most effective for solving all optimal control problems. This study aims at comparing local and global optimal solutions in a multistart gradient-based optimization by considering actual repetitive performances of a group of athletes performing a transition move on the uneven bars. Twenty-four trials by eight national-level female gymnasts were recorded using a motion capture system, and then multistart sequential quadratic programming optimizations were performed to obtain global optimal, local optimal and suboptimal solutions. The multistart approach combined with a gradient-based algorithm did not often find the local solution to be the best and proposed several other solutions including global optimal and suboptimal techniques. The qualitative change between actual and optimal techniques provided three directions for training: to increase hip flexion-abduction, to transfer leg and arm angular momentum to the trunk and to straighten hand path to the bar.

  5. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  6. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem...

  7. Entrance surface dose measurements in mammography using thermoluminescence technique

    International Nuclear Information System (INIS)

    Rivera, T.; Vega C, H.R.; Manzanares A, E; Azorin, J.; Gonzalez, P.R.

    2007-01-01

    Full text: Of the various techniques that can be used for personnel dosimetry, thermoluminescence dosimetry (TLD) has emerged as a superior technique due to its manifold advantages over other methods of dose estimation. Various phosphors have been therefore investigated regarding their suitability for dosimetry. In this paper, a dosimetry system based on thermally stimulated luminescence (TSL) from zirconium oxide phosphors embedded in polytetrafluorethylene (ZrO 2 +PTFE) was developed for entrance surface doses (ES) measurements in mammography. Small ZrO 2 pellets of 5 mm in diameter and 0.8 mm in thickness were used. The reproducibility of measurements and linearity of ZrO 2 were also studied. The results were compared with those obtained from LiF:Mg,Cu,P usually used for the determination of absorbed dose in mammography. Measurements both per unit air kerma and In vivo were performed using a mammography unit model DMR (General Electric). The results showed that ZrO 2 TLDs can be used for the same X-ray dosimetry applications as LiF:Mg,Cu,P, with each type having the disadvantage of a response dependent on energy, particularly at low energies. These results indicate a considerable potential for use in routine control and In vivo ES measurements in mammography. (Author)

  8. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra

    2015-07-01

    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  9. Simulation and Optimization of Silicon Solar Cell Back Surface Field

    Directory of Open Access Journals (Sweden)

    Souad TOBBECHE

    2015-11-01

    Full Text Available In this paper, TCAD Silvaco (Technology Computer Aided Design software has been used to study the Back Surface Field (BSF effect of a p+ silicon layer for a n+pp+ silicon solar cell. To study this effect, the J-V characteristics and the external quantum efficiency (EQE are simulated under AM 1.5 illumination for two types of cells. The first solar cell is without BSF (n+p structure while the second one is with BSF (n+pp+ structure. The creation of the BSF on the rear face of the cell results in efficiency h of up to 16.06% with a short-circuit current density Jsc = 30.54 mA/cm2, an open-circuit voltage Voc = 0.631 V, a fill factor FF = 0.832 and a clear improvement of the spectral response obtained in the long wavelengths range. An electric field and a barrier of potential are created by the BSF and located at the junction p+/p with a maximum of 5800 V/cm and 0.15 V, respectively. The optimization of the BSF layer shows that the cell performance improves with the p+ thickness between 0.35 – 0.39 µm, the p+ doping dose is about 2 × 1014 cm-2, the maximum efficiency up to 16.19 %. The cell efficiency is more sensitive to the value of the back surface recombination velocity above a value of 103 cm/s in n+p than n+pp+ solar cell.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9565

  10. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  11. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  12. The optimal injection technique for the osteoarthritic ankle: A randomized, cross-over trial

    NARCIS (Netherlands)

    Witteveen, Angelique G. H.; Kok, Aimee; Sierevelt, Inger N.; Kerkhoffs, Gino M. M. J.; van Dijk, C. Niek

    2013-01-01

    Background: To optimize the injection technique for the osteoarthritic ankle in order to enhance the effect of intra-articular injections and minimize adverse events. Methods: Randomized cross-over trial. Comparing two injection techniques in patients with symptomatic ankle osteoarthritis. Patients

  13. Techniques for the optimal design of photovoltaic inverters interconnected with the electric grid

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2011-01-01

    The DC/AC inverters are the key elements of grid-connected PV energy production systems. In this paper, a new technique for the optimal design of the power section and output filter of a full-bridge, grid-connected PV inverter, is proposed. The objective function which is minimized during...... the Genetic Algorithm-based optimization procedure is the PV inverter Levelized Cost Of the Electricity generated (LCOE). The proposed method has been applied for the optimal design of PV inverters installed at various sites in Europe. The simulation results indicate that the optimal values of the PV inverter...

  14. Gradient vs. approximation design optimization techniques in low-dimensional convex problems

    Science.gov (United States)

    Fedorik, Filip

    2013-10-01

    Design Optimization methods' application in structural designing represents a suitable manner for efficient designs of practical problems. The optimization techniques' implementation into multi-physical softwares permits designers to utilize them in a wide range of engineering problems. These methods are usually based on modified mathematical programming techniques and/or their combinations to improve universality and robustness for various human and technical problems. The presented paper deals with the analysis of optimization methods and tools within the frame of one to three-dimensional strictly convex optimization problems, which represent a component of the Design Optimization module in the Ansys program. The First Order method, based on combination of steepest descent and conjugate gradient method, and Supbproblem Approximation method, which uses approximation of dependent variables' functions, accompanying with facilitation of Random, Sweep, Factorial and Gradient Tools, are analyzed, where in different characteristics of the methods are observed.

  15. A novel design procedure for tractor clutch fingers by using optimization and response surface methods

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Oguz; Karpat, Fatih; Yuce, Celalettin; Kaya, Necmettin; Yavuz, Nurettin [Uludag University, Gorukle (Turkmenistan); Sen, Hasan [Valeo A. S., Bursa (Turkmenistan)

    2016-06-15

    This paper presents a methodology for re-designing a failed tractor transmission component subjected to cyclic loading. Unlike other vehicles, tractors cope with tough working conditions. Thus, it is necessary to re-design components by using modern optimization techniques. To extend their service life, we present a design methodology for a failed tractor clutch power take-off finger. The finger was completely re-designed using topology and shape optimization approach. Stress-life based fatigue analyses were performed. Shape optimization and response surface methodology were conducted to obtain optimum dimensions of the finger. Two design parameters were selected for the design of experiment method and 15 cases were analyzed. By using design of the experiment method, three responses were obtained: Maximum stresses, mass, and displacement depending on the selected the design parameters. After solving the optimization problem, we achieved a maximum stress and mass reduction of 14% and 6%, respectively. The stiffness was improved up to 31.6% compared to the initial design.

  16. Reliability Sensitivity Analysis and Design Optimization of Composite Structures Based on Response Surface Methodology

    Science.gov (United States)

    Rais-Rohani, Masoud

    2003-01-01

    This report discusses the development and application of two alternative strategies in the form of global and sequential local response surface (RS) techniques for the solution of reliability-based optimization (RBO) problems. The problem of a thin-walled composite circular cylinder under axial buckling instability is used as a demonstrative example. In this case, the global technique uses a single second-order RS model to estimate the axial buckling load over the entire feasible design space (FDS) whereas the local technique uses multiple first-order RS models with each applied to a small subregion of FDS. Alternative methods for the calculation of unknown coefficients in each RS model are explored prior to the solution of the optimization problem. The example RBO problem is formulated as a function of 23 uncorrelated random variables that include material properties, thickness and orientation angle of each ply, cylinder diameter and length, as well as the applied load. The mean values of the 8 ply thicknesses are treated as independent design variables. While the coefficients of variation of all random variables are held fixed, the standard deviations of ply thicknesses can vary during the optimization process as a result of changes in the design variables. The structural reliability analysis is based on the first-order reliability method with reliability index treated as the design constraint. In addition to the probabilistic sensitivity analysis of reliability index, the results of the RBO problem are presented for different combinations of cylinder length and diameter and laminate ply patterns. The two strategies are found to produce similar results in terms of accuracy with the sequential local RS technique having a considerably better computational efficiency.

  17. Application Of The SPV-based Surface Lifetime Technique To In-Line Monitoring Of Surface Cu Contamination

    Science.gov (United States)

    D'Amico, John; Savtchouk, Alexandre; Wilson, Matthew; Kim, Chul Hong; Yoo, Hyung Won; Lee, Chang Hwan; Kim, Tae Kyoung; Son, Sang Hoon

    2009-09-01

    Implementation of Cu interconnects into Silicon Integrated Circuits (IC's) has been instrumental in the continuing improvement of IC device performance. Copper as a well known Gate Oxide Integrity (GOI) killer [1, 2] requires extensive protocols to minimize the possibility of cross contamination. Despite such protocols the risk for cross contamination exists, and consequently there is the need for in-line Cu cross-contamination detection metrology. Preferably the metrology will be non-destructive, fast, and capable of mapping on product wafers. Up to now the most common approaches for monitoring Cu contamination in IC fabrication lines either measure Cu in the bulk Si, which is not applicable to Cu cross-contamination monitoring because Back-End-of-the-Line thermal budgets restrict the ability to diffuse the surface Cu into the bulk Si; or the techniques are not optimal for in-line monitoring due to their destructive, time-consuming, or costly nature. In this work we demonstrate for the first time the application of the ac-Surface Photo Voltage (ac-SPV) surface lifetime approach [3] to in-line, full wafer coverage mapping of low level (metrology system. Furthermore, because the metrology is non-contact (utilizing edge-grip handling) and non-destructive, it is directly applicable to measurement of production wafers. In-line fab data acquired using this metrology is presented and compared to data from Inductively Coupled Plasma Mass Spectroscopy (ICP-MS).

  18. New strategies for optimization of compliant tensegrity surfaces for drag reduction in turbulent flows

    Science.gov (United States)

    Luo, H.; Bewley, T. R.

    2002-11-01

    The present project is inspired by two observations from nature: 1) the incredible strength of spider fibers (derived essentially from a tensegrity-based configuration of proteins), and 2) the efficient swimming motion of dolphins (perhaps derived in part from the compliant nature of their skin). Motivated by such observations, we are exploring a new design for a tensegrity-based ``fabric'' consisting of a weave of both members in tension and members designed to support compressive loads. In particular, we are attempting to optimize the surface compliance of such a fabric, that is, the response of the surface of the fabric to externally-applied friction and pressure forces, in order to reduce the drag induced by an overlying turbulent flow at the flow/structure interface. As the first stage of the research, we developed the software simulating the interaction of the two-part system. Direct numerical simulations are used to model the dynamics of the flow part. To account for the moving walls, we use an immersed-boundary technique which simulates the presence of a moving boundary. In collaboration with another research group, we developed object-oriented software for computation of the dynamics of the tensegrity fabric part. The two codes written in two different languages run in parallel and communicate data at each time step. In this presentation, we will outline the numerical method used, present recent simulation results demonstrating the flow/surface interaction, and outline our ongoing efforts to optimize the compliance properties of the tensegrity fabric.

  19. THD Minimization from H-Bridge Cascaded Multilevel Inverter Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    MUDASIR AHMED MEMON

    2017-01-01

    Full Text Available In this paper, PSO (Particle Swarm Optimization based technique is proposed to derive optimized switching angles that minimizes the THD (Total Harmonic Distortion and reduces the effect of selected low order non-triple harmonics from the output of the multilevel inverter. Conventional harmonic elimination techniques have plenty of limitations, and other heuristic techniques also not provide the satisfactory results. In this paper, single phase symmetrical cascaded H-Bridge 11-Level multilevel inverter is considered, and proposed algorithm is utilized to obtain the optimized switching angles that reduced the effect of 5th, 7th, 11th and 13th non-triplen harmonics from the output voltage of the multilevel inverter. A simulation result indicates that this technique outperforms other methods in terms of minimizing THD and provides high-quality output voltage waveform.

  20. Novel meta-surface design synthesis via nature-inspired optimization algorithms

    Science.gov (United States)

    Bayraktar, Zikri

    Heuristic numerical optimization algorithms have been gaining interest over the years as the computational power of the digital computers increases at an unprecedented level every year. While mature techniques such as the Genetic Algorithm increase their application areas, researchers also try to come up with new algorithms by simply observing the highly tuned processes provided by the nature. In this dissertation, the well-known Genetic Algorithm (GA) will be utilized to tackle various novel electromagnetic optimization problems, along with parallel implementation of the Clonal Selection Algorithm (CLONALG) and newly introduced the Wind Driven Optimization (WDO) technique. The utility of the CLONALG parallelization and the efficiency of the WDO will be illustrated by applying them to multi-dimensional and multi-modal electromagnetics problems such as antenna design and metamaterial surface synthesis. One of the metamaterial application areas is the design synthesis of 90 degrees rotationally symmetric ultra-small unit cell artificial magnetic conducting (AMC) surfaces. AMCs are composite metallo-dielectric structures designed to behave as perfect magnetic conductors (PMC) over a certain frequency range, those exhibit a reflection coefficient magnitude of unity with an phase angle of zero degrees at the center of the band. The proposed designs consist of ultra small sized frequency selective surface (FSS) unit cells that are tightly packed and highly intertwined, yet achieve remarkable AMC band performance and field of view when compared to current state-of-the-art AMCs. In addition, planar double-sided AMC (DSAMC) structures are introduced and optimized as AMC ground planes for low profile antennas in composite platforms and separator slabs for vertical antenna applications. The proposed designs do not possess complete metallic ground planes, which makes them ideal for composite and multi-antenna systems. The versatility of the DSAMC slabs is also illustrated

  1. Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques

    Directory of Open Access Journals (Sweden)

    Tânia Pereira

    2014-01-01

    Full Text Available Doppler self-mixing laser probing techniques are often used for vibration measurement with very high accuracy. A novel optoelectronic probe solution is proposed, based on off-the-shelf components, with a direct reflection optical scheme for contactless characterization of the target’s movement. This probe was tested with two test bench apparatus that enhance its precision performance, with a linear actuator at low frequency (35 µm, 5–60 Hz, and its dynamics, with disc shaped transducers for small amplitude and high frequency (0.6 µm, 100–2500 Hz. The results, obtained from well-established signal processing methods for self-mixing Doppler signals, allowed the evaluation of vibration velocity and amplitudes with an average error of less than 10%. The impedance spectrum of piezoelectric (PZ disc target revealed a maximum of impedance (around 1 kHz for minimal Doppler shift. A bidimensional scan over the PZ disc surface allowed the categorization of the vibration mode (0, 1 and explained its deflection directions. The feasibility of a laser vibrometer based on self-mixing principles and supported by tailored electronics able to accurately measure submicron displacements was, thus, successfully demonstrated.

  2. An adaptive dual-optimal path-planning technique for unmanned air vehicles

    Directory of Open Access Journals (Sweden)

    Whitfield Clifford A.

    2016-01-01

    Full Text Available A multi-objective technique for unmanned air vehicle path-planning generation through task allocation has been developed. The dual-optimal path-planning technique generates real-time adaptive flight paths based on available flight windows and environmental influenced objectives. The environmentally-influenced flight condition determines the aircraft optimal orientation within a downstream virtual window of possible vehicle destinations that is based on the vehicle’s kinematics. The intermittent results are then pursued by a dynamic optimization technique to determine the flight path. This path-planning technique is a multi-objective optimization procedure consisting of two goals that do not require additional information to combine the conflicting objectives into a single-objective. The technique was applied to solar-regenerative high altitude long endurance flight which can benefit significantly from an adaptive real-time path-planning technique. The objectives were to determine the minimum power required flight paths while maintaining maximum solar power for continual surveillance over an area of interest (AOI. The simulated path generation technique prolonged the flight duration over a sustained turn loiter flight path by approximately 2 months for a year of flight. The potential for prolonged solar powered flight was consistent for all latitude locations, including 2 months of available flight at 60° latitude, where sustained turn flight was no longer capable.

  3. Comparison of various spring analogy related mesh deformation techniques in two-dimensional airfoil design optimization

    Science.gov (United States)

    Yang, Y.; Özgen, S.

    2017-06-01

    During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the most widely used techniques is the Spring Analogy. There are numerous spring analogy related techniques reported in the literature: linear spring analogy, torsional spring analogy, semitorsional spring analogy, and ball vertex spring analogy. This paper gives the explanation of linear spring analogy method and angle inclusion in the spring analogy method. In the latter case, two di¨erent solution methods are proposed. The best feasible method will later be used for two-dimensional (2D) Airfoil Design Optimization with objective function being to minimize sectional drag for a required lift coe©cient at di¨erent speeds. Design variables used in the optimization include camber and thickness distribution of the airfoil. SU2 CFD is chosen as the §ow solver during the optimization procedure. The optimization is done by using Phoenix ModelCenter Optimization Tool.

  4. Selection of an optimal neural network architecture for computer-aided detection of microcalcifications - Comparison of automated optimization techniques

    International Nuclear Information System (INIS)

    Gurcan, Metin N.; Sahiner, Berkman; Chan Heangping; Hadjiiski, Lubomir; Petrick, Nicholas

    2001-01-01

    Many computer-aided diagnosis (CAD) systems use neural networks (NNs) for either detection or classification of abnormalities. Currently, most NNs are 'optimized' by manual search in a very limited parameter space. In this work, we evaluated the use of automated optimization methods for selecting an optimal convolution neural network (CNN) architecture. Three automated methods, the steepest descent (SD), the simulated annealing (SA), and the genetic algorithm (GA), were compared. We used as an example the CNN that classifies true and false microcalcifications detected on digitized mammograms by a prescreening algorithm. Four parameters of the CNN architecture were considered for optimization, the numbers of node groups and the filter kernel sizes in the first and second hidden layers, resulting in a search space of 432 possible architectures. The area A z under the receiver operating characteristic (ROC) curve was used to design a cost function. The SA experiments were conducted with four different annealing schedules. Three different parent selection methods were compared for the GA experiments. An available data set was split into two groups with approximately equal number of samples. By using the two groups alternately for training and testing, two different cost surfaces were evaluated. For the first cost surface, the SD method was trapped in a local minimum 91% (392/432) of the time. The SA using the Boltzman schedule selected the best architecture after evaluating, on average, 167 architectures. The GA achieved its best performance with linearly scaled roulette-wheel parent selection; however, it evaluated 391 different architectures, on average, to find the best one. The second cost surface contained no local minimum. For this surface, a simple SD algorithm could quickly find the global minimum, but the SA with the very fast reannealing schedule was still the most efficient. The same SA scheme, however, was trapped in a local minimum on the first cost

  5. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    Science.gov (United States)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  6. Application of response surface methodology to the optimization of ...

    African Journals Online (AJOL)

    This research paper mainly focused on developing a media by optimizing parameters like sweet potato concentration, sodium nitrate concentration, pH, temperature for the maximum production of amylase by Aspergillus oryzae MTCC 1847. Optimization of the medium components such as sweet potato (carbon source), ...

  7. Robust design of decentralized power system stabilizers using meta-heuristic optimization techniques for multimachine systems

    Directory of Open Access Journals (Sweden)

    Jeevanandham Arumugam

    2009-01-01

    Full Text Available In this paper a classical lead-lag power system stabilizer is used for demonstration. The stabilizer parameters are selected in such a manner to damp the rotor oscillations. The problem of selecting the stabilizer parameters is converted to a simple optimization problem with an eigen value based objective function and it is proposed to employ simulated annealing and particle swarm optimization for solving the optimization problem. The objective function allows the selection of the stabilizer parameters to optimally place the closed-loop eigen values in the left hand side of the complex s-plane. The single machine connected to infinite bus system and 10-machine 39-bus system are considered for this study. The effectiveness of the stabilizer tuned using the best technique, in enhancing the stability of power system. Stability is confirmed through eigen value analysis and simulation results and suitable heuristic technique will be selected for the best performance of the system.

  8. Studies Regarding Design and Optimization of Mechanisms Using Modern Techniques of CAD and CAE

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2010-01-01

    Full Text Available The paper presents applications of modern techniques of CAD (Computer Aided Design and CAE (Computer Aided Engineering to design and optimize the mechanisms used in mechanical engineering. The use exemplification of these techniques was achieved by designing and optimizing parts of a drawing installation for horizontal continuous casting of metals. By applying these design methods and using finite element method at simulations on designed mechanisms results a number of advantages over traditional methods of drawing and design: speed in drawing, design and optimization of parts and mechanisms, kinematic analysis option, kinetostatic and dynamic through simulation, without requiring physical realization of the part or mechanism, the determination by finite element method of tension, elongations, travel and safety factor and the possibility of optimization for these sizes to ensure the mechanical strength of each piece separately. Achieving these studies was possible using SolidWorks 2009 software suite.

  9. Study of engineering surfaces using laser-scattering techniques

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    tour the surfaces on to which they are deposited. Silver, gold, and copper films, in partic- ular, tend to be slightly lumpy, adding additional fractions of ...... This introduces some surface modifications due to recovery of the surface, or solidification of the melt region etc. On-line measurements are feasible. However, the results.

  10. Acoustic techniques for studying soil-surface seals and crusts

    Science.gov (United States)

    The impact of raindrops on a soil surface during a rainstorm may cause soil-surface sealing and upon drying, soil crusting. Soil-surface sealing is a result of the clogging of interaggregate pores by smaller suspended particles in the water and by structural deformation of the soil fabric, which red...

  11. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    Science.gov (United States)

    2016-09-01

    applications for optimization techniques spanning from developing market forecasts in economics [1] to automatically composing jazz solos in music [2...a traveling salesman problem with moving targets, where the route taken to cover a number of targets require the solution to an optimal control...increased faster than memory access speeds [56]. This limitation basically comes down to the physical limitations of how fast electrons can travel over

  12. Optimization of Cutting Parameters for Surface Roughness under MQL, using Al2O3 Nanolubricant, during Turning of Inconel 718

    Science.gov (United States)

    Ali, M. A. M.; Khalil, A. N. M.; Azmi, A. I.; Salleh, H. M.

    2017-08-01

    Inconel 718 is a nickel-based alloy commonly used due to its excellent mechanical properties at high temperatures and its elevated corrosion resistance. This material however is difficult to machine due to the high temperature generated during machining, which requires efficient lubrication system. Minimum quantity lubrication (MQL) technique is a more efficient and a more environmentally friendly alternative to conventional flooding lubrication technique. The efficiency and efficacy of this lubrication technique can be further enhanced by adding nano particles and surfactant into the base lubricant. There are currently limited number of studies on the application of minimum quantity lubrication (MQL) technique using nanolubricant with added surfactant in the machining of hard-to-machine materials such as Inconel 718. Consequently, this paper aims to optimize the cutting parameters for surface roughness under minimum quantity lubrication (MQL) condition using surfactant-added Al2O3 nanolubricant during the turning of Inconel 718. The effects of cutting speed, depth of cut and feed rate and their two-way interactions on surface roughness are investigated on the basis of the standard Taguchi’s L9 orthogonal array (OA) design of experiment and the results are assessed using analysis of variance (ANOVA) and signal to noise (S/N) ratio methods to determine the optimal cutting parameter settings as well as the level of significance of the cutting parameters. The optimal surface finish can be observed at the cutting speed of 70 m/min, depth of cut of 0.05 mm and feed rate of 0.05 mm/rev with feed rate being the most significant factor to affect surface finish. Through this study, the application of minimum quantity lubrication (MQL) technique using surfactant-added Al2O3 nanolubricant, has been shown to produce desirable surface finish quality on Inconel 718 with additional economic and ecological benefits.

  13. Optimization Techniques for Design Problems in Selected Areas in WSNs: A Tutorial.

    Science.gov (United States)

    Ibrahim, Ahmed; Alfa, Attahiru

    2017-08-01

    This paper is intended to serve as an overview of, and mostly a tutorial to illustrate, the optimization techniques used in several different key design aspects that have been considered in the literature of wireless sensor networks (WSNs). It targets the researchers who are new to the mathematical optimization tool, and wish to apply it to WSN design problems. We hence divide the paper into two main parts. One part is dedicated to introduce optimization theory and an overview on some of its techniques that could be helpful in design problem in WSNs. In the second part, we present a number of design aspects that we came across in the WSN literature in which mathematical optimization methods have been used in the design. For each design aspect, a key paper is selected, and for each we explain the formulation techniques and the solution methods implemented. We also provide in-depth analyses and assessments of the problem formulations, the corresponding solution techniques and experimental procedures in some of these papers. The analyses and assessments, which are provided in the form of comments, are meant to reflect the points that we believe should be taken into account when using optimization as a tool for design purposes.

  14. Active load sharing technique for on-line efficiency optimization in DC microgrids

    DEFF Research Database (Denmark)

    Sanseverino, E. Riva; Zizzo, G.; Boscaino, V.

    2017-01-01

    -DC converters, is modeled. An active load sharing technique is proposed for the on-line optimization of the global efficiency of the DC distribution network. The algorithm aims at the instantaneous efficiency optimization of the whole DC network, based on the on-line load current sampling. A Look Up Table......, is created to store the real efficiencies of the converters taking into account components tolerances. A MATLAB/Simulink model of the DC distribution network has been set up and a Genetic Algorithm has been employed for the global efficiency optimization. Simulation results are shown to validate the proposed...

  15. Scalable Clustering of High-Dimensional Data Technique Using SPCM with Ant Colony Optimization Intelligence

    Directory of Open Access Journals (Sweden)

    Thenmozhi Srinivasan

    2015-01-01

    Full Text Available Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM, with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets.

  16. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  17. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  18. Combining Surface Analytical and Computational Techniques to Investigate Orientation Effects of Immobilized Proteins

    Science.gov (United States)

    Harrison, Elisa Turla

    Controlling how proteins are immobilized (e.g. controlling their orientation and conformation) is essential for developing and optimizing the performance of in vitro protein-binding devices, such as enzyme-linked immunosorbent assays. The objective of this work is to develop new methodologies to study proteins and complex mixtures of proteins immobilized onto surfaces. The focus of this study was to control and characterize the orientation of protein G B1, an IgG antibody-binding domain of protein G, on well-defined surfaces as well as measure the effect of protein G B1 orientation on IgG antibody binding using a variety of surface analytical and computational techniques. The surface sensitivity of time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to distinguish between different proteins and their orientation by monitoring the changes in intensity of characteristic amino acid mass fragments. Amino acids distributed asymmetrically were used to calculate peak intensity ratios from ToF-SIMS data to determine the orientation of five different cysteine mutants of protein G B1 covalently attached to a maleimide surface. To study the effect of protein orientation on antibody binding, we formed multilayer protein films by binding IgG to protein G B1 films. Quartz crystal microbalance with dissipation monitoring (QCM-D) detected protein coverages of 69-130 ng/cm2 (theoretical mass of a monolayer of protein G B1 is 110-160 ng/cm2). QCM-D and X-ray photoelectron spectroscopy analysis revealed that packing density along with orientation affected the antibody binding process. Spectra from ToF-SIMS using large Ar gas cluster ion sources distinguished between different proteins in multilayer protein systems. A Monte Carlo algorithm was developed to predict protein orientation on surfaces. Two distinct orientations of protein G B1 adsorbed onto a hydrophobic surface were found and characterized as two mutually exclusive sets of amino acids on the outermost

  19. Sample Subset Optimization Techniques for Imbalanced and Ensemble Learning Problems in Bioinformatics Applications.

    Science.gov (United States)

    Yang, Pengyi; Yoo, Paul D; Fernando, Juanita; Zhou, Bing B; Zhang, Zili; Zomaya, Albert Y

    2014-03-01

    Data sampling is a widely used technique in a broad range of machine learning problems. Traditional sampling approaches generally rely on random resampling from a given dataset. However, these approaches do not take into consideration additional information, such as sample quality and usefulness. We recently proposed a data sampling technique, called sample subset optimization (SSO). The SSO technique relies on a cross-validation procedure for identifying and selecting the most useful samples as subsets. In this paper, we describe the application of SSO techniques to imbalanced and ensemble learning problems, respectively. For imbalanced learning, the SSO technique is employed as an under-sampling technique for identifying a subset of highly discriminative samples in the majority class. In ensemble learning, the SSO technique is utilized as a generic ensemble technique where multiple optimized subsets of samples from each class are selected for building an ensemble classifier. We demonstrate the utilities and advantages of the proposed techniques on a variety of bioinformatics applications where class imbalance, small sample size, and noisy data are prevalent.

  20. Optimization of the Surface Structure on Black Silicon for Surface Passivation

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-03-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  1. Optimization of the Surface Structure on Black Silicon for Surface Passivation.

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-12-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  2. Tuning of PID controller using optimization techniques for a MIMO process

    Science.gov (United States)

    Thulasi dharan, S.; Kavyarasan, K.; Bagyaveereswaran, V.

    2017-11-01

    In this paper, two processes were considered one is Quadruple tank process and the other is CSTR (Continuous Stirred Tank Reactor) process. These are majorly used in many industrial applications for various domains, especially, CSTR in chemical plants.At first mathematical model of both the process is to be done followed by linearization of the system due to MIMO process and controllers are the major part to control the whole process to our desired point as per the applications so the tuning of the controller plays a major role among the whole process. For tuning of parameters we use two optimizations techniques like Particle Swarm Optimization, Genetic Algorithm. The above techniques are majorly used in different applications to obtain which gives the best among all, we use these techniques to obtain the best tuned values among many. Finally, we will compare the performance of the each process with both the techniques.

  3. A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

    Directory of Open Access Journals (Sweden)

    Sarfaraz Nawaz

    2017-07-01

    Full Text Available In this paper, a novel analytical technique is proposed to determine the optimal size and location of shunt capacitor units in radial distribution systems. An objective function is formulated to reduce real power loss, to improve the voltage profile and to increase annual cost savings. A new constant, the Loss Sensitivity Constant (LSC, is proposed here. The value of LSC decides the location and size of candidate buses. The technique is demonstrated on an IEEE-33 bus system at different load levels and the 130-bus distribution system of Jamawa Ramgarh village, Jaipur city. The obtained results are compared with the latest optimization techniques to show the effectiveness and robustness of the proposed technique.

  4. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang

    2014-12-01

    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  5. Modeling of radial asymmetry in lens distortion facilitated by modern optimization techniques

    CSIR Research Space (South Africa)

    De Villiers, Johan P

    2010-01-18

    Full Text Available -centering. This paper shows that the characterization of lens distortion can be improved by over 79% compared to prevailing methods. This is achieved by using modern numerical optimization techniques such as the Leapfrog algorithm, and sensitivity-normalized parameter...

  6. Optimization of surface integrity in dry hard turning using RSM

    Indian Academy of Sciences (India)

    Abstract. This paper investigates the effect of different cutting parameters (cutting speed, feed rate, and depth of cut) on surface integrity defined in terms of surface roughness and microhardness in dry hard turning process. The workpiece material used was hardened alloy steel AISI 52100 and it was machined on a CNC ...

  7. Optimization of surface roughness in turning of GFRP composites ...

    African Journals Online (AJOL)

    However, the users of FRP are facing difficulties to machine it, because of fiber delamination, fiber pull out, short tool life, matrix debonding and formation of powder like chips. The present ... A second order mathematical model was developed for surface roughness prediction using Response Surface Methodology (RSM).

  8. Optimization of surface integrity in dry hard turning using RSM

    Indian Academy of Sciences (India)

    This paper investigates the effect of different cutting parameters (cutting speed, feed rate, and depth of cut) on surface integrity defined in terms of surface roughness and microhardness in dry hard turning process. The workpiece material used was hardened alloy steel AISI 52100 and it was machined on a CNC lathe with ...

  9. Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique

    Science.gov (United States)

    Budi, S.; Yusmaniar; Juliana, A.; Cahyana, U.; Purwanto, A.; Imaduddin, A.; Handoko, E.

    2018-03-01

    In this work, polyaniline nanoparticles were synthesized using a chemical oxidation polymerization technique. The ammonium peroxydisulfate (APS)/aniline ratio, APS dropping time, and polymerization temperature were optimized to increase the surface area and conductivity of the polyaniline.The Fourier-transform infrared (FTIR) spectrum confirmed the formation of emeraldine salt polyaniline. X-ray diffraction (XRD) patterns indicated that amorphous and crystalline phases of the polyaniline were formed with crystallinity less than 40%. Scanning electron microscope (SEM) micrographs showed that the finest nanoparticles with uniform size distribution were obtained at the polymerization temperature of 0°C. A surface area analyzer (SAA) showed that the highest Brunauer-Emmett-Teller surface area (SBET ) of 42.14 m2/gwas obtained from an APS/aniline ratio of 0.75 with a dropping time of 0 s at a polymerization temperature of 0°C. A four-point probe measurement conducted at 75–300K indicated relatively high conductivity of the semiconductor characteristic of the polyaniline.

  10. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Science.gov (United States)

    Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela

    2016-01-01

    Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  11. Optimization long hole blast fragmentation techniques and detonating circuit underground uranium mine stope

    International Nuclear Information System (INIS)

    Li Qin; Yang Lizhi; Song Lixia; Qin De'en; Xue Yongshe; Wang Zhipeng

    2012-01-01

    Aim at high rate of large blast fragmentation, a big difficulty in long hole drilling and blasting underground uranium mine stope, it is pointed out at the same time of taking integrated technical management measures, the key is to optimize the drilling and blasting parameters and insure safety the act of one that primes, adopt 'minimum burden' blasting technique, renew the stope fragmentation process, and use new process of hole bottom indirect initiation fragmentation; optimize the detonating circuit and use safe, reliable and economically rational duplex non-electric detonating circuit. The production practice shows that under the guarantee of strictly controlled construction quality, the application of optimized blast fragmentation technique has enhanced the reliability of safety detonation and preferably solved the problem of high rate of large blast fragments. (authors)

  12. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  13. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    Science.gov (United States)

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  14. Design refinement of multilayer optical thin film devices with two optimization techniques

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.

    1992-01-01

    The design efficiency of two different optimization techniques of designing multilayer optical thin film devices is compared. Ten different devices of varying complexities are chosen as design examples for the comparison. The design refinement efficiency and the design parameter characteristics of all the sample designs obtained with the two techniques are compared. The results of the comparison demonstrate that the new method of design developed using damped least squares technique with indirect derivatives give superior and efficient designs compared to the method developed with direct derivatives. (author). 23 refs., 4 tabs., 14 figs

  15. Surface-Initiated Atom Transfer Radical Polymerization and Electrografting Technique as a Means For Attaining Tailor-Made Polymer Coatings

    DEFF Research Database (Denmark)

    Chernyy, Sergey

    2012-01-01

    of the solution ATRP conditions and extending those conditions to the SI-ATRP. As a result, the new acetone/methyl methacrylate medium was found to be optimal for MMA polymerization both in the solution and on the surface. The reaction mixture was studied thoroughly; in addition to ex-situ techniques......Atom transfer radical polymerization initiated from a surface of various substrates (SI-ATRP) has become a progressively popular technique for obtaining thin polymer films with predetermined properties. The present work addresses the main features of SI-ATRP with respect to the controllability......, rates of polymerization, suitable monomers, reaction mixture compositions etc. An alternative potential-driven polymerization approach is discussed, although to a smaller extent. Chapter 1 provides an overview of controlled/living polymerization techniques with an accent made on ATRP. Different...

  16. Response Surface Optimized Extraction of Total Triterpene Acids ...

    African Journals Online (AJOL)

    Purpose: To optimize extraction of total triterpene acids from loquat leaf and evaluate their in vitro antioxidant activities. Methods: The independent variables were ethanol concentration, extraction time, and solvent ratio, while the dependent variable was content of total triterpene acids. Composite design and response.

  17. Statistical optimization of cultural conditions by response surface ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... tion's area in Makkah, Saudi Arabia. Identification was done mainly on the basis of ... optimal point, a second order polynomial function was fitted to cor- relate relationship between independent variables and ... and β33 are the quadratic coefficients. Experiments were performed in triplicates and mean ...

  18. Response surface method applied to optimization of estradiol ...

    Indian Academy of Sciences (India)

    torial design was built for the determination of the main factors affecting estradiol permeation. The independent factors analysed were: ... lation, waste water treatment, packaging in food industry and textile dyeing (Ravi Kumar 2000; ... Experimental design and optimization are tools that are used to systematically examine ...

  19. Use of response surface methodology to optimize the drying ...

    African Journals Online (AJOL)

    The present work aims to optimize the heat drying conditions of a bioactive feed ingredient derived from the African opaque sorghum beer. The bioactive ingredient was dried at various temperatures 35 to 50°C and times 5 to 24 h. The effects of the drying conditions on the dry matter, water activity, pH, titratable acidity, ...

  20. Mitigation of wear damage by laser surface alloying technique

    CSIR Research Space (South Africa)

    Adebiyi, ID

    2016-04-01

    Full Text Available Today's increasingly extreme and aggressive production environments require that machine components be made with materials having specific surface properties such as good wear resistance. Unfortunately, nature does not provide such materials...

  1. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  2. The Use of Lean Manufacturing Techniques – SMED Analysis to Optimization of the Production Process

    Directory of Open Access Journals (Sweden)

    Dusan Sabadka

    2017-09-01

    Full Text Available Lean is a culture of real and continuous optimization. As a concept of continuous optimization in the midst of limited resources must be practiced continuously as a long term organizational norm. This paper revels why changeover time reduction is important in manufacturing industries and from the various tool and techniques available within Lean manufacturing describes mainly SMED (Single Minute Exchange of Dies for changeover time reduction and its application in Shaft manufacturing industry. This paper also describes principles, benefits, procedure and practical application of SMED. Theoretical bases are verified in a practical part that describes analysis and design optimization of non-productive time at changeover honing machine in selected shaft manufacturing compaty. The output is the structural design of universal palette and evaluation of productivity due to optimization of operations of time honing gear shafts. The result achieved showed considerable reduction in delay arising out of machine setting time, batch setting time and demonstration delay.

  3. A multi-agent technique for contingency constrained optimal power flows

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, S.; Ramesh, V.C. (Carnegie Mellon Univ., Pittsburgh, PA (United States). Engineering Design Research Center)

    1994-05-01

    This paper does three things. First, it proposes that each critical contingency in a power system be represented by a correction time'' (the time required to eliminate the violations produced by the contingency), rather than by a set of hard constraints. Second, it adds these correction times to an optimal power flow and decomposes the resulting problem into a number of smaller optimization problems. Third, it proposes a multiagent technique for solving the smaller problems in parallel. The agents encapsulate traditional optimization algorithms as well as a new algorithm, called the voyager, that generates starting points for the traditional algorithms. All the agents communicate asynchronously, meaning that they can work in parallel without ever interrupting or delaying one another. The resulting scheme has potential for handling power system contingencies and other difficult global optimization problems.

  4. Observation of optimal gecko's adhesion on nanorough surfaces.

    Science.gov (United States)

    Pugno, Nicola M; Lepore, Emiliano

    2008-12-01

    In this letter we report experimental observations on the times of adhesion of living Tokay geckos (Gekko geckos) on polymethylmethacrylate (PMMA) inverted surfaces. Two different geckos (male and female) and three surfaces with different root mean square (RMS) roughness (RMS=42, 618 and 931 nm) have been considered, for a total of 72 observations. The measured data are proved to be statistically significant, following the Weibull Statistics with coefficients of correlation between 0.781 and 0.955. The unexpected result is the observation of a maximal gecko adhesion on the surface with intermediate roughness of RMS=618 nm, that we note has waviness comparable to the seta size.

  5. Optimized surface topography of thermoplastics blends modified by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Girish M., E-mail: varadgm@gmail.com, E-mail: girish.joshi@vit.ac.in; Sharma, Ajay; Pandey, Mayank; Khutia, Moumita [Polymer Nanocomposite Laboratory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014,Tamilnadu (India); Rao, N. Madhusudhana; Kaleemulla, S. [Thinfilm Laboratory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014,Tamilnadu (India); Kumar, Ramesh C. [Thermal and Automotive Division, School of Mechanical and Building Sciences, VIT University, Vellore-632014,Tamilnadu (India); Deshmukh, R. R. [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain); Cuberes, M. Teresa [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India)

    2016-05-23

    Polyacrilonitrile (PAN)/ Polyvinylfloride (PVDF) blends were modified by loading the graphene (0.5 to 1.5 wt %). The presence of graphene reveals the interesting surface properties. The decrease in surface roughness as function of graphene loading was confirmed by the topographic method of recording (two and three dimensional images) with atomic force microscope (AFM). The blends become smoother in nature due to occupied smaller surface area of graphene. This property may be useful for several applications in the marine, naval, nuclear domain and engineering applications as barrier medium.

  6. Radiation dose optimization research: Exposure technique approaches in CR imaging – A literature review

    International Nuclear Information System (INIS)

    Seeram, Euclid; Davidson, Rob; Bushong, Stewart; Swan, Hans

    2013-01-01

    The purpose of this paper is to review the literature on exposure technique approaches in Computed Radiography (CR) imaging as a means of radiation dose optimization in CR imaging. Specifically the review assessed three approaches: optimization of kVp; optimization of mAs; and optimization of the Exposure Indicator (EI) in practice. Only papers dating back to 2005 were described in this review. The major themes, patterns, and common findings from the literature reviewed showed that important features are related to radiation dose management strategies for digital radiography include identification of the EI as a dose control mechanism and as a “surrogate for dose management”. In addition the use of the EI has been viewed as an opportunity for dose optimization. Furthermore optimization research has focussed mainly on optimizing the kVp in CR imaging as a means of implementing the ALARA philosophy, and studies have concentrated on mainly chest imaging using different CR systems such as those commercially available from Fuji, Agfa, Kodak, and Konica-Minolta. These studies have produced “conflicting results”. In addition, a common pattern was the use of automatic exposure control (AEC) and the measurement of constant effective dose, and the use of a dose-area product (DAP) meter

  7. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant.

    Science.gov (United States)

    Cilla, Myriam; Borgiani, Edoardo; Martínez, Javier; Duda, Georg N; Checa, Sara

    2017-01-01

    Today, different implant designs exist in the market; however, there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. Therefore, the aim of this project was to investigate if the geometry of a commercial short stem hip prosthesis can be further optimized to reduce stress shielding effects and achieve better short-stemmed implant performance. To reach this aim, the potential of machine learning techniques combined with parametric Finite Element analysis was used. The selected implant geometrical parameters were: total stem length (L), thickness in the lateral (R1) and medial (R2) and the distance between the implant neck and the central stem surface (D). The results show that the total stem length was not the only parameter playing a role in stress shielding. An optimized implant should aim for a decreased stem length and a reduced length of the surface in contact with the bone. The two radiuses that characterize the stem width at the distal cross-section in contact with the bone were less influential in the reduction of stress shielding compared with the other two parameters; but they also play a role where thinner stems present better results.

  8. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant.

    Directory of Open Access Journals (Sweden)

    Myriam Cilla

    Full Text Available Today, different implant designs exist in the market; however, there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. Therefore, the aim of this project was to investigate if the geometry of a commercial short stem hip prosthesis can be further optimized to reduce stress shielding effects and achieve better short-stemmed implant performance. To reach this aim, the potential of machine learning techniques combined with parametric Finite Element analysis was used. The selected implant geometrical parameters were: total stem length (L, thickness in the lateral (R1 and medial (R2 and the distance between the implant neck and the central stem surface (D. The results show that the total stem length was not the only parameter playing a role in stress shielding. An optimized implant should aim for a decreased stem length and a reduced length of the surface in contact with the bone. The two radiuses that characterize the stem width at the distal cross-section in contact with the bone were less influential in the reduction of stress shielding compared with the other two parameters; but they also play a role where thinner stems present better results.

  9. Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response.

    Czech Academy of Sciences Publication Activity Database

    Kalachyova, Y.; Mareš, D.; Lyutakov, O.; Koštejn, Martin; Lapčák, L.; Svorčík, V.

    2015-01-01

    Roč. 119, č. 17 (2015), s. 9506-9512 ISSN 1932-7447 Institutional support: RVO:67985858 Keywords : enhanced raman-scattering * metallic surface * relief gratings Subject RIV: CC - Organic Chemistry Impact factor: 4.509, year: 2015

  10. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy

    Science.gov (United States)

    Liang, Bin; Li, Yongbao; Wei, Ran; Guo, Bin; Xu, Xuang; Liu, Bo; Li, Jiafeng; Wu, Qiuwen; Zhou, Fugen

    2018-01-01

    With robot-controlled linac positioning, robotic radiotherapy systems such as CyberKnife significantly increase freedom of radiation beam placement, but also impose more challenges on treatment plan optimization. The resampling mechanism in the vendor-supplied treatment planning system (MultiPlan) cannot fully explore the increased beam direction search space. Besides, a sparse treatment plan (using fewer beams) is desired to improve treatment efficiency. This study proposes a singular value decomposition linear programming (SVDLP) optimization technique for circular collimator based robotic radiotherapy. The SVDLP approach initializes the input beams by simulating the process of covering the entire target volume with equivalent beam tapers. The requirements on dosimetry distribution are modeled as hard and soft constraints, and the sparsity of the treatment plan is achieved by compressive sensing. The proposed linear programming (LP) model optimizes beam weights by minimizing the deviation of soft constraints subject to hard constraints, with a constraint on the l 1 norm of the beam weight. A singular value decomposition (SVD) based acceleration technique was developed for the LP model. Based on the degeneracy of the influence matrix, the model is first compressed into lower dimension for optimization, and then back-projected to reconstruct the beam weight. After beam weight optimization, the number of beams is reduced by removing the beams with low weight, and optimizing the weights of the remaining beams using the same model. This beam reduction technique is further validated by a mixed integer programming (MIP) model. The SVDLP approach was tested on a lung case. The results demonstrate that the SVD acceleration technique speeds up the optimization by a factor of 4.8. Furthermore, the beam reduction achieves a similar plan quality to the globally optimal plan obtained by the MIP model, but is one to two orders of magnitude faster. Furthermore, the SVDLP

  11. Morphological and chemical optimization of microcantilever surfaces for thyroid system biosensing and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Kasey [University of Tennessee, Knoxville, Tennessee 37996-1600 (United States)], E-mail: klhill2823@yahoo.com; Dutta, Pampa; Zareba, Adelajda; Eldridge, Melanie L. [University of Tennessee, Knoxville, Tennessee 37996-1600 (United States); Sepaniak, Michael J. [University of Tennessee, Knoxville, Tennessee 37996-1600 (United States)], E-mail: msepaniak@utk.edu

    2008-09-05

    The development of biosensors is vital in many areas of biotechnology and biomedical research. A prominent new class of label-free biosensors are those based on ligand-induced nanomechanical responses of microcantilevers (MCs). The interaction between biologically significant ligands with bioreceptors (e.g., antibodies or nuclear receptor proteins) immobilized on one side of the MC surface causes an apparent surface stress, resulting in static bending of the MC, which can be detected by an optical beam bending technique. The three key performance metrics of sensitivity, selectivity, and reversibility are foci of the work reported herein. The nature of the MC surface and the method by which the bioreceptor is immobilized influence these performance metrics and, hence, optimization studies involving these were conducted. In our work, the gold surface on one side of the MC is first activated via self-assembled monolayer formation with amino ethane thiol (AET) then reacted with glutaraldehyde (GA) as a crosslinker before finally functionalizing with the protein receptor. We report the effect of concentration, reaction time, and pH for these reagents on the magnitude of the nanomechanical responses using an anti-immunoglobulin G (anti-IgG) receptor: IgG ligand test system. By vapor depositing an alloy of silver and gold and then etching away the former, a nanostructured 'dealloyed' MC surface is created that outperforms a smooth gold MC in terms of nanomechanical responses. Optimization of the dealloying parameters (thickness, metal ratio) is also reported herein using the aforementioned anti-IgG-IgG system. Maximum response was obtained with these conditions: 150 nm dealloyed surface, 1 mM aqueous solution of AET-incubation time 1 h, 1% GA solution in 10 mM pH 8 phosphate buffered saline (PBS)-incubation time 3 h, and 0.5 mg mL{sup -1} of receptor protein solution in 10 mM pH 7 PBS-incubation time 1 h. Additionally, surprising results are reported when

  12. Design, Optimization and Development of Assemblies for Continuous Casting Facility using Techniques CAD, CAM and CAE

    Directory of Open Access Journals (Sweden)

    Marius Tufoi

    2011-10-01

    Full Text Available This work presents design methods, optimization and realization of mechanical for continuous casting plants using modern techniques: CAD,CAM and CAE. These current techniques refer to techniques CAD (Computer-Aided Design, CAE (Computer-Aided Engineering and CAM (Computer-Aided Manufacturing. Techniques mentioned above are areas of information technology aimed at helping engineering a variety of areas to be faster, more efficient and creative. A synthesis of the works published in the last 15 years shows that computer aided design and manufacturing are two areas which have developed simultaneously being treated in a common vision based on the natural links that exist between the activities of design and production or manufacturing. The paper will present a practical case application of techniques CAD, CAE and CAM.

  13. Optimizing surface acoustic wave sensors for trace chemical detection

    Energy Technology Data Exchange (ETDEWEB)

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J. [and others

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  14. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  15. A characteristic study of CCF modeling techniques and optimization of CCF defense strategies

    International Nuclear Information System (INIS)

    Kim, Min Chull

    2000-02-01

    Common Cause Failures (CCFs ) are among the major contributors to risk and core damage frequency (CDF ) from operating nuclear power plants (NPPs ). Our study on CCF focused on the following aspects : 1) a characteristic study on the CCF modeling techniques and 2) development of the optimal CCF defense strategy. Firstly, the characteristics of CCF modeling techniques were studied through sensitivity study of CCF occurrence probability upon system redundancy. The modeling techniques considered in this study include those most widely used worldwide, i.e., beta factor, MGL, alpha factor, and binomial failure rate models. We found that MGL and alpha factor models are essentially identical in terms of the CCF probability. Secondly, in the study for CCF defense, the various methods identified in the previous studies for defending against CCF were classified into five different categories. Based on these categories, we developed a generic method by which the optimal CCF defense strategy can be selected. The method is not only qualitative but also quantitative in nature: the selection of the optimal strategy among candidates is based on the use of analytic hierarchical process (AHP). We applied this method to two motor-driven valves for containment sump isolation in Ulchin 3 and 4 nuclear power plants. The result indicates that the method for developing an optimal CCF defense strategy is effective

  16. Rotor Pole Shape Optimization of Permanent Magnet Brushless DC Motors Using the Reduced Basis Technique

    Directory of Open Access Journals (Sweden)

    GHOLAMIAN, A. S.

    2009-06-01

    Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.

  17. Evolutionary techniques for sensor networks energy optimization in marine environmental monitoring

    Science.gov (United States)

    Grimaccia, Francesco; Johnstone, Ron; Mussetta, Marco; Pirisi, Andrea; Zich, Riccardo E.

    2012-10-01

    The sustainable management of coastal and offshore ecosystems, such as for example coral reef environments, requires the collection of accurate data across various temporal and spatial scales. Accordingly, monitoring systems are seen as central tools for ecosystem-based environmental management, helping on one hand to accurately describe the water column and substrate biophysical properties, and on the other hand to correctly steer sustainability policies by providing timely and useful information to decision-makers. A robust and intelligent sensor network that can adjust and be adapted to different and changing environmental or management demands would revolutionize our capacity to wove accurately model, predict, and manage human impacts on our coastal, marine, and other similar environments. In this paper advanced evolutionary techniques are applied to optimize the design of an innovative energy harvesting device for marine applications. The authors implement an enhanced technique in order to exploit in the most effective way the uniqueness and peculiarities of two classical optimization approaches, Particle Swarm Optimization and Genetic Algorithms. Here, this hybrid procedure is applied to a power buoy designed for marine environmental monitoring applications in order to optimize the recovered energy from sea-wave, by selecting the optimal device configuration.

  18. Application of heuristic optimization techniques and algorithm tuning to multilayered sorptive barrier design.

    Science.gov (United States)

    Matott, L Shawn; Bartelt-Hunt, Shannon L; Rabideau, Alan J; Fowler, K R

    2006-10-15

    Although heuristic optimization techniques are increasingly applied in environmental engineering applications, algorithm selection and configuration are often approached in an ad hoc fashion. In this study, the design of a multilayer sorptive barrier system served as a benchmark problem for evaluating several algorithm-tuning procedures, as applied to three global optimization techniques (genetic algorithms, simulated annealing, and particle swarm optimization). Each design problem was configured as a combinatorial optimization in which sorptive materials were selected for inclusion in a landfill liner to minimize the transport of three common organic contaminants. Relative to multilayer sorptive barrier design, study results indicate (i) the binary-coded genetic algorithm is highly efficient and requires minimal tuning, (ii) constraint violations must be carefully integrated to avoid poor algorithm convergence, and (iii) search algorithm performance is strongly influenced by the physical-chemical properties of the organic contaminants of concern. More generally, the results suggest that formal algorithm tuning, which has not been widely applied to environmental engineering optimization, can significantly improve algorithm performance and provide insight into the physical processes that control environmental systems.

  19. DETECTING GLASS SURFACE CORROSION WITH IMAGE PROCESSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Rafet AKDENİZ

    2012-12-01

    Full Text Available Glass is a kind of amorphous materials that exhibits a transition from rigid to viscous state and finally liquid state when heated. For daily usage, it is desirable to have different forms and differenttransparencies for different purposes. Most widely used one is the one with high transparency and flat surface.One of the detrimental effects that glass is undergone during the storage or usage periods is corrosion. In this work, a way for detecting corrosion on the glass surface by image processing methodis presented.

  20. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    Science.gov (United States)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  1. Visualization of brain surface structures by weighted summation technique using multislice MR images

    International Nuclear Information System (INIS)

    Machida, Yoshio; Hatanaka, Masahiko; Hagiwara, Masayuki; Sugimoto, Hiroshi; Yoshida, Tadatoki; Katada, Kazuhiro.

    1991-01-01

    Surface anatomy scanning (SAS) technique which visualizes brain surface structures has been developed since 1987. In this paper, we propose a modified method called 'multislice SAS', which also generates such surface structure images, and has several advantages compared with conventional SAS technique. The conventional SAS technique uses a very long echo time sequence (e.g. SE(3000, 250)) with a thick slice and a surface coil to enhance CSF on the brain surface. Our modified technique also uses a long echo time sequence. But, added multislice images, each appropriately weighted, are used in stead of a thick slice and a surface coil. Our basic studies have shown that this modified method has the following advantage: Several surface images with slightly different summation directions are obtained, and they are used for stereographic display and cine display. This is very useful for visualizing the spatial relationship of brain surface structures. By choosing appropriate weighting, we can obtain clinically legible surface images. This technique dose not require a surface coil. It means that flexibility of selecting imaging direction is high. We can make a lot of modifications, because the original multislice images of weighted summation are arbitrary. And we also clarify some limitation or disadvantage of this modified method. In conclusion, we think that this technique is one of the practical approaches for surface anatomy imaging. (author)

  2. Surface adsorption technique for the treatment of textile wastewaters ...

    African Journals Online (AJOL)

    Reductions in color and pH variation of the effluent were monitored through absorbance and pH measurements throughout the process. Concentration levels of Ni2+ in the wastewater ranged ... for treated samples to be employed for domestic purposes. Key Words: Effluents Treatment, Nickel, Chromium, Surface adsorption ...

  3. GIS Technique Applied To Surface Water Survey In South Western ...

    African Journals Online (AJOL)

    A GIS is used to study the surface water in Ibadan. Data which relates to the physical parameters of the study area, were used in this study. These included a SPOT-multispectral imagery, topographic and geological maps of Ibadan, which were analyzed and interpreted. The enhancement of the digital image (SPOT- ...

  4. Surface morphology of contact lenses probed with microscopy techniques

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Hobzová, Radka; Přádný, Martin; Širc, Jakub; Michálek, Jiří

    2007-01-01

    Roč. 30, č. 4 (2007), s. 215-222 ISSN 1367-0484 R&D Projects: GA AV ČR 1QS400500558 Institutional research plan: CEZ:AV0Z40500505 Keywords : atomic force microscopy * scanning electron microscopy * surface roughness Subject RIV: CD - Macromolecular Chemistry

  5. Analysis on the Metrics used in Optimizing Electronic Business based on Learning Techniques

    Directory of Open Access Journals (Sweden)

    Irina-Steliana STAN

    2014-09-01

    Full Text Available The present paper proposes a methodology of analyzing the metrics related to electronic business. The drafts of the optimizing models include KPIs that can highlight the business specific, if only they are integrated by using learning-based techniques. Having set the most important and high-impact elements of the business, the models should get in the end the link between them, by automating business flows. The human resource will be found in the situation of collaborating more and more with the optimizing models which will translate into high quality decisions followed by profitability increase.

  6. Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique

    Directory of Open Access Journals (Sweden)

    Yukawa Masahiro

    2006-01-01

    Full Text Available In stereophonic acoustic echo cancellation (SAEC problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length. The proposed schemes are based on pairwise optimal weight realization (POWER technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE.

  7. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  8. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... Astable sinusoidal pattern generated using a two-beam laser interferometric technique was recorded in thin films of positive photoresist deposited on glass substrates. Several gratings were generated by varying the exposure time of interference pattern and time of chemical development of exposed media.

  9. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    OpenAIRE

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young; Lee, Chang-Ho; Hong, Sang; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio ...

  10. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    Science.gov (United States)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  11. Optimization for sinusoidal profiles in surface relief gratings ...

    Indian Academy of Sciences (India)

    2014-02-07

    Feb 7, 2014 ... ometric pattern in photosensitive materials such as photoresists and many other types of photopolymers that are capable of generating surface relief structures. Indigenous devel- opment of such diffraction gratings has been taken up in our department for laser and spectroscopic applications. The purpose ...

  12. Application of Response Surface Methodology for Optimizing Oil ...

    African Journals Online (AJOL)

    This study investigated the optimum processing conditions which give the maximum yield of oil extracted from tropical almond seed by the use of response surface methodology (RSM). The factors investigated were solvent concentration (50 – 100% v/v), extraction temperature (84 -100oC) and processing time (60 – 120 ...

  13. Modeling marine surface microplastic transport to assess optimal removal locations

    NARCIS (Netherlands)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics

  14. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...

  15. Response surface optimization of the medium components for the production of biosurfactants by probiotic bacteria

    NARCIS (Netherlands)

    Rodrigues, L; Teixeira, J; Oliveira, R; van der Mei, HC

    Optimization of the medium for biosurfactants production by probiotic bacteria (Lactococcus lactis 53 and Streptococcus thermophilus A) was carried out using response surface methodology. Both biosurfactants were proved to be growth-associated, thus the desired response selected for the optimization

  16. Micro reflectance difference techniques: Optical probes for surface exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, L.F.; Del Pozo-Zamudio, O.; Herrera-Jasso, R.; Ulloa-Castillo, N.A.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Lastras-Martinez, A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi, S.L.P. (Mexico)

    2012-06-15

    Micro reflectance difference spectroscopy ({mu}-RDS) is a promising tool for the in-situ and ex-situ characterization of semiconductors surfaces and interfaces. We discuss and compare two different approaches used to measure {mu}-RD spectra. One is based on a charge-coupled device (CCD) camera, while the other uses a laser and a XY translation stage. To show the performance of these systems, we have measured surface optical anisotropies of GaSb(001) sample on which anisotropic strains have been generated by preferential mechanical polishing along [110] and [1 anti 10] directions. The spectrometers are complementary and the selection of one of them depends on the sample to be investigated and on experimental conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr; Perevertov, Oleksiy; Tomáš, Ivan; Skrbek, B.

    2011-01-01

    Roč. 323, č. 12 (2011), s. 1692-1697 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA ČR GP102/09/P108 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : Barkhausen noise * steel surface decarburization * residual stress * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2011

  18. Surface Analytical Techniques for Microbiologically Influenced Corrosion. A Review

    Science.gov (United States)

    1994-01-01

    natural waters and colonize surfaces to produce biofilms. The biofilms are varied in composition but usually include bacteria, algae, and fungi, in...potential and dissolved oxgen oicitlauios associated ivith ate Anain, sp.ference andd tentation l biofili ptiuder a 61h light/dark regime. Ligtht ...depositing bacteria. and (c) crosssco thilrough pie 1%ed %en natural waters! has re Ited i areas conducive t acteri: should be known TING WAGNER AND RAY ON

  19. Automated vehicle guidance using discrete reference markers. [road surface steering techniques

    Science.gov (United States)

    Johnston, A. R.; Assefi, T.; Lai, J. Y.

    1979-01-01

    Techniques for providing steering control for an automated vehicle using discrete reference markers fixed to the road surface are investigated analytically. Either optical or magnetic approaches can be used for the sensor, which generates a measurement of the lateral offset of the vehicle path at each marker to form the basic data for steering control. Possible mechanizations of sensor and controller are outlined. Techniques for handling certain anomalous conditions, such as a missing marker, or loss of acquisition, and special maneuvers, such as u-turns and switching, are briefly discussed. A general analysis of the vehicle dynamics and the discrete control system is presented using the state variable formulation. Noise in both the sensor measurement and in the steering servo are accounted for. An optimal controller is simulated on a general purpose computer, and the resulting plots of vehicle path are presented. Parameters representing a small multipassenger tram were selected, and the simulation runs show response to an erroneous sensor measurement and acquisition following large initial path errors.

  20. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  1. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  2. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    International Nuclear Information System (INIS)

    Mestrovic, Ante; Clark, Brenda G.

    2005-01-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for different treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis

  3. Material discovery by combining stochastic surface walking global optimization with a neural network.

    Science.gov (United States)

    Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-09-01

    While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a "Global-to-Global" approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2 , is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.

  4. A Preconditioning Technique for First-Order Primal-Dual Splitting Method in Convex Optimization

    Directory of Open Access Journals (Sweden)

    Meng Wen

    2017-01-01

    Full Text Available We introduce a preconditioning technique for the first-order primal-dual splitting method. The primal-dual splitting method offers a very general framework for solving a large class of optimization problems arising in image processing. The key idea of the preconditioning technique is that the constant iterative parameters are updated self-adaptively in the iteration process. We also give a simple and easy way to choose the diagonal preconditioners while the convergence of the iterative algorithm is maintained. The efficiency of the proposed method is demonstrated on an image denoising problem. Numerical results show that the preconditioned iterative algorithm performs better than the original one.

  5. Artificial intelligence search techniques for the optimization of cold source geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness that produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometric shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape, which is the unknown in such a study. An analogy is drawn between this problem and a state space search, then a simple artificial intelligence (AI) search technique is used to determine the optimum cold source shape based on a two-group, r-z diffusion model. This AI design concept was implemented in the computer program AID, which consists of two modules, a physical model module, and a search module, which can be independently modified, improved, or made more sophisticated

  6. Integration of artificial intelligence and numerical optimization techniques for the design of complex aerospace systems

    International Nuclear Information System (INIS)

    Tong, S.S.; Powell, D.; Goel, S.

    1992-02-01

    A new software system called Engineous combines artificial intelligence and numerical methods for the design and optimization of complex aerospace systems. Engineous combines the advanced computational techniques of genetic algorithms, expert systems, and object-oriented programming with the conventional methods of numerical optimization and simulated annealing to create a design optimization environment that can be applied to computational models in various disciplines. Engineous has produced designs with higher predicted performance gains that current manual design processes - on average a 10-to-1 reduction of turnaround time - and has yielded new insights into product design. It has been applied to the aerodynamic preliminary design of an aircraft engine turbine, concurrent aerodynamic and mechanical preliminary design of an aircraft engine turbine blade and disk, a space superconductor generator, a satellite power converter, and a nuclear-powered satellite reactor and shield. 23 refs

  7. Optimization models and techniques for implementation and pricing of electricity markets

    International Nuclear Information System (INIS)

    Madrigal Martinez, M.

    2001-01-01

    The operation and planning of vertically integrated electric power systems can be optimized using models that simulate solutions to problems. As the electric power industry is going through a period of restructuring, there is a need for new optimization tools. This thesis describes the importance of optimization tools and presents techniques for implementing them. It also presents methods for pricing primary electricity markets. Three modeling groups are studied. The first considers a simplified continuous and discrete model for power pool auctions. The second considers the unit commitment problem, and the third makes use of a new type of linear network-constrained clearing system model for daily markets for power and spinning reserve. The newly proposed model considers bids for supply and demand and bilateral contracts. It is a direct current model for the transmission network

  8. Approximating Optimal Release in a Deterministic Model for the Sterile Insect Technique

    Directory of Open Access Journals (Sweden)

    Sergio Ramirez

    2016-01-01

    Full Text Available Cost/benefit analyses are essential to support management planning and decisions before launching any pest control program. In particular, applications of the sterile insect technique (SIT are often prevented by the projected economic burden associated with rearing processes. This has had a deep impact on the technique development and its use on insects with long larval periods, as often seen in beetles. Under the assumptions of long adult timespan and multiple mating, we show how to find approximate optimal sterile release policies that minimize costs. The theoretical framework proposed considers the release of insects by pulses and finds approximate optimal release sizes through stochastic searching. The scheme is then used to compare simulated release strategies obtained for different pulse schedules and release bounds, providing a platform for evaluating the convenience of increasing sterile male release intensity or extending the period of control.

  9. A genetic algorithm technique to optimize the configuration of heat storage in DH networks

    Directory of Open Access Journals (Sweden)

    Amru Rizal Razani

    2016-12-01

    Full Text Available The technical and economical evaluation of heat storage layout and configuration in the DH network is one of important aspect for optimizing the heat production from the heat supplier’s point of view in one side as well as to satisfy the heat customer demand in the other side. Generally, the state of the art technique has considered three optional planning layouts for DH network. A classical network with centralized heat storage at Combined Heat and Power (CHP plant, decentralized storages in the network, and decentralized small storages at the substations or in the customer building. In this paper, through the use of genetic algorithm technique, comparison of three different scenarios is presented to evaluate the optimal planning of heat storage layout in CHP based DH supply system according to economical and technical aspects in the network.

  10. An optimization iterative algorithm based on nonnegative constraint with application to Allan variance analysis technique

    Science.gov (United States)

    Lv, Hanfeng; Zhang, Liang; Wang, Dingjie; Wu, Jie

    2014-03-01

    It is well known that inertial integrated navigation systems can provide accurate navigation information. In these systems, inertial sensor random error often becomes the limiting factor to get a better performance. So it is imperative to have accurate characterization of the random error. Allan variance analysis technique has a good performance in analyzing inertial sensor random error, and it is always used to characterize various types of the random error terms. This paper proposes a new method named optimization iterative algorithm based on nonnegative constraint applied to Allan variance analysis technique to estimate parameters of the random error terms. The parameter estimates by this method are nonnegative and optimal, and the estimation process does not have matrix nearly singular issues. Testing with simulation data and the experimental data of a fiber optical gyro, the parameters estimated by the presented method are compared against other excellent methods with good agreement; moreover, the objective function has the minimum value.

  11. Optimal routing of coordinated aircraft to Identify moving surface contacts

    Science.gov (United States)

    2017-06-01

    53  ix LIST OF FIGURES Figure 1.  Hypothetical Example of the Surface...900 nodes and 64,000 arcs, this simplifying approach enables quick solution time. In other applications related to ORCA, Sposato (1995) plans...we need a quick solution, we recommend using ORCA TI. This formulation defines routes to visit up to 61 COIs in less than 1 minute by using just the

  12. Review of the Most Important Design Optimization Technique of Composite Wing

    Directory of Open Access Journals (Sweden)

    Bogdan-Alexandru BELEGA

    2016-12-01

    Full Text Available The scope of wing optimization is to design a structure that meets all the airworthiness demands while minimizing its weight. This paper introduces a review for the most important optimization design tools of composite wings with multiple load cases and large scale design variables. Each discipline resorts to accurate design to ensure better performance. Accurate design and multidisciplinary optimization design for wings need large scale design variables. The structural design of an airframe is determined by multidisciplinary criteria (stress, fatigue, buckling, control surface effectiveness, flutter and weight etc.. Several thousands of structural sizes of stringers, panels, ribs etc. have to be determined considering hundreds of thousands of requirements to find an optimum solution, i.e. a design fulfilling all requirements with a minimum weight or minimum cost respectively.

  13. Multiple sectioning and perforation techniques for TEM sub-surface studies

    International Nuclear Information System (INIS)

    Lee, E.H.; Rowcliffe, A.F.

    1978-01-01

    Techniques for preparing multiple electron transparent regions at several depth levels below the surface of a metal disk specimen are described. These techniques are relatively rapid and find application in many areas involving surface studies. Examples are shown of multiple thin areas produced at intervals of approximately 200 nm below the original surface of a stainless steel bombarded with 4 MeV Ni +2 ions for void swelling studies

  14. Visible-light-induced surface graft polymerization via camphorquinone impregnation technique.

    Science.gov (United States)

    Ziani-Cherif, Houcine; Abe, Yusuke; Imachi, Kou; Matsuda, Takehisa

    2002-02-01

    A surface modification method that is particularly applicable to complexly shaped fabricated devices has long been awaited. In this article, we describe the visible-light-induced surface photograft polymerization technique by which an inner surface of the device is modified by visible-light irradiation through the external surface. Comphorquione, as a photoradical initiator, was impregnated on a segmented polyurethane surface by solvent soaking, followed by visible-light irradiation in the presence of monomers such as acrylamide and poly(ethylene glycol) methacrylate. The resultant surfaces were highly wettable with water, and surface chemical compositional analysis by X-ray photoelectron spectroscopy revealed that the surface was graft-polymerized with these monomers. The simple and widespread applicability of this surface modification technique to biomedical devices is discussed. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 386-389, 2002

  15. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  16. Applications of computational intelligence techniques for solving the revived optimal power flow problem

    Energy Technology Data Exchange (ETDEWEB)

    AlRashidi, M.R. [Electrical Engineering Department, College of Technological Studies, Shuwaikh (Kuwait); El-Hawary, M.E. [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3J 2X4 (Canada)

    2009-04-15

    Computational intelligence tools are attracting added attention in different research areas and research in power systems is not different. This paper provides an overview of major computational issues with regard to the optimal power flow (OPF). Then, it offers a brief summary of major computational intelligence tools. A detailed coverage of most OPF related research work that make use of modern computational intelligence techniques is presented next. (author)

  17. A Note on Using Partitioning Techniques for Solving Unconstrained Optimization Problems on Parallel Systems

    Directory of Open Access Journals (Sweden)

    Mehiddin Al-Baali

    2015-12-01

    Full Text Available We deal with the design of parallel algorithms by using variable partitioning techniques to solve nonlinear optimization problems. We propose an iterative solution method that is very efficient for separable functions, our scope being to discuss its performance for general functions. Experimental results on an illustrative example have suggested some useful modifications that, even though they improve the efficiency of our parallel method, leave some questions open for further investigation.

  18. Optimization of the nanotwin-induced zigzag surface of copper by electromigration

    Science.gov (United States)

    Chen, Hsin-Ping; Huang, Chun-Wei; Wang, Chun-Wen; Wu, Wen-Wei; Liao, Chien-Neng; Chen, Lih-Juann; Tu, King-Ning

    2016-01-01

    By adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier's principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten.By adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier's principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05418d

  19. Search method optimization technique for thermal design of high power RFQ structure

    International Nuclear Information System (INIS)

    Sharma, N.K.; Joshi, S.C.

    2009-01-01

    RRCAT has taken up the development of 3 MeV RFQ structure for the low energy part of 100 MeV H - ion injector linac. RFQ is a precision machined resonating structure designed for high rf duty factor. RFQ structural stability during high rf power operation is an important design issue. The thermal analysis of RFQ has been performed using ANSYS finite element analysis software and optimization of various parameters is attempted using Search Method optimization technique. It is an effective optimization technique for the systems governed by a large number of independent variables. The method involves examining a number of combinations of values of independent variables and drawing conclusions from the magnitude of the objective function at these combinations. In these methods there is a continuous improvement in the objective function throughout the course of the search and hence these methods are very efficient. The method has been employed in optimization of various parameters (called independent variables) of RFQ like cooling water flow rate, cooling water inlet temperatures, cavity thickness etc. involved in RFQ thermal design. The temperature rise within RFQ structure is the objective function during the thermal design. Using ANSYS Programming Development Language (APDL), various multiple iterative programmes are written and the analysis are performed to minimize the objective function. The dependency of the objective function on various independent variables is established and the optimum values of the parameters are evaluated. The results of the analysis are presented in the paper. (author)

  20. The L_infinity constrained global optimal histogram equalization technique for real time imaging

    Science.gov (United States)

    Ren, Qiongwei; Niu, Yi; Liu, Lin; Jiao, Yang; Shi, Guangming

    2015-08-01

    Although the current imaging sensors can achieve 12 or higher precision, the current display devices and the commonly used digital image formats are still only 8 bits. This mismatch causes significant waste of the sensor precision and loss of information when storing and displaying the images. For better usage of the precision-budget, tone mapping operators have to be used to map the high-precision data into low-precision digital images adaptively. In this paper, the classic histogram equalization tone mapping operator is reexamined in the sense of optimization. We point out that the traditional histogram equalization technique and its variants are fundamentally improper by suffering from local optimum problems. To overcome this drawback, we remodel the histogram equalization tone mapping task based on graphic theory which achieves the global optimal solutions. Another advantage of the graphic-based modeling is that the tone-continuity is also modeled as a vital constraint in our approach which suppress the annoying boundary artifacts of the traditional approaches. In addition, we propose a novel dynamic programming technique to solve the histogram equalization problem in real time. Experimental results shows that the proposed tone-preserved global optimal histogram equalization technique outperforms the traditional approaches by exhibiting more subtle details in the foreground while preserving the smoothness of the background.

  1. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  2. Damage identification in beams by a response surface based technique

    Directory of Open Access Journals (Sweden)

    Teidj S.

    2014-01-01

    Full Text Available In this work, identification of damage in uniform homogeneous metallic beams was considered through the propagation of non dispersive elastic torsional waves. The proposed damage detection procedure consisted of the following sequence. Giving a localized torque excitation, having the form of a short half-sine pulse, the first step was calculating the transient solution of the resulting torsional wave. This torque could be generated in practice by means of asymmetric laser irradiation of the beam surface. Then, a localized defect assumed to be characterized by an abrupt reduction of beam section area with a given height and extent was placed at a known location of the beam. Next, the response in terms of transverse section rotation rate was obtained for a point situated afterwards the defect, where the sensor was positioned. This last could utilize in practice the concept of laser vibrometry. A parametric study has been conducted after that by using a full factorial design of experiments table and numerical simulations based on a finite difference characteristic scheme. This has enabled the derivation of a response surface model that was shown to represent adequately the response of the system in terms of the following factors: defect extent and severity. The final step was performing the inverse problem solution in order to identify the defect characteristics by using measurement.

  3. Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method

    Science.gov (United States)

    Zhiying, Chen; Ping, Zhou

    2017-11-01

    Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

  4. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  5. Surface-Water Techniques: On Demand Training Opportunities

    Science.gov (United States)

    ,

    2007-01-01

    The U.S. Geological Survey (USGS) has been collecting streamflow information since 1889 using nationally consistent methods. The need for such information was envisioned by John Wesley Powell as a key component for settlement of the arid western United States. Because of Powell?s vision the nation now has a rich streamflow data base that can be analyzed with confidence in both space and time. This means that data collected at a stream gaging station in Maine in 1903 can be compared to data collected in 2007 at the same gage in Maine or at a different gage in California. Such comparisons are becoming increasingly important as we work to assess climate variability and anthropogenic effects on streamflow. Training employees in proper and consistent techniques to collect and analyze streamflow data forms a cornerstone for maintaining the integrity of this rich data base.

  6. Infiltration route analysis using thermal observation devices (TOD) and optimization techniques in a GIS environment.

    Science.gov (United States)

    Bang, Soonam; Heo, Joon; Han, Soohee; Sohn, Hong-Gyoo

    2010-01-01

    Infiltration-route analysis is a military application of geospatial information system (GIS) technology. In order to find susceptible routes, optimal-path-searching algorithms are applied to minimize the cost function, which is the summed result of detection probability. The cost function was determined according to the thermal observation device (TOD) detection probability, the viewshed analysis results, and two feature layers extracted from the vector product interim terrain data. The detection probability is computed and recorded for an individual cell (50 m × 50 m), and the optimal infiltration routes are determined with A* algorithm by minimizing the summed costs on the routes from a start point to an end point. In the present study, in order to simulate the dynamic nature of a real-world problem, one thousand cost surfaces in the GIS environment were generated with randomly located TODs and randomly selected infiltration start points. Accordingly, one thousand sets of vulnerable routes for infiltration purposes could be found, which could be accumulated and presented as an infiltration vulnerability map. This application can be further utilized for both optimal infiltration routing and surveillance network design. Indeed, dynamic simulation in the GIS environment is considered to be a powerful and practical solution for optimization problems. A similar approach can be applied to the dynamic optimal routing for civil infrastructure, which requires consideration of terrain-related constraints and cost functions.

  7. Infiltration Route Analysis Using Thermal Observation Devices (TOD and Optimization Techniques in a GIS Environment

    Directory of Open Access Journals (Sweden)

    Hong-Gyoo Sohn

    2010-01-01

    Full Text Available Infiltration-route analysis is a military application of geospatial information system (GIS technology. In order to find susceptible routes, optimal-path-searching algorithms are applied to minimize the cost function, which is the summed result of detection probability. The cost function was determined according to the thermal observation device (TOD detection probability, the viewshed analysis results, and two feature layers extracted from the vector product interim terrain data. The detection probability is computed and recorded for an individual cell (50 m × 50 m, and the optimal infiltration routes are determined with A* algorithm by minimizing the summed costs on the routes from a start point to an end point. In the present study, in order to simulate the dynamic nature of a realworld problem, one thousand cost surfaces in the GIS environment were generated with randomly located TODs and randomly selected infiltration start points. Accordingly, one thousand sets of vulnerable routes for infiltration purposes could be found, which could be accumulated and presented as an infiltration vulnerability map. This application can be further utilized for both optimal infiltration routing and surveillance network design. Indeed, dynamic simulation in the GIS environment is considered to be a powerful and practical solution for optimization problems. A similar approach can be applied to the dynamic optimal routing for civil infrastructure, which requires consideration of terrain-related constraints and cost functions.

  8. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    Science.gov (United States)

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  9. Negligible water surface charge determined using Kelvin probe and total reflection X-ray fluorescence techniques.

    Science.gov (United States)

    Shapovalov, Vladimir L; Möhwald, Helmuth; Konovalov, Oleg V; Knecht, Volker

    2013-09-07

    The water surface charge has been extensively debated in recent decades. Electrophoretic mobilities of air bubbles in water and disjoining pressures between the surfaces of aqueous films suggest that the surface of water exhibits a significant negative charge. This is commonly attributed to a strong adsorption of hydroxide ions at the interface, though spectroscopic measurements and simulation studies suggest surface depletion of hydroxide ions. Alternatively, the negative surface charge could arise from surface contamination with trace charged surfactants. We have probed the variation in the surface charge of water with pH by measuring surface potentials using the Kelvin probe technique. Independently, the abundance in the interfacial layer of "reporter ions" (Rb(+) and Br(-)), which must be affected by a charged surface, has been monitored using the total reflection X-ray fluorescence (TRXF) technique. Special care was taken to prove the high sensitivity of this technique as well as to avoid surface contaminants. The magnitude of the surface charge was found to be below 1 e per 500 nm(2) (TRXF). No evidence of variations in the surface potential between pH 2-3 and pH 9-12 was detected within the accuracies of the methods (5 mV for Kelvin probe and 2 mV for TRXF). Hence, our findings suggest that the clean water surface exhibits negligible charge in a wide pH range.

  10. Optimal Machining Parameters for Achieving the Desired Surface Roughness in Turning of Steel

    Directory of Open Access Journals (Sweden)

    LB Abhang

    2012-06-01

    Full Text Available Due to the widespread use of highly automated machine tools in the metal cutting industry, manufacturing requires highly reliable models and methods for the prediction of output performance in the machining process. The prediction of optimal manufacturing conditions for good surface finish and dimensional accuracy plays a very important role in process planning. In the steel turning process the tool geometry and cutting conditions determine the time and cost of production which ultimately affect the quality of the final product. In the present work, experimental investigations have been conducted to determine the effect of the tool geometry (effective tool nose radius and metal cutting conditions (cutting speed, feed rate and depth of cut on surface finish during the turning of EN-31 steel. First and second order mathematical models are developed in terms of machining parameters by using the response surface methodology on the basis of the experimental results. The surface roughness prediction model has been optimized to obtain the surface roughness values by using LINGO solver programs. LINGO is a mathematical modeling language which is used in linear and nonlinear optimization to formulate large problems concisely, solve them, and analyze the solution in engineering sciences, operation research etc. The LINGO solver program is global optimization software. It gives minimum values of surface roughness and their respective optimal conditions.

  11. Esophagus sparing with IMRT in lung tumor irradiation: An EUD-based optimization technique

    International Nuclear Information System (INIS)

    Chapet, Olivier; Thomas, Emma; Kessler, Marc L.; Fraass, Benedick A.; Ten Haken, Randall K.

    2005-01-01

    Purpose: The aim of this study was to evaluate (1) the use of generalized equivalent uniform dose (gEUD) to optimize dose escalation of lung tumors when the esophagus overlaps the planning target volume (PTV) and (2) the potential benefit of further dose escalation in only the part of the PTV that does not overlap the esophagus. Methods and Materials: The treatment-planning computed tomography (CT) scans of patients with primary lung tumors located in different regions of the left and right lung were used for the optimization of beamlet intensity modulated radiation therapy (IMRT) plans. In all cases, the PTV overlapped part of the esophagus. The dose in the PTV was maximized according to 7 different primary cost functions: 2 plans that made use of mean dose (MD) (the reference plan, in which the 95% isodose surface covered the PTV and a second plan that had no constraint on the minimum isodose), 3 plans based on maximizing gEUD for the whole PTV with ever increasing assumptions for tumor aggressiveness, and 2 plans that used different gEUD values in 2 simultaneous, overlapping target volumes (the whole PTV and the PTV minus esophagus). Beam arrangements and NTCP-based costlets for the organs at risk (OARs) were kept identical to the original conformal plan for each case. Regardless of optimization method, the relative ranking of the resulting plans was evaluated in terms of the absence of cold spots within the PTV and the final gEUD computed for the whole PTV. Results: Because the MD-optimized plans lacked a constraint on minimum PTV coverage, they resulted in cold spots that affected approximately 5% of the PTV volume. When optimizing over the whole PTV volume, gEUD-optimized plans resulted in higher equivalent uniform PTV doses than did the reference plan while still maintaining normal-tissue constraints. However, only under the assumption of extremely aggressive tumors could cold spots in the PTV be avoided. Generally, high-level overall results are obtained

  12. Ricci Curvature on Polyhedral Surfaces via Optimal Transportation

    Directory of Open Access Journals (Sweden)

    Benoît Loisel

    2014-03-01

    Full Text Available The problem of correctly defining geometric objects, such as the curvature, is a hard one in discrete geometry. In 2009, Ollivier defined a notion of curvature applicable to a wide category of measured metric spaces, in particular to graphs. He named it coarse Ricci curvature because it coincides, up to some given factor, with the classical Ricci curvature, when the space is a smooth manifold. Lin, Lu and Yau and Jost and Liu have used and extended this notion for graphs, giving estimates for the curvature and, hence, the diameter, in terms of the combinatorics. In this paper, we describe a method for computing the coarse Ricci curvature and give sharper results, in the specific, but crucial case of polyhedral surfaces.

  13. Tranexamic acid: optimal blood loss management in surface replacement arthroplasty.

    Science.gov (United States)

    Sassoon, A; Nam, D; Jackups, R; Johnson, S R; Nunley, R M; Barrack, R L

    2016-02-01

    This study investigated whether the use of tranexamic acid (TXA) decreased blood loss and transfusion related cost following surface replacement arthroplasty (SRA). A retrospective review of patients treated with TXA during a SRA, who did not receive autologous blood (TXA group) was performed. Two comparison groups were established; the first group comprised of patients who donated their own blood pre-operatively (auto group) and the second of patients who did not donate blood pre-operatively (control). Outcomes included transfusions, post-operative haemoglobin (Hgb), complications, and length of post-operative stay. Between 2009 and 2013, 150 patients undergoing SRA were identified for inclusion: 51 in the auto, 49 in the control, and 50 in the TXA group. There were no differences in the pre-operative Hgb concentrations between groups. The mean post-operative Hgb was 11.3 g/dL (9.1 to 13.6) in the auto and TXA groups, and 10.6 g/dL (8.1 to 12.1)in the control group (p = 0.001). Accounting for cost of transfusions, administration of TXA, and length of stay, the cost per patient was $1731, $339, and $185 for the auto, control and TXA groups, respectively. TXA use demonstrated higher post-operative Hgb concentrations when compared with controls and decreased peri-operative costs. Tranexamic acid safely limits allogeneic transfusion, maintains post-operative haemoglobin, and decreases direct and indirect transfusion related costs in surface replacement arthroplasty. ©2016 The British Editorial Society of Bone & Joint Surgery.

  14. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, V., E-mail: vhernandezmasgrau@gmail.com; Abella, R. [Department of Medical Physics, Hospital Sant Joan de Reus, IISPV, Tarragona 43204 (Spain); Calvo, J. F. [Department of Radiation Oncology, Hospital Quirón, Barcelona 08023 (Spain); Jurado-Bruggemann, D. [Department of Medical Physics, Institut Català d’Oncologia, Girona 17007 (Spain); Sancho, I. [Department of Medical Physics, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08908 (Spain); Carrasco, P. [Department of Medical Physics, Hospital de la Santa Creu i Sant Pau, Barcelona 08041 (Spain)

    2015-04-15

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as a function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended.

  15. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques.

    Science.gov (United States)

    Hernandez, V; Abella, R; Calvo, J F; Jurado-Bruggemann, D; Sancho, I; Carrasco, P

    2015-04-01

    Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100,000 clinical treatments and in-house software was used to compute the number of tolerance faults as a function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended.

  16. Commissioning of the laboratory of Atucha II NPP. Implementation and optimization of analytical techniques, quality aspects

    International Nuclear Information System (INIS)

    Schoenbrod, Betina; Quispe, Benjamin; Cattaneo, Alberto; Rodriguez, Ivanna; Chocron, Mauricio; Farias, Silvia

    2012-09-01

    Atucha II NPP is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 740 MWe designed by SIEMENSKWU. After some years of delay, this NPP is in advanced construction state, being the beginning of commercial operation expected for 2013. Nucleoelectrica Argentina (N.A.S.A.) is the company in charge of the finalization of this project and the future operation of the plant. The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the stations. The Commissioning Chemistry Division of CNAII is in charge of the commissioning of the demineralization water plant and the organization of the chemical laboratory. The water plant started operating successfully in July 2010 and is providing the plant with nuclear grade purity water. Currently, in the conventional ('cold') laboratory several activities are taking place. On one hand, analytical techniques for the future operation of the plant are being tested and optimized. On the other hand, the laboratory is participating in the cleaning and conservation of the different components of the plant, providing technical support and the necessary analysis. To define the analytical techniques for the normal operation of the plant, the parameters to be measured and their range were established in the Chemistry Manual. The necessary equipment and reagents were bought. In this work, a summary of the analytical techniques that are being implemented and optimized is presented. Common anions (chloride, sulfate, fluoride, bromide and nitrate) are analyzed by ion chromatography. Cations, mainly sodium, are determined by absorption spectrometry. A UV-Vis spectrometer is used to determine silicates, iron, ammonia, DQO, total solids, true color and turbidity. TOC measurements are performed with a TOC analyzer. To optimize the methods, several parameters are evaluated: linearity, detection and quantification limits, precision and

  17. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  18. Integration of ab-initio nuclear calculation with derivative free optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sharda, Anurag [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Optimization techniques are finding their inroads into the field of nuclear physics calculations where the objective functions are very complex and computationally intensive. A vast space of parameters needs searching to obtain a good match between theoretical (computed) and experimental observables, such as energy levels and spectra. Manual calculation defies the scope of such complex calculation and are prone to error at the same time. This body of work attempts to formulate a design and implement it which would integrate the ab initio nuclear physics code MFDn and the VTDIRECT95 code. VTDIRECT95 is a Fortran95 suite of parallel code implementing the derivative-free optimization algorithm DIRECT. Proposed design is implemented for a serial and parallel version of the optimization technique. Experiment with the initial implementation of the design showing good matches for several single-nucleus cases are conducted. Determination and assignment of appropriate number of processors for parallel integration code is implemented to increase the efficiency and resource utilization in the case of multiple nuclei parameter search.

  19. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    Science.gov (United States)

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

  20. Optimization models and techniques for implementation and pricing of electricity markets

    Science.gov (United States)

    Madrigal Martinez, Marcelino

    Vertically integrated electric power systems extensively use optimization models and solution techniques to guide their optimal operation and planning. The advent of electric power systems re-structuring has created needs for new optimization tools and the revision of the inherited ones from the vertical integration era into the market environment. This thesis presents further developments on the use of optimization models and techniques for implementation and pricing of primary electricity markets. New models, solution approaches, and price setting alternatives are proposed. Three different modeling groups are studied. The first modeling group considers simplified continuous and discrete models for power pool auctions driven by central-cost minimization. The direct solution of the dual problems, and the use of a Branch-and-Bound algorithm to solve the primal, allows to identify the effects of disequilibrium, and different price setting alternatives over the existence of multiple solutions. It is shown that particular pricing rules worsen the conflict of interest that arise when multiple solutions exist under disequilibrium. A price-setting alternative based on dual variables is shown to diminish such conflict. The second modeling group considers the unit commitment problem. An interior-point/cutting-plane method is proposed for the solution of the dual problem. The new method has better convergence characteristics and does not suffer from the parameter tuning drawback as previous methods The robustness characteristics of the interior-point/cutting-plane method, combined with a non-uniform price setting alternative, show that the conflict of interest is diminished when multiple near optimal solutions exist. The non-uniform price setting alternative is compared to a classic average pricing rule. The last modeling group concerns to a new type of linear network-constrained clearing system models for daily markets for power and spinning reserve. A new model and

  1. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    Science.gov (United States)

    Hernandez, Wilmar

    2007-01-01

    In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.

  2. Pre-optimization of radiotherapy treatment planning: an artificial neural network classification aided technique

    International Nuclear Information System (INIS)

    Hosseini-Ashrafi, M.E.; Bagherebadian, H.; Yahaqi, E.

    1999-01-01

    A method has been developed which, by using the geometric information from treatment sample cases, selects from a given data set an initial treatment plan as a step for treatment plan optimization. The method uses an artificial neural network (ANN) classification technique to select a best matching plan from the 'optimized' ANN database. Separate back-propagation ANN classifiers were trained using 50, 60 and 77 examples for three groups of treatment case classes (up to 21 examples from each class were used). The performance of the classifiers in selecting the correct treatment class was tested using the leave-one-out method; the networks were optimized with respect their architecture. For the three groups used in this study, successful classification fractions of 0.83, 0.98 and 0.93 were achieved by the optimized ANN classifiers. The automated response of the ANN may be used to arrive at a pre-plan where many treatment parameters may be identified and therefore a significant reduction in the steps required to arrive at the optimum plan may be achieved. Treatment planning 'experience' and also results from lengthy calculations may be used for training the ANN. (author)

  3. Optimized Scheduling Technique of Null Subcarriers for Peak Power Control in 3GPP LTE Downlink

    Science.gov (United States)

    Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system. PMID:24883376

  4. Optimized scheduling technique of null subcarriers for peak power control in 3GPP LTE downlink.

    Science.gov (United States)

    Cho, Soobum; Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.

  5. Optimal Design of Slippery Liquid-Infused Porous Surfaces for Enhanced Condensation of Low Surface Tension Fluids

    Science.gov (United States)

    Preston, Daniel J.; Lu, Zhengmao; Zhao, Yajing; Antao, Dion; Wilke, Kyle; Wang, Evelyn N.

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, exhibits 5 - 7x higher heat transfer performance than filmwise condensation, where the condensate spreads over the surface. However, promoting dropwise condensation of low surface tension fluids is particularly challenging since the typical hydrophobic condenser coatings used to promote dropwise condensation of water (surface tension 73 mN/m) often do not repel fluids with low surface tensions (<30 mN/m). Recent work has indicated that slippery liquid-infused porous surfaces (SLIPS) can promote dropwise condensation of low surface tension fluids by introducing a lubricant immiscible with the condensate into a rough structure on the condenser surface. We developed a detailed model of condensation on SLIPS using the van Oss-Chaudhury-Good theory as a framework to determine the feasibility of any arbitrary solid-lubricant-condensate system, and we validated our model with experimental results. This work enables optimal design of SLIPS for enhanced condensation of low surface tension fluids which promises significant energy savings in applications such as thermal management and power generation.

  6. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  7. Process parameters optimization for synthesis of methyl ester from sunflower oil using Taguchi technique

    Directory of Open Access Journals (Sweden)

    G. Senthilkumar

    2014-09-01

    Full Text Available In this work, transesterification of sunflower oil for obtaining biodiesel was studied. Taguchi’s methodology (L9 orthogonal array was selected to optimize the most significant variables (methanol, catalyst concentration and stirrer speed in transesterification process. Experiments have conducted based on development of L9 orthogonal array by using Taguchi technique. Analysis of Variance (ANOVA and the regression equations were used to find the optimum yield of sunflower methyl ester under the influence of methanol, catalyst & stirrer speed. The study resulted in a maximum yield of sun flower methyl ester as 96% with the optimal conditions of methanol 110 ml with 0.5% by wt. of sodium hydroxide (NaOH stirred at 1200 rpm. The yield was analyzed on the basis of “larger is better”. Finally, confirmation tests were carried out to verify the experimental results.

  8. New Approaches to Underwater Surface Preparation and Painting (USPPT) Techniques (CD-ROM)

    National Research Council Canada - National Science Library

    Ledda, Jeffrey

    2006-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 25.4 MB. ABSTRACT: This paper summarizes Oceaneering's findings for the ONR work entitled "New Approaches to Underwater Surface Preparation and Painting Techniques, Phase 2 Final Report...

  9. Optimization of armour geometry and bonding techniques for tungsten-armoured high heat flux components

    International Nuclear Information System (INIS)

    Giniyatulin, R.N.; Komarov, V.L.; Kuzmin, E.G.; Makhankov, A.N.; Mazul, I.V.; Yablokov, N.A.; Zhuk, A.N.

    2002-01-01

    Joining of tungsten with copper-based cooling structure and armour geometry optimization are the major aspects in development of the tungsten-armoured plasma facing components (PFC). Fabrication techniques and high heat flux (HHF) tests of tungsten-armoured components have to reflect different PFC designs and acceptable manufacturing cost. The authors present the recent results of tungsten-armoured mock-ups development based on manufacturing and HHF tests. Two aspects were investigated--selection of armour geometry and examination of tungsten-copper bonding techniques. Brazing and casting tungsten-copper bonding techniques were used in small mock-ups. The mock-ups with armour tiles (20x5x10, 10x10x10, 20x20x10, 27x27x10) mm 3 in dimensions were tested by cyclic heat fluxes in the range of (5-20) MW/m 2 , the number of thermal cycles varied from hundreds to several thousands for each mock-up. The results of the tests show the applicability of different geometry and different bonding technique to corresponding heat loading. A medium-scale mock-up 0.6-m in length was manufactured and tested. HHF tests of the medium-scale mock-up have demonstrated the applicability of the applied bonding techniques and armour geometry for full-scale PFC's manufacturing

  10. Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design

    Science.gov (United States)

    Singh, Gurinder; Pai, Roopa S.; Devi, V. Kusum

    2012-01-01

    Furosemide is a powerful diuretic and antihypertensive drug which has low bioavailability due to hepatic first pass metabolism and has a short half-life of 2 hours. To overcome the above drawback, the present study was carried out to formulate and evaluate sustained release (SR) pellets of furosemide for oral administration prepared by extrusion/spheronization. Drug Coat L-100 was used within the pellet core along with microcrystalline cellulose as the diluent and concentration of selected binder was optimized to be 1.2%. The formulation was prepared with drug to polymer ratio 1:3. It was optimized using Design of Experiments by employing a 32 central composite design that was used to systematically optimize the process parameters combined with response surface methodology. Dissolution studies were carried out with USP apparatus Type I (basket type) in both simulated gastric and intestinal pH. The statistical technique, i.e., the two-tailed paired t test and one-way ANOVA of in vitro data has proposed that there was very significant (P≤0.05) difference in dissolution profile of furosemide SR pellets when compared with pure drug and commercial product. Validation of the process optimization study indicated an extremely high degree of prognostic ability. The study effectively undertook the development of optimized process parameters of pelletization of furosemide pellets with tremendous SR characteristics. PMID:22470891

  11. Response surface methodology and process optimization of sustained release pellets using Taguchi orthogonal array design and central composite design

    Directory of Open Access Journals (Sweden)

    Gurinder Singh

    2012-01-01

    Full Text Available Furosemide is a powerful diuretic and antihypertensive drug which has low bioavailability due to hepatic first pass metabolism and has a short half-life of 2 hours. To overcome the above drawback, the present study was carried out to formulate and evaluate sustained release (SR pellets of furosemide for oral administration prepared by extrusion/spheronization. Drug Coat L-100 was used within the pellet core along with microcrystalline cellulose as the diluent and concentration of selected binder was optimized to be 1.2%. The formulation was prepared with drug to polymer ratio 1:3. It was optimized using Design of Experiments by employing a 3 2 central composite design that was used to systematically optimize the process parameters combined with response surface methodology. Dissolution studies were carried out with USP apparatus Type I (basket type in both simulated gastric and intestinal pH. The statistical technique, i.e., the two-tailed paired t test and one-way ANOVA of in vitro data has proposed that there was very significant ( P≤0.05 difference in dissolution profile of furosemide SR pellets when compared with pure drug and commercial product. Validation of the process optimization study indicated an extremely high degree of prognostic ability. The study effectively undertook the development of optimized process parameters of pelletization of furosemide pellets with tremendous SR characteristics.

  12. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    Science.gov (United States)

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  13. Response surface modeling and optimization of accelerated solvent extraction of four lignans from fructus schisandrae.

    Science.gov (United States)

    Zhao, Li-Chun; He, Ying; Deng, Xin; Yang, Geng-Liang; Li, Wei; Liang, Jian; Tang, Qian-Li

    2012-03-23

    A new method based on accelerated solvent extraction (ASE) combined with response surface methodology (RSM) modeling and optimization has been developed for the extraction of four lignans in Fructus Schisandrae (the fruits of Schisandra chinensis Baill). The RSM method, based on a three level and three variable Box-Behnken design (BBD), was employed to obtain the optimal combination of extraction condition. In brief, the lignans schizandrin, schisandrol B, deoxyschizandrin and schisandrin B were optimally extracted with 87% ethanol as extraction solvent, extraction temperature of 160 ° C, static extraction time of 10 min, extraction pressure of 1,500 psi, flush volume of 60% and one extraction cycle. The 3D response surface plot and the contour plot derived from the mathematical models were applied to determine the optimal conditions. Under the above conditions, the experimental value of four lignans was 14.72 mg/g, which is in close agreement with the value predicted by the model.

  14. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    Science.gov (United States)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-08-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.

  15. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Miller; T.S. Yoder

    2010-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

  16. Capturing the surface texture and shape of pollen: a comparison of microscopy techniques.

    Directory of Open Access Journals (Sweden)

    Mayandi Sivaguru

    Full Text Available Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques, and brightfield and differential interference contrast microscopy (DIC (transmitted light techniques. We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae, Mabea occidentalis (Euphorbiaceae and Agropyron repens (Poaceae. No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical

  17. A three-stage strategy for optimal price offering by a retailer based on clustering techniques

    International Nuclear Information System (INIS)

    Mahmoudi-Kohan, N.; Shayesteh, E.; Moghaddam, M. Parsa; Sheikh-El-Eslami, M.K.

    2010-01-01

    In this paper, an innovative strategy for optimal price offering to customers for maximizing the profit of a retailer is proposed. This strategy is based on load profile clustering techniques and includes three stages. For the purpose of clustering, an improved weighted fuzzy average K-means is proposed. Also, in this paper a new acceptance function for increasing the profit of the retailer is proposed. The new method is evaluated by implementation on a group of 300 customers of a 20 kV distribution network. (author)

  18. Reconstruction of plasma current profile of tokamaks using combinatorial optimization techniques

    International Nuclear Information System (INIS)

    Kishimoto, Maki; Sakasai, Kaoru; Ara, Katuyuki; Suzuki, Yasuo; Fujita, Takaaki

    1996-01-01

    New methods to reconstruct plasma shape and plasma current distribution from magnetic measurements are proposed. The reconstruction of plasma current profile from magnetic measurements is regarded as an optimum allocation problem of currents into cross section of the vacuum vessel of the tokamak. For solving this optimization problem, the authors use two types of solutions: a genetic algorithm and a combined method of a Hopfield neural network and a genetic algorithm. The effectiveness of these methods is shown by the application of these techniques to JT-60U plasmas

  19. Dynamical optimization techniques for the calculation of electronic structure in solids

    International Nuclear Information System (INIS)

    Benedek, R.; Min, B.I.; Garner, J.

    1989-01-01

    The method of dynamical simulated annealing, recently introduced by Car and Parrinello, provides a new tool for electronic structure computation as well as for molecular dynamics simulation. In this paper, we explore an optimization technique that is complementary to dynamical simulated annealing, the method of steepest descents (SD). As an illustration, SD is applied to calculate the total energy of diamond-Si, a system previously treated by Car and Parrinello. The adaptation of SD to treat metallic systems is discussed and a numerical application is presented. (author) 18 refs., 3 figs

  20. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    Directory of Open Access Journals (Sweden)

    Wenchang Hao

    2016-04-01

    Full Text Available The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM approach was established to extract the coupling-of-modes (COM parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of an R-SAW resonator by a P-matrix cascading technique. Cascading the P-matrixes of unloaded areas with mass loaded areas, the sensitivity for different sensitive areas was obtained by analyzing the frequency shift. The performance of the sensitivity analysis was confirmed by the measured responses from the silicon dioxide (SiO2 deposited on different sensitive areas of R-SAW resonators. It is shown that the mass sensitivity varies strongly for different sensitive areas, and the optimal sensitive area lies towards the center of the device.

  1. Comparison of polynomial approximations and artificial neural nets for response surfaces in engineering optimization

    Science.gov (United States)

    Carpenter, William C.

    1991-01-01

    Engineering optimization problems involve minimizing some function subject to constraints. In areas such as aircraft optimization, the constraint equations may be from numerous disciplines such as transfer of information between these disciplines and the optimization algorithm. They are also suited to problems which may require numerous re-optimizations such as in multi-objective function optimization or to problems where the design space contains numerous local minima, thus requiring repeated optimizations from different initial designs. Their use has been limited, however, by the fact that development of response surfaces randomly selected or preselected points in the design space. Thus, they have been thought to be inefficient compared to algorithms to the optimum solution. A development has taken place in the last several years which may effect the desirability of using response surfaces. It may be possible that artificial neural nets are more efficient in developing response surfaces than polynomial approximations which have been used in the past. This development is the concern of the work.

  2. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  3. Modeling and design optimization of adhesion between surfaces at the microscale.

    Energy Technology Data Exchange (ETDEWEB)

    Sylves, Kevin T. (University of Colorado, Boulder, CO)

    2008-08-01

    This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.

  4. Design and optimization of stepped austempered ductile iron using characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Rivera, J.L., E-mail: jose.hernandez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados-Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Z.C. 31109, Chihuahua (Mexico); Garay-Reyes, C.G.; Campos-Cambranis, R.E.; Cruz-Rivera, J.J. [Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, Lomas 2a. sección, Z.C. 78210, San Luis Potosí (Mexico)

    2013-09-15

    Conventional characterization techniques such as dilatometry, X-ray diffraction and metallography were used to select and optimize temperatures and times for conventional and stepped austempering. Austenitization and conventional austempering time was selected when the dilatometry graphs showed a constant expansion value. A special heat color-etching technique was applied to distinguish between the untransformed austenite and high carbon stabilized austenite which had formed during the treatments. Finally, it was found that carbide precipitation was absent during the stepped austempering in contrast to conventional austempering, on which carbide evidence was found. - Highlights: • Dilatometry helped to establish austenitization and austempering parameters. • Untransformed austenite was present even for longer processing times. • Ausferrite formed during stepped austempering caused important reinforcement effect. • Carbide precipitation was absent during stepped treatment.

  5. Optimizing Availability of a Framework in Series Configuration Utilizing Markov Model and Monte Carlo Simulation Techniques

    Directory of Open Access Journals (Sweden)

    Mansoor Ahmed Siddiqui

    2017-06-01

    Full Text Available This research work is aimed at optimizing the availability of a framework comprising of two units linked together in series configuration utilizing Markov Model and Monte Carlo (MC Simulation techniques. In this article, effort has been made to develop a maintenance model that incorporates three distinct states for each unit, while taking into account their different levels of deterioration. Calculations are carried out using the proposed model for two distinct cases of corrective repair, namely perfect and imperfect repairs, with as well as without opportunistic maintenance. Initially, results are accomplished using an analytical technique i.e., Markov Model. Validation of the results achieved is later carried out with the help of MC Simulation. In addition, MC Simulation based codes also work well for the frameworks that follow non-exponential failure and repair rates, and thus overcome the limitations offered by the Markov Model.

  6. A Multi-Model Reduction Technique for Optimization of Coupled Structural-Acoustic Problems

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas

    2016-01-01

    Finite Element models of structural-acoustic coupled systems can become very large for complex structures with multiple connected parts. Optimization of the performance of the structure based on harmonic analysis of the system requires solving the coupled problem iteratively and for several...... frequencies, which can become highly time consuming. Several modal-based model reduction techniques for structure-acoustic interaction problems have been developed in the literature. The unsymmetric nature of the pressure-displacement formulation of the problem poses the question of how the reduction modal...... base should be formed, given that the modal vectors are not orthogonal due to the asymmetry of the system matrices. In this paper, a multi-model reduction (MMR) technique for structure-acoustic interaction problems is developed. In MMR, the reduction base is formed with the modal vectors of a family...

  7. New efficient optimizing techniques for Kalman filters and numerical weather prediction models

    Science.gov (United States)

    Famelis, Ioannis; Galanis, George; Liakatas, Aristotelis

    2016-06-01

    The need for accurate local environmental predictions and simulations beyond the classical meteorological forecasts are increasing the last years due to the great number of applications that are directly or not affected: renewable energy resource assessment, natural hazards early warning systems, global warming and questions on the climate change can be listed among them. Within this framework the utilization of numerical weather and wave prediction systems in conjunction with advanced statistical techniques that support the elimination of the model bias and the reduction of the error variability may successfully address the above issues. In the present work, new optimization methods are studied and tested in selected areas of Greece where the use of renewable energy sources is of critical. The added value of the proposed work is due to the solid mathematical background adopted making use of Information Geometry and Statistical techniques, new versions of Kalman filters and state of the art numerical analysis tools.

  8. Optimizing Cutting Conditions for Minimum Surface Roughness in Face Milling of High Strength Steel Using Carbide Inserts

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2016-01-01

    Full Text Available A full factorial design technique is used to investigate the effect of machining parameters, namely, spindle speed (N, depth of cut (ap, and table feed rate (Vf, on the obtained surface roughness (Ra and Rt during face milling operation of high strength steel. A second-order regression model was built using least squares method depending on the factorial design results to approximate a mathematical relationship between the surface roughness and the studied process parameters. Analysis of variance was conducted to estimate the significance of each factor and interaction with respect to the surface roughness. For Ra, the results show that spindle speed, depth of cut, and table feed rate have a significant effect on the surface roughness in both linear and quadratic terms. There is also an interaction between depth of cut and feed rate. It also appears that feed rate has the greatest effect on the data variation followed by depth of cut. For Rt, the results show that the table feed rate is the most effective factor followed by the depth of cut, while the spindle speed had a significant small effect only in its quadratic term. The conditions of minimum Ra and Rt are identified through least square optimization. Moreover, multiobjective optimization for minimizing Ra and maximizing metal removal rate Q is conducted and the results are presented.

  9. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    of the project is concerned with simulation and optimization of surface acoustic wave (SAW) devices [4]. SAWs are for instance used in filters and resonators in mobile phones and to modulate light waves [5], and it is here essential to obtain waves with a high intensity, to direct the waves or to optimize...... of engineering fields such as mechanism design, fluid problems and photonic and phononic band-gap materials and structures [1,2]. In this project topology optimization is first applied to control acoustic properties in a room [3]. It is shown how the squared sound pressure amplitude in a certain part of a room...

  10. The research on surface characteristics of optical lens by 3D printing technique and precise diamond turning technique

    Science.gov (United States)

    Huang, Chien-Yao; Chang, Chun-Ming; Ho, Cheng-Fong; Lee, Tai-Wen; Lin, Ping-Hung; Hsu, Wei-Yao

    2017-06-01

    The advantage of 3D printing technique is flexible in design and fabrication. Using 3D printing technique, the traditional manufacturing limitations are not considered. The optical lens is the key component in an optical system. The traditional process to manufacture optical plastic lens is injection molding. However injection molding is only suitable for plastics lens, it cannot fabricate optical and mechanical components at same time. The assembly error of optical system can be reduced effectively with fabricating optical and mechanical components at same time. The process of printing optical and mechanical components simultaneously is proposed in previous papers, but the optical surface of printing components is not transparent. If we increase the transmittance of the optical surface, the printing components which fabricated by 3D printing process could be high transmission. Therefore, precise diamond turning technique has been used to turning the surface of 3D printing optical lens in this paper. The precise diamond turning techniques could process surfaces of components to meet the requirements of optical system. A 3D printing machine, Stratasys Connex 500, and a precise diamond turning machine, Precitech Freeform705XG, have been used in this paper, respectively. The dimension, roughness, transmission and printing types of 3D printing components have been discussed in this paper. After turning and polishing process, the roughness of 3D printing component is below 0.05 μm and the transmittance increase above 80 %. This optical module can be used in hand-held telescope and other system which need lens and special mechanical structure fabricated simultaneously.

  11. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    Science.gov (United States)

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optimization of Microencapsulation of Human Milk Fat Substitute by Response Surface Methodology.

    Science.gov (United States)

    Li, Xue; Cao, Jun; Bai, Xinpeng; Jiang, Zefang; Shen, Xuanri

    2018-03-09

    Human milk fat substitutes (HMFS) are rich in polyunsaturated fatty acids which upon microencapsulation, can be used as a source of high quality lipids in infant formula. The response surface methodology (RSM) was employed to optimize the microencapsulation condition of HMFS as a functional product. The microencapsulation efficiency (MEE) of microencapsulated HMFS was investigated with respect to four variables including concentration of soy lecithin (A), ratio of demineralized whey powder to malt dextrin (B), HFMS concentration (C), and homogenizing pressure (D). The optimum conditions for efficient microencapsulation of HMFS by the spray drying technique were determined as follows: the amount of soybean lecithin-0.96%, ratio of desalted whey powder to malt dextrin-2.04:1, oil content-17.37% and homogeneous pressure-0.46MPa. Under these conditions, the MEE was 84.72%, and the basic indices of the microcapsules were good. The structure of the microcapsules, as observed by scanning electron microscopy (SEM), revealed spherical, smooth-surfaced capsules with diameters ranging between 10-50 μm. Compared with HFMS, the peroxide value (POV) and acid value (AV) of the microcapsule were significantly lower during storage indicating that the microencapsulation process increases stability and shelf life. Infrared spectroscopic analyses indicated that HFMS had the same characteristic functional groups as the oil extracted from microcapsules. Simulated in vitro digestion revealed that the microcapsules were digested completely within 2h with maximum lipid absorption rate of 64%. Furthermore, these results advocate the embedding process of HFMS by RSM due to its efficacy.

  13. Self-cleaning Foliar Surfaces Characterization using RIMAPS Technique and Variogram Method

    International Nuclear Information System (INIS)

    Rosi, Pablo E.

    2002-01-01

    Along the last ten years many important studies about characterization of self-cleaning foliar surfaces have been done and focused new interest on this kind of surfaces.These studies were possible due to the development of a novel preparation technique for this biological material that let us observe the delicate structures of a foliar surface under scanning electron microscope (S.E.M.).This technique consists of replacing the natural water of the specimen by glycerol. Digital S.E.M. images from both self-cleaning and non-self-cleaning foliar surfaces were obtained and analyzed using RIMAPS technique and Variograms method. Our results revealed the existence of a common and exclusive geometrical pattern that is found in species which present self-cleaning foliar surfaces.This pattern combines at least nine different directions.The results from the Variograms method showed that the stomata play a key role in the determination of foliar surface roughness. In addition, spectra from RIMAPS technique constitute a fingerprint of a foliar surface so they can be used to find evolutionary relationships among species.Further studies will provide more detailed information to fully elucidate the self-cleaning pattern, so it might be possible to reproduce it on an artificial surface and make it self-cleaning

  14. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  15. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.

    Science.gov (United States)

    Zeković, Zoran; Vladić, Jelena; Vidović, Senka; Adamović, Dušan; Pavlić, Branimir

    2016-10-01

    Microwave-assisted extraction (MAE) of polyphenols from coriander seeds was optimized by simultaneous maximization of total phenolic (TP) and total flavonoid (TF) yields, as well as maximized antioxidant activity determined by 1,1-diphenyl-2-picrylhydrazyl and reducing power assays. Box-Behnken experimental design with response surface methodology (RSM) was used for optimization of MAE. Extraction time (X1 , 15-35 min), ethanol concentration (X2 , 50-90% w/w) and irradiation power (X3 , 400-800 W) were investigated as independent variables. Experimentally obtained values of investigated responses were fitted to a second-order polynomial model, and multiple regression analysis and analysis of variance were used to determine fitness of the model and optimal conditions. The optimal MAE conditions for simultaneous maximization of polyphenol yield and increased antioxidant activity were an extraction time of 19 min, an ethanol concentration of 63% and an irradiation power of 570 W, while predicted values of TP, TF, IC50 and EC50 at optimal MAE conditions were 311.23 mg gallic acid equivalent per 100 g dry weight (DW), 213.66 mg catechin equivalent per 100 g DW, 0.0315 mg mL(-1) and 0.1311 mg mL(-1) respectively. RSM was successfully used for multi-response optimization of coriander seed polyphenols. Comparison of optimized MAE with conventional extraction techniques confirmed that MAE provides significantly higher polyphenol yields and extracts with increased antioxidant activity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Optimized Model Surfaces for Advanced Atomic Force Microscopy Studies of Surface Nanobubbles.

    Science.gov (United States)

    Song, Bo; Zhou, Yi; Schönherr, Holger

    2016-11-01

    The formation of self-assembled monolayers (SAMs) of binary mixtures of 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on ultraflat template-stripped gold (TSG) surfaces was systematically investigated to clarify the assembly behavior, composition, and degree of possible phase segregation in light of atomic force microscopy (AFM) studies of surface nanobubbles on these substrates. The data for SAMs on TSG were compared to those obtained by adsorption on rough evaporated gold, as reported in a previous study. Quartz crystal microbalance and surface plasmon resonance data acquired in situ on TSG indicate that similar to SAM formation on conventional evaporated gold substrates ODT and MHDA form monolayers and bilayers, respectively. The second layer on MHDA, whose formation is attributed to hydrogen bonding, can be easily removed by adequate rinsing with water. The favorable agreement of the grazing incidence reflection Fourier transform infrared (GIR FTIR) spectroscopy and contact angle data analyzed with the Israelachvili-Gee model suggests that the binary SAMs do not segregate laterally. This conclusion is fully validated by high-resolution friction force AFM observations down to a length scale of 8-10 nm, which is much smaller than the typical observed surface nanobubble radii. Finally, correspondingly functionalized TSG substrates are shown to be valuable supports for studying surface nanobubbles by AFM in water and for addressing the relation between surface functionality and nanobubble formation and properties.

  17. Performance of swarm based optimization techniques for designing digital FIR filter: A comparative study

    Directory of Open Access Journals (Sweden)

    I. Sharma

    2016-09-01

    Full Text Available In this paper, a linear phase FIR filter is designed through recently proposed nature inspired optimization algorithm known as Cuckoo search (CS. A comparative study of Cuckoo search (CS, particle swarm optimization (PSO and artificial bee colony (ABC nature inspired optimization methods in the field of linear phase FIR filter design is also presented. For this purpose, an improved L1 weighted error function is formulated in frequency domain, and minimized through CS, PSO and ABC respectively. The error or objective function has a controlling parameter wt which controls the amount of ripple in the desired band of frequency. The performance of FIR filter is examined through three key parameters; Maximum Pass Band Ripple (MPR, Maximum Stopband Ripple (MSR and Stopband Attenuation (As. Comparative study and the simulation results reveal that the designed filter with CS gives better performance in terms of Maximum Stopband Ripple (MSR, and Stopband Attenuation (As for low order filter design, and for higher order it also gives better performance in term of Maximum Passband Ripple (MPR. Superiority of the proposed technique is also shown through comparison with other recently proposed methods.

  18. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  19. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  20. Reducing the impact of a desalination plant using stochastic modeling and optimization techniques

    Science.gov (United States)

    Alcolea, Andres; Renard, Philippe; Mariethoz, Gregoire; Bertone, François

    2009-02-01

    SummaryWater is critical for economic growth in coastal areas. In this context, desalination has become an increasingly important technology over the last five decades. It often has environmental side effects, especially when the input water is pumped directly from the sea via intake pipelines. However, it is generally more efficient and cheaper to desalt brackish groundwater from beach wells rather than desalting seawater. Natural attenuation is also gained and hazards due to anthropogenic pollution of seawater are reduced. In order to minimize allocation and operational costs and impacts on groundwater resources, an optimum pumping network is required. Optimization techniques are often applied to this end. Because of aquifer heterogeneity, designing the optimum pumping network demands reliable characterizations of aquifer parameters. An optimum pumping network in a coastal aquifer in Oman, where a desalination plant currently pumps brackish groundwater at a rate of 1200 m 3/h for a freshwater production of 504 m 3/h (insufficient to satisfy the growing demand in the area) was designed using stochastic inverse modeling together with optimization techniques. The Monte Carlo analysis of 200 simulations of transmissivity and storage coefficient fields conditioned to the response to stresses of tidal fluctuation and three long term pumping tests was performed. These simulations are physically plausible and fit the available data well. Simulated transmissivity fields are used to design the optimum pumping configuration required to increase the current pumping rate to 9000 m 3/h, for a freshwater production of 3346 m 3/h (more than six times larger than the existing one). For this task, new pumping wells need to be sited and their pumping rates defined. These unknowns are determined by a genetic algorithm that minimizes a function accounting for: (1) drilling, operational and maintenance costs, (2) target discharge and minimum drawdown (i.e., minimum aquifer

  1. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  2. Shape Optimization of Supersonic Turbines Using Response Surface and Neural Network Methods

    Science.gov (United States)

    Papila, Nilay; Shyy, Wei; Griffin, Lisa W.; Dorney, Daniel J.

    2001-01-01

    Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. A global optimization framework combining the radial basis neural network (RBNN) and the polynomial-based response surface method (RSM) is constructed for shape optimization of a supersonic turbine. Based on the optimized preliminary design, shape optimization is performed for the first vane and blade of a 2-stage supersonic turbine, involving O(10) design variables. The design of experiment approach is adopted to reduce the data size needed by the optimization task. It is demonstrated that a major merit of the global optimization approach is that it enables one to adaptively revise the design space to perform multiple optimization cycles. This benefit is realized when an optimal design approaches the boundary of a pre-defined design space. Furthermore, by inspecting the influence of each design variable, one can also gain insight into the existence of multiple design choices and select the optimum design based on other factors such as stress and materials considerations.

  3. Medium Optimization for 5’-Phosphodiesterase Production from Penicillium citrinum Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Lu-E Shi

    2007-01-01

    Full Text Available Medium optimization for 5’-phosphodiesterase production from Penicillium citrinum was studied by applying one-factor-at-a-time method, orthogonal array method and response surface methodology in this paper. The one-factor-at-a-time method was used to study the effects of carbon, nitrogen, phosphorus and metal ion sources on 5’-phosphodiesterase production. Among various carbon and nitrogen sources used, glucose and peptone were the most suitable substances for 5’-phosphodiesterase production, respectively. Subsequently, the concentrations of glucose, peptone, groundnut meal, Zn2+ and KH2PO4 were optimized using the orthogonal array method. Response surface methodology was also applied for medium optimization. Glucose concentration (X1, peptone concentration (X2 and groundnut meal (X3 were selected as the independent variables. Results showed that the regression models adequately explained the data variation and represented the actual relationships between the parameters and responses. The optimum conditions were glucose at a fraction of 6.5 %, peptone at a fraction of 0.45 % and groundnut meal at a fraction of 1.0 %. Maximum enzyme activity was 353 U/mL under the optimum conditions. Maximum 5’-phosphodiesterase activity in media optimized by orthogonal method and response surface methodology was about 1.286 and 1.456 times, respectively, greater than in the medium optimized by one-factor-at-a-time method.

  4. Combining low-energy electron microscopy and scanning probe microscopy techniques for surface science: development of a novel sample-holder.

    Science.gov (United States)

    Cheynis, F; Leroy, F; Ranguis, A; Detailleur, B; Bindzi, P; Veit, C; Bon, W; Müller, P

    2014-04-01

    We introduce an experimental facility dedicated to surface science that combines Low-Energy Electron Microscopy/Photo-Electron Emission Microscopy (LEEM/PEEM) and variable-temperature Scanning Probe Microscopy techniques. A technical challenge has been to design a sample-holder that allows to exploit the complementary specifications of both microscopes and to preserve their optimal functionality. Experimental demonstration is reported by characterizing under ultrahigh vacuum with both techniques: Au(111) surface reconstruction and a two-layer thick graphene on 6H-SiC(0001). A set of macros to analyze LEEM/PEEM data extends the capabilities of the setup.

  5. Influence of optimizing protocol choice on the integral dose value in prostate radiotherapy planning by dynamic techniques - Pilot study.

    Science.gov (United States)

    Zaleska, Anna; Bogaczyk, Krzysztof; Piotrowski, Tomasz

    2017-01-01

    The purpose of this study was to compare the values of integral dose, calculated for treatment plans of dynamic radiotherapy techniques prepared with two different optimization protocols. Delivering radiation by IMRT, VMAT and also HT techniques has an influence on the low dose deposition of large areas of the patient body. Delivery of low dose can induce injury of healthy cells. In this situation, a good solution would be to reduce the area, which receives a low dose, but with appropriate dose level for the target volume. To calculate integral dose values of plans structures, we used 90 external beam radiotherapy plans prepared for three techniques (intensity modulated radiotherapy, volumetric modulated arc therapy and helical tomotherapy). One technique includes three different geometry combinations. 45 plans were prepared with classic optimization protocol and 45 with rings optimization protocol which should reduce the low doses in the normal tissue. Differences in values of the integral dose depend on the geometry and technique of irradiation, as well as optimization protocol used in preparing treatment plans. The application of the rings optimization caused the value of normal tissue integral dose (NTID) to decrease. It is possible to limit the area of low dose irradiation and reduce NTID in dynamic techniques with the same clinical constraints for OAR and PTV volumes by using an optimization protocol other than the classic one.

  6. Mobile depth profiling and sub-surface imaging techniques for historical paintings—A review

    Energy Technology Data Exchange (ETDEWEB)

    Alfeld, Matthias, E-mail: matthias.alfeld@desy.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany); University of Antwerp, Department of Chemistry, Groenenbrogerlaan 171, B-2020 Antwerp (Belgium); Broekaert, José A.C., E-mail: jose.broekaert@chemie.uni-hamburg.de [University of Hamburg, Department of Chemistry, Martin-Luther-King Platz 6, D-20146 Hamburg (Germany)

    2013-10-01

    Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined. This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support. Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements. Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections. These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings. Next to selected case studies the capabilities and limitations of the techniques are discussed. - Highlights: • All mobile sub-surface and depth-profiling techniques for paintings are reviewed. • The number of techniques available has increased considerably in the last years. • X-ray radiography and infrared reflectography are still the most used techniques. • Scanning macro-XRF and optical coherence tomography begin to establish. • Industrial non destructive testing techniques support the preservation of paintings.

  7. Modeling of aerodynamic Space-to-Surface flight with optimal trajectory for targeting

    OpenAIRE

    Gornev, Serge

    2003-01-01

    Modeling has been created for a Space-to-Surface system defined for an optimal trajectory for targeting in terminal phase. The modeling includes models for simulation atmosphere, speed of sound, aerodynamic flight and navigation by an infrared system. The modeling simulation includes statistical analysis of the modeling results.

  8. Use of response surface design in the optimization of starter cultures ...

    African Journals Online (AJOL)

    Admin

    2013-05-08

    May 8, 2013 ... The development and management of an inoculum through various stages has a definite effect on subsequent performance and economics of a microbial process. To achieve this, application of response surface modeling in the optimization of the primary and secondary inoculum build-up of.

  9. Optimization and in vitro antiproliferation of Curcuma wenyujin's active extracts by ultrasonication and response surface methodology.

    Science.gov (United States)

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2016-01-01

    Curcuma wenyujin, a member of the genus Curcuma, has been widely prescribed for anti-cancer therapy. Multiple response surface optimization has attracted a great attention, while, the research about optimizing three or more responses employing response surface methodology (RSM) was very few. RSM and desirability function (DF) were employed to get the optimum ultrasonic extraction parameters, in which the extraction yields of curdione, furanodienone, curcumol and germacrone from C. wenyujin were maximum. The yields in the extract were accurately quantified using the validated high performance liquid chromatography method with a good precision and accuracy. The optimization results indicated that the maximum combined desirability 97.1 % was achieved at conditions as follows: liquid-solid ratio, 8 mL g(-1); ethanol concentration, 70 % and ultrasonic time, 20 min. The extraction yields gained from three verification experiments were in fine agreement with those of the model's predictions. The surface morphologies of the sonication-treated C. wenyujin were loose and rough. The extract of C. wenyujin presented obvious antiproliferative activities against RKO and HT-29 cells in vitro. Response surface methodology was successfully applied to model and optimize the ultrasonic extraction of four bioactive components from C. wenyujin for antiproliferative activitiy.Graphical abstract.

  10. Optimization of restricted ROC surfaces in three-class classification tasks.

    Science.gov (United States)

    Edwards, Darrin C; Metz, Charles E

    2007-10-01

    We have shown previously that an N-class ideal observer achieves the optimal receiver operating characteristic (ROC) hypersurface in a Neyman-Pearson sense. Due to the inherent complexity of evaluating observer performance even in a three-class classification task, some researchers have suggested a generally incomplete but more tractable evaluation in terms of a surface, plotting only the three "sensitivities." More generally, one can evaluate observer performance with a single sensitivity or misclassification probability as a function of two linear combinations of sensitivities or misclassification probabilities. We analyzed four such formulations including the "sensitivity" surface. In each case, we applied the Neyman-Pearson criterion to find the observer which achieves optimal performance with respect to each given set of "performance description variables" under consideration. In the unrestricted case, optimization with respect to the Neyman-Pearson criterion yields the ideal observer, as does maximization of the observer's expected utility. Moreover, during our consideration of the restricted cases, we found that the two optimization methods do not merely yield the same observer, but are in fact completely equivalent in a mathematical sense. Thus, for a wide variety of observers which maximize performance with respect to a restricted ROC surface in the Neyman-Pearson sense, that ROC surface can also be shown to provide a complete description of the observer's performance in an expected utility sense.

  11. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  12. Overview of systems and techniques for surface display of recombinant proteins in yeast S. cerevisiae

    Directory of Open Access Journals (Sweden)

    Renata Teparic

    2015-12-01

    Full Text Available In the past decade much effort has been devoted to the development of new expression systems and novel techniques for the surface display of heterologous proteins in yeast in order to improve their applications in biotechnology, food technology, pharmacology and medicine. Heterologous protein-encoding genes are generally fused with genes coding for yeast cell wall proteins or their fragments required for anchoring. The variety of reactions by which a protein can be displayed at the cell surface enables finding the appropriate one for each individual protein. However, it is still challenging how to improve the efficiency of display of protein complexes and increase the quantity of protein displayed on the yeast surface. Recently, synthetic protein chimeras that self-assemble into the scaffolds on the yeast surface displaying different proteins have been constructed. This review focuses on systems and techniques for display of recombinant proteins on the yeast cell surfaces and applications afforded by this technology.

  13. Surface plasmons and Bloch surface waves: Towards optimized ultra-sensitive optical sensors

    International Nuclear Information System (INIS)

    Lereu, Aude L.

    2017-01-01

    In photonics, the field concentration and enhancement have been major objectives for achieving size reduction and device integration. Plasmonics offers resonant field confinement and enhancement, but ultra-sharp optical resonances in all-dielectric multi-layer thin films are emerging as a powerful contestant. Thus, applications capitalizing upon stronger and sharper optical resonances and larger field enhancements could be faced with a choice for the superior platform. Here in this paper, we present a comparison between plasmonic and dielectric multi-layer thin films for their resonance merits. We show that the remarkable characteristics of the resonance behavior of optimized dielectric multi-layers can outweigh those of their metallic counterpart.

  14. Process optimization of rolling for zincked sheet technology using response surface methodology and genetic algorithm

    Science.gov (United States)

    Ji, Liang-Bo; Chen, Fang

    2017-07-01

    Numerical simulation and intelligent optimization technology were adopted for rolling and extrusion of zincked sheet. By response surface methodology (RSM), genetic algorithm (GA) and data processing technology, an efficient optimization of process parameters for rolling of zincked sheet was investigated. The influence trend of roller gap, rolling speed and friction factor effects on reduction rate and plate shortening rate were analyzed firstly. Then a predictive response surface model for comprehensive quality index of part was created using RSM. Simulated and predicted values were compared. Through genetic algorithm method, the optimal process parameters for the forming of rolling were solved. They were verified and the optimum process parameters of rolling were obtained. It is feasible and effective.

  15. [Optimization of one-step pelletization technology of Jiuwei Xifeng granules by response surface methodology].

    Science.gov (United States)

    Wang, Xiu-hai; Yang, Xu-fang; Fan, Ye-wen; Zhang, Yan-jun; Xu, Zhong-kun; Yang, Lin-yong; Wang, Zhen-zhong; Xiao, Wei

    2014-12-01

    Using the qualified rates of particles as the evaluation indexes, the impact tactors of one-step pelletization technology of Jiuwei Xifeng granules were selected from six factors by the Plackett-Burman experimental design and the levels of non-significant factors were identified. According to the Plackett-Burman experimental design, choosing the qualified rates of particles and angle of repose as the evaluation indexes, three levels of the three factors were selected by Box-Behnken of central composite design to optimize the experimental. The best conditions were as follows: the fluid extract was sprayed with frequency of 29 r . min-1, inlet air temperature was 90 °C, the frequency of fan was 34 Hz. Under the response surface methodology optimized scheme, the average experimental results are similar to the predicted values, and surface methodology could be used in the optimization of one-step pelletization for Chinese materia medica.

  16. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  17. Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process

    Directory of Open Access Journals (Sweden)

    Sina Lohrasbi

    2016-09-01

    Full Text Available Latent Heat Thermal Energy Storage Systems (LHTESS containing Phase Change Material (PCM are used to establish balance between energy supply and demand. PCMs have high latent heat but low thermal conductivity, which affects their heat transfer performance. In this paper, a novel fin array has been optimized by multi-objective Response Surface Method (RSM based on discharging process of PCM, and then this fin configuration is applied on LHTESS, and comparison between full discharging time by applying this fin array and LHTESS with other fin structures has been carried out. The employed numerical method in this paper is Standard Galerkin Finite Element Method. Adaptive grid refinement is used to solve the equations. Since the enhancement technique, which has been employed in the present study reduces the employed PCM mass, maximum energy storage capacity variations have been considered. Therefore phase change expedition and maximum energy storage capacity have been considered as the objectives of optimization and the importance of second objective is indicated which is proposed as the novelty here. Results indicate that considering maximum energy storage capacity as the objective of optimization procedure leads to efficient shape design of LHTESS. Also employing optimized V-shaped fin in LHTESS, expedites discharging process considerably in comparison with the LHTESS without fin.

  18. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2017-03-01

    Full Text Available The use of the eddy current technique (ECT for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM. The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  19. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  20. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    Science.gov (United States)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  1. Optimization of Enzymatic Process for Vanillin Extraction Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Qinghuang Wang

    2012-07-01

    Full Text Available Vanillin was extracted from vanilla beans using pretreatment with cellulase to produce enzymatic hydrolysis, and response surface methodology (RSM was applied to optimize the processing parameters of this extraction. The effects of heating time, enzyme quantity and temperature on enzymatic extraction of vanillin were evaluated. Extraction yield (mg/g was used as the response value. The results revealed that the increase in heating time and the increase in enzyme quantity (within certain ranges were associated with an enhancement of extraction yield, and that the optimal conditions for vanillin extraction were: Heating time 6 h, temperature 60 °C and enzyme quantity 33.5 mL. Calculated from the final polynomial functions, the optimal response of vanillin extraction yield was 7.62 mg/g. The predicted results for optimal reaction conditions were in good agreement with experimental values.

  2. Optimization of enzymatic process for vanillin extraction using response surface methodology.

    Science.gov (United States)

    Gu, Fenglin; Xu, Fei; Tan, Lehe; Wu, Huasong; Chu, Zhong; Wang, Qinghuang

    2012-07-25

    Vanillin was extracted from vanilla beans using pretreatment with cellulase to produce enzymatic hydrolysis, and response surface methodology (RSM) was applied to optimize the processing parameters of this extraction. The effects of heating time, enzyme quantity and temperature on enzymatic extraction of vanillin were evaluated. Extraction yield (mg/g) was used as the response value. The results revealed that the increase in heating time and the increase in enzyme quantity (within certain ranges) were associated with an enhancement of extraction yield, and that the optimal conditions for vanillin extraction were: Heating time 6 h, temperature 60 °C and enzyme quantity 33.5 mL. Calculated from the final polynomial functions, the optimal response of vanillin extraction yield was 7.62 mg/g. The predicted results for optimal reaction conditions were in good agreement with experimental values.

  3. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  4. Deploying response surface methodology (RSM) and glowworm swarm optimization (GSO) in optimizing warpage on a mobile phone cover

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM) and Glowworm Swarm Optimization (GSO). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM and GSO. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0 whereas the GSO was utilized by using MATLAB. The warpage in y direction recommended by RSM were reduced by 70 %. The warpages recommended by GSO were decreased by 61 % in y direction. The resulting warpages under optimal parameter setting by RSM and GSO were validated by simulation in AMI 2012. RSM performed better than GSO in solving warpage issue.

  5. Comparative investigation of optical techniques for topography measurement of rough plastic surfaces

    DEFF Research Database (Denmark)

    Bariani, Paolo; Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2003-01-01

    An experimental assessment of three-dimensional surface topography characterisation methods for use with rough plastic parts has been carried out. Also, calibration methods and measuring procedures including optimal measuring conditions have been developed and applied. The study is based on rough...... polypropylene parts manufactured by injection moulding. The mould was equipped with inserts with EDM machined surfaces (Sa  3.5 µm) in order to represent a typical tool surface for injection moulding. A focus detection laser scanning profiler, a confocal scanning laser microscope, a white light interferometer...... and, in addition, a scanning electron microscope, have been used in the analysis of plastic surfaces. This investigation has shown that topography assessment of rough plastic surfaces is critical to both white light interference microscope and confocal microscope while the focus detection laser...

  6. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    Science.gov (United States)

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  7. Application of chaos-based chaotic invasive weed optimization techniques for environmental OPF problems in the power system

    International Nuclear Information System (INIS)

    Ghasemi, Mojtaba; Ghavidel, Sahand; Aghaei, Jamshid; Gitizadeh, Mohsen; Falah, Hasan

    2014-01-01

    Highlights: • Chaotic invasive weed optimization techniques based on chaos. • Nonlinear environmental OPF problem considering non-smooth fuel cost curves. • A comparative study of CIWO techniques for environmental OPF problem. - Abstract: This paper presents efficient chaotic invasive weed optimization (CIWO) techniques based on chaos for solving optimal power flow (OPF) problems with non-smooth generator fuel cost functions (non-smooth OPF) with the minimum pollution level (environmental OPF) in electric power systems. OPF problem is used for developing corrective strategies and to perform least cost dispatches. However, cost based OPF problem solutions usually result in unattractive system gaze emission issue (environmental OPF). In the present paper, the OPF problem is formulated by considering the emission issue. The total emission can be expressed as a non-linear function of power generation, as a multi-objective optimization problem, where optimal control settings for simultaneous minimization of fuel cost and gaze emission issue are obtained. The IEEE 30-bus test power system is presented to illustrate the application of the environmental OPF problem using CIWO techniques. Our experimental results suggest that CIWO techniques hold immense promise to appear as efficient and powerful algorithm for optimization in the power systems

  8. Optimization of Gate's technique for measurement of glomerular filtration rate during routine renal scan

    International Nuclear Information System (INIS)

    Zakavi, R.; Momennejad, M.; Soleimani, K.

    2002-01-01

    Using gate's technique for glomerular filtration rate measurement with Gamma camera, the patient is received 5 mCi of Tc-99m-DTPA. By this amount of radioactivity, good quality renal scan is not possible. This study tries to optimize gate's technique for glomerular filtration rate measurement during routing renal scan (with 10-15 mCi). Methods and materials: Scanning was performed for 60 seconds from samples of Tc-99m with activities of 3, 9, 12, 15 and 18 mCi in a small syringe, with a 30 cm distance from the detector. Another sample of mCi of Tc-99m was imaged for 5, 10, 15, 20 and 30 seconds. The same sample was again imaged for 10 seconds in different distances (10, 20, 30 and 40 cm) from the detector. Each image was acquired 10 times. Using rectangular region of interest, total count and maximum count per pixel were recorded for all images. Results: The total count revealed rising in the images form 3 mCi to 15 mCi samples while declining thereafter, suggesting paralysis of the Gamma camera in high activities. Maximum count per pixel was 32767 (2 in 15 power minus one ) in all images except for the 3 mCi sample image, suggesting saturation of the pixels in high activities. Also saturation of the pixels was noted in images of 12 mCi sample for more than 15 seconds. No saturation of pixels was noticed within 20-40 cm distance from the detector. Conclusion: By optimization of the Gate's technique for glomerular filtration rate measurement, glomerular filtration Rate can be calculated during routine renal scan. We suggest using 10-15 mCi of Tc-99 m-DTPA, with 5-15 seconds pre injected syringe count, 30 cm distant from the detector. Comparison of glomerular filtration rate calculation using suggested technique with glomerular filtration rate estimation by creatinine clearance in 9 patients, resulted in a significant and good correlation coefficient. (R=0.883, P=0.005)

  9. Analysis and optimization of a proton exchange membrane fuel cell using modeling techniques

    International Nuclear Information System (INIS)

    Torre Valdés, Ing. Raciel de la; García Parra, MSc. Lázaro Roger; González Rodríguez, MSc. Daniel

    2015-01-01

    This paper proposes a three-dimensional, non-isothermal and steady-state model of Proton Exchange Membrane Fuel Cell using Computational Fluid Dynamic techniques, specifically ANSYS FLUENT 14.5. It's considered multicomponent diffusion and two-phasic flow. The model was compared with experimental published data and with another model. The operation parameters: reactants pressure and temperature, gases flow direction, gas diffusion layer and catalyst layer porosity, reactants humidification and oxygen concentration are analyzed. The model allows the fuel cell design optimization taking in consideration the channels dimensions, the channels length and the membrane thickness. Furthermore, fuel cell performance is analyzed working with SPEEK membrane, an alternative electrolyte to Nafion. In order to carry on membrane material study, it's necessary to modify the expression that describes the electrolyte ionic conductivity. It's found that the device performance has got a great sensibility to pressure, temperature, reactant humidification and oxygen concentration variations. (author)

  10. Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique

    Science.gov (United States)

    Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem

    2018-03-01

    Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.

  11. Inversion of SAR data in active volcanic areas by optimization techniques

    Directory of Open Access Journals (Sweden)

    G. Nunnari

    2005-01-01

    Full Text Available The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt. Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique.

  12. An Evolutionary Video Assignment Optimization Technique for VOD System in Heterogeneous Environment

    Directory of Open Access Journals (Sweden)

    King-Man Ho

    2010-01-01

    Full Text Available We investigate the video assignment problem of a hierarchical Video-on-Demand (VOD system in heterogeneous environments where different quality levels of videos can be encoded using either replication or layering. In such systems, videos are delivered to clients either through a proxy server or video broadcast/unicast channels. The objective of our work is to determine the appropriate coding strategy as well as the suitable delivery mechanism for a specific quality level of a video such that the overall system blocking probability is minimized. In order to find a near-optimal solution for such a complex video assignment problem, an evolutionary approach based on genetic algorithm (GA is proposed. From the results, it is shown that the system performance can be significantly enhanced by efficiently coupling the various techniques.

  13. A bilevel decomposition technique for the optimal planning of offshore platforms

    Directory of Open Access Journals (Sweden)

    M.C.A. Carvalho

    2006-03-01

    Full Text Available There is a great incentive for developing systematic approaches that effectively identify strategies for planning oilfield complexes. This paper proposes an MILP that relies on a reformulation of the model developed by Tsarbopoulou (UCL M.S. Dissertation, London, 2000. Moreover, a bilevel decomposition technique is applied to the MILP. A master problem determines the assignment of platforms to wells and a planning subproblem calculates the timing for fixed assignments. Furthermore, a heuristic search procedure that relies on the distance between platforms and wells is applied in order to reduce the search region. Results show that the decomposition approach using heuristic generates optimal solutions for instances of up to 500 wells and 25 platforms in 10 discrete time periods that otherwise could not be solved with a full-scale approach. One important feature regarding these instances is that they correspond to problems of real-world dimension.

  14. Multi Objective Optimization of Flux Cored Arc Weld Parameters Using Hybrid Grey - Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    M Satheesh

    2014-06-01

    Full Text Available In the present work, an attempt has been made to use the grey-based fuzzy logic method to solve correlated multiple response optimization problems in the field of flux cored arc welding. This approach converts the complex multiple objectives into a single grey-fuzzy reasoning grade. Based on the grey-fuzzy reasoning grade, optimum parameters are identified. The significant contributions of parameters are estimated using analysis of variance (ANOVA. This evaluation procedure can be used in intelligent decision making for a welding operator. The proposed and developed method has good accuracy and competency. The proposed technique provides manufacturers who develop intelligent manufacturing systems a method to facilitate the achievement of the highest level of automation.

  15. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data

    Directory of Open Access Journals (Sweden)

    S. Ye

    2016-09-01

    Full Text Available The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD models are improved and thus the zenith wet delay (ZWD can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.

  16. AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands

    Science.gov (United States)

    Tsai, Wen-Ping; Chang, Fi-John; Chang, Li-Chiu; Herricks, Edwin E.

    2015-11-01

    Flow regime is the key driver of the riverine ecology. This study proposes a novel hybrid methodology based on artificial intelligence (AI) techniques for quantifying riverine ecosystems requirements and delivering suitable flow regimes that sustain river and floodplain ecology through optimizing reservoir operation. This approach addresses issues to better fit riverine ecosystem requirements with existing human demands. We first explored and characterized the relationship between flow regimes and fish communities through a hybrid artificial neural network (ANN). Then the non-dominated sorting genetic algorithm II (NSGA-II) was established for river flow management over the Shihmen Reservoir in northern Taiwan. The ecosystem requirement took the form of maximizing fish diversity, which could be estimated by the hybrid ANN. The human requirement was to provide a higher satisfaction degree of water supply. The results demonstrated that the proposed methodology could offer a number of diversified alternative strategies for reservoir operation and improve reservoir operational strategies producing downstream flows that could meet both human and ecosystem needs. Applications that make this methodology attractive to water resources managers benefit from the wide spread of Pareto-front (optimal) solutions allowing decision makers to easily determine the best compromise through the trade-off between reservoir operational strategies for human and ecosystem needs.

  17. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    International Nuclear Information System (INIS)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S.; Jurado, F.

    2009-01-01

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with.

  18. Comparison of metaheuristic techniques to determine optimal placement of biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reche-Lopez, P.; Ruiz-Reyes, N.; Garcia Galan, S. [Telecommunication Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain); Jurado, F. [Electrical Engineering Department, University of Jaen Polytechnic School, C/ Alfonso X el Sabio 28, 23700 Linares, Jaen (Spain)

    2009-08-15

    This paper deals with the application and comparison of several metaheuristic techniques to optimize the placement and supply area of biomass-fueled power plants. Both, trajectory and population-based methods are applied for our goal. In particular, two well-known trajectory method, such as Simulated Annealing (SA) and Tabu Search (TS), and two commonly used population-based methods, such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are hereby considered. In addition, a new binary PSO algorithm has been proposed, which incorporates an inertia weight factor, like the classical continuous approach. The fitness function for the metaheuristics is the profitability index, defined as the ratio between the net present value and the initial investment. In this work, forest residues are considered as biomass source, and the problem constraints are: the generation system must be located inside the supply area, and its maximum electric power is 5 MW. The comparative results obtained by all considered metaheuristics are discussed. Random walk has also been assessed for the problem we deal with. (author)

  19. A multi-criteria optimization technique for SSSC based power oscillation damping controller design

    Directory of Open Access Journals (Sweden)

    Sarat Chandra Swain

    2016-06-01

    Full Text Available In this paper, Non-dominated Sorting Genetic Algorithm-II (NSGA-II technique is applied to obtain Pareto optimal set of solutions pertaining to the tuning of lead-lag structured SSSC-based stabilizer. The design objective is to get maximum damping (performance with minimum control effort (cost. Further a fuzzy based membership function value assignment method is employed to choose the best compromise solution. Simulation results are presented under various loading conditions and disturbances for various control signals to show the effectiveness and robustness of the proposed approach. The effectiveness and superiority of the proposed design approach are illustrated for both single machine infinite bus and multi-machine power systems by comparing the proposed approach with some recently published single objective and evolutionary multi-objective approaches such as Differential Evolution (DE, Particle Swarm Optimization (PSO and Multi-objective Genetic Algorithm. It is observed that the proposed approach yields superior damping performance compared to some recently published approaches.

  20. Multi-view 3D scene reconstruction using ant colony optimization techniques

    International Nuclear Information System (INIS)

    Chrysostomou, Dimitrios; Gasteratos, Antonios; Nalpantidis, Lazaros; Sirakoulis, Georgios C

    2012-01-01

    This paper presents a new method performing high-quality 3D object reconstruction of complex shapes derived from multiple, calibrated photographs of the same scene. The novelty of this research is found in two basic elements, namely: (i) a novel voxel dissimilarity measure, which accommodates the elimination of the lighting variations of the models and (ii) the use of an ant colony approach for further refinement of the final 3D models. The proposed reconstruction procedure employs a volumetric method based on a novel projection test for the production of a visual hull. While the presented algorithm shares certain aspects with the space carving algorithm, it is, nevertheless, first enhanced with the lightness compensating image comparison method, and then refined using ant colony optimization. The algorithm is fast, computationally simple and results in accurate representations of the input scenes. In addition, compared to previous publications, the particular nature of the proposed algorithm allows accurate 3D volumetric measurements under demanding lighting environmental conditions, due to the fact that it can cope with uneven light scenes, resulting from the characteristics of the voxel dissimilarity measure applied. Besides, the intelligent behavior of the ant colony framework provides the opportunity to formulate the process as a combinatorial optimization problem, which can then be solved by means of a colony of cooperating artificial ants, resulting in very promising results. The method is validated with several real datasets, along with qualitative comparisons with other state-of-the-art 3D reconstruction techniques, following the Middlebury benchmark. (paper)

  1. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques

    Directory of Open Access Journals (Sweden)

    Luis Fernando Grisales-Noreña

    2018-04-01

    Full Text Available The optimal location and sizing of distributed generation is a suitable option for improving the operation of electric systems. This paper proposes a parallel implementation of the Population-Based Incremental Learning (PBIL algorithm to locate distributed generators (DGs, and the use of Particle Swarm Optimization (PSO to define the size those devices. The resulting method is a master-slave hybrid approach based on both the parallel PBIL (PPBIL algorithm and the PSO, which reduces the computation time in comparison with other techniques commonly used to address this problem. Moreover, the new hybrid method also reduces the active power losses and improves the nodal voltage profiles. In order to verify the performance of the new method, test systems with 33 and 69 buses are implemented in Matlab, using Matpower, for evaluating multiple cases. Finally, the proposed method is contrasted with the Loss Sensitivity Factor (LSF, a Genetic Algorithm (GA and a Parallel Monte-Carlo algorithm. The results demonstrate that the proposed PPBIL-PSO method provides the best balance between processing time, voltage profiles and reduction of power losses.

  2. Optimization of the Production of Inactivated Clostridium novyi Type B Vaccine Using Computational Intelligence Techniques.

    Science.gov (United States)

    Aquino, P L M; Fonseca, F S; Mozzer, O D; Giordano, R C; Sousa, R

    2016-07-01

    Clostridium novyi causes necrotic hepatitis in sheep and cattle, as well as gas gangrene. The microorganism is strictly anaerobic, fastidious, and difficult to cultivate in industrial scale. C. novyi type B produces alpha and beta toxins, with the alpha toxin being linked to the presence of specific bacteriophages. The main strategy to combat diseases caused by C. novyi is vaccination, employing vaccines produced with toxoids or with toxoids and bacterins. In order to identify culture medium components and concentrations that maximized cell density and alpha toxin production, a neuro-fuzzy algorithm was applied to predict the yields of the fermentation process for production of C. novyi type B, within a global search procedure using the simulated annealing technique. Maximizing cell density and toxin production is a multi-objective optimization problem and could be treated by a Pareto approach. Nevertheless, the approach chosen here was a step-by-step one. The optimum values obtained with this approach were validated in laboratory scale, and the results were used to reload the data matrix for re-parameterization of the neuro-fuzzy model, which was implemented for a final optimization step with regards to the alpha toxin productivity. With this methodology, a threefold increase of alpha toxin could be achieved.

  3. Optimal control of open quantum systems: a combined surrogate hamiltonian optimal control theory approach applied to photochemistry on surfaces.

    Science.gov (United States)

    Asplund, Erik; Klüner, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.

  4. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  5. Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology.

    Science.gov (United States)

    Jang, Seol; Lee, A Yeong; Lee, A Reum; Choi, Goya; Kim, Ho Kyoung

    2017-12-01

    The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. The optimal extraction temperature (X 1 ), extraction time (X 2 ), and methanol concentration (X 3 ) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Statistical analyses revealed that three variables and the quadratic of X 1 , X 2 , and X 3 had significant effects on the yields and were followed by significant interaction effects between the variables of X 2 and X 3 ( p response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, 69 °C; extraction time, 34 min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.

  6. Multiobjective Optimization of Precision Forging Process Parameters Based on Response Surface Method

    Directory of Open Access Journals (Sweden)

    Fayuan Zhu

    2015-01-01

    Full Text Available In order to control the precision forging forming quality and improve the service life of die, a multiobjective optimization method for process parameters design was presented by applying Latin hypercube design method and response surface model approach. Meanwhile the deformation homogeneity and material damage of forging parts were proposed for evaluating the forming quality. The forming load of die was proposed for evaluating the service life of die. Then as a case of study, the radial precision forging for a hollow shaft with variable cross section and wall thickness was carried out. The 3D rigid-plastic finite element (FE model of the hollow shaft radial precision forging was established. The multiobjective optimization forecast model was established by adopting finite element results and response surface methodology. Nondominated sorting genetic algorithm-II (NSGA-II was adopted to obtain the Pareto-optimal solutions. A compromise solution was selected from the Pareto solutions by using the mapping method. In the finite element study on the forming quality of forging parts and the service life of dies by multiobjective optimization process parameters, the feasibility of the multiobjective optimization method presented by this work was verified.

  7. Response surface optimization of biosurfactant produced by Pseudomonas aeruginosa MA01 isolated from spoiled apples.

    Science.gov (United States)

    Abbasi, Habib; Sharafi, Hakimeh; Alidost, Leila; Bodagh, Atefe; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2013-01-01

    A potent biosurfactant-producing bacterial strain isolated from spoiled apples was identified by 16S rRNA as Pseudomonas aeruginosa MA01. Compositional analysis revealed that the extracted biosurfactant was composed of high percentages of lipid (66%, w/w) and carbohydrate (32%, w/w). The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mN m(-1) with critical micelle concentration (CMC) value of 10.1 mg L(-1). The Fourier transform infrared spectrum of extracted biosurfactant confirmed the glycolipid nature of this natural product. Response surface methodology (RSM) was employed to optimize the biosynthesis medium for the production of MA01 biosurfactant. Nineteen carbon sources and 11 nitrogen sources were examined, with soybean oil and sodium nitrate being the most effective carbon and nitrogen sources on biosurfactant production, respectively. Among the organic nitrogen sources examined, yeast extract was necessary as a complementary nitrogen source for high production yield. Biosurfactant production at the optimum value of fermentation processing factor (15.68 g/L) was 29.5% higher than the biosurfactant concentration obtained before the RSM optimization (12.1 g/L). A central composite design algorithm was used to optimize the levels of key medium components, and it was concluded that two stages of optimization using RSM could increase biosurfactant production by 1.46 times, as compared to the values obtained before optimization.

  8. Fast exploration of an optimal path on the multidimensional free energy surface.

    Science.gov (United States)

    Chen, Changjun

    2017-01-01

    In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules.

  9. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  10. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  11. The two-thumb technique using an elevated surface is preferable for teaching infant cardiopulmonary resuscitation.

    Science.gov (United States)

    Huynh, Trang K; Hemway, Rae Jean; Perlman, Jeffrey M

    2012-10-01

    To determine whether the two-thumb technique is superior to the two-finger technique for administering chest compressions using the floor surface and the preferred location for performing infant cardiopulmonary resuscitation (CPR) (ie, floor, table, or radiant warmer). Twenty Neonatal Resuscitation Program trained medical personnel performed CPR on a neonatal manikin utilizing the two-thumb vs two-finger technique, a compression to ventilation ratio of 30:2 for 2 minutes in random order on the floor, table, and radiant warmer. Compression depth favored the two-thumb over two-finger technique on the floor (27 ± 8 mm vs 23 ± 7), table (26 ± 7 mm vs 22 ± 7), and radiant warmer (29 ± 4 mm vs 23 ± 4) (all P CPR preferably using an elevated firm surface. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. Experimental determination of void fraction in surface aeration using image processing technique

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpur, Amir; Akhavan-Behabadi, Mohammad Ali; Ebrahimzaedh, Masoud; Hanafizadeh, Pedram; Raisee, Mehrdad [University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper, a new method for determination of void fraction in surface aeration process is presented and discussed. The proposed method is based on the image processing technique. The experimental setup has been designed to create various surface aeration conditions in the water. Void fraction has been calculated for the wide range of water height, impeller immersion depth and rotational speed. Experiments have been performed in an open cubic tank with side length of 60 cm, equipped with one Rushton disk turbine. Moreover, the void fraction has been measured with level gauge method. The results showed that the image processing technique provides more accurate results than the level gauge measurements for void fraction calculation in surface aeration especially in low void fraction aeration. In addition, the experimental data revealed that increase in impeller immersion depth and rotational speed increase void fraction and oxygen transfer rate in surface aeration process.

  13. New short-time alignment technique for 70-meter antenna surface panels

    Science.gov (United States)

    Katow, M. S.

    1986-01-01

    With severely limited field modification time for upgrading the 64-m antenna to 70-m diameter, a new shorter time method for aligning the surface panels of the main reflector was needed. For each target on the surface panel, both distance (or range) and elevation angle measurements are made. A new technique for setting the surface panels at zenith look has been devised. This article describes the software required to convert the computed target distortions obtained from the JPL-IDEAS structural analysis computer program (defining the gravity load change from a 45-deg elevation angle to zenith look) into the theodolite reading at zenith look. The technique results in a perfectly shaped reflector at the 45-deg rigging elevation, with acceptable surface error tolerance.

  14. Tabu search, a versatile technique for the functions optimization; Busqueda Tabu, una tecnica versatil para la optimizacion de funciones

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J.A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The basic elements of the Tabu search technique are presented, putting emphasis in the qualities that it has in comparison with the traditional methods of optimization known as in descending pass. Later on some modifications are sketched that have been implemented in the technique along the time, so that this it is but robust. Finally they are given to know some areas where this technique has been applied, obtaining successful results. (Author)

  15. Strip Steel Surface Defects Recognition Based on SOCP Optimized Multiple Kernel RVM

    Directory of Open Access Journals (Sweden)

    Hou Jingzhong

    2018-01-01

    Full Text Available Strip steel surface defect recognition is a pattern recognition problem with wide applications. Previous works on strip surface defect recognition mainly focus on feature selection and dimension reduction. There are also approaches on real-time systems that mainly exploit the autocorrection within some given picture. However, the instances cannot be used in practical applications because of a bad recognition rate and low efficiency. In this paper, we study the intelligent algorithm of strip steel surface defect recognition, where the goal is to improve the accuracy and save running time. This problem is very important in various applications, especially the process testing of steel manufacturing. We propose an approach called the second-order cone programming (SOCP optimized multiple kernel relevance vector machine (MKRVM, which can recognize strip surface defects much better than other methods. The method includes the model parameter estimation, training, and optimization of the model based on SOCP and the classification test. We compare our approach with existing methods on strip surface defect recognition. The results demonstrate that our proposed approach can improve the recognition accuracy and reduce the time costs of the strip surface defect.

  16. Optimization of Growth Medium for Efficient Cultivation of Lactobacillus salivarius i 24 using Response Surface Method

    Directory of Open Access Journals (Sweden)

    Lim, C. H.

    2007-01-01

    Full Text Available Production of Lactobacillus salivarius i 24, a probiotic strain for chicken, was studied in batch fermentation using 500 mL Erlenmeyer flask. Response surface method (RSM was used to optimize the medium for efficient cultivation of the bacterium. The factors investigated were yeast extract, glucose and initial culture pH. A polynomial regression model with cubic and quartic terms was used for the analysis of the experimental data. Estimated optimal conditions of the factors for growth of L. salivarius i 24 were; 3.32 % (w/v glucose, 4.31 % (w/v yeast extract and initial culture pH of 6.10.

  17. Development of chitosan based edible films: process optimization using response surface methodology.

    Science.gov (United States)

    Singh, Tarun Pal; Chatli, Manish Kumar; Sahoo, Jhari

    2015-05-01

    Three-factors Box-Behnken design of response surface methodology (RSM) was used to optimize chitosan level (1.5, 2.0, 2.5 %w/v), glycerol level (0.5, 0.75, 1.0 %w/v) and drying temperature (35, 40, 45 °C) for the development of chitosan based edible films. The optimization was done on the basis of different responses viz. thickness, moisture, solubility, colour profile (L*, a*, b* value), penetrability, density, transmittance and water vapor transmission rate (WVTR). The linear effect of chitosan was significant (p fashion. Drying temperature also significantly (p industry.

  18. Modeling of the LA-ICPMS surface rastering procedure to optimize elemental imaging

    International Nuclear Information System (INIS)

    Elteren, J.T. van; Triglav, J.; Selih, V.S.; Zivin, M.

    2009-01-01

    Full text: The quality of elemental image maps generated by LA-ICPMS is a function of the instrumental settings (laser fluence, pulse rate, beam diameter, scanning speed, gas flow rate and acquisition time). Optimizing these settings is a matter of trial and error since quality criteria for elemental imaging (sensitivity, resolution, analysis time) are intricately linked. A theoretical model (and software) will be discussed with which it is possible to simply compute the image distortion introduced by the LA-ICPMS as a function of the instrumental settings and optimize the surface rastering procedure prior to the actual analysis to meet the required quality criteria. (author)

  19. [Optimization of biocontrol agent Burkholderia pyrrocinia strain JK-SH007 fermentation by response surface methodology].

    Science.gov (United States)

    Li, Hao; Ren, Jiahong; Ye, Jianren

    2013-02-01

    In order to improve ferment efficiency of biocontrol agent Burkholderia pyrrocinia JK-SH007, the fermentation conditions of this strain were optimized. The optimal fermentation conditions were corn steep liquor (13.88 g/L) and glucose (3.37 g/L) by screening test, steepest ascent experiments and response surface analysis. The results showed that the cell density of JK-SH007 (1.18 x 10(9) CFU/mL) increased 1.35 times than before, and there was a 28.84% increase in antifungal activity.

  20. OPTIMIZATION OF SURFACE RESISTIVITY AND RELATIVE PERMITTIVITY OF SILICONE RUBBER FOR HIGH VOLTAGE APPLICATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    N.N. Ali

    2017-06-01

    Full Text Available Silicone Rubber (SiR is considered as one of the most established insulator in High Voltage (HV industry. SiR possess a great function ability such as its lighter weight, great heat resistance and substantial electrical insulation properties. Dynamic research were performed all around the world in order to explore the unique insulating behavior of SiR but very little are done on the optimization of SiR in term of their processing parameters and formulation. In this work, four materials and processing factors were introduced; A: Alumina Trihydrate (ATH, B: Dicumyl-Peroxide (DCP, C: mixing speed and D: mixing time in order to analyze its contribution towards improving the surface resistivity and relative permittivity of SIR rubber. The factors range were set based on prior screening and are defined as; ATH (10 – 50 pphr, Dicumyl Peroxide (0.50 -1.50 pphr, speed of mixer (40 – 70 rpm and mixing period (5 – 10 mins which were then varied accordingly to produce an overall 19 samples of SiR blends. The testing results were analyzed using statistical Design of Experiment (DOE by applying two level full factorial from Design Expert Software (v10 to discover the inter-correlation between the factors studied and benefaction of each factor in improving both surface resistivity and relative permittivity responses of produced SiR blends. The model analysis on surface resistivity shows the coefficient of determination R2 value of 88.72% while the one for relative permittivity shows R2 value of 82.34 %. Combination of both dependent variables had yielded an optimization suggestion for SiR formulation and processing strategy of ATH: 50 pphr, DCP: 0.50 pphr, mixing speed: 70 rpm and mixing period: 10 mins with the desirability level of 0.835. The optimized formulation had resulted in the production of SiR blend with the characteristic of surface resistivity of 1.02039x10^14 Ω/sq and relative permittivity of 4.0231, respectively. In conclusion, it can be

  1. Development and Application of Blast Casting Technique in Large-Scale Surface Mines: A Case Study of Heidaigou Surface Coal Mine in China

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available Blast casting is a high-efficiency technique applied in surface mines for overburden removal and results in stripping cost savings. According to ballistic theory and center-of-mass frame basic movement principles, key factors influencing blast casting effect were analyzed, which include bench height and mining panel width, inclined angle of blast holes, explosive unit consumption (EUC, delay-time interval, presplitting, and blast hole pattern parameters. An intelligent design software was developed for obtaining better breaking and casting effect, and the error rates predicted with actual result can be controlled with 10%. Blast casting technique was successfully applied in Heidaigou Surface Coal Mine (HSCM with more than 34% of material casted into the inner dump. A ramp ditch was set within the middle inner dump for coal transportation. The procedure of stripping and excavating was implemented separately and alternately in the two sections around the middle ramp ditch. An unconstrained-nonlinear model was deduced for optimizing the shift distance of the middle ramp. The calculation results show that optimum shift distance of HSCM is 480 m, and the middle ditch should be shifted after 6 blast casting mining panels being stripped.

  2. Flow and Mixture Optimization for a Fuel Stratification Engine Using PIV and PLIF Techniques

    Science.gov (United States)

    Li, Y.; Zhao, H.; Ma, T.

    2006-07-01

    This paper describes an application of PIV (particle image velocimetry) and two-tracer PLIF (planar laser-induced florescence) techniques to optimize the in-cylinder flow and to visualize two fuels distribution simultaneously for developing a fuel stratification engine. This research was carried out on a twin-spark four-valve SI engine. The PIV measurement results shows that a strong tumbling flow was produced in the cylinder as the intake valves were shrouded. The flow exhibited a symmetrical distribution in the plane perpendicular to the cylinder axis from the early stage of intake until the late stage of compression. This flow pattern helps to stratify the two fuels introduced from separate ports into two regions laterally. The stratification of fuels was observed visually by the two-tracer PLIF technique. During the PLIF measurement, two tracers, 3- pentanone and N, N-dimethylaniline (DMA), were doped into two fuels, hexane and iso-octane, respectively. Their fluorescence emissions were separated by two optical band-pass filters and recorded by a single ICCD camera simultaneously via an image doubling system. The PLIF measurement result shows that two fuels were well stratified.

  3. Optimization of Fluorescent Silicon Nano material Production Using Peroxide/ Acid/ Salt Technique

    International Nuclear Information System (INIS)

    Abuhassan, L.H.

    2009-01-01

    Silicon nano material was prepared using the peroxide/ acid/ salt technique in which an aqueous silicon-based salt solution was added to H 2 O 2 / HF etchants. In order to optimize the experimental conditions for silicon nano material production, the amount of nano material produced was studied as a function of the volume of the silicon salt solution used in the synthesis. A set of samples was prepared using: 0, 5, 10, 15, and 20 ml of an aqueous 1 mg/ L metasilicate solution. The area under the corresponding peaks in the infrared (ir) absorption spectra was used as a qualitative indicator to the amount of the nano material present. The results indicated that using 10 ml of the metasilicate solution produced the highest amount of nano material. Furthermore, the results demonstrated that the peroxide/ acid/ salt technique results in the enhancement of the production yield of silicon nano material at a reduced power demand and with a higher material to void ratio. A model in which the silicon salt forms a secondary source of silicon nano material is proposed. The auxiliary nano material is deposited into the porous network causing an increase in the amount of nano material produced and a reduction in the voids present. Thus a reduction in the resistance of the porous layer, and consequently reduction in the power required, are expected. (author)

  4. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Science.gov (United States)

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  5. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  6. An object localization optimization technique in medical images using plant growth simulation algorithm.

    Science.gov (United States)

    Bhattacharjee, Deblina; Paul, Anand; Kim, Jeong Hong; Kim, Mucheol

    2016-01-01

    The analysis of leukocyte images has drawn interest from fields of both medicine and computer vision for quite some time where different techniques have been applied to automate the process of manual analysis and classification of such images. Manual analysis of blood samples to identify leukocytes is time-consuming and susceptible to error due to the different morphological features of the cells. In this article, the nature-inspired plant growth simulation algorithm has been applied to optimize the image processing technique of object localization of medical images of leukocytes. This paper presents a random bionic algorithm for the automated detection of white blood cells embedded in cluttered smear and stained images of blood samples that uses a fitness function that matches the resemblances of the generated candidate solution to an actual leukocyte. The set of candidate solutions evolves via successive iterations as the proposed algorithm proceeds, guaranteeing their fit with the actual leukocytes outlined in the edge map of the image. The higher precision and sensitivity of the proposed scheme from the existing methods is validated with the experimental results of blood cell images. The proposed method reduces the feasible sets of growth points in each iteration, thereby reducing the required run time of load flow, objective function evaluation, thus reaching the goal state in minimum time and within the desired constraints.

  7. Transtemporal amygdalohippocampectomy: a novel minimally-invasive technique with optimal clinical results and low cost

    Directory of Open Access Journals (Sweden)

    Juan Antonio Castro Flores

    Full Text Available ABSTRACT Mesial temporal sclerosis creates a focal epileptic syndrome that usually requires surgical resection of mesial temporal structures. Objective: To describe a novel operative technique for treatment of temporal lobe epilepsy and its clinical results. Methods: Prospective case-series at a single institution, performed by a single surgeon, from 2006 to 2012. A total of 120 patients were submitted to minimally-invasive keyhole transtemporal amygdalohippocampectomy. Results: Of the patients, 55% were male, and 85% had a right-sided disease. The first 70 surgeries had a mean surgical time of 2.51 hours, and the last 50 surgeries had a mean surgical time of 1.62 hours. There was 3.3% morbidity, and 5% mild temporal muscle atrophy. There was no visual field impairment. On the Engel Outcome Scale at the two-year follow-up, 71% of the patients were Class I, 21% were Class II, and 6% were Class III. Conclusion: This novel technique is feasible and reproducible, with optimal clinical results.

  8. MRI Brain Images Classification: A Multi-Level Threshold Based Region Optimization Technique.

    Science.gov (United States)

    Kanmani, P; Marikkannu, P

    2018-02-26

    Medical image processing is the most challenging and emerging field nowadays. Magnetic Resonance Images (MRI) act as the source for the development of classification system. The extraction, identification and segmentation of infected region from Magnetic Resonance (MR) brain image is significant concern but a dreary and time-consuming task performed by radiologists or clinical experts, and the final classification accuracy depends on their experience only. To overcome these limitations, it is necessary to use computer-aided techniques. To improve the efficiency of classification accuracy and reduce the recognition complexity involves in the medical image segmentation process, we have proposed Threshold Based Region Optimization (TBRO) based brain tumor segmentation. The experimental results of proposed technique have been evaluated and validated for classification performance on magnetic resonance brain images, based on accuracy, sensitivity, and specificity. The experimental results achieved 96.57% accuracy, 94.6% specificity, and 97.76% sensitivity, shows the improvement in classifying normal and abnormal tissues among given images. Detection, extraction and classification of tumor from MRI scan images of the brain is done by using MATLAB software.

  9. A novel buoyancy technique optimizes simulated microgravity conditions for whole sensory organ culture in rotating bioreactors.

    Science.gov (United States)

    Arnold, Heinz J P; Müller, Marcus; Waldhaus, Jörg; Hahn, Hartmut; Löwenheim, Hubert

    2010-02-01

    Whole-organ culture of a sensory organ in a rotating wall vessel bioreactor provides a powerful in vitro model for physiological and pathophysiological investigation as previously demonstrated for the postnatal inner ear. The model is of specific relevance as a tool for regeneration research. In the immature inner ear explant, the density was only 1.29 g/cm(3). The high density of 1.68 g/cm(3) of the functionally mature organ resulted in enhanced settling velocity and deviation from its ideal circular orbital path causing enhanced shear stress. The morphometric and physical properties, as well as the dynamic motion patterns of explants, were analyzed and numerically evaluated by an orbital path index. Application of a novel buoyancy bead technique resulted in a 6.5- to 14.8-fold reduction of the settling velocity. The deviation of the explant from its ideal circular orbital path was adjusted as indicated by an optimum value for the orbital path index (-1.0). Shear stress exerted on the inner ear explant was consequently reduced 6.4- to 15.0-fold. The culture conditions for postnatal stages were optimized, and the preconditions for transferring this in vitro model toward mature high-density stages established. This buoyancy technique may also be useful in tissue engineering of other high-density structures.

  10. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials.Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE and 10 regular-body polyvinyl siloxane (PVS impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM. Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM. These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05.Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001. Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05(.Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction.Keywords: Dental Implants; Dental Impression Materials, Dental Impression Technique

  11. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

    Directory of Open Access Journals (Sweden)

    M. H. El-Axir

    2017-10-01

    Full Text Available The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

  12. Anatomy-based transmission factors for technique optimization in portable chest x-ray

    Science.gov (United States)

    Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang

    2015-03-01

    Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.

  13. HybridArc: A novel radiation therapy technique combining optimized dynamic arcs and intensity modulation

    Energy Technology Data Exchange (ETDEWEB)

    Robar, James L., E-mail: james.robar@cdha.nshealth.ca [Department of Radiation Oncology, Dalhousie University, Halifax (Canada); Department of Physics and Atmospheric Science, Dalhousie University, Halifax (Canada); Thomas, Christopher [Department of Radiation Oncology, Dalhousie University, Halifax (Canada)

    2012-01-01

    This investigation focuses on possible dosimetric and efficiency advantages of HybridArc-a novel treatment planning approach combining optimized dynamic arcs with intensity-modulated radiation therapy (IMRT) beams. Application of this technique to two disparate sites, complex cranial tumors, and prostate was examined. HybridArc plans were compared with either dynamic conformal arc (DCA) or IMRT plans to determine whether HybridArc offers a synergy through combination of these 2 techniques. Plans were compared with regard to target volume dose conformity, target volume dose homogeneity, sparing of proximal organs at risk, normal tissue sparing, and monitor unit (MU) efficiency. For cranial cases, HybridArc produced significantly improved dose conformity compared with both DCA and IMRT but did not improve sparing of the brainstem or optic chiasm. For prostate cases, conformity was improved compared with DCA but not IMRT. Compared with IMRT, the dose homogeneity in the planning target volume was improved, and the maximum doses received by the bladder and rectum were reduced. Both arc-based techniques distribute peripheral dose over larger volumes of normal tissue compared with IMRT, whereas HybridArc involved slightly greater volumes of normal tissues compared with DCA. Compared with IMRT, cranial cases required 38% more MUs, whereas for prostate cases, MUs were reduced by 7%. For cranial cases, HybridArc improves dose conformity to the target. For prostate cases, dose conformity and homogeneity are improved compared with DCA and IMRT, respectively. Compared with IMRT, whether required MUs increase or decrease with HybridArc was site-dependent.

  14. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu

    2011-08-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  15. Top-down constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique

    Science.gov (United States)

    Wells, Kelley C.; Millet, Dylan B.; Bousserez, Nicolas; Henze, Daven K.; Griffis, Timothy J.; Chaliyakunnel, Sreelekha; Dlugokencky, Edward J.; Saikawa, Eri; Xiang, Gao; Prinn, Ronald G.; O'Doherty, Simon; Young, Dickon; Weiss, Ray F.; Dutton, Geoff S.; Elkins, James W.; Krummel, Paul B.; Langenfelds, Ray; Steele, L. Paul

    2018-01-01

    We present top-down constraints on global monthly N2O emissions for 2011 from a multi-inversion approach and an ensemble of surface observations. The inversions employ the GEOS-Chem adjoint and an array of aggregation strategies to test how well current observations can constrain the spatial distribution of global N2O emissions. The strategies include (1) a standard 4D-Var inversion at native model resolution (4° × 5°), (2) an inversion for six continental and three ocean regions, and (3) a fast 4D-Var inversion based on a novel dimension reduction technique employing randomized singular value decomposition (SVD). The optimized global flux ranges from 15.9 Tg N yr-1 (SVD-based inversion) to 17.5-17.7 Tg N yr-1 (continental-scale, standard 4D-Var inversions), with the former better capturing the extratropical N2O background measured during the HIAPER Pole-to-Pole Observations (HIPPO) airborne campaigns. We find that the tropics provide a greater contribution to the global N2O flux than is predicted by the prior bottom-up inventories, likely due to underestimated agricultural and oceanic emissions. We infer an overestimate of natural soil emissions in the extratropics and find that predicted emissions are seasonally biased in northern midlatitudes. Here, optimized fluxes exhibit a springtime peak consistent with the timing of spring fertilizer and manure application, soil thawing, and elevated soil moisture. Finally, the inversions reveal a major emission underestimate in the US Corn Belt in the bottom-up inventory used here. We extensively test the impact of initial conditions on the analysis and recommend formally optimizing the initial N2O distribution to avoid biasing the inferred fluxes. We find that the SVD-based approach provides a powerful framework for deriving emission information from N2O observations: by defining the optimal resolution of the solution based on the information content of the inversion, it provides spatial information that is lost when

  16. Application of the thermal plasma technique in the treatment of stone surfaces

    International Nuclear Information System (INIS)

    Gonzalez A, Z.I.

    2000-01-01

    The stone materials which form part of the cultural heritage of Mexico, are degraded under the united action of water, atmospheric gases, air pollution, temperature changes and the microorganisms action; provoking on the stone: fissures, crevices, scalings, fragmentations, pulverizations, etc. Therefore, the purpose of this work is to study the possibilities to apply a protective coating on the stone surfaces, previously clean and consolidated, through the thermal plasma technique. The purpose is to analyse the physical and chemical properties of three types of stone materials: quarry, tezontle and chiluca, usually used in constructions of cultural interest such as: historical monuments, churches, sculptures, etc., before and after to be submitted to the action of thermal plasma in order to examine the feasibility in the use of this coating technique in this type of applications. The application of conventional techniques to determine: porosity, density, absorption, low pressure water absorption and crystallization by total immersion of nuclear techniques such as: neutron activation analysis, x-ray diffraction and scanning electron microscopy as well as of instrumental techniques: optical microscopy, mechanical assays of compression, flexure and surface area calculations, allowed to know the chemical and physical properties of the stone material before and after to be treated through the thermal plasma technique, projecting quartz on the stones surface at different distances and current intensity and showing the effect caused by the modifications or surface alterations present by cause of the application of that coating. the obtained results provide a general panorama of the application of this technique as an alternative to the maintenance of the architectural inheritance built in stone. (Author)

  17. Comparison of Response Surface and Kriging Models for Multidisciplinary Design Optimization

    Science.gov (United States)

    Simpson, Timothy W.; Korte, John J.; Mauery, Timothy M.; Mistree, Farrokh

    1998-01-01

    In this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems m formulated and solved using both sets of approximation models. The second-order response surface models and kriging models-using a constant underlying global model and a Gaussian correlation function-yield comparable results.

  18. 4D photogrammetric technique to study free surface water in open channels

    Science.gov (United States)

    Aubé, Damien; Berkaoui, Amine; Vinatier, Fabrice; Bailly, Jean-Stéphane; Belaud, Gilles

    2015-04-01

    Characteristics of three-dimensional surface water are considered as the most valuable information to understand hydrodynamic phenomena in open channel flow. An accurate and coherent description of the free water surface morphology improves the accuracy of hydraulic models which study river processes. However, amongst existing techniques to measure three-dimensional surface, stereo-photogrammetry is clearly the most effective technique to obtain an instantaneous and high accurate 3D free water surface and it's suitable to both flume and field condition. Our study aims at developing this technique in two controlled channels, one in interior with glass borders (length: 6 m, width: 0.3 m and depth: 0.5 m) and one outside with cement borders (length: 13 m, width: 0.7 m and depth: 0.4 m). A system consisting in three NIKON-D3200 cameras, mounted to an adjustable tripod head, which is fixed to an inverted aluminium T-bar with the center camera higher than the two side cameras. Each camera is fitted with a 28 mm lens and cameras are synchronized using a Phottix(R) system. The system was mounted at a downstream position from the channel with an oblique configuration. A series of pictures taken at a 3 s interval during the water weight bearing were reported and analyzed using the Photoscan Pro(R) software for image matching. Validation procedure of the technique was realized using an orthophotography of the lateral border of the interior channel to delimit the line of water surface, and using a video capture of a slide fixed inside the outside channel. A high resolution and dynamic elevation map of the surface water was constructed. Our study give encouraging results, with a good capture of water surface morphology and a limited occlusion issues. The confrontation of the results with the validation dataset highlight limitations that need to be discussed with the audience.

  19. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  20. Investigation of ozone zero phenomenon using new electrode and surface analysis technique

    Science.gov (United States)

    Taguchi, M.; Ochiai, Y.; Kawagoe, R.; Kato, Y.; Teranishi, K.; Suzuki, S.; Itoh, H.

    2011-07-01

    Results of our experimental investigation on the ozone zero phenomenon suggested us the importance of the electrode surface condition. This means that the main cause of the phenomenon, that is, temporal decrease of ozone concentration at the outlet of DBD type ozone generator and the recovery characteristics from the phenomenon are considered as the surface reaction process, which are influenced strongly by the surface condition. The surface condition is never constant during the ozone generation and varies gradually or remarkably with time depending on the experimental conditions. Therefore we have been continued to make clear the cause of the phenomenon, for example, the reproducibility of the phenomenon, using new electrodes and together with the surface analysis technique etc. In this paper, we describe on the above results and discussion.

  1. A novel and inexpensive technique for creating superhydrophobic surfaces using Teflon and sandpaper

    Science.gov (United States)

    Nilsson, Michael A.; Daniello, Robert J.; Rothstein, Jonathan P.

    2010-02-01

    Considerable efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water. Many of these methods require complex and expensive fabrication techniques. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. Furthermore, we show that a wide range of both advancing contact angles and contact angle hysteresis can be achieved by varying the grit size of the sandpaper, allowing for future hysteresis and contact angle studies. Scanning electron microscopy images of the roughened surfaces depict the range and amplitude of length scales imparted on the surface by the sandpaper, which leads to deeper understanding of the state of wetting on the surface.

  2. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    Science.gov (United States)

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-10-31

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  3. Optimization of oil extraction from olive pomace using response surface methodology.

    Science.gov (United States)

    Meziane, S

    2013-08-01

    A statistical methodology, combining Plackett-Burman design with Box-Behnken design, was applied to optimize the oil extraction process from olive pomace using hexane as solvent. Plackett-Burman design was used in the first step to evaluate the effects of five independent variables on the oil extraction yield. Temperature of extraction, time of contact, solvent-to-solids ratio and moisture content of the olive pomace were identified as significant independent variables and were further optimized by using response surface methodology based on Box-Behnken design. The optimized conditions to maximize the yield were as follows: extraction temperature at 33 , contact time at 10 min, solvent-to-solids ratio at 3.5 mL/g and moisture content at 13%. The experimental value of the yield (5.98%) at these optimum conditions was found in perfect agreement with the value predicted by model (5.80%).

  4. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    Science.gov (United States)

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  5. Optimization of the methanolysis of lard oil in the production of biodiesel with response surface methodology

    Directory of Open Access Journals (Sweden)

    Chinyere B. Ezekannagha

    2017-12-01

    Full Text Available Methanolysis of lard oil to biodiesel was optimized using central composite design (CCD of response surface methodology to delineate the effects of five levels, four factorson the yield of biodiesel. A total of 30 individual experiments were conducted and designed to study these process variables. A statistical model predicted that the highest conversion yield of lard biodiesel would be 96.2% at the following optimized reaction conditions: reaction temperature of 65 °C, catalyst amount of 1.25%, time of 40 min, methanol to oil molar ratio of 6:1 at 250 rpm. Experiments performed at the predicted optimum conditions yielded 96% which was in good agreement with the predicted value. This study shows that lard oil as a low cost feedstock is a good source of raw material for biodiesel production and a sustainable biodiesel production could be achieved with proper optimization of the process variables.

  6. Application of Response Surface Methodology in Optimizing a Three Echelon Inventory System

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Razavi Hajiagha

    2014-01-01

    Full Text Available Inventory control is an important subject in supply chain management. In this paper, a three echelon production, distribution, inventory system composed of one producer, two wholesalers and a set of retailers has been considered. Costumers' demands follow a compound Poisson process and the inventory policy is a kind of continuous review (R, Q. In this paper, regarding the standard cost structure in an inventory model, the cost function of system has been approximated using Response Surface Methodology as a combination of designed experiments, simulation, regression analysis and optimization. The proposed methodology in this paper can be applied as a novel method in optimization of inventory policy of supply chains. Also, the joint optimization of inventory parameters, including reorder point and batch order size, is another advantage of the proposed methodology.

  7. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  8. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  9. Performance/Noise Optimization of Centrifugal Fan Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Donghui; Cheong, Cheolung [Pusan Nat’l Univ., Busan (Korea, Republic of); Heo Seung [Korea Aerospace Industries, Sacheon (Korea, Republic of); Kim, Tae-Hoon; Jung, Jiwon [LG Electronics, Seoul (Korea, Republic of)

    2017-03-15

    In this study, centrifugal fan blades used to circulate cold air inside a household refrigerator were optimized to achieve high performance and low noise by using the response surface method, which is frequently employed as an optimization algorithm when multiple independent variables affect one dependent variable. The inlet and outlet blade angles, and the inner radius, were selected as the independent variables. First, the fan blades were optimized to achieve the maximum volume flow rate. Based on this result, a prototype fan blade was manufactured using a 3-D printer. The measured P-Q curves confirmed the increased volume flow rate of the proposed fan. Then, the rotation speed of the new fan was decreased to match the P-Q curve of the existing fan. It was found that a noise reduction of 1.7 dBA could be achieved using the new fan at the same volume flow rate.

  10. Response surface optimization of the heparosan N-deacetylation in producing bioengineered heparin

    Science.gov (United States)

    Wang, Zhenyu; Li, Jennifer; Cheong, Samantha; Bhaskar, Ujjwal; Akihiro, Onishi; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.

    2011-01-01

    The chemical step in the chemoenzymatic synthesis of bioengineered heparin has been examined and optimized statistically using a response surface methodology. A four factor, two level full factorial design experiment and a three factor Box-Behnken design were carried out. The goal was to establish a method to prepare N-sulfo, N-acetyl heparosan of the desired N-acetyl content, number average molecular weight, and in maximum yield by controlling the reactant concentrations, reaction time and reaction temperature. The response surface models obtained were used to predict the reaction conditions required to optimally prepare N-sulfo, N-acetyl heparosan from E. coli generated heparosan starting material of different molecular weights. PMID:21925548

  11. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...... (DAGs). A five-factor response surface design was used to evaluate the influences of five major factors and their relationships. The five factors were water content (Wc, wt% based on enzyme used), reaction temperature (Te,°C), enzyme load (El, wt% based on substrates), reaction time (Tr, hour....... Thus we conclude that the quadratic response models adequately expressed the reaction. Based on the models, the reaction was optimized for the maximum net incorporation and minimum DAG content. The reaction and the control of water content or water activity (Aw) was also discussed....

  12. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    (DAGs). A five-factor response surface design was used to evaluate the influences of five major factors and their relationships. The five factors were water content (Wc, wt% based on enzyme used), reaction temperature (Te,°C), enzyme load (El, wt% based on substrates), reaction time (Tr, hour....... Thus we conclude that the quadratic response models adequately expressed the reaction. Based on the models, the reaction was optimized for the maximum net incorporation and minimum DAG content. The reaction and the control of water content or water activity (Aw) was also discussed.......Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  13. Optimization of the extraction of flavonoids from grape leaves by response surface methodology

    International Nuclear Information System (INIS)

    Brad, K.; Liu, W.

    2013-01-01

    The extraction of flavonoids from grape leaves was optimized to maximize flavonoids yield in this study. A central composite design of response surface methodology involving extracting time, power, liquid-solid ratio, and concentration was used, and second-order model for Y was employed to generate the response surfaces. The optimum condition for flavonoids yield was determined as follows: extracting time 24.95 min, power 72.05, ethanol concentration 63.35%, liquid-solid ratio 10.04. Under the optimum condition, the flavonoids yield was 76.84 %. (author)

  14. Structure Optimization of Low-Dimensional Quantum Dots via Anisotropic Surface Energy

    Science.gov (United States)

    Yang, Lan-Hee; Hyun, Sangil; Koo, Eunhae; Ahn, Dong June

    2018-03-01

    Semiconductor quantum dots (QDs) exhibit remarkable photostability, large absorption spectra, tunable emission peaks, and high quantum yields. These features originate from their lowdimensionality. It is necessary to control the shape of QDs because their specific characteristics are normally determined by their particular shape and size. We employed first-principle calculations to identify the optimal structures of CdSe quantum dots and investigated the shape-determining mechanism governing the formation of low-dimensional nanomaterials. The anisotropy of surface energy is a key factor determining the shape of nanomaterials and we suggest how to control their geometry and characteristics by adjusting the surface energy.

  15. Critique of Sikkink and Keane's comparison of surface fuel sampling techniques

    Science.gov (United States)

    Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek

    2010-01-01

    The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...

  16. A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications

    DEFF Research Database (Denmark)

    Yagüe-Fabra, J.A.; Ontiveros, S.; Jiménez, R.

    2013-01-01

    presents an edge detection method for the surface extraction based on a 3D Canny algorithm with sub-voxel resolution. The advantages of this method are shown in comparison with the most commonly used technique nowadays, i.e. the local threshold definition. Both methods are applied to reference standards...

  17. Development of a surface isolation estimation technique suitable for application of polar orbiting satellite data

    Science.gov (United States)

    Davis, P. A.; Penn, L. M. (Principal Investigator)

    1981-01-01

    A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.

  18. A new technique for the identification of surface contamination in low temperature bolometric experiments

    International Nuclear Information System (INIS)

    Sangiorgio, S.; Arnaboldi, C.; Brofferio, C.; Bucci, C.; Capelli, S.; Carbone, L.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Foggetta, L.; Giuliani, A.; Gorla, P.; Nones, C.; Nucciotti, A.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Salvioni, C.

    2011-01-01

    In the framework of the bolometric experiment CUORE, a new and promising technique has been developed in order to control the dangerous contamination coming from the surfaces close to the detector. In fact, by means of a composite bolometer, it is possible to partially overcome the loss of spatial resolution of the bolometer itself and to clearly identify events coming from outside.

  19. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  20. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm