WorldWideScience

Sample records for surface ocean pco2

  1. Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean

    Science.gov (United States)

    Sutton, A. J.; Wanninkhof, R.; Sabine, C. L.; Feely, R. A.; Cronin, M. F.; Weller, R. A.

    2017-06-01

    Variability and change in the ocean sink of anthropogenic carbon dioxide (CO2) have implications for future climate and ocean acidification. Measurements of surface seawater CO2 partial pressure (pCO2) and wind speed from moored platforms are used to calculate high-resolution CO2 flux time series. Here we use the moored CO2 fluxes to examine variability and its drivers over a range of time scales at four locations in the Pacific Ocean. There are significant surface seawater pCO2, salinity, and wind speed trends in the North Pacific subtropical gyre, especially during winter and spring, which reduce CO2 uptake over the 10 year record of this study. Starting in late 2013, elevated seawater pCO2 values driven by warm anomalies cause this region to be a net annual CO2 source for the first time in the observational record, demonstrating how climate forcing can influence the timing of an ocean region shift from CO2 sink to source.

  2. Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition

    Science.gov (United States)

    Segschneider, Joachim; Bendtsen, Jørgen

    2014-05-01

    Temperature-dependent remineralization of organic matter is, in general, not included in marine biogeochemistry models currently used for Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Associated feedbacks with climate and the carbon cycle have therefore not been quantified. In this study we aim at investigating how temperature-dependent remineralization rates (Q10 = 2) in a warming ocean impact on the marine carbon cycle, and if this may weaken the oceanic sink for anthropogenic CO2. We perturb an Earth system model used for CMIP5 with temperature-dependent remineralization rates of organic matter using representative concentration pathway (RCP)8.5-derived oceanic temperature anomalies for 2100. The result is a modest change of organic carbon export but more important derived effects associated with feedback processes between changed nutrient concentrations and ecosystem structure. As more nutrients are recycled in the euphotic layer, increased primary production causes a depletion of silicate in the surface layer because opal is exported to depth more efficiently than particulate organic carbon. Shifts in the ecosystem occur as diatoms find less favorable conditions. Export production of calcite shells increases causing a decrease in alkalinity and higher surface pCO2. With regard to future climate projections, the results indicate a reduction of oceanic uptake of anthropogenic CO2 of about 0.2 PgC yr-1 towards the end of the 21st century. This is in addition to reductions caused by already identified climate-carbon cycle feedbacks. Similar shifts in the ecosystem as identified here, but driven by external forcing, have been proposed to drive glacial/interglacial changes in atmospheric pCO2. We propose a similar positive feedback between climate perturbations and the global carbon cycle but driven solely by internal marine biogeochemical processes.

  3. Temperature-dependent remineralization in a warming ocean increases surface pCO2through changes in marine ecosystem composition

    OpenAIRE

    Segschneider, Joachim; Bendtsen, Jørgen

    2013-01-01

    Temperature-dependent remineralization of organic matter is, in general, not included in marine biogeochemistry models currently used for CMIP5 climate projections. Associated feedbacks have therefore not been quantified. In this study we aim at investigating how temperature dependent remineralization rates (Q10 = 2) in a warming ocean impact on the marine carbon cycle, and if this may weaken the oceanic sink for anthropogenic CO2. We perturb an Earth system model used for CMIP5 with temperat...

  4. Long-term surface pCO2 trends from observations and models

    Directory of Open Access Journals (Sweden)

    Jerry F. Tjiputra

    2014-05-01

    Full Text Available We estimate regional long-term surface ocean pCO2 growth rates using all available underway and bottled biogeochemistry data collected over the past four decades. These observed regional trends are compared with those simulated by five state-of-the-art Earth system models over the historical period. Oceanic pCO2 growth rates faster than the atmospheric growth rates indicate decreasing atmospheric CO2 uptake, while ocean pCO2 growth rates slower than the atmospheric growth rates indicate increasing atmospheric CO2 uptake. Aside from the western subpolar North Pacific and the subtropical North Atlantic, our analysis indicates that the current observation-based basin-scale trends may be underestimated, indicating that more observations are needed to determine the trends in these regions. Encouragingly, good agreement between the simulated and observed pCO2 trends is found when the simulated fields are subsampled with the observational coverage. In agreement with observations, we see that the simulated pCO2 trends are primarily associated with the increase in surface dissolved inorganic carbon (DIC associated with atmospheric carbon uptake, and in part by warming of the sea surface. Under the RCP8.5 future scenario, DIC continues to be the dominant driver of pCO2 trends, with little change in the relative contribution of SST. However, the changes in the hydrological cycle play an increasingly important role. For the contemporary (1970–2011 period, the simulated regional pCO2 trends are lower than the atmospheric growth rate over 90% of the ocean. However, by year 2100 more than 40% of the surface ocean area has a higher oceanic pCO2 trend than the atmosphere, implying a reduction in the atmospheric CO2 uptake rate. The fastest pCO2 growth rates are projected for the subpolar North Atlantic, while the high-latitude Southern Ocean and eastern equatorial Pacific have the weakest growth rates, remaining below the atmospheric pCO2 growth rate. Our work

  5. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from the R/V Thomas G. Thompson in the Pacific Ocean from 2016-03-02 to 2016-04-18 (NCEI Accession 0158483)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in the Pacific ocean on the R/V...

  6. MERIS Ocean Colour Data for the Estimation of Surface Water pCO2: The Case Studies of Peru and Namibia

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Sørensen, Lise Lotte

    2010-01-01

    in the infrared domain. In situ measurements were retrieved during the Danish Galathea III expedition, from August 2006 until April 2007. The final result was an estimate of the pCO2 along the known upwelling zones of North Chile/Peru and Namibia. Estimates of pCO2 produced by different combinations of physical.......72, for Namibia while for the Peru case study R2 values are in the order of 0.67. Both cases indicate a fit between modelled and measured values, thus a strong possibility for simulating pCO2 levels from satellite observations....

  7. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector and other instruments from 3 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2016-03-13 to 2016-09-13 (NCEI Accession 0158484)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters that were collected during 3 trans-Pacific...

  8. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Blanche in the Pacific Ocean from 2014-02-01 to 2014-11-26 (NCEI Accession 0132047)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 6 trans-Pacific crossings...

  9. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from 4 trans-Pacific crossings onboard container ship Cap Blanche in the Pacific Ocean from 2015-03-28 to 2015-12-04 (NCEI Accession 0141304)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected during 4 trans-Pacific crossings in...

  10. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from container ship Cap Vilano in the Pacific Ocean from 2013-02-01 to 2013-06-06 (NCEI Accession 0132054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters were collected during 3 trans-Pacific crossings...

  11. Ocean acidification effects on calcification in pCO2 acclimated Caribbean scleractinian coral

    Science.gov (United States)

    Ocean acidification (OA) is projected to increase the acidity of coral reef habitats 2-3 times that of present day pCO2 levels. Many studies have shown the adverse effects on scleractinian calcification when exposed to elevated pCO2 levels, however, in these studies, corals have ...

  12. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation

    Directory of Open Access Journals (Sweden)

    G. G. Laruelle

    2017-10-01

    Full Text Available In spite of the recent strong increase in the number of measurements of the partial pressure of CO2 in the surface ocean (pCO2, the air–sea CO2 balance of the continental shelf seas remains poorly quantified. This is a consequence of these regions remaining strongly under-sampled in both time and space and of surface pCO2 exhibiting much higher temporal and spatial variability in these regions compared to the open ocean. Here, we use a modified version of a two-step artificial neural network method (SOM-FFN; Landschützer et al., 2013 to interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25° and with monthly resolution from 1998 to 2015. The most important modifications compared to the original SOM-FFN method are (i the much higher spatial resolution and (ii the inclusion of sea ice and wind speed as predictors of pCO2. The SOM-FFN is first trained with pCO2 measurements extracted from the SOCATv4 database. Then, the validity of our interpolation, in both space and time, is assessed by comparing the generated pCO2 field with independent data extracted from the LDVEO2015 database. The new coastal pCO2 product confirms a previously suggested general meridional trend of the annual mean pCO2 in all the continental shelves with high values in the tropics and dropping to values beneath those of the atmosphere at higher latitudes. The monthly resolution of our data product permits us to reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves of the western and northern Pacific, as well as the shelves in the temperate northern Atlantic, display particularly pronounced seasonal variations in pCO2,  while the shelves in the southeastern Atlantic and in the southern Pacific reveal a much smaller seasonality. The calculation of temperature normalized pCO2 for several latitudes in different oceanic basins confirms that the seasonality in shelf pCO2 cannot solely be explained by

  13. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  14. Influence of vertical temperature contrasts and diel cycles on near-surface seawater pCO2

    Science.gov (United States)

    Matthews, Robin; deYoung, Brad

    2016-04-01

    While the oceanic mixed layer is sometimes assumed to be of vertically-uniform temperature, it is well-known that considerable temperature gradients (>0.1C/m) can develop within its upper few meters, particularly in the tropics during daytime. Given that the partial pressure of CO2 in seawater (pCO2sw) is strongly temperature-dependent, ceteris paribus (all else being equal), we would expect to observe sizeable corresponding vertical pCO2sw gradients under such situations. If prevalent and persistent, such gradients could affect the accuracy of large-scale air-sea CO2 flux estimates since, while intended to be representative of the sea surface skin, the pCO2sw measurements used to compute these are typically from underway systems sampling at 2-4m depth. Vertical variability in pCO2sw could thus be an important but as yet, poorly quantified uncertainty in air-sea CO2 flux estimates. As a first step towards assessing this uncertainty, we derive a global gridded monthly climatology for the peak daily vertical temperature contrast between the upper (0-2m) and lower (2-10m) sea surface and compute the corresponding vertical pCO2sw differences these would cause, ceteris paribus. The latter are an estimate of the temperature-driven pCO2 contrast we would expect to find in a given month between the upper sea surface and the sampling depth of an underway system at the time of the peak temperature contrast in the daily cycle. In addition, we construct a monthly climatology for the amplitude of diel variation in upper sea temperature and compute the corresponding diel pCO2sw amplitudes these would generate, ceteris paribus. While these analyses reveal the locations and months for which vertical temperature contrasts and diel cycles are likely to exert a strong influence on pCO2sw, temperature is only one factor influencing this carbonate chemistry parameter. In situ measurements are required to reveal the actual dynamics of pCO2sw under the influence of all competing factors

  15. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods.

    Science.gov (United States)

    Watson, Sue-Ann; Fabricius, Katharina E; Munday, Philip L

    2017-01-01

    Quantifying the amount of carbon dioxide (CO2) in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT), are often measured and used to calculate the partial pressure of CO2 (pCO2) in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1) Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA) measurement of dissolved inorganic carbon (CT) and AT, 2) spectrophotometric measurement of pHT and AT, 3) electrode measurement of pHNBS and AT, and 4) the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR) gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator) produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

  16. Quantifying pCO2 in biological ocean acidification experiments: A comparison of four methods.

    Directory of Open Access Journals (Sweden)

    Sue-Ann Watson

    Full Text Available Quantifying the amount of carbon dioxide (CO2 in seawater is an essential component of ocean acidification research; however, equipment for measuring CO2 directly can be costly and involve complex, bulky apparatus. Consequently, other parameters of the carbonate system, such as pH and total alkalinity (AT, are often measured and used to calculate the partial pressure of CO2 (pCO2 in seawater, especially in biological CO2-manipulation studies, including large ecological experiments and those conducted at field sites. Here we compare four methods of pCO2 determination that have been used in biological ocean acidification experiments: 1 Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA measurement of dissolved inorganic carbon (CT and AT, 2 spectrophotometric measurement of pHT and AT, 3 electrode measurement of pHNBS and AT, and 4 the direct measurement of CO2 using a portable CO2 equilibrator with a non-dispersive infrared (NDIR gas analyser. In this study, we found these four methods can produce very similar pCO2 estimates, and the three methods often suited to field-based application (spectrophotometric pHT, electrode pHNBS and CO2 equilibrator produced estimated measurement uncertainties of 3.5-4.6% for pCO2. Importantly, we are not advocating the replacement of established methods to measure seawater carbonate chemistry, particularly for high-accuracy quantification of carbonate parameters in seawater such as open ocean chemistry, for real-time measures of ocean change, nor for the measurement of small changes in seawater pCO2. However, for biological CO2-manipulation experiments measuring differences of over 100 μatm pCO2 among treatments, we find the four methods described here can produce similar results with careful use.

  17. Biological Fluxes in the Ocean and Atmospheric pCO2

    Science.gov (United States)

    Archer, D.

    2003-12-01

    The basic outlines for the carbon cycle in the ocean, as it is represented in ocean carbon cycle models, were summarized by Broecker and Peng (1982). Since then, ongoing field research has revised that picture, unearthing new degrees of freedom and sensitivities in the ocean carbon cycle, which may provide clues to changes in the behavior of the carbon cycle over the glacial cycles and deeper into geological time. These sensitivities include new ideas about the chemistry and cycling of phytoplankton nutrients such as nitrate and iron, the physics of sinking organic matter, and the production and redissolution of phytoplankton companion minerals CaCO3 and SiO2, in the water column and in the sediment.The carbon cycle is typically broken down into two components, both of which will be summarized here. The first is the biological pump, effecting the redistributing of biologically active elements like carbon, nitrogen, and silicon within the circulating waters of the ocean. The second is the ultimate removal of these elements by burial in sediments. These two components of the carbon cycle together control the mean concentrations of many chemicals in the ocean, including ocean pH and the pCO2 of the atmosphere.This chapter overlaps considerably with the only two others from this Treatise I have had the pleasure to read: Chapters 6.04 and 6.19. My chapter is distinguished, I suppose, by the perspective of a geochemical ocean modeler, attempting to integrate new field observations into the context of the ocean control of the pCO2 of the atmosphere.

  18. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?

    Science.gov (United States)

    Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo

    2017-12-01

    Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0

  19. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI accession 01645680) (NCEI Accession 0164568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface...

  20. Surface Water pCO2 Variations and Sea-Air CO2 Fluxes During Summer in the Eastern Canadian Arctic

    Science.gov (United States)

    Burgers, T. M.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T.

    2017-12-01

    Based on a 2 year data set, the eastern Canadian Arctic Archipelago and Baffin Bay appear to be a modest summertime sink of atmospheric CO2. We measured surface water CO2 partial pressure (pCO2), salinity, and temperature throughout northern Baffin Bay, Nares Strait, and Lancaster Sound from the CCGS Amundsen during its 2013 and 2014 summer cruises. Surface water pCO2 displayed considerable variability (144-364 μatm) but never exceeded atmospheric concentrations, and average calculated CO2 fluxes in 2013 and 2014 were -12 and -3 mmol C m-2 d-1 (into the ocean), respectively. Ancillary measurements of chlorophyll a reveal low summertime productivity in surface waters. Based on total alkalinity and stable oxygen isotopes (δ18O) data, a strong riverine signal in northern Nares Strait coincided with relatively high surface pCO2, whereas areas of sea-ice melt occur with low surface pCO2. Further assessments, extending the seasonal observation period, are needed to properly constrain both seasonal and annual CO2 fluxes in this region.

  1. Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study

    Directory of Open Access Journals (Sweden)

    Bernd Schneider

    2011-09-01

    Full Text Available This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2. The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model, which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model. To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.

  2. Quantifying the flux of CaCO3 and organic carbon from the surface ocean using in situ measurements of O2, N2, pCO2, and pH

    Science.gov (United States)

    Emerson, Steven; Sabine, Christopher; Cronin, Meghan F.; Feely, Richard; Cullison Gray, Sarah E.; Degrandpre, Mike

    2011-09-01

    Ocean acidification from anthropogenic CO2 has focused our attention on the importance of understanding the rates and mechanisms of CaCO3 formation so that changes can be monitored and feedbacks predicted. We present a method for determining the rate of CaCO3 production using in situ measureme nts of fCO2 and pH in surface waters of the eastern subarctic Pacific Ocean. These quantities were determined on a surface mooring every 3 h for a period of about 9 months in 2007 at Ocean Station Papa (50°N, 145°W). We use the data in a simple surface ocean, mass balance model of dissolved inorganic carbon (DIC) and alkalinity (Alk) to constrain the CaCO3: organic carbon (OC) production ratio to be approximately 0.5. A CaCO3 production rate of 8 mmol CaCO3 m-2 d-1 in the summer of 2007 (1.2 mol m-2 yr-1) is derived by combining the CaCO3: OC ratio with the a net organic carbon production rate (2.5 mol C m-2 yr-1) determined from in situ measurements of oxygen and nitrogen gas concentrations measured on the same mooring (Emerson and Stump, 2010). Carbonate chemistry data from a meridional hydrographic section in this area in 2008 indicate that isopycnal surfaces that outcrop in the winter in the subarctic Pacific and deepen southward into the subtropics are a much stronger source for alkalinity than vertical mixing. This pathway has a high enough Alk:DIC ratio to support the CaCO3:OC production rate implied by the fCO2 and pH data.

  3. Spatial variability in surface-water pCO2 and gas exchange in the world's largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada)

    Science.gov (United States)

    Dinauer, Ashley; Mucci, Alfonso

    2017-07-01

    The incomplete spatial coverage of CO2 partial pressure (pCO2) measurements across estuary types represents a significant knowledge gap in current regional- and global-scale estimates of estuarine CO2 emissions. Given the limited research on CO2 dynamics in large estuaries and bay systems, as well as the sources of error in the calculation of pCO2 (carbonic acid dissociation constants, organic alkalinity), estimates of air-sea CO2 fluxes in estuaries are subject to large uncertainties. The Estuary and Gulf of St. Lawrence (EGSL) at the lower limit of the subarctic region in eastern Canada is the world's largest estuarine system, and is characterized by an exceptional richness in environmental diversity. It is among the world's most intensively studied estuaries, yet there are no published data on its surface-water pCO2 distribution. To fill this data gap, a comprehensive dataset was compiled from direct and indirect measurements of carbonate system parameters in the surface waters of the EGSL during the spring or summer of 2003-2016. The calculated surface-water pCO2 ranged from 435 to 765 µatm in the shallow partially mixed upper estuary, 139-578 µatm in the deep stratified lower estuary, and 207-478 µatm along the Laurentian Channel in the Gulf of St. Lawrence. Overall, at the time of sampling, the St. Lawrence Estuary served as a very weak source of CO2 to the atmosphere, with an area-averaged CO2 degassing flux of 0.98 to 2.02 mmol C m-2 d-1 (0.36 to 0.74 mol C m-2 yr-1). A preliminary analysis revealed that respiration (upper estuary), photosynthesis (lower estuary), and temperature (Gulf of St. Lawrence) controlled the spatial variability in surface-water pCO2. Whereas we used the dissociation constants of Cai and Wang (1998) to calculate estuarine pCO2, formulations recommended for best practices in open ocean environments may underestimate pCO2 at low salinities, while those of Millero (2010) may result in overestimates.

  4. Response of bacterioplankton community structure to an artificial gradient of pCO2 in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-06-01

    Full Text Available In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA was performed in Kings Bay (Kongsfjorden, Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.

  5. Response of bacterioplankton community structure to an artificial gradient of pCO2 in the Arctic Ocean

    Science.gov (United States)

    Zhang, R.; Xia, X.; Lau, S. C. K.; Motegi, C.; Weinbauer, M. G.; Jiao, N.

    2013-06-01

    In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA) was performed in Kings Bay (Kongsfjorden), Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs) in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.

  6. Variations in pCO2 during summer in the surface water of an unproductive lake in northern Sweden

    International Nuclear Information System (INIS)

    Jonsson, A.; Aaberg, J.; Jansson, M.

    2007-01-01

    Unproductive lakes are generally supersaturated with carbon dioxide (CO 2 ) and emit CO 2 to the atmosphere continuously during ice-free periods. However, temporal variation of the partial pressure of CO 2 (pCO 2 ) and thus of CO 2 evasion to atmosphere is poorly documented. We therefore carried out temporally high-resolution (every 6 h) measurements of the pCO 2 using an automated logger system in the surface water of a subarctic, unproductive, lake in the birch forest belt. The study period was June-September 2004. We found that the pCO 2 showed large seasonal variation, but low daily variation. The seasonal variation was likely mainly caused by variations in input and mineralization of allochthonous organic matter. Stratification depth probably also influenced pCO 2 of the surface water by controlling the volume in which mineralization of dissolved organic carbon (DOC) occurred. In lakes, with large variations in pCO 2 , as in our study lake a high (weekly) sampling intensity is recommended for obtaining accurate estimates of the evasion of CO 2

  7. Seasonal controls on surface pCO2 in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Gauns, M.; Madhupratap, M.

    is augmented by the negative relation between pCO2 and oxygen Figure 6. Relations for temperature with pCO2 in the mixed layer in (a) NE- (b) inter and (c) southwest monsoon seasons. Figure 7. Relations for dissolved oxygen with pCO2 in the mixed layers in (a... regulated by physical processes during SW- and NE monsoon whereas both physical and biological processes, especially microbiological pro- cesses, are important in inter-monsoon. These obser- vations were augmented by the Louanchi et al (1996) model...

  8. Seasonal controls on surface pCO2 in the central and eastern ...

    Indian Academy of Sciences (India)

    atm during NE- inter and SW monsoon seasons, respectively. The mixed layer pCO2 relations with temperature, oxygen, chlorophyll a and primary production revealed that the former is largely regulated by physical processes during SW- and NE ...

  9. Seasonal controls on surface pCO 2 in the central and eastern ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 4 ... biological and physical processes in the mixed layer (ML) of the central and eastern Arabian Sea during inter-monsoon, northeast monsoon, and southwest monsoon seasons were studied. ... Significant seasonal variability was found in pCO2 levels.

  10. Calcification in Caribbean reef-building corals at high pCO2 levels in a recirculating ocean acidification exposure system

    Science.gov (United States)

    Projected increases in ocean pCO2 levels are anticipated to affect calcifying organisms more rapidly and to a greater extent than other marine organisms. The effects of ocean acidification (OA) have been documented in numerous species of corals in laboratory studies, largely test...

  11. Partial pressure of carbon dioxide (pCO2), temperature, salinity and other variables collected from surface underway observations using shower head equilibrator, carbon dioxide gas detector, and other instruments from NOAA Ship Oscar Dyson in the Bering Sea and coast of Alaska from 2014-03-03 to 2014-08-13 (NCEI Accession 0132046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains underway measurements of pCO2, salinity, sea surface temperature, and other parameters collected in 2014 on board NOAA Ship Oscar...

  12. Spatiotemporal characteristics of seasonal to multidecadal variability of pCO2 and air-sea CO2 fluxes in the equatorial Pacific Ocean

    Science.gov (United States)

    Valsala, Vinu K.; Roxy, Mathew Koll; Ashok, Karumuri; Murtugudde, Raghu

    2014-12-01

    Seasonal, interannual, and multidecadal variability of seawater pCO2 and air-sea CO2 fluxes in the equatorial Pacific Ocean for the past 45 years (1961-2005) are examined using a suite of experiments performed with an offline biogeochemical model driven by reanalysis ocean products. The processes we focus on are: (a) the evolution of seasonal cycle of pCO2 and air-sea CO2 fluxes during the dominant interannual mode in the equatorial Pacific, i.e., the El Niño-Southern Oscillation (ENSO), (b) its spatiotemporal characteristics, (c) the combined and individual effects of wind and ocean dynamics on pCO2 and CO2 flux variability and their relation to canonical (eastern Pacific) and central Pacific (Modoki) ENSOs and (d) the multidecadal variability of carbon dynamics in the equatorial Pacific and its association with the Pacific Decadal Oscillations (PDO). The simulated mean and seasonal cycle of pCO2 and CO2 fluxes are comparable with the observational estimates and with other model results. A new analysis methodology based on the traditional Empirical Orthogonal Functions (EOF) applied over a time-time domain is employed to elucidate the dominant mode of interannual variability of pCO2 and air-sea CO2 fluxes at each longitude in the equatorial Pacific. The results show that the dominant interannual variability of CO2 fluxes in the equatorial Pacific (averaged over 5°N-10°S) coevolves with that of ENSO. Generally a reduced CO2 source in the central-to-eastern equatorial Pacific evident during June-July of the El Niño year (Year:0) peaks through September of Year:0 to February of Year:+1 and recovers to a normal source thereafter. In the region between 160°W and 110°W, the canonical El Niño controls the dominant variability of CO2 fluxes (mean and RMS of anomaly from 1961 to 2005 is 0.43±0.12 PgC yr-1). However, in the western (160°E-160°W) and far eastern (110°W-90°W) equatorial Pacific, CO2 flux variability is dominantly influenced by the El Ni

  13. Seasonal and spatial variations in surface pCO2 and air-sea CO2 flux in the Chesapeake Bay

    Science.gov (United States)

    Cai, W. J.; Chen, B.

    2017-12-01

    Bay-wide observations of surface water partial pressure of carbon dioxide (pCO2) were conducted in May, June, August, and October 2016 to study the spatial and seasonal variations in surface pCO2 and to estimate air-sea CO2 flux in the Chesapeake Bay. Overall, high surface pCO2 in the upper-bay decreased downstream rapidly below the atmospheric value near the bay bridge in the mid-bay and then increased slightly to the lower-bay where pCO2 approached the atmospheric level. Over the course of a year, pCO2 was higher than 1000 µatm in the upper bay and the highest pCO2 (2500 µatm) was observed in August. Significant biologically-induced pCO2 undersaturation was observed at the upper part of the mid-bay in August with pCO2 as low as 50 µatm and oversaturated DO% of 200%. In addition to biological control, vertical mixing and upwelling controlled by wind direction and tidal stage played an important role in controlling surface pCO2 in the mid-bay as is evidenced by co-occurrence of high pCO2 with low temperature and low oxygen or high salinity from the subsurface. These physical processes occurred regularly and in short time scale of hours, suggesting they must be considered in the assessment of annual air-sea CO2 flux. Seasonally, the upper-bay acted as a source for atmospheric CO2 over the course of a year. The boundary of upper and mid bay transited from a CO2 source to a sink from May to August and was a source again in October due to strong biological production in summer. In contrast, the mid-bay represented as a CO2 source with large temporal variation due to dynamic hydrographic settings. The lower-bay transited from a weak sink in May to equilibrated with the atmosphere from June to August, while became a source again in October. Moreover, the CO2 flux could be reversed very quickly under episodic severe weather events. Thus further research, including the influence of severe weather and subsequent bloom, is needed to get better understanding of the carbon

  14. Seasonal controls on surface pCO2 in the central and eastern ...

    Indian Academy of Sciences (India)

    , low-level atmospheric. Findlater Jet (Findlater 1969, 1974) generates strong gradients in the wind stress over the Arabian Sea. To the northwest of the jet axis, a positive wind stress curl drives divergence (open-ocean upwelling) through.

  15. Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2

    Directory of Open Access Journals (Sweden)

    Cathryn Wynn-Edwards

    2014-06-01

    Full Text Available Increased seawater pCO2 has the potential to alter phytoplankton biochemistry, which in turn may negatively affect the nutritional quality of phytoplankton as food for grazers. Our aim was to identify how Antarctic phytoplankton, Pyramimonas gelidicola, Phaeocystis antarctica, and Gymnodinium sp., respond to increased pCO2. Cultures were maintained in a continuous culture setup to ensure stable CO2 concentrations. Cells were subjected to a range of pCO2 from ambient to 993 µatm. We measured phytoplankton response in terms of cell size, cellular carbohydrate content, and elemental, pigment and fatty acid composition and content. We observed few changes in phytoplankton biochemistry with increasing CO2 concentration which were species-specific and predominantly included differences in the fatty acid composition. The C:N ratio was unaffected by CO2 concentration in the three species, while carbohydrate content decreased in Pyramimonas gelidicola, but increased in Phaeocystis antarctica. We found a significant reduction in the content of nutritionally important polyunsaturated fatty acids in Pyramimonas gelidicola cultures under high CO2 treatment, while cellular levels of the polyunsaturated fatty acid 20:5ω3, EPA, in Gymnodinium sp. increased. These changes in fatty acid profile could affect the nutritional quality of phytoplankton as food for grazers, however, further research is needed to identify the mechanisms for the observed species-specific changes and to improve our ability to extrapolate laboratory-based experiments on individual species to natural communities.

  16. Thermogenic or biogenic methane? Interpreting negative isotopic excursion during Oceanic Anoxic Events using atmospheric pCO2 records from fossil plant stomata.

    Science.gov (United States)

    McElwain, J. C.; Hesselbo, S. P.; Murphy, J. W.

    2005-12-01

    Oceanic anoxic events (OAE) are characterized by carbon-isotope excursions in marine and terrestrial reservoirs and mass extinction of marine faunas. Deceiphering between multiple possible causal mechanisms for these negative isotopic excursion may help to determine the triggering mechanism of OAE's - currently a subject of much debate. We have tested two leading hypotheses for an abrupt negative carbon isotopic excursion marking initiation of the Toarcian OAE (~183 myr ago) using a high-resolution atmospheric carbon dioxide (pCO2) record obtained from changes in stomatal frequency on fossil leaves preserved within nearshore sediments of the Sorthat Formation (formerly Bag) in the eastern Danish Basin. The data reveal that the negative carbon isotopic excursion was coincident with a pCO2 drawdown of 350 +/- 100 ppmV and 2.5 oC global cooling followed by an abrupt 1200 +/- 400 ppmV pCO2 increase and 6.5 +/- 1oC inferred greenhouse warming. The detected CO2 draw-down and inferred global cooling occur coincidently with a second order mass extinction of marine organisms, suggesting a possible additional extinction mechanism to marine anoxia. The pattern and magnitude of CO2 change are not consistent with catastrophic input of isotopically light methane from methane hydrates as the cause of the negative isotopic signal. Our pCO2 record better supports a magma-intrusion hypothesis and suggest that a massive injection of isotopically light carbon from release of thermogenic methane (CH4) occurred due to the intrusion of Gondwanan coals by Toarcian aged Karoo-Ferrar dolerites. We propose that CH4/CO2 generation associated with Karoo-Ferrar magmatism was an important triggering mechanism for the Toarcian OAE.

  17. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system

    Science.gov (United States)

    Sutton, A. J.; Sabine, C. L.; Maenner-Jones, S.; Lawrence-Slavas, N.; Meinig, C.; Feely, R. A.; Mathis, J. T.; Musielewicz, S.; Bott, R.; McLain, P. D.; Fought, H. J.; Kozyr, A.

    2014-11-01

    In an intensifying effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2) systems, have dramatically improved our ability to characterize ocean climate, sea-air gas exchange, and biogeochemical processes. The MAPCO2 system provides high-resolution data that can measure interannual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on carbon dioxide (CO2) flux. Overall uncertainty of the MAPCO2 using in situ calibrations with certified gas standards and post-deployment standard operating procedures is doi:10.3334/CDIAC/OTG.TSM_NDP092 and blank">http://cdiac.ornl.gov/oceans/Moorings/ndp092.

  18. A high-frequency atmospheric and seawater pCO2 data set from 14 open ocean sites using a moored autonomous system

    Science.gov (United States)

    Sutton, A. J.; Sabine, C. L.; Maenner-Jones, S.; Lawrence-Slavas, N.; Meinig, C.; Feely, R. A.; Mathis, J. T.; Musielewicz, S.; Bott, R.; McLain, P. D.; Fought, J.; Kozyr, A.

    2014-05-01

    In an intensifying effort to track ocean change and distinguish between natural and anthropogenic drivers, sustained ocean time-series measurements are becoming increasingly important. Advancements in the ocean carbon observation network over the last decade, such as the development and deployment of Moored Autonomous pCO2 (MAPCO2) systems, have dramatically improved our ability to characterize ocean climate, sea-air gas exchange, and biogeochemical processes. The MAPCO2 system provides high-resolution data that can measure interannual, seasonal, and sub-seasonal dynamics and constrain the impact of short-term biogeochemical variability on carbon dioxide (CO2) flux. Overall uncertainty of the MAPCO2 using in situ calibrations with certified gas standards and post-deployment standard operating procedures is blank">doi:10.3334/CDIAC/OTG.TSM_NDP092 and blank">cdiac.ornl.gov/oceans/Moorings/ndp092.

  19. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, Kunuk

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...... that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity, oxygen and other variables collected from time series observations using Battelle Seaology pCO2 monitoring system (MApCO2) from MOORING Maria_Island_42S_148E deployment in the Tasman Sea, Pacific Ocean from 2012-04-17 to 2012-10-18 (NCEI Accession 0165305)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements in the data set are made with a Battelle Seaology pCO2 monitoring system (MApCO2), a Seabird SBE16plusV2 CTD, mounted on a surface buoy similar to the...

  1. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites.

    Science.gov (United States)

    Lamare, Miles D; Liddy, Michelle; Uthicke, Sven

    2016-11-30

    Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO 2 and ambient pCO 2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH (T) = 7.89-7.92), larvae developing in elevated pCO 2 vent conditions (pH (T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response. © 2016 The Author(s).

  2. Seagrass beds as ocean acidification refuges for mussels? High resolution measurements of pCO2 and O2 in a Zostera marina and Mytilus edulis mosaic habitat

    Science.gov (United States)

    Saderne, V.; Fietzek, P.; Aßmann, S.; Körtzinger, A.; Hiebenthal, C.

    2015-07-01

    It has been speculated that macrophytes beds might act as a refuge for calcifiers from ocean acidification. In the shallow nearshores of the western Kiel Bay (Baltic Sea), mussel and seagrass beds are interlacing, forming a mosaic habitat. Naturally, the diverse physiological activities of seagrasses and mussels are affected by seawater carbonate chemistry and they locally modify it in return. Calcification by shellfishes is sensitive to seawater acidity; therefore the photosynthetic activity of seagrasses in confined shallow waters creates favorable chemical conditions to calcification at daytime but turn the habitat less favorable or even corrosive to shells at night. In contrast, mussel respiration releases CO2, turning the environment more favorable for photosynthesis by adjacent seagrasses. At the end of summer, these dynamics are altered by the invasion of high pCO2/low O2 coming from the deep water of the Bay. However, it is in summer that mussel spats settle on the leaves of seagrasses until migrating to the permanent habitat where they will grow adult. These early life phases (larvae/spats) are considered as most sensitive with regard to seawater acidity. So far, the dynamics of CO2 have never been continuously measured during this key period of the year, mostly due to the technological limitations. In this project we used a combination of state-of-the-art technologies and discrete sampling to obtain high-resolution time-series of pCO2 and O2 at the interface between a seagrass and a mussel patch in Kiel Bay in August and September 2013. From these, we derive the entire carbonate chemistry using statistical models. We found the monthly average pCO2 more than 50 % (approx. 640 μatm for August and September) above atmospheric equilibrium right above the mussel patch together with large diel variations of pCO2 within 24 h: 887 ± 331 μatm in August and 742 ± 281 μatm in September (mean ± SD). We observed important daily corrosiveness for calcium

  3. Rapid increase of observed DIC and pCO(2) in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes

    NARCIS (Netherlands)

    Clargo, Nicola M.; Salt, Lesley A.; Thomas, Helmuth; de Baar, Hein J.W.

    2015-01-01

    The CO2 system in the North Sea over the 2001-2011 decade was investigated using four comprehensive basin-wide datasets covering the late summer periods of 2001, 2005, 2008 and 2011. We find that rises in surface water DIC and pCO(2) exceeded concurrent rises in atmospheric pCO(2), which we

  4. Effects of ocean acidification with pCO2diurnal fluctuations on survival and larval shell formation of Ezo abalone, Haliotis discus hannai.

    Science.gov (United States)

    Onitsuka, Toshihiro; Takami, Hideki; Muraoka, Daisuke; Matsumoto, Yukio; Nakatsubo, Ayumi; Kimura, Ryo; Ono, Tsuneo; Nojiri, Yukihiro

    2018-03-01

    This study assessed the effects of constant and diurnally fluctuating pCO 2 on development and shell formation of larval abalone Haliotis discus hannai. The larvae was exposed to different pCO 2 conditions; constant [450, 800, or 1200 μatm in the first experiment (Exp. I), 450 or 780 μatm in the second experiment (Exp. II)] or diurnally fluctuating pCO 2 (800 ± 400 or 1200 ± 400 μatm in Exp. I, 450 ± 80, 780 ± 200 or 780 ± 400 μatm in Exp. II). Mortality, malformation rates or shell length of larval abalone were not significantly different among the 450, 800, and 800 ± 400 μatm pCO 2 treatments. Meanwhile, significantly higher malformation rates and smaller shells were detected in the 1200 and 1200 ± 400 μatm pCO 2 treatments than in the 450 μatm pCO 2 treatment. The negative impacts were greater in the 1200 ± 400 μatm than in the 1200 μatm. Shell length and malformation rate of larval abalone were related with aragonite saturation state (Ω-aragonite) in experimental seawater, and greatly changed around 1.1 of Ω-aragonite which corresponded to 1000-1300 μatm pCO 2 . These results indicate that there is a pCO 2 threshold associated with Ω-aragonite in the seawater, and that pCO 2 fluctuations produce additional negative impacts on abalone when above the threshold. Clear relationships were detected between abalone fitness and the integrated pCO 2 value over the threshold, indicating that the effects of OA on development and shell formation of larval abalone can be determined by intensity and time of exposure to pCO 2 over the threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Impact of elevated pCO2 on the ecophysiology of Mytilus edulis

    OpenAIRE

    Thomsen, Jörn

    2012-01-01

    Increasing atmospheric CO2 concentrations equilibrate with the surface water of the oceans and thereby increase seawater pCO2 and decrease [CO32-] and pH. This process of ocean acidification is expected to cause a drastic change of marine ecosystem composition and a decrease in calcification ability of various benthic invertebrates. The studied area, Kiel Fjord, is characterized by high pCO2 variability due to upwelling of O2 depleted and CO2 enriched bottom water. Within less than 50 years, ...

  6. Underway pCO2 Measurements in Surface Waters and the Atmosphere During the R/V Nathaniel B. Palmer 2016 Expeditions (NCEI Accession 0166630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0166630 includes Surface underway data collected from R/V Nathaniel B. Palmer in the South Pacific Ocean, South Atlantic Ocean, Southern Oceans from...

  7. An updated observation-based global monthly gridded sea surface pCO2 and air-sea CO2 flux product from 1982 through 2015 and its monthly climatology (NCEI Accession 0160558)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The observation-based pCO2 fields were created using a 2-step neural network method extensively described and validated in Landschützer et al. 2013, 2014, 2016. The...

  8. Instability and breakdown of the coral-algae symbiosis upon exceedence of the interglacial pCO2 threshold (>260 ppmv): the "missing" Earth-System feedback mechanism

    Science.gov (United States)

    Wooldridge, Scott A.

    2017-12-01

    Changes in the atmospheric partial pressure of CO2 ( pCO2) leads to predictable impacts on the surface ocean carbonate system. Here, the importance of atmospheric pCO2 ecosystems. Indeed, it is concluded that this symbiotic threshold enacts a fundamental feedback mechanism needed to explain the characteristic dynamics (and drivers) of the coupled land-ocean-atmosphere carbon cycle of the Earth System since the mid-Miocene, some 25 million yr ago.

  9. Elevated pCO2 enhances bacterioplankton removal of organic carbon.

    Science.gov (United States)

    James, Anna K; Passow, Uta; Brzezinski, Mark A; Parsons, Rachel J; Trapani, Jennifer N; Carlson, Craig A

    2017-01-01

    Factors that affect the removal of organic carbon by heterotrophic bacterioplankton can impact the rate and magnitude of organic carbon loss in the ocean through the conversion of a portion of consumed organic carbon to CO2. Through enhanced rates of consumption, surface bacterioplankton communities can also reduce the amount of dissolved organic carbon (DOC) available for export from the surface ocean. The present study investigated the direct effects of elevated pCO2 on bacterioplankton removal of several forms of DOC ranging from glucose to complex phytoplankton exudate and lysate, and naturally occurring DOC. Elevated pCO2 (1000-1500 ppm) enhanced both the rate and magnitude of organic carbon removal by bacterioplankton communities compared to low (pre-industrial and ambient) pCO2 (250 -~400 ppm). The increased removal was largely due to enhanced respiration, rather than enhanced production of bacterioplankton biomass. The results suggest that elevated pCO2 can increase DOC consumption and decrease bacterioplankton growth efficiency, ultimately decreasing the amount of DOC available for vertical export and increasing the production of CO2 in the surface ocean.

  10. Transcutaneous PCO2 monitors are more accurate than end-tidal PCO2 monitors.

    Science.gov (United States)

    Hirabayashi, Makihiko; Fujiwara, Chieko; Ohtani, Norimasa; Kagawa, Sohei; Kamide, Masayuki

    2009-01-01

    The accuracy of monitors for measuring transcutaneous PCO2 (TcPCO2), end-tidal PCO2 (EtPCO2), and nasal EtPCO2 was evaluated. The measuring devices included a TcPCO2 monitor (TCM3; Radiometer Trading), an EtPCO2 monitor (Ultima; Datex-Ohmeda), and a nasal EtPCO2 monitor (TG-920P; Nihon Kohden). The sensor electrode of the TCM3 TcPCO2 monitor was applied to the skin of the subject's upper arm. A sampling tube attached to the proximal end of the tracheal tube was connected to the Ultima EtPCO2 monitor. The miniature sensor of the TG-920P nasal EtPCO2 monitor was attached to the nostril. The values obtained were compared with direct measurements of arterial PCO2 (PaCO2) obtained by means of an ABL700 blood gas analyzer (Radiometer Trading) in surgically treated patients. The means +/- 2 SD of the differences between variables were calculated. The TcPCO2 monitor (0.19 +/- 4.8 mmHg, mean +/- 2-SD) was more accurate than the EtPCO2 monitor (-4.4 +/- 6.5 mmHg, mean +/- 2-SD) in patients receiving artificial ventilation via an endotracheal tube and the TcPCO2 monitor was also more accurate than the nasal EtPCO2 monitor (-6.3 +/- 9.8 mmHg, bias +/- 2-SD) in patients breathing spontaneously. We found that the TcPCO2 monitor was more accurate than the EtPCO2 or nasal EtPCO2 monitor in surgically treated patients.

  11. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis.

    Directory of Open Access Journals (Sweden)

    Frank Melzner

    Full Text Available Progressive ocean acidification due to anthropogenic CO(2 emissions will alter marine ecosystem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO(2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO(2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO(2 (39, 142, 240, 405 Pa and two food algae (310-350 cells mL(-1 vs. 1600-2000 cells mL(-1 concentrations for a period of seven weeks during winter (5°C. We found that low food algae concentrations and high pCO(2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite layers was documented via stereomicroscopy and SEM at the two highest pCO(2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO(2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO(2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.

  12. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    Science.gov (United States)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.

    2018-03-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.

  13. Transcutane PCO2-meting in de neonatologie

    NARCIS (Netherlands)

    Schultz, M. J.; de Kleine, M. J.; Koppe, J. G.

    1991-01-01

    Transcutaneous PCO2 studies were performed in 21 healthy preterm infants and in 12 preterm infants with respiratory problems, in order: I. to evaluate the feasibility of transcutaneous PCO2 measurements in the clinical situation; 2. to collect normal values for preterm infants, and 3. to compare

  14. Storm Driven Upwelling Responsible for pCO2-rich Water Intrusion in the South Atlantic Bight

    Science.gov (United States)

    Noakes, S.; Gledhill, D. K.

    2016-02-01

    Gray's Reef National Marine Sanctuary (GRNMS) is located approximately 20 miles offshore Georgia along the inner to middle shelf of the South Atlantic Bight (SAB). The University of Georgia (UGA) and the Pacific Marine Environmental Lab have maintained a high resolution pCO2 system for almost a decade on the National Data Buoy Center's buoy moored at GRNMS. To support the surface monitoring and set the stage for benthic monitoring at GRNMS, UGA and GRNMS have established a seafloor observatory that monitors pCO2, pH and water quality parameters. Traditional thought had held that given the relatively shallow water depth at GRNMS, the pCO2 measured on the surface could be extrapolated to the seafloor and utilized to monitor the benthic community. However, seafloor pCO2 data collected to date have revealed unusual episodes of subsurface pCO2-rich water moving through GRNMS that had not been previously identified by surface monitoring. Many of these events correspond with major storms that have either formed off the SAB or passed nearby GRNMS. Based on the surface data collected to date, temperature driven seasonal pCO2 changes occur naturally on an annual scale in the SAB which also affects the pH. However, the storms appear to have induced upwelling of pCO2-rich water from the deep Atlantic Ocean pushing it inward over the long continental shelf towards GRNMS. The result of the upwelling is a sharp increase of subsurface pCO2 lasting only days to weeks as compared to the seasonal cycle. It is part of the natural weather patterns for storms to form off the SAB or pass nearby, but depending on if the storm frequency increases due to global climate change, this process may become more of an impact on the benthic community. How this affects the benthic community has yet to be determined, but it is clear that they have adapted to seasonal fluctuations for survival. These upwellings are obviously adding to the SAB total carbon budget and affecting the benthic water quality

  15. Ocean Surface Carbon Dioxide Fugacity Observed from Space

    Science.gov (United States)

    Liu, W. Timothy; Xie, Xiaosu

    2014-01-01

    We have developed and validated a statistical model to estimate the fugacity (or partial pressure) of carbon dioxide (CO2) at sea surface (pCO2sea) from space-based observations of sea surface temperature (SST), chlorophyll, and salinity. More than a quarter million in situ measurements coincident with satellite data were compiled to train and validate the model. We have produced and made accessible 9 years (2002-2010) of the pCO2sea at 0.5 degree resolutions daily over the global ocean. The results help to identify uncertainties in current JPL Carbon Monitoring System (CMS) model-based and bottom-up estimates over the ocean. The utility of the data to reveal multi-year and regional variability of the fugacity in relation to prevalent oceanic parameters is demonstrated.

  16. Evaluation of a Prototype pCO2 Optical Sensor

    Science.gov (United States)

    Sanborn-Marsh, C.; Sutton, A.; Sabine, C. L.; Lawrence-Salvas, N.; Dietrich, C.

    2016-12-01

    Anthropogenic greenhouse gas emissions continue to rise, driving climate change and altering the ocean carbonate systems. Carbonate chemistry can be characterized by any two of the four parameters: pH, total alkalinity, dissolved inorganic carbon, and partial pressure of dissolved carbon dioxide gas (pCO2). To fully monitor these dynamic systems, researchers must deploy a more temporally and spatially comprehensive sensor network. Logistical challenges, such as the energy consumption, size, lifetime, depth range, and cost of pCO2 sensors have limited the network's reach so far. NOAA's Pacific Marine Environmental Laboratory has conducted assessment tests of a pCO2 optical sensor (optode), recently developed by Atamanchuk et al (2014). We hope to deploy this optode in the summer of 2017 on high-resolution moored profiler, along with temperature, salinity, and oxygen sensors. While most pCO2 optodes have energy consumptions of 3-10 W, this 36mm-diameter by 86mm-long instrument consumes a mere 7-80 mW. Initial testing showed that its accuracy varied within an absolute range of 2-75 μatm, depending on environmental conditions, including temperature, salinity, response time, and initial calibration. Further research independently examining the effects of each variable on the accuracy of the data will also be presented.

  17. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011

    Science.gov (United States)

    Ito, Rosane Gonçalves; Garcia, Carlos Alberto Eiras; Tavano, Virginia Maria

    2016-05-01

    Sea-air CO2 fluxes over continental shelves vary substantially in time on both seasonal and sub-seasonal scales, driven primarily by variations in surface pCO2 due to several oceanic mechanisms. Furthermore, coastal zones have not been appropriately considered in global estimates of sea-air CO2 fluxes, despite their importance to ecology and to productivity. In this work, we aimed to improve our understanding of the role played by shelf waters in controlling sea-air CO2 fluxes by investigating the southwestern Atlantic Ocean (21-35°S) region, where physical, chemical and biological measurements were made on board the Brazilian R. V. Cruzeiro do Sul during late spring 2010 and early summer 2011. Features such as discharge from the La Plata River, intrusions of tropical waters on the outer shelf due to meandering and flow instabilities of the Brazil Current, and coastal upwelling in the Santa Marta Grande Cape and São Tomé Cape were detected by both in situ measurements and ocean colour and thermal satellite imagery. Overall, shelf waters in the study area were a source of CO2 to the atmosphere, with an average of 1.2 mmol CO2 m-2 day-1 for the late spring and 11.2 mmol CO2 m-2 day-1 for the early summer cruises. The spatial variability in ocean pCO2 was associated with surface ocean properties (temperature, salinity and chlorophyll-a concentration) in both the slope and shelf waters. Empirical algorithms for predicting temperature-normalized surface ocean pCO2 as a function of surface ocean properties were shown to perform well in both shelf and slope waters, except (a) within cyclonic eddies produced by baroclinic instability of the Brazil Current as detected by satellite SST imagery and (b) in coastal upwelling regions. In these regions, surface ocean pCO2 values were higher as a result of upwelled CO2-enriched subsurface waters. Finally, a pCO2 algorithm based on both sea surface temperature and surface chlorophyll-a was developed that enabled the spatial

  18. An autonomous drifting buoy system for long term pCO2 observation

    Science.gov (United States)

    Nakano, Y.; Fujiki, T.; Wakita, M.; Azetsu-Scott, K.; Watanabe, S.

    2009-04-01

    Many studies have been carried out around the world to understand what happens to carbon dioxide (CO2) once it is emitted into the atmosphere, and how it relates to long-term climate change. However, the sea surface pCO2 observations on volunteer observation ships and research vessels concentrated in the North Atlantic and North Pacific. To assess the spatial and temporal variations of surface pCO2 in the global ocean, new automated pCO2 sensor which can be used in platform systems such as buoys or moorings is strongly desired. We have been developing the small drifting buoy system (diameter 250-340 mm, length 470 mm, weight 15 kg) for pCO2 measurement, with the support of the Japan EOS Promotion Program (JEPP), the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The objective is to provide simplified, automated measurements of pCO2 over all the world's oceans, an essential factor in understanding how the ocean responds to climate change. The measurement principle for the pCO2 sensor is based on spectrophotometry (e.g. Lefèvre et al., 1993; Degrandpre et al., 1995). The CO2 in the surrounding seawater equilibrates with the indicator solution across the gas permeable membranes. The equilibration process causes a change of pH in the indicator solution, which results in the change of optical absorbance. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. In our analytical system, we used an amorphous fluoropolymer tubing form of AF-2400 by DuPontTM for the gas permeable membrane due to its high gas permeability coefficients. The measurement system of the sensor consisted mainly of a LED light source, optical fibers, a CCD detector, and a downsized PC. The measured data were transmitted to the laboratory by satellite communication (Argos system). In the laboratory experiment, we obtained a high response time (less than 2 minutes) and a precision

  19. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, Kunuk

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate that m...

  20. The effects of pH and pCO2on photosynthesis and respiration in the diatom Thalassiosira weissflogii.

    Science.gov (United States)

    Goldman, Johanna A L; Bender, Michael L; Morel, François M M

    2017-04-01

    The response of marine phytoplankton to the ongoing increase in atmospheric pCO 2 reflects the consequences of both increased CO 2 concentration and decreased pH in surface seawater. In the model diatom Thalassiosira weissflogii, we explored the effects of varying pCO 2 and pH, independently and in concert, on photosynthesis and respiration by incubating samples in water enriched in H 2 18 O. In long-term experiments (~6-h) at saturating light intensity, we observed no effects of pH or pCO 2 on growth rate, photosynthesis or respiration. This absence of a measurable response reflects the very small change in energy used by the carbon concentrating mechanism (CCM) compared to the energy used in carbon fixation. In short-term experiments (~3 min), we also observed no effects of pCO 2 or pH, even under limiting light intensity. We surmise that in T. weissflogii, it is the photosynthetic production of NADPH and ATP, rather than the CO 2 -saturation of Rubisco that controls the rate of photosynthesis at low irradiance. In short-term experiments, we observed a slightly higher respiration rate at low pH at the onset of the dark period, possibly reflecting the energy used for exporting H + and maintaining pH homeostasis. Based on what is known of the biochemistry of marine phytoplankton, our results are likely generalizable to other diatoms and a number of other eukaryotic species. The direct effects of ocean acidification on growth, photosynthesis and respiration in these organisms should be small over the range of atmospheric pCO 2 predicted for the twenty-first century.

  1. Skeletal mineralogy of coral recruits under high temperature and pCO2

    Directory of Open Access Journals (Sweden)

    T. Foster

    2016-03-01

    Our results show that elevated pCO2 alone is unlikely to drive changes in the skeletal mineralogy of young corals. Not having an ability to switch from aragonite to calcite precipitation may leave corals and ultimately coral reef ecosystems more susceptible to predicted ocean acidification. An important area for prospective research would be the investigation of the combined impact of high pCO2 and reduced Mg ∕ Ca ratio on coral skeletal mineralogy.

  2. Rising pCO2in Freshwater Ecosystems Has the Potential to Negatively Affect Predator-Induced Defenses in Daphnia.

    Science.gov (United States)

    Weiss, Linda C; Pötter, Leonie; Steiger, Annika; Kruppert, Sebastian; Frost, Uwe; Tollrian, Ralph

    2018-01-22

    Anthropogenically released CO 2 accumulates in the global carbon cycle and is anticipated to imbalance global carbon fluxes [1]. For example, increased atmospheric CO 2 induces a net air-to-sea flux where the oceans take up large amounts of atmospheric CO 2 (i.e., ocean acidification [2-5]). Research on ocean acidification is ongoing, and studies have demonstrated the consequences for ecosystems and organismal biology with major impacts on marine food webs, nutrient cycles, overall productivity, and biodiversity [6-9]. Yet, surprisingly little is known about the impact of anthropogenically caused CO 2 on freshwater systems due to their more complex biogeochemistry. The current consensus, yet lacking data evidence, is that anthropogenic CO 2 does indeed affect freshwater carbon hydrogeochemistry, causing increased pCO 2 in freshwater bodies [10-13]. We analyzed long-term data from four freshwater reservoirs and observed a continuous pCO 2 increase associated with a decrease in pH, indicating that not only the oceans but also inland waters are accumulating CO 2 . We tested the effect of pCO 2 -dependent freshwater acidification using the cosmopolite crustacean Daphnia. For general validity, control pCO 2 -levels were based on the present global pCO 2 average. Treatments were selected with very high pCO 2 levels, assuming a continuous non-linear increase of pCO 2 , reflecting worst-case-scenario future pCO 2 levels. Such levels of elevated pCO 2 reduced the ability of Daphnia to sense its predators and form adequate inducible defenses. We furthermore determined that pCO 2 and not the resulting reduction in pH impairs predator perception. If pCO 2 alters chemical communication between freshwater species, this perturbs intra- and interspecific information transfer, which may affect all trophic levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Atmospheric pCO2 reconstructed across five early Eocene global warming events

    Science.gov (United States)

    Cui, Ying; Schubert, Brian A.

    2017-11-01

    Multiple short-lived global warming events, known as hyperthermals, occurred during the early Eocene (56-52 Ma). Five of these events - the Paleocene-Eocene Thermal Maximum (PETM or ETM1), H1 (or ETM2), H2, I1, and I2 - are marked by a carbon isotope excursion (CIE) within both marine and terrestrial sediments. The magnitude of CIE, which is a function of the amount and isotopic composition of carbon added to the ocean-atmosphere system, varies significantly between marine versus terrestrial substrates. Here we use the increase in carbon isotope fractionation by C3 land plants in response to increased pCO2 to reconcile this difference and reconstruct a range of background pCO2 and peak pCO2 for each CIE, provided two potential carbon sources: methane hydrate destabilization and permafrost-thawing/organic matter oxidation. Although the uncertainty on each pCO2 estimate using this approach is low (e.g., median uncertainty = + 23% / - 18%), this work highlights the potential for significant systematic bias in the pCO2 estimate resulting from sampling resolution, substrate type, diagenesis, and environmental change. Careful consideration of each of these factors is required especially when applying this approach to a single marine-terrestrial CIE pair. Given these limitations, we provide an upper estimate for background early Eocene pCO2 of 463 +248/-131 ppmv (methane hydrate scenario) to 806 +127/-104 ppmv (permafrost-thawing/organic matter oxidation scenario). These results, which represent the first pCO2 proxy estimates directly tied to the Eocene hyperthermals, demonstrate that early Eocene warmth was supported by background pCO2 less than ∼3.5× preindustrial levels and that pCO2 > 1000 ppmv may have occurred only briefly, during hyperthermal events.

  4. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from surface underway observations using carbon dioxide gas analyzer, shower head equilibrator and other instruments from R/V Wecoma in the U.S. West Coast California Current System during the 2011 West Coast Ocean Acidification Cruise (WCOA2011) from 2011-08-12 to 2011-08-30 (NODC Accession 0123607)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface underway pCO2 data of the first dedicated West Coast Ocean Acidification cruise (WCOA2011). The cruise took place August...

  5. Evaluation of Surface and Transport Limitations to the Rate of Calcite Dissolution Using Pore Scale Modeling of a Capillary Tube Experiment at pCO2 4 bar

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Yang, L.; Ajo Franklin, J. B.; Ligocki, T.; Shen, C.; Steefel, C. I.

    2013-12-01

    Mineral trapping is generally considered to account for most of the long-term trapping of CO2 in the subsurface. Prediction of mineral trapping at the reservoir scale requires knowledge of continuum-scale mineral dissolution and precipitation rates. However, processes that take place at the pore scale (e.g., transport limitation to reactive surfaces) affect rates applicable at the continuum scale. To explore the pore scale processes that result in the discrepancy between rates measured in laboratory experiments and those calibrated from continuum-scale models, we have developed a high-resolution pore scale model of a capillary tube experiment. The capillary tube (L=0.7-cm, D=500-μm) is packed with crushed calcite (Iceland spar) and the resulting 3D pore structure is imaged by X-ray computed microtomography (XCMT) at Berkeley Lab's Advanced Light Source at a 0.899-μm resolution. A solution in equilibrium with a partial pressure of CO2 of 4 bars is injected at a rate of 5 microliter/min and the effluent concentrations of calcium are measured to ensure steady state conditions are achieved. A simulation domain is constructed from the XCMT image using implicit functions to represent the mineral surface locally on a grid. The pore-scale reactive transport model is comprised of high performance simulation tools and algorithms for incompressible Navier-Stokes flow, advective-diffusive transport and multicomponent geochemical reactions. Simulations are performed using 6,144 processors on NERSC's Cray XE6 Hopper to achieve a grid resolution of 2.32 μm. Equivalent continuum scale simulations are also performed to evaluate the effect of pore scale processes. Comparison of results is performed based on flux-averaged effluent calcium concentrations, which are used as indicator of effective rates in the capillary tube. Results from both pore- and continuum-scale simulations overestimate the calcium effluent concentrations, suggesting that the TST rate expression parameters

  6. Natural variability of pCO2 and pH in the Atlantic and Pacific coastal margins of the U.S

    Science.gov (United States)

    Sutton, A. J.; Sabine, C. L.; Feely, R. A.; Newton, J.; Salisbury, J.; Vandemark, D. C.; Musielewicz, S. B.; Maenner-Jones, S.; Bott, R.; Lawrence-Slavas, N.

    2011-12-01

    The discovery that seawater chemistry is changing as a result of carbon dioxide (CO2) emissions, referred to as "ocean acidification", has prompted a large effort to understand how this changing chemistry will impact marine life. Changes in carbon chemistry have been documented in the open ocean; however, in dynamic coastal systems where many marine species live, ocean acidification and the natural biogeochemical variability that organisms are currently exposed to are poorly quantified. In 2010 we began equipping coastal moorings currently measuring pCO2 with pH and other biogeochemical sensors to measure ocean acidification parameters at 3 hour intervals in the surface water. Here we present the magnitude and diurnal to seasonal variability of pCO2 and pH during the first year of observations at 2 sites in the Atlantic and Pacific coastal margins of the U.S.: the Gulf of Maine and outer coast of Washington state. Both the magnitude and range of pCO2 and pH values were much greater at the coastal moorings compared to the open ocean mooring at Ocean Station Papa in the North Pacific and also varied between the two coastal mooring sites. We observed maximum pCO2 values in coastal waters exceeding predicted values for the open ocean at 2x pre-industrial CO2 levels. The range of pCO2 and pH values during this time series was approximately 4 times the range observed at open ocean mooring Papa (2007-2011 time series). In many cases, large variance was observed at short time scales, with values fluctuating more than 200 μatm pCO2 and 0.2 pH between 3-hour cycles. These types of observations are critical for understanding how ocean acidification will manifest in naturally dynamic coastal systems and for informing the experimental design of species response studies that aim to mimic carbon chemistry experienced by coastal marine organisms.

  7. Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2

    Science.gov (United States)

    Sung, Chan-Gyung; Kim, Tae Won; Park, Young-Gyu; Kang, Seong-Gil; Inaba, Kazuo; Shiba, Kogiku; Choi, Tae Seob; Moon, Seong-Dae; Litvin, Steve; Lee, Kyu-Tae; Lee, Jung-Suk

    2014-09-01

    Since the Industrial Revolution, rising atmospheric CO2 concentration has driven an increase in the partial pressure of CO2 in seawater (pCO2), thus lowering ocean pH. We examined the separate effects of exposure of gametes to elevated pCO2 and low pH on fertilization success of the sea urchin Strongylocentrotus nudus. Sperm and eggs were independently exposed to seawater with pCO2 levels ranging from 380 (pH 7.96-8.3) to 6000 ppmv (pH 7.15-7.20). When sperm were exposed, fertilization rate decreased drastically with increased pCO2, even at a concentration of 450 ppmv (pH range: 7.94 to 7.96). Conversely, fertilization of Hemicentrotus pulcherrimus was not significantly changed even when sperm was exposed to pCO2 concentrations as high as 750 ppmv. Exposure of S. nudus eggs to seawater with high pCO2 did not affect fertilization success, suggesting that the effect of increased pCO2 on sperm is responsible for reduced fertilization success. Surprisingly, this result was not related to sperm motility, which was insensitive to pCO2. When seawater was acidified using HCl, leaving pCO2 constant, fertilization success in S. nudus remained high (> 80%) until pH decreased to 7.3. While further studies are required to elucidate the physiological mechanism by which elevated pCO2 impairs sperm and reduces S. nudus fertilization, this study suggests that in the foreseeable future, sea urchin survival may be threatened due to lower fertilization success driven by elevated pCO2 rather than by decreased pH in seawater.

  8. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    Science.gov (United States)

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-01-01

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795

  9. Deglacial Western Equatorial Pacific pCO2 Reconstruction Using Boron Isotopes of Planktonic Foraminiferas

    Science.gov (United States)

    Kubota, K.; Yokoyama, Y.; Ishikawa, T.; Sagawa, T.; Ikehara, M.; Yamazaki, T.

    2017-12-01

    During the last deglaciation (ca. 19 - 11 ka), partial pressure of CO2 (pCO2) of the atmosphere increased by 80 μatm. Many paleoceanographers point out that the ocean had played an important role in atmospheric CO2 rise, since the ocean have 60 times larger capacity to store carbon compared to the atmosphere. However, evidence on where carbon was transferred from the ocean to the atmosphere is still lacking, hampering our understanding of global carbon cycles in glacial-interglacial timescales. Boron isotope of skeletons of marine calcifying organisms such as corals and foraminiferas can pin down where CO2 source/sink existed, because boron isotopes of marine calcium carbonates is dependent on seawater pH, from which pCO2 of the past seawater can be reconstructed. In previous studies using the boron isotope teqnique, Martinez-Boti et al. (2015, Nature) and Kubota et al. (2014, Scientific Reports) revealed that central and eastern parts of the equatorial Pacific acted as a CO2 source (i.e., CO2 emission) during the last deglaciation, suggesting the equatorial Pacific's contribution to atmospheric CO2 rise. However, some conflicting results have been confirmed in a marine sediment record from the western part of the equatorial Pacific (Palmer & Pearson, 2003, Science), making the conclusion elusive. In this presentation, we will show new results of Mg/Ca, oxygen isotope, and boron isotope measurements during the last 35 ka on two species of surface dwelling foraminiferas (Globigerinoides ruber and G. sacculifer) which was hand-picked separatedly from a well-dated marine sediment core recovered from the West Caroline Basin (KR05-15 PC01) (Yamazaki et al., 2008, GRL). From the new records, we will discuss how the equatorial Pacific behaved during the last deglaciation and how it related to the global carbon cycles.

  10. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957-2016 (LDEO Database Version 2016) (NCEI Accession 0160492)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Approximately 10.8 million measurements of surface water pCO2 made over the global oceans during 1957-2016 have been processed to make a uniform data file in this...

  11. Reduction in Surface Ocean Carbon Storage across the Middle Miocene

    Science.gov (United States)

    Babila, T. L.; Sosdian, S. M.; Foster, G. L.; Lear, C. H.

    2017-12-01

    During the Middle Miocene, Earth underwent a profound climate shift from the warmth of the Miocene Climatic Optimum (MCO; 14-17 Ma) to the stable icehouse of today during the Middle Miocene Climate transition (MMCT). Elevated atmospheric carbon dioxide concentrations (pCO2) revealed by boron isotope records (δ11B) link massive volcanic outputs of Columbia River Flood Basalts to the general warmth of MCO. Superimposed on the long-term cooling trend (MMCT) is a gradual pCO2 decline and numerous positive carbon isotope (δ13C) excursions that indicate dynamic variations in the global carbon cycle. Enhanced organic carbon burial via marine productivity, increased silicate weathering and volcanic emission cessation are each invoked to explain the drawdown of pCO2. To better constrain the oceanic role in carbon sequestration over the Middle Miocene detailed records of carbonate chemistry are needed. We present high resolution Boron/Calcium (B/Ca) and δ13C records in planktonic foraminifer T.trilobus spanning 12-17 Ma at ODP 761 (tropical eastern Indian Ocean) to document changes in surface ocean carbonate chemistry. An overall 30% increase in B/Ca ratios is expressed as two stepwise phases occurring at 14.7 and 13 Ma. Cyclic B/Ca variations are coherent with complimentary δ13C records suggesting a tight coupling between ocean carbonate chemistry parameters. Lower resolution B/Ca data at DSDP 588 (Pacific) and ODP 926 (Atlantic) corroborate the trends observed at ODP 761. We employ a paired approach that combines B/Ca (this study) to δ11B (Foster et al., 2012) and an ad hoc calibration to estimate changes in surface ocean dissolved inorganic carbon (DIC). We estimate a substantial decrease in surface ocean DIC spanning the Middle Miocene that culminates with modern day like values. This gradual decline in surface ocean DIC is coeval with existing deep-ocean records which together suggests a whole ocean reduction in carbon storage. We speculate that enhanced weathering

  12. Secular trends and seasonal variations of partial pressure of carbon dioxide in the surface sea water in the Australian secutor of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Gen Hashida

    2010-12-01

    Full Text Available In order to elucidate the secular trends of oceanic CO_2 uptake in the Indian sector of the Southern Ocean, pCO_2, the partial pressure of CO_2 in the ocean surface layer, has been measured since 1987 on board the icebreaker Shirase. Meridional distributions of pCO_2 along 110゜E in early December clearly show steep changes at such fronts as the subtropical front, subantarctic front, and polar front. Although pCO_2 of each zone shows interannual variation, secular trend is detectable. For example, the estimated rate of increase of pCO_2 in the permanent open ocean zone between the polar front (around 53゜S and the northern edge of winter ice cover (63゜S is about 1.3 μatm y, which is slightly lower than the rate of increase of the atmospheric CO_2 concentration. From the results obtained by multi-ship observations with 4 research vessels in the Southern Ocean in summer, we found that the values of pCO_2 off the coast of the Antarctic Continent (66゜S varied temporally by 100 μatm for 5 months. We also found that nDIC decreased with time from December 2001 to March 2002 in the upper layer from 100 to 200 m due to biological activity during summer.

  13. pCO2 effects on species composition and growth of an estuarine phytoplankton community.

    Science.gov (United States)

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses hav...

  14. Transcutaneous PCO2 Measurement at Low Temperature for Reliable and Continuous Free Flap Monitoring: Experimental and Clinical Study

    Science.gov (United States)

    Abe, Yoshiro; Goishi, Keiichi; Kashiwagi, Keisuke; Yamano, Masahiro; Nakanishi, Hideki

    2013-01-01

    Background: Measurement of transcutaneous oxygen pressure (TcPO2) and transcutaneous carbon dioxide pressure (TcPCO2) has been used for free flap monitoring. Because these values are obtained with sensor probes heated to 44°C, there is potential for low-temperature burns on skin flaps. We measured TcPO2 and TcPCO2 at 37°C in both animals and humans to determine the feasibility and safety of the procedure as a postoperative flap monitoring method. Methods: Twelve epigastric island flaps were elevated in rabbits, and TcPO2 and TcPCO2 were measured at 37°C before and after ligation of the pedicles. In addition, TcPO2 and TcPCO2 at 37°C were measured in healthy men. Subsequently, the method was applied to postoperative monitoring of free flaps in 49 clinical cases. Results: TcPO2 and TcPCO2 values were significantly affected by the experimental flap elevation. A rapid increase in TcPCO2 was observed with both arterial and venous occlusion. In the healthy men, TcPO2 and TcPCO2 were measurable at all skin surface sites. In the clinical cases of free flap transfer, TcPO2 values remained very low for at least 72 hours. TcPCO2 values ranged from 40 to 70 mm Hg for 72 hours in more than 80% of cases. In 2 cases, TcPCO2 values increased to more than 90 mm Hg, and exploration surgery was performed. These compromised flaps were saved by reanastomosis of the veins. Conclusions: Continuous monitoring of TcPCO2 at 37°C can provide objective information and alert doctors and nurses to the need for checking the free flap. PMID:25289213

  15. Non-invasive (transcutaneous) monitoring of PCO2 (TcPCO2) in older adults.

    Science.gov (United States)

    Janssens, Jean-Paul; Laszlo, André; Uldry, Christophe; Titelion, Véronique; Picaud, Claudette; Michel, Jean-Pierre

    2005-01-01

    Transcutaneous measurements of arterial blood gases (ABG) may decrease the need for repeated arterial puncture in older patients treated for acute cardiac or pulmonary disorders. However, age-related changes in skin perfusion, metabolism, or thickness may alter the validity of the technique. To analyse the agreement between transcutaneous and arterial measurement of PaO2 and PaCO2 in older adults. Prospective descriptive study performed in the intermediate-care unit of a geriatric university hospital and a pulmonary rehabilitation centre. 40 patients, aged 82.5+/-8 years (66-97), hemodynamically stable, without vasopressor treatment, underwent simultaneous measurement of arterial blood gases (ABG) and transcutaneous CO2 (TcPCO2) and O2 (TcPO2) with a Radiometer TINA TCM3 capnograph, and a probe T degrees set at 43 degrees C. Correlation between PaCO2 and TcPCO2 was high (r2=0.86) with a low bias (-0.1 mm Hg) and limits of agreement quite compatible with clinical use: (8.3; -8.5 mm Hg). The probe was well tolerated without any cutaneous lesion even after prolonged recordings (up to 8 h). Conversely, although TcPO2 and PaO2 were significantly correlated, the variability around the regression line precludes the use of transcutaneous measurements for monitoring PaO2)in a clinical setting. In older subjects, TcPCO2 (but not TcPO2) measurements are reliable when repeated assessment of ABG is warranted. Copyright (c) 2005 S. Karger AG, Basel

  16. Is continuous transcutaneous monitoring of PCO2 (TcPCO2) over 8 h reliable in adults?

    Science.gov (United States)

    Janssens, J P; Perrin, E; Bennani, I; de Muralt, B; Titelion, V; Picaud, C

    2001-05-01

    Monitoring of non-invasive ventilation (NIV) in a non-intensive care unit (non-ICU) setting requires a method of evaluating nocturnal PaCO2, such as transcutaneous CO2 monitoring (TcPCO2). However, changing the probe site after 4 h and recalibrating (as recommended) is time-consuming and impractical. Continuous (8-h) TcPCO2 monitoring at a lower electrode temperature (43 degrees C) in this setting has never been formally studied. Patients under intermittent NIV were studied (n = 28, aged 69 +/- 9 years, PaO2: 71 +/- 13 mmHg, PaCO2: 49 +/- 9 mmHg). After calibration and stabilization of TcPCO2 (Radiometer Tina TCM3 capnograph), arterial blood gases (ABG) were measured and compared with transcutaneous readings. In 10 patients who underwent continuous 8-h TcPCO2 recording, ABGs were also measured after 4 and 8 h. The correlation between TcPCO2 and PaCO2 was highly significant (r2 = 0.92, PTcPCO2 PaCO2) gradient (bias) was: -2.8 +/- 3.8 mmHg; limits of agreement were: (-10.4; +4.8 mmHg). TcPCO2-PaCO2 gradient was lowest (i.e. within-bias +/- 2 mmHg) between 40 and 54 mmHg, increasing below and above these values. Over 8 h, no significant drift of the TcPCO2 signal occurred (ANOVA). No discomfort or skin lesion was noted. In conclusion, with an electrode temperature of 43 degrees C, 8-h continuous monitoring of TcPCO2 was well tolerated, without any local side-effects or significant drift of TcPCO2 signal; when compared to previous reports, lowering the electrode temperature did not decrease performance for CO2 monitoring.

  17. Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size

    Directory of Open Access Journals (Sweden)

    K. Sabbe

    2010-05-01

    Full Text Available The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively and temperature (13 °C and 18 °C during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.

  18. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    Directory of Open Access Journals (Sweden)

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  19. Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2.

    Directory of Open Access Journals (Sweden)

    Vincent Saderne

    Full Text Available Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida and Electra pilosa (Bryozoa and the non-calcifier Alcyonidium hirsutum (Bryozoa were maintained for 30 days under three pCO2 conditions: natural 460 ± 59 µatm, present-day upwelling1193 ± 166 µatm and future upwelling 3150 ± 446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic

  20. Southern Ocean carbon-wind stress feedback

    Science.gov (United States)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2018-02-01

    The Southern Ocean is the largest sink of anthropogenic carbon in the present-day climate. Here, Southern Ocean pCO2 and its dependence on wind forcing are investigated using an equilibrium mixed layer carbon budget. This budget is used to derive an expression for Southern Ocean pCO2 sensitivity to wind stress. Southern Ocean pCO2 is found to vary as the square root of area-mean wind stress, arising from the dominance of vertical mixing over other processes such as lateral Ekman transport. The expression for pCO2 is validated using idealised coarse-resolution ocean numerical experiments. Additionally, we show that increased (decreased) stratification through surface warming reduces (increases) the sensitivity of the Southern Ocean pCO2 to wind stress. The scaling is then used to estimate the wind-stress induced changes of atmospheric pCO_2 in CMIP5 models using only a handful of parameters. The scaling is further used to model the anthropogenic carbon sink, showing a long-term reversal of the Southern Ocean sink for large wind stress strength.

  1. A novel combinational pH-PCO2 microelectrode.

    Science.gov (United States)

    Rao, X; Ma, Y

    1993-07-01

    A novel combinational pH-PCO2 microelectrode based on a neutral carrier hydrogen ion exchanger is described. It is easy to fabricate and allows pH and PCO2 to be measured simultaneously. The microelectrode has a 5-microns tip. The PCO2 microelectrode exhibits a linear response in the range 1.75 x 10(-5)-10(-2) mol/liter with a Nernstian slope of 57.0 mV/decade at 25 degrees C. The detection limit is 10(-5) mol/liter. The pH microelectrode exhibits a linear response in the range pH 4-12 with a Nernstian slope of 60.0 mV/decade at 25 degrees C. The 95% steady-state response time of the PCO2 microelectrode is about 2 min, while it is about 10 s for pH microelectrode. The electromotive force drift is 4.3 mV/h (PCO2) and 2.6 mV/h (pH), respectively. The lifetime is 3 to 4 days. The microelectrode can measure pH and PCO2 in body fluids simultaneously with satisfactory results. It is also a good basic electrode for enzyme microelectrolysis.

  2. pCO2 effects on species composition and growth of an estuarine phytoplankton community

    Science.gov (United States)

    Grear, Jason S.; Rynearson, Tatiana A.; Montalbano, Amanda L.; Govenar, Breea; Menden-Deuer, Susanne

    2017-05-01

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5-13 °C), light and nutrient concentrations. Three levels of controlled and constant CO2 concentrations were imposed, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The smallest size fraction (20 μm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. Similarity in Past and Future treatments for cell size distribution and growth rate (5-20 μm size fraction) illustrate non-monotonic effects of altered pCO2 on ecological indicators and may be related to opposing physiological effects of high CO2 and low pH both within and among species. Interaction of these effects

  3. pCO2 and enzymatic activity in a river floodplain system of the Danube under different hydrological settings.

    Science.gov (United States)

    Sieczko, Anna; Demeter, Katalin; Mayr, Magdalena; Meisterl, Karin; Peduzzi, Peter

    2014-05-01

    Surface waters may serve as either sinks or sources of CO2. In contrast to rivers, which are typically sources of CO2 to the atmosphere, the role of fringing floodplains in CO2 flux is largely understudied. This study was conducted in a river-floodplain system near Vienna (Austria). The sampling focused on changing hydrological situations, particularly on two distinct flood events: a typical 1-year flood in 2012 and an extraordinary 100-year flood in 2013. One objective was to determine partial pressure of CO2 (pCO2) in floodplain lakes with different degree of connectivity to the main channel, and compare the impact of these two types of floods. Another aim was to decipher which fraction of the dissolved organic matter (DOM) pool contributed to pCO2 by linking pCO2 with optical properties of DOM and extracellular enzymatic activity (EEA) of microbes. The EEA is a valuable tool, especially for assessing the non-chromophoric but rapidly utilized DOM-fraction during floods. In 2012 and 2013, the floodplain lakes were dominated by supersaturated pCO2 conditions, which indicates that they served as CO2 sources. Surprisingly, there were no significant differences in pCO2 between the two types of flood. Our findings imply that the extent of the flood had minor impact on pCO2, but the general occurrence of a flood appears to be important. During the flood in 2013 significantly more dissolved organic carbon (DOC) (pcarbohydrates.

  4. pCO2 Effects on Species Composition and Growth of an Estuarine Phytoplankton Community

    Science.gov (United States)

    Grear, J. S.; Rynearson, T. A.; Montalbano, A. L.; Govenar, B. W.; Menden-Deuer, S.

    2016-02-01

    Ocean and coastal waters are experiencing changes in carbonate chemistry, including pH, in response to increasing atmospheric CO2 concentration and the microbial degradation of organic matter associated with nutrient enrichment. The effects of this change on plankton communities have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding responses of phytoplankton species and communities to experimental CO2 enrichment. We performed winter "ecostat" incubations of natural plankton communities from lower Narragansett Bay at ambient bay temperatures (5-13 C), light, and nutrients under three levels of CO2 enrichment simulating past, present and future conditions (mean pCO2 levels were 224, 361, and 724 uatm). Major increases in relative diatom abundance occurred during the experiment but were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 varied as a function of cell size. The smallest size fraction ( 20 µm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. These non-monotonic effects of increasing pCO2 may be related to opposing physiological effects of high CO2 vs low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses would produce misleading predictions of ocean acidification impacts on plankton production.

  5. Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense

    NARCIS (Netherlands)

    Van de Waal, D.B.; Eberlein, T.; John, U.; Wohlrab, S.; Rost, B.

    2014-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2.

  6. OW CCMP Ocean Surface Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cross-Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) provide a consistent, gap-free long-term time-series of monthly...

  7. OW ASCAT Ocean Surface Winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Scatterometer (ASCAT) sensor onboard the EUMETSAT MetOp polar-orbiting satellite provides ocean surface wind observations by means of radar...

  8. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.

    Science.gov (United States)

    Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin

    2015-01-01

    The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed

  9. Seasonality Affects Macroalgal Community Response to Increases in pCO2

    Science.gov (United States)

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M.

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  10. Seasonality affects macroalgal community response to increases in pCO2.

    Directory of Open Access Journals (Sweden)

    Cecilia Baggini

    Full Text Available Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea. Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean

  11. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2

    Science.gov (United States)

    Gloege, Lucas; McKinley, Galen A.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2017-07-01

    The shunt of photosynthetically derived particulate organic carbon (POC) from the euphotic zone and deep remineralization comprises the basic mechanism of the "biological carbon pump." POC raining through the "twilight zone" (euphotic depth to 1 km) and "midnight zone" (1 km to 4 km) is remineralized back to inorganic form through respiration. Accurately modeling POC flux is critical for understanding the "biological pump" and its impacts on air-sea CO2 exchange and, ultimately, long-term ocean carbon sequestration. Yet commonly used parameterizations have not been tested quantitatively against global data sets using identical modeling frameworks. Here we use a single one-dimensional physical-biogeochemical modeling framework to assess three common POC flux parameterizations in capturing POC flux observations from moored sediment traps and thorium-234 depletion. The exponential decay, Martin curve, and ballast model are compared to data from 11 biogeochemical provinces distributed across the globe. In each province, the model captures satellite-based estimates of surface primary production within uncertainties. Goodness of fit is measured by how well the simulation captures the observations, quantified by bias and the root-mean-square error and displayed using "target diagrams." Comparisons are presented separately for the twilight zone and midnight zone. We find that the ballast hypothesis shows no improvement over a globally or regionally parameterized Martin curve. For all provinces taken together, Martin's b that best fits the data is [0.70, 0.98]; this finding reduces by at least a factor of 3 previous estimates of potential impacts on atmospheric pCO2 of uncertainty in POC export to a more modest range [-16 ppm, +12 ppm].

  12. Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics.

    Directory of Open Access Journals (Sweden)

    Scott L Hamilton

    Full Text Available In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification-which occurs when increased levels of atmospheric CO2 dissolve into the ocean-is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2 at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm] on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes, integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus, in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50-100 years is likely dependent on species-specific physiological tolerances.

  13. High resolution pCO2 monitoring reveals ventilation of Bunker Cave (NW Germany) and its impact on speleothem growth

    Science.gov (United States)

    Riechelmann, Sylvia; Breitenbach, Sebastian F. M.; Schröder-Ritzrau, Andrea; Immenhauser, Adrian

    2017-04-01

    Understanding the environmental processes that influence geochemical proxies archived in speleothems depends critically on detailed cave monitoring. Cave air pCO2 is one of the most important factors controlling speleothem growth. The pCO2 concentration of cave air depends on (i) the productivity of its source(s), (ii) CO2-transport dynamics through the epikarst and (iii) cave ventilation processes. We monitored the pCO2 concentration ca. 100 m from the lower entrance of the Bunker-Emst-Cave system (NW Germany) with a CORA CO2-logger at a two-hourly resolution between April 2012 and February 2014. Near-atmospheric minimum pCO2 concentrations of 408 ppm are observed in winter, while higher values up to 811 ppm are recorded in summer. Higher summer concentrations are due to increased plant and soil microbial activity, resulting in elevated CO2 in the soil, which is transferred to the cave with infiltrating water. Generally, the front passages of Bunker Cave are well ventilated. Besides the seasonal pattern, pCO2 concentrations vary at diurnal scale. Correlations of pCO2 with the temperature difference between surface and cave air are positive during summer and negative in winter, with no clear pattern for spring and autumn months. Thus, Bunker Cave ventilation is driven by temperature and density differences between cave and surface air, with two entrances at different elevations allowing dynamic ventilation. During summer, relatively cooler cave air flows from the upper to the lower entrance, while in winter this pattern is reversed due to ascending warm cave air. The situation is further complicated by preferential south/southwestern winds that point directly on the cave entrances. Thus, cave ventilation is frequently disturbed, especially during periods of higher wind speed. Modern ventilation systematics only developed when the two cave entrances were artificially opened (1863 and 1926). Before that, ventilation was restricted and cave pCO2 concentrations were

  14. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data

    International Nuclear Information System (INIS)

    Lefevre, Nathalie; Watson, Andrew J.; Watson, Adam R.

    2005-01-01

    Using about 138,000 measurements of surface pCO 2 in the Atlantic subpolar gyre (50-70 deg N, 60-10 deg W) during 1995-1997, we compare two methods of interpolation in space and time: a monthly distribution of surface pCO 2 constructed using multiple linear regressions on position and temperature, and a self-organizing neural network approach. Both methods confirm characteristics of the region found in previous work, i.e. the subpolar gyre is a sink for atmospheric CO 2 throughout the year, and exhibits a strong seasonal variability with the highest undersaturations occurring in spring and summer due to biological activity. As an annual average the surface pCO 2 is higher than estimates based on available syntheses of surface pCO 2 . This supports earlier suggestions that the sink of CO 2 in the Atlantic subpolar gyre has decreased over the last decade instead of increasing as previously assumed. The neural network is able to capture a more complex distribution than can be well represented by linear regressions, but both techniques agree relatively well on the average values of pCO 2 and derived fluxes. However, when both techniques are used with a subset of the data, the neural network predicts the remaining data to a much better accuracy than the regressions, with a residual standard deviation ranging from 3 to 11 μatm. The subpolar gyre is a net sink of CO 2 of 0.13 Gt-C/yr using the multiple linear regressions and 0.15 Gt-C/yr using the neural network, on average between 1995 and 1997. Both calculations were made with the NCEP monthly wind speeds converted to 10 m height and averaged between 1995 and 1997, and using the gas exchange coefficient of Wanninkhof

  15. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  16. Plio-Pleistocene pCO2 - a Multiproxy Approach Using Alkenone and Boron Based Carbonate System Proxies

    Science.gov (United States)

    Foster, G. L.; Seki, O.; Schmidt, D. N.; Kawamura, K.; Pancost, R.

    2008-12-01

    The recent rapid rise in atmospheric CO2 is unprecedented in Earths history, and the current level (385 ppm) is higher than previously experienced for at least the last 650 kyr. Therefore in order to better understand the link between climate and CO2 it is desirable to examine times in the past that experienced similar or higher levels of CO2 compared to today. The Pliocene (2.6 to 5.3 Ma) is the most recent warm period and hence offers such an opportunity. Detailed reconstructions show that global temperatures were 2- 3°C higher ([1], 6°C at high latitudes) and the polar ice sheets were considerably smaller (sea level was 15-20 m higher; [2]) yet other boundary conditions, such as continental configuration, were similar at this time. Earlier studies, typically with low temporal resolution, have shown that at c.3 Ma pCO2 concentrations were in the range 300-400 ppm. A common assumption is that pCO2 dropped from this high value to pre-industrial values at a time coincident with the intensification of northern hemisphere glaciation (NHG) that occurred at c.2.7 Ma, although this has yet to be demonstrated. Here we present a continuous pCO2 record recovered from ocean sediments using a multiproxy approach based on the boron and alkenone carbonate system proxies. This new data allows both a determination of the magnitude of Pliocene pCO2 and for the fist time the Plio-Pleistocene evolution of pCO2 that accompanied the intensification of NHG. We developed continuous records of alkenone based ɛp values and foraminiferal δ11B and B/Ca ratios from ODP Sites 999 and 1000 in the Caribbean Sea and Site 1241 on the western side of the Panama Isthmus in the Eastern Equatorial Pacific spanning the last 5.3 Ma. Following a correction of the alkenone records for coccolith size, and accounting for changing growth rate where appropriate, the alkenone based ɛp record can be used to estimate [CO2]aq and hence pCO2 at the two sites. Similarly, using the core top calibration of [3

  17. Vital Effects in Coccolith Calcite: Cenozoic PCO2 Thresholds in the Development of Carbon Acquisition Strategies in Coccolithophores

    Science.gov (United States)

    Bolton, C. T.; Isensee, K.; Stoll, H. M.

    2011-12-01

    Coccolithophores are a unique group of oceanic calcifying phytoplankton that are affected by and feed back into both the organic (via photosynthetic carbon fixation) and inorganic (via calcification) carbon cycles. Their high sensitivity to changes in carbon chemistry and their long fossil record in oceanic sediments provide us with the opportunity to study the evolution of these carbon cycle interactions through time. Deviations from equilibrium during biogenic calcification can result from kinetic or metabolic ('vital') effects. The influence of changing atmospheric partial pressures of carbon dioxide (pCO2) throughout the Cenozoic was likely crucial in driving the development of different carbon acquisition strategies (CAS) that cause the vital effects seen in modern coccolithophores. Here we present new laboratory culture and fossil data examining vital effects in coccolithophores over a range of CO2 concentrations. ODP Site 999 stable isotope data from size-separated coccolith fractions dominated by different species over the Plio-Pleistocene climate transition (PPT) (3.5 to 2 Ma) show a persistent 2 % range of interspecific vital effects in oxygen and carbon isotopes. In contrast, isotope data from extremely well preserved Paleocene/Eocene thermal maximum (PETM) size-separated coccoliths (ODP Site 174AX, Bass River) suggest an absence of interpecific vital effects within the greenhouse boundary condtions of the PETM, suggesting similar CAS among species. Our culture and PPT results indicate a clear positive trend between cell size and C and O isotopic enrichment in coccolith carbonate, likely reflecting different CAS. The insensitivity of coccolith vital effects to pCO2 changes over the range inferred for the PPT (around 400 to 280 ppm) in combination with experimental data imply that the pCO2 threshold that drove the diversification of CAS in coccolithophores was crossed after the PETM but at significantly higher pCO2 than was in place during the PPT.

  18. High-resolution ocean and atmosphere pCO2 time-series measurements from mooring WA_125W_47N in the North Pacific Ocean, US West Coast from 2006-06-23 to 2015-03-05 (NODC Accession 0115322)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115322 includes chemical, meteorological, physical and time series data collected from MOORING_WA_125W_47N in the North Pacific Ocean, US West Coast...

  19. Early Cretaceous pCO2 changes estimated from a calcrete succession in the North American foreland basin, Utah, USA

    Science.gov (United States)

    Ludvigson, G. A.; Murphy, L. R.; Gonzalez, L. A.; Joeckel, R. M.

    2011-12-01

    Using the Aptian-Albian carbon isotope record from a calcrete succession in the Cedar Mountain Fm (CMF; Ludvigson et al., 2010, JSR 80:955-974), we calculate a baseline Aptian atmospheric pCO2 of 1,000 ppm by applying the equation of Ekart et al. (1999, AJS 299:805-827). Isotopic analyses of pedogenic and palustrine carbonates from eight correlated chemostratigraphic positions from the Ap7 feature of Herrle et al. (2004, EPSL 218:149-161) to the C15 feature of Bralower et al. (1999, JFR 29:418-437) are compiled from two sections in the CMF. These sections encompass the Aptian-Albian Ap7-C15 (~125-100 Ma) interval. Significantly, our results indicate a build-up of ~350 ppm above baseline values during the C9-C11 positive carbon isotope excursion. The excursion corresponds with our reported shifts in δ13C values determined from coordinated carbonate and sedimentary organic carbon. We directly compare our pCO2 estimates to compiled estimates from the same interval determined on pedogenic carbonates, stomata, and liverworts previously published by Royer (2010, PNAS 107:517-518). Using a uniform S(z), the soil-derived component of the total soil at depth z, we found our estimates to be generally higher than those previously reported for pedogenic carbonates. Thus, we adjust our reported pCO2 estimates using a range of S(z), to avoid overestimations of S(z) and to account for variations with season, depth, soil type, and paleolatitude between the two data sets. Finally, our pCO2 estimates are correlated with marine chemostratigraphic records (δ13C of marine carbonate and organic matter; strontium isotopes), and magma flux output from the Kergulean Plateau (Indian Ocean). The 116 to 111 Ma rise and fall in pCO2 during the C9-C11 carbon isotope excursion, for which we have identified a pCO2 buildup, coincides with the mid-Cretaceous strontium isotope low, and a peak in magma production at the Kerguelan Large Igneous Province. Therefore, we interpret a tectonic driver for

  20. Drivers of pCO2 dynamics in two contrasting coral reef lagoons: The influence of submarine groundwater discharge (Invited)

    Science.gov (United States)

    Cyronak, T.; Santos, I. R.; Erler, D.; Maher, D. T.; Eyre, B.

    2013-12-01

    The carbon chemistry of coral reef lagoons can be highly variable over short time scales. While much of the diel variability in seawater carbon chemistry is explained by biological processes, external sources such as river and groundwater seepage may deliver large amounts of organic and inorganic carbon to coral reefs and represent a poorly understood feedback to ocean acidification. Here, we assess the impact of submarine groundwater discharge (SGD) on pCO2 variability in two coral reef lagoons with distinct SGD driving mechanisms. Diel variability of pCO2 in the two ecosystems was explained by a combination of biological drivers and SGD inputs. In Rarotonga, a South Pacific volcanic island, SGD was driven primarily by a steep terrestrial hydraulic gradient, and the lagoon was influenced by the high pCO2 (5,501 μatm) of the fresh groundwater. In Heron Island, a Great Barrier Reef coral cay, SGD was dominated by seawater recirculation through sediments (i.e. tidal pumping) and pCO2 was mainly impacted through the stimulation of biological processes. The Rarotonga water column had a relatively higher average pCO2 (549 μatm) than Heron Island (471 μatm). However, pCO2 exhibited a greater diel range in Heron Island (778 μatm) than in Rarotonga (507 μatm). The Rarotonga lagoon received 31.2 mmol CO2 m-2 d-1 from SGD, while the Heron Island lagoon received 12.3 mmol CO2 m-2 d-1. Over the course of this study both systems were sources of CO2 to the atmosphere (3.00 to 9.67 mmol CO2 m-2 d-1), with SGD-derived CO2 contributing a large portion to the air-sea CO2 flux. The relationship between both water column pH and aragonite saturation state (ΩAr) and radon (222Rn) concentrations indicate that SGD may enhance the local acidification of some coral reef lagoons. Studies measuring the carbon chemistry of coral reefs (e.g. community metabolism, calcification rates) may need to consider SGD-derived CO2.

  1. A combined transcutaneous PO2-PCO2 electrode with electrochemical HCO3- stabilization.

    Science.gov (United States)

    Severinghaus, J W

    1981-10-01

    Combined transcutaneous PO2-PCO2 electrodes are described in which the interaction between the two electrodes due to OH- production at the O2 cathode has been eliminated. An anode of either anodized aluminum or platinum has been driven at a current equal to cathode current to force stoichiometric consumption of OH- at its rate of production. The AgCl reference electrode operates at zero current. O2 sensitivity was not significantly altered by electrolyte pH variation from 6.7 to 9.0 with variations by PCO2. These electrodes have been found stable both with and without spacers, and with electrolytes dissolved in 50-100% ethylene glycol. In 22 anesthetized patients, with electrode temperature of 43 degrees C (s refers to skin surface, a to arterial blood); PsO2 = 0.52PaO2 + 15 (range 54-300) (r = 0.66; Sy . x = 29.6; n = 46); and PsCO2 = 1.39PaCO2 + 2.1 (range 24-98) (r = 0.99; Sy . x = 2.28; n = 48).

  2. A Low-Cost Fluorescent Sensor for pCO2 Measurements

    Directory of Open Access Journals (Sweden)

    Xudong Ge

    2014-04-01

    Full Text Available Global warming is believed to be caused by increasing amounts of greenhouse gases (mostly CO2 discharged into the environment by human activity. In addition to an increase in environmental temperature, an increased CO2 level has also led to ocean acidification. Ocean acidification and rising temperatures have disrupted the water’s ecological balance, killing off some plant and animal species, while encouraging the overgrowth of others. To minimize the effect of global warming on local ecosystem, there is a strong need to implement ocean observing systems to monitor the effects of anthropogenic CO2 and the impacts thereof on ocean biological productivity. Here, we describe the development of a low-cost fluorescent sensor for pCO2 measurements. The detector was exclusively assembled with low-cost optics and electronics, so that it would be affordable enough to be deployed in great numbers. The system has several novel features, such as an ideal 90° separation between excitation and emission, a beam combiner, a reference photodetector, etc. Initial tests showed that the system was stable and could achieve a high resolution despite the low cost.

  3. Performance of a digital PCO2/SPO2 ear sensor.

    Science.gov (United States)

    Kocher, Serge; Rohling, Roman; Tschupp, Andres

    2004-04-01

    For determining the adequacy of ventilation, conventional pulse oximetry should be amended by PaCO2 (= arterial carbon dioxide partial pressure). This study investigates the precision of carbon dioxide measurements of the first digital ear-clip sensor providing continuous non-invasive monitoring of PaCO2, SpO2 (= functional arterial oxygen saturation as estimated with a pulse oximeter) and pulse rate and compares it to two conventional analog oximeters. 30 hypoxemia episodes in 6 adult volunteers were investigated in a standardized protocol. Masimo analog finger sensor, Nellcor analog ear sensor, SenTec digital ear sensor. The difference between PCO2 data (= PaCO2 estimated from the measured PcCO2 based on an algorithm by Severinghaus) (PcCO2 = cutaneous carbon dioxide pressure) and the PaCO2 is clinically unimportant. Therefore, we suggest, the two methods of estimating patient's carbon dioxide status can be used interchangeably. Combined digital SpO2/ PcCO2 ear sensors are very promising to allow for a fast and reliable monitoring of patient's oxygenation, hyper-/hypocapnia and ventilation with one single non-invasive probe. Optimal primary signal processing--amplification and digitalisation within the probe--allow for fast and reliable downstream signal processing algorithms. The resulting short SpO2 response times give the medical staff more time to take appropriate actions.

  4. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor.

    Science.gov (United States)

    Bendjelid, Karim; Schütz, Nicolas; Stotz, Martin; Gerard, Isabelle; Suter, Peter M; Romand, Jacques-André

    2005-10-01

    In critically ill patients, arterial blood gas analysis is the gold standard for evaluating systemic oxygenation and carbon dioxide partial pressure. A new miniaturized carbon dioxide tension Pco2-Spo2 single sensor (TOSCA, Linde Medical Sensors AG, Basel, Switzerland) continuously and noninvasively (transcutaneously) monitors both Paco2 and oxygen saturation by pulse oximetry (Spo2). The present study was designed to investigate the usability and the accuracy of this device in critically ill patients. Prospective clinical investigation. A 20-bed, university-affiliated, surgical intensive care unit. Patients admitted after major surgery, multiple trauma, or septic shock equipped with an arterial catheter. The heated (42 degrees C) sensor was fixed at the earlobe using an attachment clip. Transcutaneous Pco2 (TcPco2) measurements were correlated with Paco2 values (measured using a blood gas analyzer). In addition, the differences between Paco2 and TcPco2 values were evaluated using the method of Bland-Altman. We studied 55 patients, aged 18-80 (mean 57 +/- 15) yrs. A total of 417 paired measurements were compared. Correlation between TcPco2 and Paco2 was r = .86 (p TcPco2 slightly overestimating arterial carbon dioxide tension. Nineteen percent of the measured values were outside of the acceptable clinical range of agreement of +/-7.5 mm Hg. The present study suggests that Paco2 can be acceptably assessed by measuring TcPco2 using the TOSCA Pco2-Spo2 sensor.

  5. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    Science.gov (United States)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  6. pCO2 And pH regulation of cerebral blood flow

    Directory of Open Access Journals (Sweden)

    SeongHun eYoon

    2012-09-01

    Full Text Available CO2 Serves as one of the fundamental regulators of cerebral blood flow. It is widely considered that this regulation occurs through pCO2-driven changes in pH of the cerebral spinal fluid, with elevated and lowered pH causing direct relaxation and contraction of the smooth muscle, respectively. However, some findings also suggest that pCO2 acts independently of and/or in conjunction with altered pH. This action may be due to a direct effect of cerebral spinal fluid pCO2 on the smooth muscle as well as on the endothelium, nerves, and astrocytes. Findings may also point to an action of arterial pCO2 on the endothelium to regulate smooth muscle contractility. Thus, the effects of pH and pCO2 may be influenced by the absence/presence of different cell types in the various experimental preparations. Results may also be influenced by experimental parameters including myogenic tone as well as solutions containing significantly altered HCO3- concentrations, i.e., solutions routinely employed to differentiate the effects of pH from pCO2. In sum, it appears that pCO2, independently and in conjunction with pH, may regulate cerebral blood flow.

  7. Seasonal variation of air-sea CO2 fluxes in the Terra Nova Bay of the Ross Sea, Antarctica, based on year-round pCO2 observations

    Science.gov (United States)

    Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.

    2017-12-01

    The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking sea-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross Sea, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast sea-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although sea-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the sea-ice concentration was minimal. With growing sea ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean air-sea CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of sea-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).

  8. Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.

    Directory of Open Access Journals (Sweden)

    C. Clemmesen

    2011-12-01

    Full Text Available Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2 in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.. Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 μatm and a control treatment (pCO2 480 μatm until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship between pCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.

  9. Biological and physical controls on O2/Ar, Ar and pCO2 variability at the Western Antarctic Peninsula and in the Drake Passage

    Science.gov (United States)

    Eveleth, R.; Cassar, N.; Doney, S. C.; Munro, D. R.; Sweeney, C.

    2017-05-01

    Using simultaneous sub-kilometer resolution underway measurements of surface O2/Ar, total O2 and pCO2 from annual austral summer surveys in 2012, 2013 and 2014, we explore the impacts of biological and physical processes on the O2 and pCO2 system spatial and interannual variability at the Western Antarctic Peninsula (WAP). In the WAP, mean O2/Ar supersaturation was (7.6±9.1)% and mean pCO2 supersaturation was (-28±22)%. We see substantial spatial variability in O2 and pCO2 including sub-mesoscale/mesoscale variability with decorrelation length scales of 4.5 km, consistent with the regional Rossby radius. This variability is embedded within onshore-offshore gradients. O2 in the LTER grid region is driven primarily by biological processes as seen by the median ratio of the magnitude of biological oxygen (O2/Ar) to physical oxygen (Ar) supersaturation anomalies (%) relative to atmospheric equilibrium (2.6), however physical processes have a more pronounced influence in the southern onshore region of the grid where we see active sea-ice melting. Total O2 measurements should be interpreted with caution in regions of significant sea-ice formation and melt and glacial meltwater input. pCO2 undersaturation predominantly reflects biological processes in the LTER grid. In contrast we compare these results to the Drake Passage where gas supersaturations vary by smaller magnitudes and decorrelate at length scales of 12 km, in line with latitudinal changes in the regional Rossby radius. Here biological processes induce smaller O2/Ar supersaturations (mean (0.14±1.3)%) and pCO2 undersaturations (mean (-2.8±3.9)%) than in the WAP, and pressure changes, bubble and gas exchange fluxes drive stable Ar supersaturations.

  10. Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study

    Directory of Open Access Journals (Sweden)

    U. Riebesell

    2013-01-01

    Full Text Available The effect of elevated seawater carbon dioxide (CO2 on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA. A pCO2 range of 175–1085 μatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard. The activity of natural extracellular enzyme assemblages increased in response to acidification. Rates of β-glucosidase and leucine-aminopeptidase increased along the gradient of mesocosm pCO2. A decrease in seawater pH of 0.5 units almost doubled rates of both enzymes. Heterotrophic bacterial activity was closely coupled to phytoplankton productivity in this experiment. The bacterioplankton community responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity. Time-integrated primary production and bacterial protein production were positively correlated, strongly suggesting that higher amounts of phytoplankton-derived organic matter were assimilated by heterotrophic bacteria at increased primary production. Primary production increased under high pCO2 in this study, and it can be suggested that the efficient heterotrophic carbon utilisation had the potential to counteract the enhanced autotrophic CO2 fixation. However, our results also show that beneficial pCO2-related effects on bacterial activity can be mitigated by the top-down control of bacterial abundances in natural microbial communities.

  11. The role of pCO2 in astronomically-paced climate and carbon cycle variations in the Middle Miocene

    Science.gov (United States)

    Penman, D. E.; Hull, P. M.; Scher, H.; Kirtland Turner, S.; Ridgwell, A.

    2017-12-01

    The pace of Earth's background climate variability is known to be driven by the Milankovitch cycles, variations in Earth's orbital parameters and axial tilt. While the Milankovitch (orbital) theory of climate change is very nearly universally accepted, the climate system mechanisms and feedbacks responsible for amplifying orbital cycles preserved in the geologic record remain uncertain. For the late Pleistocene, the ice core-derived record of atmospheric carbon dioxide (pCO2) is strongly coupled with global temperature on orbital time scales, indicating that internal feedbacks involving the carbon cycle amplify or even cause the large changes in global temperature during orbitally driven glacial-interglacial cycles. However, for earlier time periods beyond the range of ice cores (the last 800 kyr), it is not possible to directly compare records of pCO2 to orbital climate cycles because there are no high-resolution (orbitally resolved) records of pCO2 before the Pliocene. We address this deficiency with a high-resolution ( 5-10 kyr spacing) record of planktonic foraminiferal d11B-derived surface seawater pH (as well as d13C and trace metal analyses) over a 500 kyr time window in a sedimentary record with known Milankovitch-scale climate and carbon cycle oscillations: the Middle Miocene (14.0 - 14.5 Ma) at ODP Site 926 (subtropical North Atlantic). The resulting pH record can be used to constrain atmospheric pCO2, allowing comparison of the timescale and magnitude of carbon cycle changes during a period of eccentricity-dominated variability in the response of the global climate system (the Late Pleistocene) with a period of obliquity-dominance (the middle Miocene). These new records of planktic d11B and d13C will then be used to guide simulations of astronomical climate forcing in Earth System models, resulting in refined estimates of pCO2 changes over orbital cycles and providing quantitative constraints on the mechanisms and feedbacks responsible for the

  12. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2reef.

    Science.gov (United States)

    Marcelino, Vanessa Rossetto; Morrow, Kathleen M; van Oppen, Madeleine J H; Bourne, David G; Verbruggen, Heroen

    2017-10-01

    The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO 2 reef (avg. pCO 2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO 2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA. © 2017 John Wiley & Sons Ltd.

  13. Nonuniform ocean acidification and attenuation of the ocean carbon sink

    Science.gov (United States)

    Fassbender, Andrea J.; Sabine, Christopher L.; Palevsky, Hilary I.

    2017-08-01

    Surface ocean carbon chemistry is changing rapidly. Partial pressures of carbon dioxide gas (pCO2) are rising, pH levels are declining, and the ocean's buffer capacity is eroding. Regional differences in short-term pH trends primarily have been attributed to physical and biological processes; however, heterogeneous seawater carbonate chemistry may also be playing an important role. Here we use Surface Ocean CO2 Atlas Version 4 data to develop 12 month gridded climatologies of carbonate system variables and explore the coherent spatial patterns of ocean acidification and attenuation in the ocean carbon sink caused by rising atmospheric pCO2. High-latitude regions exhibit the highest pH and buffer capacity sensitivities to pCO2 increases, while the equatorial Pacific is uniquely insensitive due to a newly defined aqueous CO2 concentration effect. Importantly, dissimilar regional pH trends do not necessarily equate to dissimilar acidity ([H+]) trends, indicating that [H+] is a more useful metric of acidification.

  14. Hurricane Arthur and its effect on the short-term variability of pCO2 on the Scotian Shelf, NW Atlantic

    Science.gov (United States)

    Lemay, Jonathan; Thomas, Helmuth; Craig, Susanne E.; Burt, William J.; Fennel, Katja; Greenan, Blair J. W.

    2018-04-01

    The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2), even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC) slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net) CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.

  15. Effect of temperature, hydraulic residence time and elevated PCO2 on acid neutralization within a pulsed limestone bed reactor

    Science.gov (United States)

    Watten, B.J.; Lee, P.C.; Sibrell, P.L.; Timmons, M.B.

    2007-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with treatment of acid mine drainage, but its use is restricted by slow dissolution rates and the deposition of Fe, Al and Mn-based hydrolysis products on reactive surfaces. We evaluated a pulsed limestone bed (PLB) reactor (15 L/min capacity) that uses a CO2 pretreatment step to accelerate dissolution and hydraulic shearing forces provided by intermittent fluidization to abrade and carry away surface scales. We established the effects of hydraulic residence time (HRT, 5.1-15.9 min), temperature (T, 12-22 ??C) and CO2 tension (PCO2, 34.5-206.8 kPa) on effluent quality when inlet acidity (Acy) was fixed at 440 mg/L (pH=2.48) with H2SO4. The PLB reactor neutralized all H+ acidity (N=80) while concurrently providing unusually high levels of effluent alkalinity (247-1028 mg/L as CaCO3) that allow for side-stream treatment with blending. Alkalinity (Alk) yields rose with increases in PCO2, HRT and settled bed height (BH, cm) and decreased with T following the relationship (R2=0.926; p<0.001): (Alk)non-filtered=-548.726+33.571??(PCO2)0.5+33.671??(HRT)+7.734??(BH)-5.197??(T). Numerical modeling showed CO2 feed requirements for a target Alk yield decrease with increases in HRT, T and the efficiency of off-gas (CO2) recycling. ?? 2007 Elsevier Ltd. All rights reserved.

  16. Simulation Tool for GNSS Ocean Surface Reflections

    OpenAIRE

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    GNSS coherent and incoherent reflected signals have the potential of deriving large scale parameters of ocean surfaces, as barotropic variability, eddy currents and fronts, Rossby waves, coastal upwelling, mean ocean surfaceheights, and patterns of the general ocean circulation. In the reflection zone the measurements may deriveparameters as sea surface roughness, winds, waves, heights and tilts from the spectral measurements. Previous measurements from the top of mountains and airplanes have...

  17. An update to the Surface Ocean CO

    NARCIS (Netherlands)

    Bakker, D.C.E.; de Baar, H.J.W.; van heuven, S.

    2014-01-01

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version

  18. Photosynthesis and mineralogy of Jania rubens at low pH/high pCO2: A future perspective.

    Science.gov (United States)

    Porzio, Lucia; Buia, Maria Cristina; Ferretti, Viviana; Lorenti, Maurizio; Rossi, Manuela; Trifuoggi, Marco; Vergara, Alessandro; Arena, Carmen

    2018-07-01

    Corallinales (Rhodophyta) are high Mg-calcite macroalgae and are considered among the most vulnerable organisms to ocean acidification (OA). These sensitive species play fundamental roles in coastal systems as food source and settlement promoters as well as being involved in reef stabilization, and water carbonate balance. At present only a few studies are focused on erect calcifying macroalgae under low pH/high pCO 2 and the contrasting results make difficult to predict the ecological consequences of the OA on the coralline algae. In this paper the physiological reasons behind the resistance of Jania rubens, one of the most common calcareous species, to changing ocean pH are analysed. In particular, we studied the photosynthetic and mineralogical response of J. rubens after a three-week transplant in a natural CO 2 vent system. The overall results showed that J. rubens could be able to survive under predicted pH conditions even though with a reduced fitness; nevertheless physiological limits prevent the growth and survival of the species at pH6.7. At low pH (i.e. pH7.5), the maximum and effective PSII efficiency decreased even if the increase of Rubisco expression suggests a compensation effort of the species to cope with the decreased light-driven products. In these circumstances, a pH-driven bleaching phenomenon was also observed. Even though the photosynthesis decreased at low pH, J. rubens maintained unchanged the mineralogical composition and the carbonate content in the cell wall, suggesting that the calcification process may also have a physiological relevance in addition to a structural and/or a protective role. Further studies will confirm the hypotheses on the functional and evolutionary role of the calcification process in coralline algae and on the ecological consequences of the community composition changes under high pCO 2 oceans. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae)

    Science.gov (United States)

    Haworth, Matthew; Hesselbo, Stephen P.; McElwain, Jennifer C.; Robinson, Stuart A.; Brunt, James W.

    2005-09-01

    Stomatal characteristics of an extinct Cretaceous conifer, Pseudofrenelopsis parceramosa (Fontaine) Watson, are used to reconstruct atmospheric carbon dioxide (pCO2) over a time previously inferred to exhibit major fluctuations in this greenhouse gas. Samples are from nonmarine to marine strata of the Wealden and Lower Greensand Groups of England and the Potomac Group of the eastern United States, of Hauterivian to Albian age (136 100 Ma). Atmospheric pCO2 is estimated from the ratios between stomatal indices of fossil cuticles and those from four modern analogs (nearest living equivalent plants). Using this approach, and two calibration methods to explore ranges, results show relatively low and only slightly varying pCO2 over the Hauterivian Albian interval: a low of ˜560 960 ppm in the early Barremian and a high of ˜620 1200 ppm in the Albian. Data from the Barremian Wealden Group yield pCO2 values indistinguishable from a soil-carbonate based estimate from the same beds. The new pCO2 estimates are compatible with sedimentological and oxygen-isotope evidence for relatively cool mid-Cretaceous climates.

  20. Usefulness of transcutaneous PCO2 to assess nocturnal hypoventilation in restrictive lung disorders.

    Science.gov (United States)

    Georges, Marjolaine; Nguyen-Baranoff, Danièle; Griffon, Lucie; Foignot, Clement; Bonniaud, Philippe; Camus, Philippe; Pepin, Jean-Louis; Rabec, Claudio

    2016-10-01

    Nocturnal hypoventilation is now an accepted indication for the initiation of non-invasive ventilation. Nocturnal hypoventilation may be an under diagnosed condition in chronic respiratory failure. The most appropriate strategy to identify sleep hypoventilation is not yet clearly defined. In clinical practice, it is indirectly assessed using nocturnal pulse oximetry (NPO) and morning arterial blood gases (mABG). Even though continuous transcutaneous carbon dioxide partial pressure (TcPCO2 ) monitoring is theoretically superior to NPO plus mABG, it is not routinely used. We aimed to prospectively compare NPO plus mABG with nocturnal TcPCO2 for the detection of alveolar hypoventilation in a cohort of patients with chronic restrictive respiratory dysfunction. We assessed 80 recordings of mABG, nocturnal TcPCO2 and NPO in 72 consecutive patients with neuromuscular disease or thoracic cage disorders. Nocturnal hypoventilation was defined as a mean nightime TcPCO2 ≥50 mm Hg, and nocturnal hypoxaemia as ≥30% of the night with transcutaneous pulse oxygen saturation ≤90% and/or >5 consecutive minutes with transcutaneous pulse oxygen saturation ≤88%. Amongst the 80 recordings, 25 of 76 (32.9%) without nocturnal hypoxaemia and 16 of 59 (27.1%) without hypercapnia on mABG showed nocturnal hypoventilation on TcPCO2 . Amongst recordings showing both normal NPO and mABG, 16 of 52 (30.8%) had a mean TcPCO2 ≥50 mm Hg. Nocturnal hypoxaemia was associated with nocturnal hypoventilation in all recordings. However, 5 of 21 (23.8%) recordings that showed an absence of nocturnal hypoventilation at the chosen threshold showed hypercapnia on mABG. Morning arterial blood gases and NPO alone or in combination underestimate nocturnal hypoventilation in patients with chronic restrictive respiratory dysfunction of extrapulmonary origin. © 2016 Asian Pacific Society of Respirology.

  1. Influence of pCO2 on carbon allocation in nodulated Medicago sativa L.

    Science.gov (United States)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2016-04-01

    Atmospheric CO2 concentrations (pCO_2) have been related to changes in plant carbon (C) availability and photosynthetic capacity, yet there is no clear consensus as to the effect of pCO2 on the plant C balance and on nitrogen fixation in symbiotic systems. We investigated how different pCO2 (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence C allocation in nodulated Medicago sativa L. We labeled 17 week old plants with depleted 13C (-34.7±1.2‰) and traced the label over a 9-day period, to assess the redistribution of newly assimilated C across different sinks, including nodules. We analyzed N concentrations in plant tissues and found no significant differences in leaves and roots across treatments. However, growth and C fixation rates increased with pCO_2, and differences were greatest between 170 ppm and 700 ppm. Across pCO2 treatments we observed a 13C-enrichment in roots compared to leaves. We further observed the highest 13C depletion of non-structural carbohydrates (NSCs) and respired CO2 in tissues of plants grown at 700 ppm, especially in leaves and nodules. Our preliminary results suggest that sink organs like roots and nodules are fed with newly-assimilated NSCs from leaves to support respiration, and especially in 170 ppm plants represented a major respiratory loss of newly assimilated C (≈ 35{%} of the total plant respiration). Our results suggest that although plant metabolic processes like photosynthesis and respiration are affected by changes in pCO_2, nitrogen acquisition in such a symbiotic system is not.

  2. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    Science.gov (United States)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the

  3. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave.

    Science.gov (United States)

    Bennett, Holly M; Altenrath, Christine; Woods, Lisa; Davy, Simon K; Webster, Nicole S; Bell, James J

    2017-05-01

    As atmospheric CO 2 concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be 'winners' in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. To determine the tolerance of adult sponges to climate change, four abundant Great Barrier Reef species were experimentally exposed to OW and OA levels predicted for 2100, under two CO 2 Representative Concentration Pathways (RCPs). The impact of OW and OA on early life-history stages was also assessed for one of these species to provide a more holistic view of species impacts. All species were generally unaffected by conditions predicted under RCP6.0, although environmental conditions projected under RCP8.5 caused significant adverse effects: with elevated temperature decreasing the survival of all species, increasing levels of tissue necrosis and bleaching, elevating respiration rates and decreasing photosynthetic rates. OA alone had little adverse effect, even under RCP8.5 concentrations. Importantly, the interactive effect of OW and OA varied between species with different nutritional modes, with elevated pCO 2 exacerbating temperature stress in heterotrophic species but mitigating temperature stress in phototrophic species. This antagonistic interaction was reflected by reduced mortality, necrosis and bleaching of phototrophic species in the highest OW/OA treatment. Survival and settlement success of Carteriospongia foliascens larvae were unaffected by experimental treatments, and juvenile sponges exhibited greater tolerance to OW than their adult counterparts. With elevated pCO 2 providing phototrophic species with protection

  4. Extending isotopic fractionation in phytoplankton for Phanerozoic pCO2 reconstruction

    Science.gov (United States)

    Witkowski, C. R.; Agostini, S.; Weijers, J.; Schouten, S.; S Sinninghe Damsté, J.

    2017-12-01

    The atmospheric concentration of carbon dioxide (pCO2) is a keystone in many earth system dynamics, including the biosphere, carbon cycle, and climate. In order to better understand the impact of today's exceptional increases in pCO2 on the future, we look to secular trends in pCO2. Photosynthetic carbon isotopic fractionation (Ɛp), calculated from the difference between the stable carbon isotopic composition (δ13C) of environmental CO2 and biomass, has some of the lowest uncertainty in estimation among CO2 proxies. However, Ɛp is generally applied to species-specific compounds which have an evolution-limited record (e.g. alkenones limited ca. 50 Ma). To extend the use of Ɛp, we explore the general phytoplankton biomarker phytane. As the fossilized side-chain of chlorophyll, phytane is spatially and temporally ubiquitous, with the potential to record pCO2 back to the earliest photoautotrophs in the geologic record. To develop and validate its potential as a pCO2 proxy, we explored phytane in modern environments, in a multi-proxy case study, and in a Phanerozoic reconstruction. As a proof-of-concept, the δ13C of phytane was tested in modern environments at naturally-occurring CO2 vents in Japan and Italy, which showed clear fractionation over the steep CO2 gradient. This was then further tested in a multi-proxy assessment in DSDP site 467 that spans the last 15 Ma, looking at both well-established (i.e. alkenones) and potential (i.e. phytane, steranes, hopanes) pCO2 proxies; phytane represented the average δ13C for these biomarkers. Finally, the δ13C of phytane data over the Phanerozoic was compiled, showing agreement with literature reconstructions of pCO2. Current pCO2 reconstructions are derived from many different types of proxies, which can create incongruities and inconsistencies throughout time, making this single well-constrained proxy that ubiquitously spans the geologic record a useful addition to the palaeo-detective's toolbox.

  5. Temperature dependence of the relationship between pCO2 and dissolved organic carbon in lakes

    KAUST Repository

    Pinho, L.

    2016-02-15

    The relationship between the partial pressure of carbon dioxide (pCO2) and dissolved organic carbon (DOC) concentration in Brazilian lakes, encompassing 225 samples across a wide latitudinal range in the tropics, was tested. Unlike the positive relationship reported for lake waters, which was largely based on temperate lakes, we found no significant relationship for low-latitude lakes (< 33°), despite very broad ranges in both pCO2 and DOC levels. These results suggest substantial differences in the carbon cycling of low-latitude lakes, which must be considered when upscaling limnetic carbon cycling to global scales.

  6. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    Science.gov (United States)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  7. 21 CFR 862.1120 - Blood gases (PCO2, PO2) and blood pH test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood gases (PCO2, PO2) and blood pH test system... Test Systems § 862.1120 Blood gases (PCO2, PO2) and blood pH test system. (a) Identification. A blood gases (PCO2, PO2) and blood pH test system is a device intended to measure certain gases in blood, serum...

  8. Tectonic Reorganization and the Cause of Paleocene and Eocene pCO2 Anomalies

    Science.gov (United States)

    Austermann, Jacqueline; Carter, Laura B.; Middleton, Jennifer; Stellmann, Jessica; Pyle, Lacey

    2017-04-01

    Oxygen isotope records reveal that deep-sea temperatures were relatively stable in the early and mid Paleocene before they rose by approx. 4°C to peak in the early Eocene. This Early Eocene Climate Optimum was followed by a 17 Myr cooling trend that led to the onset of Antarctic glaciation at the end of the Eocene. Several studies have examined the potential influence of perturbations to the sinks and sources of atmospheric carbon as mechanisms for the temperature drawdown over the Eocene. Examination of the changing magnitude of carbon sinks has focused on the importance of increased weathering associated with the uplift of the Tibetan plateau (Raymo and Ruddiman, 1992), the continental drift of basaltic provinces through the equatorial humid belt (Kent and Muttoni, 2013), or the emplacement of ophiolites during arc-continent collision in the face of a closing Tethys ocean (Jagoutz et al., 2016). With respect to carbon sources, the shutdown of Tethys subduction and related arc volcanism has been argued to significantly decrease carbon emissions and consequently global temperatures (Hoareau et al., 2015). In this study, we re-assess and quantify proposed atmospheric carbon sinks and sources to obtain an integrated picture of carbon flux changes over the Paleocene and Eocene and to estimate the relative importance of different mechanisms. To constrain carbon sources, we attempt to calculate the outgassing associated with large igneous provinces, mid-ocean ridges and volcanic arcs. We use plate reconstructions to track changes in length and divergence / convergence rates at plate boundaries as well as account for the onset and extinction of volcanic arcs. To constrain carbon sinks, we account for the sequestering of carbon due to silicate weathering and organic carbon burial. We again make use of plate reconstructions to trace highly weatherable arc systems and basaltic extrusions through the tropical humid belt and to assess the interplay between warmer Eocene

  9. Hyperventilation and finger exercise increase venous-arterial Pco2 and pH differences.

    Science.gov (United States)

    Umeda, Akira; Kawasaki, Kazuteru; Abe, Tadashi; Watanabe, Maki; Ishizaka, Akitoshi; Okada, Yasumasa

    2008-11-01

    Since the invention of the pulse oximeter, physicians often or even routinely perform venous blood gas analysis (VBGA). However, it has not been generally agreed that the application of VBGA is practically meaningful in routine clinical situations such as in an ED. We measured venous-arterial Pco(2) difference ((v-a)Pco(2)) and arterial-venous pH difference ((a-v)pH), and analyzed the physiological factors that affect these differences in healthy volunteers and hyperventilation patients. In healthy volunteers, both (v-a)Pco(2) and (a-v)pH increased during finger exercise or hyperventilation in an intensity-dependent manner. Doppler echography indicated that increases in (v-a)Pco(2) and (a-v)pH during hyperventilation are induced by reduction of peripheral blood flow. Approximately 40% of patients with untreated respiratory alkalosis were found to be incorrectly diagnosed if based only on VBGA. It must be noted that VBGA may lead to overestimation of acidosis and to underestimation of respiratory alkalosis when extremities muscles are active or patients are hyperventilating. Physicians should keep these limitations in mind when conducting VBGA.

  10. Combined Effects of Elevated pCO2 and Warming Facilitate Cyanophage Infections

    NARCIS (Netherlands)

    Cheng, K.; Van de Waal, D.B.; Niu, X.Y.; Zhao, Y.J.

    2017-01-01

    Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To

  11. Quantifying uncertainty of past pCO2 determined from changes in C3 plant carbon isotope fractionation

    Science.gov (United States)

    Cui, Ying; Schubert, Brian A.

    2016-01-01

    Knowledge of the past concentrations of atmospheric CO2 level (pCO2) is critical to understanding climate sensitivity to changing pCO2. Towards this, a new proxy for pCO2 has been developed based on changes in carbon isotope fractionation (Δ13C) in C3 land plants. The accuracy of this approach has been validated against ice-core pCO2 records, suggesting the potential to apply this proxy to other geological periods; however, no thorough uncertainty assessment of the proxy has been conducted. Here, we first analyze the uncertainty in the model-curve fit through the experimental data using a bootstrap approach. Then, errors of the five input parameters for the proxy are evaluated using sensitivity analysis; these include the carbon isotope composition of atmospheric CO2 (δ13CCO2) and that of the plant material (δ13Corg) for two time periods, a reference time (t = 0) and the time period of interest (t), and the value of pCO2 at time t = 0. We then propagated the errors on the reconstructed pCO2 using a Monte Carlo random sampling approach that combined the uncertainties of the curve fitting and the five inputs for a scenario in which the reference time was the Holocene with a target period for the reconstructed pCO2 during the Cenozoic. We find that the error in the reconstructed pCO2(t) increases with increasing pCO2(t), yet remains stomata, liverwort, and paleosol proxies. The analysis presented here assumes that the paleoenvironment in which the plants grew is unknown and is determined to be the largest source of error in the reconstructed pCO2(t) levels; errors in pCO2(t) could be reduced provided independent determination of the paleoenvironmental conditions at the fossil site.

  12. Hurricane Arthur and its effect on the short-term variability of pCO2 on the Scotian Shelf, NW Atlantic

    Directory of Open Access Journals (Sweden)

    J. Lemay

    2018-04-01

    Full Text Available The understanding of the seasonal variability of carbon cycling on the Scotian Shelf in the NW Atlantic Ocean has improved in recent years; however, very little information is available regarding its short-term variability. In order to shed light on this aspect of carbon cycling on the Scotian Shelf we investigate the effects of Hurricane Arthur, which passed the region on 5 July 2014. The hurricane caused a substantial decline in the surface water partial pressure of CO2 (pCO2, even though the Scotian Shelf possesses CO2-rich deep waters. High-temporal-resolution data of moored autonomous instruments demonstrate that there is a distinct layer of relatively cold water with low dissolved inorganic carbon (DIC slightly above the thermocline, presumably due to a sustained population of phytoplankton. Strong storm-related wind mixing caused this cold intermediate layer with high phytoplankton biomass to be entrained into the surface mixed layer. At the surface, phytoplankton begin to grow more rapidly due to increased light. The combination of growth and the mixing of low DIC water led to a short-term reduction in the partial pressure of CO2 until wind speeds relaxed and allowed for the restratification of the upper water column. These hurricane-related processes caused a (net CO2 uptake by the Scotian Shelf region that is comparable to the spring bloom, thus exerting a major impact on the annual CO2 flux budget.

  13. Sunglitter Imagery Of The Ocean Surface Phenomena

    Science.gov (United States)

    Myasoedov, Alexander; Kudryavtsev, Vladimir; Chapron, Bertrand; Johannessen, Johnny

    2010-04-01

    An algorithm for retrieval of spatial variations of the mean square slope (MSS) of the sea surface from sunglint imagery is proposed. The retrieval algorithm is free on a prior suggestion on PDF model. The transfer function, relating the brightness contrast to the MSS contrasts, is found from observed sunglint brightness, where “real” PDF of the sea slopes has built-in. Developed approach was applied for analysis of the sunglint signature of the mesoscale ocean dynamics and internal waves. We found that the ocean currents (eddies, meanders, frontal lines) and internal waves are well visible on the sea surface as the MSS anomalies. Results of this study is further adopted by Kudryavtsev et al. (2010) for development of advanced approach for synergetic use of SAR and optical imagery in studies of meso-scale ocean dynamics.

  14. Coccolith calcite time capsules preserve a molecule-specific record of pCO2

    Science.gov (United States)

    McClelland, H. L. O.; Pearson, A.; Hermoso, M.; Wilkes, E.; Lee, R. B. Y.; Rickaby, R. E. M.

    2017-12-01

    Coccolithophores are single-celled phytoplankton that have contributed organic matter and calcite to marine sediments since the Late Triassic. The carbon isotopic compositions of both the calcite, and the organic matter, constitute valuable archives of information about the interaction between these organisms and the environments in which they lived. The isotopic composition of alkenone lipids, a recalcitrant component of coccolithophore organic carbon produced by a single family of coccolithophores, has been widely used to reconstruct pCO2 in the geological past. However, the robustness of this approach has remained controversial, due in part to the difficulties associated with reproducing pCO2 changes across periods of known pCO2 change, and uncertainties in relevant physiological variables such as growth rate and cell size. Meanwhile the calcite, produced in the form of plates called coccoliths, and which has had limited utility in paleoclimate reconstructions due to its large and variable departures from the isotopic composition of abiogenic calcite, has garnered increasing attention in recent years for the environmental and physiological information it contains. Here we show that polysaccharides preserved within the calcite crystal lattice of near monospecific fractions of fossil coccoliths constitute an ancient pristine source of organic carbon that unlike alkenones is unambiguously associated with the coccolith1. The isotopic composition of these polysaccharides, in tandem with that of the host coccolith calcite, and morphometrics from the same coccoliths2, can be used simultaneously constrain a recently published cellular carbon isotope flux model3, embedded in a more complex nutrient limitation model, in a powerful new approach to simultaneously predict cellular parameters and pCO2. We demonstrate the validity of this approach across a glacial / interglacial cycle. Lee, R. B. Y., et al,, Nat. Commun. 7, 13144 (2016). McClelland, H. L. O. et al. Sci. Rep. 6, 34263 (2016). McClelland, H. L. O. et al., Nat. Commun. 8, 1-16 (2017)

  15. Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements.

    Science.gov (United States)

    Ertekin, Kadriye; Klimant, Ingo; Neurauter, Gerhard; Wolfbeis, Otto S

    2003-02-06

    A reservoir type of capillary microsensor for pCO(2) measurements is presented. The sensor is based on the measurement of the fluorescence intensity of the anionic form of the pH indicator 1-hydroxy-3,6,8-pyrenetrisulfonate in the form of its ion pair with a quaternary ammonium base in an ethyl cellulose matrix. The glass capillary containing the reservoir sensor was prepared by immersing the tip of the optical fiber into the sensing agent very close to the sensor tip thus providing a very small volume for the sensing reaction. The purpose of the sensing approach is to regenerate the dye/buffer system by diffusion, which may be poisoned by interfering acids, or bleach by photolysis. The fresh cocktail from the reservoir takes the place of protonated form of the dye. The internal buffer system also makes the protonation-deprotonation equilibria reversible. The distal tip of the internal buffer containing reservoir is coated with a gas-permeable but ion-impermeable teflon membrane. The dynamic range for the detection of pCO(2) is between 1 and 20 hPa, which corresponds to the range of dissolved CO(2) in water. The response time is 15 s and the detection limit is 1 hPa of pCO(2.) The recovery performance of this sensor can be improved by means of mechanical adjustment of the sensor tip in a micrometric scale.

  16. The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models

    International Nuclear Information System (INIS)

    Chuck, A.; Tyrrell, T.; Holligan, P.M.; Totterdell, I.J.

    2005-01-01

    A recent study of coupled atmospheric carbon dioxide and the biosphere found alarming sensitivity of next-century atmospheric pCO 2 (and hence planetary temperature) to uncertainties in terrestrial processes. Here we investigate whether there is similar sensitivity associated with uncertainties in the behaviour of the ocean carbon cycle. We investigate this important question using three models of the ocean carbon cycle of varying complexity: (1) a new three-box oceanic carbon cycle model; (2) the HILDA multibox model with high vertical resolution at low latitudes; (3) the Hadley Centre ocean general circulation model (HadOCC). These models were used in combination to assess the quantitative significance (to year 2100 pCO 2 ) of potential changes to the ocean stimulated by global warming and other anthropogenic activities over the period 2000-2100. It was found that an increase in sea surface temperature and a decrease in the mixing rate due to stratification give rise to the greatest relative changes in pCO 2 , both being positive feedbacks. We failed to find any comparable large sensitivity due to the ocean

  17. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

    Science.gov (United States)

    Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik

    2017-08-01

    Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.

  18. Surface underway measurements of partial pressure of CO2 (pCO2), temperature, salinity and atmospheric pressure during the R/V Thetys-2 CARBORHONE 3 and 4 cruises (EXPOCODEs: 35TT20120222, 35TT20120720) in the Mediterranean Sea from 2012-02-22 to 2012-07-27 (NCEI Accession 0162460)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The air-sea CO2 fluxes in Mediterranean coastal ecosystems impacted by estuaries inputs have been particularly poorly investigated. The Gulf of Lions is a coastal...

  19. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    Science.gov (United States)

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  20. Spatial and Temporal Variability of pCO2, 13C-CO2, and [O2] in the Tidal Amazon River.

    Science.gov (United States)

    Gagne-Maynard, W.

    2015-12-01

    River systems play an important role in both transporting and altering organic carbon fixed in terrestrial systems. However, there is a key gap in our understanding of riverine fluxes due to the lack of systematic measurements made in the lower, tidally-influenced reaches of large river systems. For example, the traditional end-member for the Amazon River is located at Óbidos, which is 900km from the mouth of the river. Below this point, tides produce semi-diurnal fluxes to and from floodplains and channels, resulting in complete flow reversal without salinity intrusion. The lower Amazon remains a critical study area because (1) outgassing rates in tropical rivers are extremely high, typically exceeding temperate counterparts and (2) the Amazon's discharge represents a significant proportion of global freshwater input to the ocean(~20%). Furthermore, a lack of measurements in this area due to sampling difficulties means that the processes governing biogeochemical dynamics in this region remain unconstrained. In this study, we implemented a continuous, in-situ equilibrator system for the real-time measurement of pCO2, 13C-CO2, and [O2]. Measurements were collected along various river transects, at floodplain margins and river confluences, and during transit up and down the river. Cruises were planned to coincide with various stages of the hydrograph, with measurements collected at high water, low water and falling water. High-resolution measurements showed both temporal changes in pCO2 and 13C-CO2, and also allowed us to identify "hotspots" of increased pCO2. Within the lower river, several of these hotspots coincided with river confluences and floodplain margins. Measurements over the course of tidal cycles revealed little change in dissolved gas measurements within the mainstem. This approach shows the importance of considering spatial variability in large, dynamic systems influenced by tidal fluxes.

  1. Minor impact of ocean acidification to the composition of the active microbial community in an Arctic sediment.

    Science.gov (United States)

    Tait, Karen; Laverock, Bonnie; Shaw, Jennifer; Somerfield, Paul J; Widdicombe, Steve

    2013-12-01

    Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 μatm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO(2) on sediment physicochemical parameters, biogeochemistry and microbial community dynamics. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Marine CDOM accumulation during a coastal Arctic mesocosm experiment: No response to elevated pCO2 levels

    Science.gov (United States)

    Pavlov, Alexey K.; Silyakova, Anna; Granskog, Mats A.; Bellerby, Richard G. J.; Engel, Anja; Schulz, Kai G.; Brussaard, Corina P. D.

    2014-06-01

    A large-scale multidisciplinary mesocosm experiment in an Arctic fjord (Kongsfjorden, Svalbard; 78°56.2'N) was used to study Arctic marine food webs and biogeochemical elements cycling at natural and elevated future carbon dioxide (CO2) levels. At the start of the experiment, marine-derived chromophoric dissolved organic matter (CDOM) dominated the CDOM pool. Thus, this experiment constituted a convenient case to study production of autochthonous CDOM, which is typically masked by high levels of CDOM of terrestrial origin in the Arctic Ocean proper. CDOM accumulated during the experiment in line with an increase in bacterial abundance; however, no response was observed to increased pCO2 levels. Changes in CDOM absorption spectral slopes indicate that bacteria were most likely responsible for the observed CDOM dynamics. Distinct absorption peaks (at 330 and 360 nm) were likely associated with mycosporine-like amino acids (MAAs). Due to the experimental setup, MAAs were produced in absence of ultraviolet exposure providing evidence for MAAs to be considered as multipurpose metabolites rather than simple photoprotective compounds. We showed that a small increase in CDOM during the experiment made it a major contributor to total absorption in a range of photosynthetically active radiation (PAR, 400-700 nm) and, therefore, is important for spectral light availability and may be important for photosynthesis and phytoplankton groups composition in a rapidly changing Arctic marine ecosystem.

  3. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  4. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  5. Ventilatory effects of hypercapnic end-tidal PCO2 clamps during aerobic exercise of varying intensity.

    Science.gov (United States)

    Essfeld, D; Hoffmann, U; Stegemann, J

    1990-01-01

    Nine subjects performed a sequence of sustained and randomised changes between 40 W and 100 W on a cycle ergometer while the end-tidal PO2 was kept close to 17.3 kPa (130 mm Hg) by means of a dynamic forcing technique (reference experiment). In a second series inspiratory CO2 was additionally manipulated so as to hold end-tidal PCO2 (PETCO2) near 6.5 kPa (49 mm Hg; 'CO2-clamp' experiment). By this forcing PETCO2 oscillations were attenuated and more evenly distributed over the frequency range. Ventilation (VT) responded to this manoeuvre with an upward trend that could not be ascribed to a slow CO2-response component, changes in metabolic rate or a dissociation of end-tidal and arterial PCO2. VT differences between reference and CO2-clamp experiments were abolished within a 3-min period following the termination of the external CO2 control. The present results suggest that the CO2-H+ stimulus plays a major role in adjusting ventilation when exercise intensity is decreased. The underlying CO2 effect appears to be neither additive nor bi-directionally symmetrical.

  6. Hot and bothered: The effects of elevated pCO2and temperature on juvenile freshwater mussels.

    Science.gov (United States)

    Jeffrey, Jennifer D; Hannan, Kelly D; Hasler, Caleb T; Suski, Cory D

    2018-03-21

    Multiple environmental stressors may interact in complex ways to exceed or diminish the impacts of individual stressors. In the present study, the interactive effects of two ecologically-relevant stressors (increased temperature and partial pressure of carbon dioxide, pCO 2 ) were assessed for freshwater mussels - a group of organisms that are among the most sensitive and rapidly declining worldwide. The individual and combined effects of elevated temperature (22-34˚C) and pCO 2 (~230, 58,000 µatm) on juvenile Lampsilis siliquoidea were quantified over a 5- or 14-day period, where physiological and whole-animal responses were measured. Exposure to elevated temperature induced a series of physiological responses including an increase in oxygen consumption rates following 5 days of exposure at 31˚C, and an increase in carbonic anhydrase ( ca) and heat shock protein 70 mRNA levels following 14 days of exposure at 28 and 34˚C, respectively. Treatment with elevated pCO 2 activated acid-base regulatory responses including increases in CA and Na + -K + -ATPase activity, and a novel mechanism for acid-base regulation during pCO 2 exposure in freshwater mussels was proposed. Thermal and CO 2 stressors also interacted such that responses to the thermal stressor were diminished in mussels exposed to elevated pCO 2 , resulting in the greatest level of mortality. Additionally, larger mussels were more likely to survive treatment with elevated pCO 2 and/or temperature. Together, exposure to elevated pCO 2 may compromise the ability of juvenile freshwater mussels to respond to additional stressors, such as increased temperatures, highlighting the importance of considering not only the individual but also the interactive effects of multiple environmental stressors.

  7. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated pCO2

    Science.gov (United States)

    Wen, Zhidan; Song, Kaishan; Shang, Yingxin; Fang, Chong; Li, Lin; Lv, Lili; Lv, Xianguo; Chen, Lijiang

    2017-12-01

    The role of inland water in CO2 exchange with the atmosphere was evaluated on the basis of calculated partial pressure of CO2 (pCO2) from sampling of 207 lakes and 84 reservoirs across China in late summer. The results suggested that almost 60% of these water bodies were supersaturated with CO2 with respect to atmosphere, and the collected reservoirs samples exhibited higher mean pCO2 than lakes. The mean pCO2 in fresh water lakes was about 3.5 times of the value in saline lakes. The lakes and reservoirs were divided into five groups (Inner Mongolia -Xinjiang plateau region, Tibetan Plateau region, Northeastern plain and mountainous region, Yunnan- Guizhou Plateau region, and Eastern plain region). The Yunnan- Guizhou Plateau region showed the highest pCO2 compared with other regions, most likely due to the typical karst landforms, karst processes may promote aqueous CO2 concentration, and karstification has a significant effect on the capture of atmospheric CO2. Inner Mongolia-Xinjiang plateau and Tibetan Plateau region reserviors showed negative CO2 flux to atmosphere, other waters in this study all supersaturated with CO2 with respect to the atmosphere. A which We analyzed the relationship between pCO2 and environmental variables, and results showed that some indicators had correlations with pCO2 in individual region such as total phosphorus, dissolved organic matter, and total suspended solids, but the relationship could not be observed with all surveyed waters. This indicated that it might be much more effective in a smaller regional scale than the broadened scale when the environmental factors were used as the predictor of pCO2 in lakes. Therefore, the common algorithm that extrapolates CO2 concentration or emission flux from the study region to a wider scale might not be accurate because of the changes in the environmental and water quality conditions.

  8. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus calcite and potential effects of pCO2 during early life stages

    Directory of Open Access Journals (Sweden)

    M. LaVigne

    2013-06-01

    Full Text Available Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2 on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus. We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California. Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD. However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1, skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California did not exhibit differences in Mg or Sr

  9. Late Archean Surface Ocean Oxygenation (Invited)

    Science.gov (United States)

    Kendall, B.; Reinhard, C.; Lyons, T. W.; Kaufman, A. J.; Anbar, A. D.

    2009-12-01

    Oxygenic photosynthesis must have evolved by 2.45-2.32 Ga, when atmospheric oxygen abundances first rose above 0.001% present atmospheric level (Great Oxidation Event; GOE). Biomarker evidence for a time lag between the evolution of cyanobacterial oxygenic photosynthesis and the GOE continues to be debated. Geochemical signatures from sedimentary rocks (redox-sensitive trace metal abundances, sedimentary Fe geochemistry, and S isotopes) represent an alternative tool for tracing the history of Earth surface oxygenation. Integrated high-resolution chemostratigraphic profiles through the 2.5 Ga Mt. McRae Shale (Pilbara Craton, Western Australia) suggest a ‘whiff’ of oxygen in the surface environment at least 50 M.y. prior to the GOE. However, the geochemical data from the Mt. McRae Shale does not uniquely constrain the presence or extent of Late Archean ocean oxygenation. Here, we present high-resolution chemostratigraphic profiles from 2.6-2.5 Ga black shales (upper Campbellrand Subgroup, Kaapvaal Craton, South Africa) that provide the earliest direct evidence for an oxygenated ocean water column. On the slope beneath the Campbellrand - Malmani carbonate platform (Nauga Formation), a mildly oxygenated water column (highly reactive iron to total iron ratios [FeHR/FeT] ≤ 0.4) was underlain by oxidizing sediments (low Re and Mo abundances) or mildly reducing sediments (high Re but low Mo abundances). After drowning of the carbonate platform (Klein Naute Formation), the local bottom waters became anoxic (FeHR/FeT > 0.4) and intermittently sulphidic (pyrite iron to highly reactive iron ratios [FePY/FeHR] > 0.8), conducive to enrichment of both Re and Mo in sediments, followed by anoxic and Fe2+-rich (ferruginous) conditions (high FeT, FePY/FeHR near 0). Widespread surface ocean oxygenation is suggested by Re enrichment in the broadly correlative Klein Naute Formation and Mt. McRae Shale, deposited ~1000 km apart in the Griqualand West and Hamersley basins

  10. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    Science.gov (United States)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  11. Cerebral blood flow and end-tidal PCO2 during prolonged acetazolamide treatment in humans

    DEFF Research Database (Denmark)

    Friberg, L; Kastrup, J; Rizzi, Dominick Albert

    1990-01-01

    decreasing alveolar PCO2 to 70% of the control value at the end of the treatment period. In healthy humans the hyperventilation will not increase brain oxygenation significantly at sea level. But at high altitudes the enhanced ventilatory drive will improve oxygenation of the brain, and this may account......One oral dose of 1,000 mg of acetazolamide caused an acute 38% increase in cerebral blood flow (CBF) in eight healthy volunteers. During the following 10 days the subjects took 1,000 mg acetazolamide daily. CBF normalized within the first 2 days. The drug induced mild hyperventilation, gradually...... of a transient extracellular acidosis dilating brain arterioles, whereas increased ventilatory drive results from a gradually increasing mild intracellular acidosis in the brain....

  12. A large Venous-Arterial PCO2 Is Associated with Poor Outcomes in Surgical Patients

    Science.gov (United States)

    Silva, João M.; Oliveira, Amanda M. Ribas R.; Segura, Juliano Lopes; Ribeiro, Marcel Henrique; Sposito, Carolina Nacevicius; Toledo, Diogo O.; Rezende, Ederlon; Malbouisson, Luiz M. Sá

    2011-01-01

    Background. This study evaluated whether large venous-arterial CO2 gap (PCO2 gap) preoperatively is associated to poor outcome. Method. Prospective study which included adult high-risk surgical patients. The patients were pooled into two groups: wide [P(v-a)CO2] versus narrow [P(v-a)CO2]. In order to determine the best value to discriminate hospital mortality, it was applied a ROC (receiver operating characteristic) curve for the [P(v-a)CO2] values collected preoperatively, and the most accurate value was chosen as cut-off to define the groups. Results. The study included 66 patients. The [P(v-a)CO2] value preoperatively that best discriminated hospital mortality was 5.0 mmHg, area = 0.73. Preoperative patients with [P(v-a)CO2] more than 5.0 mmHg presented a higher hospital mortality (36.4% versus 4.5% P = 0.004), higher prevalence of circulatory shock (56.8% versus 22.7% P = 0.01) and acute renal failure postoperatively (27.3% versus 4.5% P = 0.02), and longer hospital length of stays 20.0 (14.0–30.0) versus 13.5 (9.0–25.0) days P = 0.01. Conclusions. The PCO2 gap values more than 5.0 mmHg preoperatively were associated with worse postoperatively outcome. PMID:22007204

  13. A large Venous-Arterial PCO2 Is Associated with Poor Outcomes in Surgical Patients

    Directory of Open Access Journals (Sweden)

    João M. Silva

    2011-01-01

    Full Text Available Background. This study evaluated whether large venous-arterial CO2 gap (PCO2 gap preoperatively is associated to poor outcome. Method. Prospective study which included adult high-risk surgical patients. The patients were pooled into two groups: wide [P(v-aCO2] versus narrow [P(v-aCO2]. In order to determine the best value to discriminate hospital mortality, it was applied a ROC (receiver operating characteristic curve for the [P(v-aCO2] values collected preoperatively, and the most accurate value was chosen as cut-off to define the groups. Results. The study included 66 patients. The [P(v-aCO2] value preoperatively that best discriminated hospital mortality was 5.0 mmHg, area=0.73. Preoperative patients with [P(v-aCO2] more than 5.0 mmHg presented a higher hospital mortality (36.4% versus 4.5% P=0.004, higher prevalence of circulatory shock (56.8% versus 22.7% P=0.01 and acute renal failure postoperatively (27.3% versus 4.5% P=0.02, and longer hospital length of stays 20.0 (14.0–30.0 versus 13.5 (9.0–25.0 days P=0.01. Conclusions. The PCO2 gap values more than 5.0 mmHg preoperatively were associated with worse postoperatively outcome.

  14. Diagnostic significance of pleural fluid pH and pCO2

    Directory of Open Access Journals (Sweden)

    K.E. Sobhey

    2015-10-01

    Results: We conducted this study on 50 patients with pleural effusions of different causes. The patients were classified into 5 groups according to the cause. For all the patients, measurement of pleural pH, pCO2, pO2, HCO3, protein, LDH, glucose and WBC was done. We observed lowest pH in complicated parapneumonic effusion (empyema 6.80 ± 0.15 and highest pH was observed in transudative effusion 7.47 ± 0.07. Tuberculous effusion has pH lower than pH of malignant effusion 7.17 ± 0.017 and 7.39 ± 0.08, respectively. Post pleurodesis malignant effusion has pH lower than pH of malignant effusion 7.28 ± 0.17 and 7.39 ± 0.08, respectively. There is a strong inverse correlation between pH and pCO2, WBC, LDH and protein (r = −0.813 and p < 0.001, (r = −0.796 and p, 0.001, (r = −0.829 and p, 0.001 and (r = −.837 and p, 0.001, respectively. While there is a weak correlation between pH and glucose of pleural fluid (r = 0.249 and p = 0.066. The highest increase of PNL numbers was in empyema (20169 ± 8094.8 cells/cc.The highest increase of lymphocytes was in malignant effusions (4285.00 ± 2948.20 cells/cc and tuberculous effusion (3977.7 ± 3169 cells/cc.

  15. Arctic Ocean CO2 uptake: an improved multiyear estimate of the air-sea CO2 flux incorporating chlorophyll a concentrations

    Science.gov (United States)

    Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.

    2018-03-01

    We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.

  16. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  17. Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa.

    Science.gov (United States)

    Liu, Jing; Van Oosterhout, Elmer; Faassen, Elisabeth J; Lürling, Miquel; Helmsing, Nico R; Van de Waal, Dedmer B

    2016-02-01

    Elevated pCO2 may promote phytoplankton growth, and potentially alleviate carbon limitation during dense blooms. Under nitrogen-limited conditions, elevated pCO2 may furthermore alter the phytoplankton carbon-nitrogen (C:N) balance and thereby the synthesis of secondary metabolites, such as cyanobacterial toxins. A common group of these toxins are the microcystins, with variants that differ not only in C:N stoichiometry, but also in toxicity. Here, we hypothesized that elevated pCO2 will increase the cellular C:N ratios of cyanobacteria, thereby promoting the more toxic microcystin variants with higher C:N ratios. To test this hypothesis, we performed chemostat experiments under nitrogen-limited conditions, exposing three Microcystis aeruginosa strains to two pCO2 treatments: 400 and 1200 μatm. Biomass, cellular C:N ratios and total microcystin contents at steady state remained largely unaltered in all three strains. Across strains and treatments, however, cellular microcystin content decreased with increasing cellular C:N ratios, suggesting a general stoichiometric regulation. Furthermore, as predicted, microcystin variants with higher C:N ratios generally increased with elevated pCO2, while the variant with a low C:N ratio decreased. Thus, elevated pCO2 under nitrogen-limited conditions may shift the cellular microcystin composition towards the more toxic variants. Such CO2-driven changes may have consequences for the toxicity of Microcystis blooms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Dissolved inorganic carbon and pCO2 in two small streams draining different soil types in Southwestern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Simone Rebecca Alin

    2008-08-01

    Full Text Available The objective of this study was to determine the dissolved inorganic carbon (DIC and pCO2 concentrations in two third order streams in southwestern Amazonia, Brazil. From May 2004 to June 2005 water dissolved oxygen, pH, electrical conductivity, temperature were measured to stream water chemical and physical description. DIC and pCO2 measurements were made by headspace extraction and gas samples for pCO2 and DIC extractions were run on an infrared gas analyzer (IRGA, LI-COR Instruments model LI-820. Results indicate a relationship between soil type and water chemistry, where sandy soil stream presented lower pH than silty soil stream – consequently DIC and pCO2 concentrations also varied with soil type. Mean DIC concentration for sitly soil stream was 403±130 ?M month-1, while sandy soil stream DIC concentration was 170±59 ?M month-1. Free CO2 was the dominant form of DIC in both streams. Nevertheless, HCO3- contribuition to DIC was greater for the silty soil stream. DIC contentration also varied seasonally with greater values in the drier period. Absolute pCO2 values were greater for silty soil stream, mean 3067±1228 µatm month-1 and 2321±1020 µatm month-1 for sandy soil stream. Seasonality, pCO2 was higher in the dry season in both streams. Our findings have important implications on the role of soil type in water chemistry and carbon dynamics and also are used in other studies on carbon balance at the landscape level.

  19. Effect of acidity and elevated PCO2 on acid. Neutralization within pulsed limestone bed reactors receiving coal mine drainage

    Science.gov (United States)

    Watten, B.J.; Sibrell, P.L.; Schwartz, M.F.

    2004-01-01

    Limestone has potential for reducing reagent costs and sludge volume associated with the treatment of acid mine drainage (AMD), but its use has been restricted by slow dissolution rates and sensitivity to scale forming reactions that retard transport of H+ at the solid-liquid interface. We evaluated a pulsed limestone bed (PLB) remediation process designed to circumvent these problems through use of intermittently fluidized beds of granular limestone and elevated carbon dioxide pressure. PLB limestone dissolution (LD, mg/L), and effluent alkalinity (Alk, mg/L) were correlated with reactor pressure (PCO2, kPa), influent acidity (Acy, mg/L) and reactor bed height (H, cm) using a prototype capable of processing 10 L/min. The PLB process effectively neutralized sulfuric acid acidity over the range of 6-1033 mg/L (as CaCO3) while generating high concentrations of alkalinity (36-1086 mg/L) despite a hydraulic residence time of just 4.2-5.0 min. Alk and LD (mg/L CaCO3) rose with increases in influent acidity and PCO2 (p < 0.001) according to the models: Alk = 58 + 38.4 (PCO2)0.5 + 0.080 (Acy) - 0.0059(PCO2) 0.5 (Acy); LD = 55 + 38.3 (PCO2)0.5 + 1.08 (Acy) - 0.0059 (PCO2)0.5 (Acy). Alkalinity decreased at an increasing rate with reductions in H over the range of 27.3-77.5 cm (p < 0.001). Carbon dioxide requirements (Q(avg)CO2, L/min) increased with PCO2 (p < 0.001) following the model Q(avg)CO2 = 0.858 (PCO2)0.620, resulting in a greater degree of pH buffering (depression) within the reactors, a rise in limestone solubility and an increase in limestone dissolution related to carbonic acid attack. Corresponding elevated concentrations of effluent alkalinity allow for sidestream treatment with blending. Numerical modeling demonstrated that carbon dioxide requirements are reduced as influent acidity rises and when carbon dioxide is recovered from system effluent and recycled. Field trials demonstrated that the PLB process is capable of raising the pH of AMD above that

  20. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    (Johnson et al. 2007). The OSCAR product is, however, a global product. Thus there is a pressing need to validate this product in the other basins of the world ocean, e.g., in the Indian Ocean. The present study is motivated by this need. In the present study, monthly climatology of OSCAR ocean surface currents in the TIO ...

  1. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    Full Text Available The small reservoir of carbon dioxide in the atmosphere (pCO2 that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S–5° N seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003. A negative climate

  2. Lignin-based Phenol-Formalehyde Resins from Purified CO2 Precipitated Kraft Lignin (PCO2KL)

    Science.gov (United States)

    Yao Chen; Charles R. Frihart; Zhiyong Cai; Linda F. Lorenz; Nicole M. Stark

    2013-01-01

    To investigate the potential for using purified CO2-precipitated Kraft lignin (PCO2KL) with phenol-formaldehyde (PF) for application as an adhesive in plywood production, two lignin replacement procedures were examined to assess lignin’s effect on bond quality. Methylolation and oxidation with hydrogen peroxide (H

  3. Lignin-based Phenol-Formaldehyde Resins from Purified CO2 Precipitated Kraft lignin (PCO2KL)

    Science.gov (United States)

    Yao Chen; Charles R. Frihart; Zhiyong Cai; Linda F. Lorenz; Nicole M. Stark

    2013-01-01

    To investigate the potential for using purified CO2-precipitated Kraft lignin (PCO2KL) with phenol-formaldehyde (PF) for application as an adhesive in plywood production, two lignin replacement procedures were examined to assess lignin’s effect on bond quality. Methylolation and oxidation with hydrogen peroxide (H

  4. Effects of Temperature and pCO2on Population Regulation of Symbiodinium spp. in a Tropical Reef Coral.

    Science.gov (United States)

    Baghdasarian, Garen; Osberg, Andrew; Mihora, Danielle; Putnam, Hollie; Gates, Ruth D; Edmunds, Peter J

    2017-04-01

    This study tested the bleaching response of the Pacific coral Seriatopora caliendrum to short-term exposure to high temperature and elevated partial pressure of carbon dioxide (pCO 2 ). Juvenile colonies collected from Nanwan Bay, Taiwan, were used in a factorial experimental design in which 2 temperatures (∼27.6 °C and ∼30.4 °C) and 2 pCO 2 values (∼47.2 Pa and ∼90.7 Pa) were crossed to evaluate, over 12 days, the effects on the densities and physiology of the symbiotic dinoflagellates (Symbiodinium) in the corals. Thermal bleaching, as defined by a reduction of Symbiodinium densities at high temperature, was unaffected by high pCO 2 . The division, or mitotic index (MI), of Symbiodinium remaining in thermally bleached corals was about 35% lower than in control colonies, but they contained about 53% more chlorophyll. Bleaching was highly variable among colonies, but the differences were unrelated to MI or pigment content of Symbiodinium remaining in the coral host. At the end of the study, all of the corals contained clade C Symbiodinium (either C1d or C15), and the genetic variation of symbionts did not account for among-colony bleaching differences. These results showed that high temperature causes coral bleaching independent of pCO 2 , and underscores the potential role of the coral host in driving intraspecific variation in coral bleaching.

  5. Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophysceae): comparison between haploid and diploid life stages

    NARCIS (Netherlands)

    Fiorini, S.; Middelburg, J.J.; Gattuso, J.P.

    2011-01-01

    The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, and Syracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both

  6. Retrieval and assimilation of velocities at the ocean surface

    OpenAIRE

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-01-01

    Ocean currents play a key role in Earth’s climate, they are of major importance for navigation and human activities at sea, and impact almost all processes that take place in the ocean. Nevertheless, their observation and forecasting are still difficult. First, direct measurements of ocean currents are difficult to obtain synoptically at global scale. Consequently, it has been necessary to use Sea Surface Height and Sea Surface Temperature measurements and refer to dynamical frameworks to der...

  7. Dual pO2/pCO2 fibre optic sensing film.

    Science.gov (United States)

    Davenport, John J; Hickey, Michelle; Phillips, Justin P; Kyriacou, Panayiotis A

    2017-05-15

    A fibre optic multi-sensor has been developed for biomedical sensing applications using a tip coating solution sensitive to both oxygen and carbon dioxide. An oxygen sensitive phosphorescence quenching complex based on platinum octaethylporphyrin (PtOEP) was combined with a carbon dioxide sensitive phosphorescence compound based on 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS). When excited by blue light (470 nm), the resultant coating had two fluorescent peaks at 515 nm (green) and 645 nm (red) which responded to partial pressure of CO 2 and O 2 respectively. The sensor was tested in vitro and shown to be able to measure CO 2 and O 2 simultaneously and in real time, with calibration constants of 0.0384 kPa -1 and 0.309 kPa -1 respectively. The O 2 sensitive peak received some overlap from the 515 nm peak (0.38% of peak intensity) as well as some cross-sensitivity (maximum, 5.1 kPa pCO 2 gave a measurement equivalent to 0.43 kPa of O 2 , a ratio of 0.08 : 1). However, these effects can be subtracted from measurements and no significant cross-sensitivity or overlap was seen in CO 2 measurements from O 2 . This novel compound presents great potential for use in medical sensors and we expect it to be important to a wide range of future applications.

  8. The physical structure of the oceanic surface-layer

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, K.N.

    1981-01-01

    A study is presented of the structure of the near-surface layer of the ocean under various hydrometeorological conditions. Such a study allows the isolation of border measures for a four characteristic regime for the top ocean layer: 1) intensive wind-wave mixing; 2) Langmuir circulation; 3) intense solar heating during still and calm weather (with and without internal wave modulations); 4) a pressing-out of surface sediment. It is demonstrated that the spatial temperature change in the ocean surface, the thermal structure, and the heat attainment in the top layer have various characteristics during different regimes and this must be considered during the measuring of the ocean surface temperature with the contact method as well as during the comparison of contact and satallite data on the ocean surface temperature. The necessity for more research in this area is underscored.

  9. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  10. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Science.gov (United States)

    Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.

  11. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    Science.gov (United States)

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  12. Comparison of Interstitial Fluid pH, PCO2, PO2 with Venous Blood Values During Repetitive Handgrip Exercise

    Science.gov (United States)

    Hagan, Ronald Donald; Soller, Babs R.; Shear, Michael; Walz, Matthias; Landry, Michelle; Heard, Stephen

    2006-01-01

    We evaluated the use of a small, fiber optic sensor to measure pH, PCO2 and PO2 from forearm muscle interstitial fluid (IF) during handgrip dynamometry. PURPOSE: Compare pH, PCO2 and PO2 values obtained from venous blood with those from the IF of the flexor digitorum superficialis (FDS) during three levels of exercise intensity. METHODS: Six subjects (5M/1F), average age 29+/-5 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space and a fiber optic sensor (Paratrend, Diametrics Medical, Inc.) was placed through a 22 G catheter into the FDS muscle under ultrasound guidance. After a 45 min rest period, subjects performed three 5-min bouts of repetitive handgrip exercise (2s contraction/1 s relaxation) at attempted levels of 15%, 30% and 45% of maximal voluntary contraction. The order of the exercise bouts was random with the second and third bouts started after blood lactate had returned to baseline. Venous blood was sampled every minute during exercise and analyzed with an I-Stat CG-4+ cartridge, while IF fiber optic sensor measurements were obtained every 2 s. Change from pre-exercise baseline to end of exercise was computed for pH, PCO2 and PO2. Blood and IF values were compared with a paired t-test. RESULTS: Baseline values for pH, PCO2 and PO2 were 7.37+/-0.02, 46+/-4 mm Hg, and 36+/-6 mm Hg respectively in blood and 7.39+/-0.02, 44+/-6 mm Hg, and 35+/-14 mm Hg in IF. Average changes over all exercise levels are noted in the Table below. For each parameter the exercise-induced change was at least twice as great in IF as in blood. In blood and IF, pH and PCO2 increases were directly related to exercise intensity. Change in venous PO2 was unrelated to exercise intensity, while IF PO2 decreased with increases in exercise intensity. CONCLUSIONS: Measurement of IF pH, PCO2 and PO2 is more sensitive to exercise intensity than measurement of the same parameters in venous blood and provides continuous

  13. Characterization of surface layers on individual marine CaCO3 particles, using "variable energy" electron probe microanalysis (poster)

    OpenAIRE

    Aerts, K.; Godoi, R.; Van Grieken, R.

    2002-01-01

    The ocean constitutes a large sink for anthropogenic CO2, and thus plays a significant role in the global biogeochemical cycle of carbon and its perturbations. There remain, however, large uncertainties concerning the uptake of anthropogenic carbon by the ocean, mainly due to insufficient knowledge of processes controlling the pCO2 in surface waters. Most of the previous research efforts have been concentrated on the study of CO2 exchange at the air-sea interface due to temperature effects re...

  14. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  15. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds. B N Goswami1 and E N Rajagopal2. 1Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. 2National Centre for Medium Range Weather Forecasting, Department of ...

  16. Increased cerebrovascular pCO2 reactivity in migraine with aura--a transcranial Doppler study during hyperventilation

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg; Olesen, J

    1995-01-01

    Cerebrovascular reactivity during hypocapnia was tested in 20 migraineurs (8 with aura, 12 without aura) and 30 sex- and age-matched healthy subjects, and during nitroglycerin-induced headache in 12 healthy subjects. Before and during hyperventilation, mean blood-flow velocity (Vmean) in the middle...... cerebral artery was measured with transcranial Doppler. In each subject a pCO2 reactivity index (RI) was calculated as (delta Vmean/baseline Vmean)/delta pCO2. Interictally, patients with migraine with aura showed higher RI (p ... aura did not differ from healthy subjects. Ictal and interictal RIs were similar in 9 patients suffering from migraine without aura. No side-to-side differences were detected in RI. During nitroglycerin-induced headache, the RIs were no different from those recorded during migraine attacks and in non...

  17. pO2 and pCO2 increment in post-dialyzer blood: the role of dialysate.

    Science.gov (United States)

    Sombolos, Kostas I; Bamichas, Gerasimos I; Christidou, Fotini N; Gionanlis, Lazaros D; Karagianni, Anna C; Anagnostopoulos, Theodoros C; Natse, Taïsir A

    2005-11-01

    Blood returning from a dialyzer during hemodialysis has a higher pO2 and pCO2 content than blood entering the dialyzer, and this has been attributed to the dialysate. The present study investigates this phenomenon. Acid-base and blood-gas parameters (pH, pO2, pCO2 and HCO3) were measured in three groups of stable chronic hemodialysis patients (A, B, and C) undergoing high-flux hemodialysis. In group A (n = 15), "arterial" (a) and "venous" (v) samples were withdrawn simultaneously before dialysis (samples A0), 5 min after circulation of the blood with the dialysate in the by-pass mode (samples A5), and 5 min after high-flux hemodialysis at a zero ultrafiltration rate (samples A10). In group B (n = 11) (a) and (v) samples were withdrawn simultaneously before dialysis (samples B0), 5 min after isolated-ultrafiltration with closed dialysate ports ("isolated-closed" ultrafiltration) (samples B5), and 5 min after high-flux hemodialysis at a zero ultrafiltration rate (samples B10). In group C (n = 14), after an initial arterial blood sample withdrawal before hemodialysis (sample C0), high-flux hemodialysis at a zero ultrafiltration rate was initiated. Five minutes later, blood and dialysate samples were withdrawn simultaneously from the hemodialysis lines (samples C5). In all cases blood and dialysate (bicarbonate) flow rates were set at 0.300 and 0.700 L/min, respectively. FLX-18 hemodialyzers (membrane PEPA 1.8 m2) were used in this study. Analysis of variance revealed significant changes only in venous samples. A comparison of arterial and venous samples revealed no differences between groups A and B before the initiation of dialysis (A0a vs. A0v and B0a vs. B0v, P = NS). The pO2 content was higher in A5v samples than in A5a samples (83.5 +/- 11.2 vs. 88.8 +/- 14.0 mm Hg, P pO2, pCO2, and HCO3 in comparison to A10v samples (P pO2 and pCO2 values in A5v and A10v samples increased by 6.3% and 12.1% and by 1.29% and 52% in comparison to corresponding values of A5a and A10a samples, respectively. The pO2 level was the only parameter that differed significantly between B5a and B5v samples (B5a = 84.6 +/- 10.1 vs. B5v = 98.0 +/- 12.6 mm Hg, P pO2, and HCO3 in comparison to B10v samples (P pO2 and pCO2 values in B5v and B10v samples increased by 16.2% and 16.3% and by -0.29% and 64.8% in comparison to corresponding values of B5a and B10a samples, respectively. C5a samples possessed a higher pH and lower levels of pCO2, pO2, and HCO3 in comparison to C5v samples (P pO2 and pCO2 values in C5v samples were, respectively, 16.0% and 65.0% higher than corresponding values of C5a samples. These results indicate that blood returning from the dialyzer after 5 min of high-flux hemodialysis has a higher pO2 and pCO2 than blood entering the dialyzer, and that this difference is due to O2 and CO2 transfer from the dialysate space into the blood.

  18. Dissolved inorganic carbon and pCO2 in two small streams draining different soil types in Southwestern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Eliete dos Santos Sousa, Cleber Ibraim Salimon, Reynaldo Luiz Victoria, Alex Vladimir Krusche, Simone Rebecca Alin, Nei Kavaguichi Leite

    2008-08-01

    Full Text Available The objective of this study was to determine the dissolved inorganic carbon (DIC andpCO2 concentrations in two third order streams in southwestern Amazonia, Brazil. From May2004 to June 2005 water dissolved oxygen, pH, electrical conductivity, temperature weremeasured to stream water chemical and physical description. DIC and pCO2 measurementswere made by headspace extraction and gas samples for pCO2 and DIC extractions were runon an infrared gas analyzer (IRGA, LI-COR Instruments model LI-820. Results indicate arelationship between soil type and water chemistry, where sandy soil stream presented lowerpH than silty soil stream – consequently DIC and pCO2 concentrations also varied with soiltype. Mean DIC concentration for sitly soil stream was 403±130 μM month-1, while sandy soilstream DIC concentration was 170±59 μM month-1. Free CO2 was the dominant form of DICin both streams. Nevertheless, HCO3- contribuition to DIC was greater for the silty soil stream.DIC contentration also varied seasonally with greater values in the drier period. AbsolutepCO2 values were greater for silty soil stream, mean 3067±1228 Iatm month-1 and2321±1020 Iatm month-1 for sandy soil stream. Seasonality, pCO2 was higher in the dryseason in both streams. Our findings have important implications on the role of soil type inwater chemistry and carbon dynamics and also are used in other studies on carbon balance atthe landscape level.

  19. Technical Note: A minimally invasive experimental system for pCO2 manipulation in plankton cultures using passive gas exchange (atmospheric carbon control simulator)

    Science.gov (United States)

    Love, Brooke A.; Olson, M. Brady; Wuori, Tristen

    2017-05-01

    As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.

  20. Sensory Qualities of Oysters Unaltered by a Short Exposure to Combined Elevated pCO2 and Temperature

    Directory of Open Access Journals (Sweden)

    Anaëlle J. Lemasson

    2017-11-01

    Full Text Available Reliance on the marine environment for the provision of food is ever-increasing, but future climate change threatens production. Despite this concern, the impact on seafood quality and success of the seafood industry is unknown. Using a short-term study, we test these concerns using a major aquaculture species—Crassostrea gigas—exposing them to three acidification and warming scenarios: (1 ambient pCO2 (~400 ppm & control temperature (15°C, (2 ambient pCO2 (~400 ppm & elevated temperature (20°C, (3 elevated pCO2 (~1,000 ppm & elevated temperature (20°C. Oyster quality was assessed by scoring appearance, aroma, taste, and overall acceptability. A panel of five experts was asked to score nine oysters—three from each treatment—according to agreed criteria. Results indicate that these levels of acidification and warming did not significantly alter the sensory properties of C. gigas, and notably the overall acceptability remained unchanged. Non-statistically supported trends suggest that several sensory attributes—opacity, mouthfeel, aspect of meat, shininess, meat resistance, meat texture, and creaminess—may improve under acidification and warming scenarios. These findings can be considered positive for the future of the aquaculture and food sectors. Crassostrea gigas therefore is expected to remain a key species for food security that is resilient to climate change, whilst retaining its valuable attributes.

  1. Surface temperature pattern of the Indian Ocean before summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.; Rao, D.P.

    The surface meteorological data collected during 1963 and 1964 indicate that the northward migration of the ITCZ is associated with a shift of the warm waters to the northern Indian Ocean. The warmer waters, found in the equatorial regions during...

  2. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    Science.gov (United States)

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal

  3. The timescales of global surface-ocean connectivity.

    Science.gov (United States)

    Jönsson, Bror F; Watson, James R

    2016-04-19

    Planktonic communities are shaped through a balance of local evolutionary adaptation and ecological succession driven in large part by migration. The timescales over which these processes operate are still largely unresolved. Here we use Lagrangian particle tracking and network theory to quantify the timescale over which surface currents connect different regions of the global ocean. We find that the fastest path between two patches--each randomly located anywhere in the surface ocean--is, on average, less than a decade. These results suggest that marine planktonic communities may keep pace with climate change--increasing temperatures, ocean acidification and changes in stratification over decadal timescales--through the advection of resilient types.

  4. Lidar equation for ocean surface and subsurface.

    Science.gov (United States)

    Josset, Damien; Zhai, Peng-Wang; Hu, Yongxiang; Pelon, Jacques; Lucker, Patricia L

    2010-09-27

    The lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented.

  5. Dynamics of air-sea CO2 fluxes based on FerryBox measurements and satellite-based prediction of pCO2 in the Western English Channel

    Science.gov (United States)

    Marrec, Pierre; Thierry, Cariou; Eric, Mace; Pascal, Morin; Marc, Vernet; Yann, Bozec

    2014-05-01

    Since April 2012, we installed an autonomous FerryBox system on a Voluntary Observing Ship (VOS), which crosses the Western English Channel (WEC) between Roscoff and Plymouth on a daily basis. High-frequency data of sea surface temperature (SST), salinity (SSS), fluorescence, dissolved oxygen (DO) and partial pressure of CO2 (pCO2) were recorded for two years across the all-year mixed southern WEC (sWEC) and the seasonally stratified northern WEC (nWEC). These contrasting hydrographical provinces strongly influenced the spatio-temporal distributions of pCO2 and air-sea CO2 fluxes. During the productive period (from May to September), the nWEC acted as a sink for atmospheric CO2 of -5.6 mmolC m-2 d-1 and -4.6 mmolC m-2 d-1, in 2012 and 2013, respectively. During the same period, the sWEC showed significant inter-annual variability degassing CO2 to the atmosphere in 2012 (1.4 mmolC m-2 d-1) and absorbing atmospheric CO2 in 2013 (-1.6 mmolC m-2 d-1). In 2012, high-frequency data revealed that an intense and short (less than 10 days) summer phytoplankton bloom in the nWEC contributed to 31% of the total CO2 drawdown during the productive period, highlighting the necessity of pCO2 high-frequency measurements in coastal ecosystems. Based on this multi-annual dataset, we developed pCO2 algorithms using multiple linear regression (MLR) based on SST, SSS, chlorophyll-a (Chl-a) concentration, time, latitude and mixed layer depth to predict pCO2 in the two hydrographical provinces of the WEC. MLR were performed based on more than 200,000 underway observations spanning the range from 150 to 480 µatm. The root mean square errors (RMSE) of the MLR fit to the data were 17.2 µatm and 21.5 µatm for the s WEC and the nWEC with correlation coefficient (r²) of 0.71 and 0.79, respectively. We applied these algorithms to satellite SST and Chl-a products and to modeled SSS estimates in the entire WEC. Based on these high-frequency and satellite approaches, we will discuss the main

  6. Indian Ocean surface winds from NCMRWF analysis as compared to ...

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  7. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    The nature of the inherent temporal variability of surface winds is analyzed by comparison of winds obtained through different measurement methods. In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time ...

  8. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  9. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  10. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  11. About New Maps of Surface Currents of the World Ocean

    Science.gov (United States)

    Nikitin, O. P.; Kasyanov, S. Yu.

    2018-01-01

    Using the example of the surface currents map constructed for the Northern Atlantic on the basis of data of modern observations by means of drifting buoys, it is shown that the previously published maps of ocean surface currents, based on ship drift data, have become outdated and require an update. The influence of the bottom relief on the directions of surface layer currents is shown.

  12. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  13. Simulation Tool for GNSS Ocean Surface Reflections

    DEFF Research Database (Denmark)

    Høeg, Per; von Benzon, Hans-Henrik; Durgonics, Tibor

    2015-01-01

    . This impedance concept gives an accurate lower boundary condition in the determination of the electromagnetic field, and makes itpossible to simulate reflections and the effects of transitions between different mediums. A semi-isotropic Philipsspectrum is used to represent the air-sea interaction.Simulated GPS...... on the solution of the parabolic equation. The parabolic equation in our simulator is solvedusing the split-step sine transformation. The Earth’s surface is modeled with the use of an impedance model. The value of the Earth impedance is given as a function of the range along the surface of the Earth...

  14. View-Dependent Tessellation and Simulation of Ocean Surfaces

    Directory of Open Access Journals (Sweden)

    Anna Puig-Centelles

    2014-01-01

    Full Text Available Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh.

  15. Comparison of fluid types for resuscitation in acute hemorrhagic shock and evaluation of gastric luminal and transcutaneous Pco2 in Leghorn chickens.

    Science.gov (United States)

    Wernick, Morena B; Steinmetz, Hanspeter W; Martin-Jurado, Olga; Howard, Judith; Vogler, Barbara; Vogt, Rainer; Codron, Daryl; Hatt, Jean-Michel

    2013-06-01

    The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly

  16. Effect of sampling site, repeated sampling, pH, and PCO2 on plasma lactate concentration in healthy dogs.

    Science.gov (United States)

    Hughes, D; Rozanski, E R; Shofer, F S; Laster, L L; Drobatz, K J

    1999-04-01

    To characterize the variation in plasma lactate concentration among samples from commonly used blood sampling sites in conscious, healthy dogs. 60 healthy dogs. Cross-sectional study using a replicated Latin square design. Each dog was assigned to 1 of 6 groups (n = 10) representing all possible orders for 3 sites (cephalic vein, jugular vein, and femoral artery) used to obtain blood. Samples were analyzed immediately, by use of direct amperometry for pH, PO2, Pco2, glucose, and lactate concentration. Significant differences in plasma lactate concentrations were detected among blood samples from the cephalic vein (highest), femoral artery, and jugular vein (lowest). Mean plasma lactate concentration in the first sample obtained, irrespective of sampling site, was lower than in subsequent samples. Covariation was identified among plasma lactate concentration, pH, and PCO2, but correlation coefficients were low. Plasma lactate concentrations differed among blood samples from various sites. A reference range for plasma lactate concentration was 0.3 to 2.5 mmol/L. Differences in plasma lactate concentrations among samples from various sites and with repeated sampling, in healthy dogs, are small. Use of the reference range may facilitate the clinical use of plasma lactate concentration in dogs.

  17. Validation of Method Performance of pH, PCO2, PO2, Na(+), K(+) of Cobas b121 ABG Analyser.

    Science.gov (United States)

    Nanda, Sunil Kumar; Ray, Lopamudra; Dinakaran, Asha

    2014-06-01

    The introduction of a new method or new analyser is a common occurrence in clinical biochemistry laboratory. Blood gas measurements and electrolytes are often performed in Point-of-Care (POC) settings. When a new POC analyser is obtained, the performance of the analyser should be evaluated by comparison to the measurements with the reference analyser in the laboratory. Evaluation of method performance of pH, PCO2, PO2, Na(+), K(+) of cobas b121 ABG analyser. The evaluation of method performance of pH, PO2, PCO2, Na(+), K(+) of cobas b121 ABG analyser was done by comparing the results of 50 patient samples run on cobas b121 with the results obtained from Rapid lab values (reference analyser). Correlation coefficient was calculated from the results obtained from both the analysers. Precision was calculated by running biorad ABG control samples. The correlation coefficient values obtained for parameters were close to 1.0 indicating good correlation. The CV obtained for all the parameters were less than 5 indicating good precision. The new ABG analyser, Cobas b121 correlated well with the reference ABG analyser (Rapid Lab) and could be used to run on patient samples.

  18. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    Directory of Open Access Journals (Sweden)

    P. Bustamante

    2009-11-01

    Full Text Available Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we investigated the effects of pH and temperature through a crossed (3×2; pH 8.1 (pCO2, 400 ppm, 7.85 (900 ppm and 7.6 (1400 ppm at 16 and 19°C, respectively laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the weight of hatchlings at the end of development implying an egg swelling process and embryo growth disturbances. The lower the seawater pH, the more 110 mAg was accumulated in the tissues of hatchlings. The 109Cd concentration factor (CF decreased with decreasing pH and 65Zn CF reached maximal values pH 7.85, independently of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and embryonic metabolism. To the best of our knowledge, this is one of the first studies on the consequences of ocean acidification and ocean warming on metal uptake in marine organisms, and our results indicate the need to further evaluate the likely ecotoxicological impact of the global change on the early-life stages of the cuttlefish.

  19. Extended probit mortality model for zooplankton against transient change of PCO(2).

    Science.gov (United States)

    Sato, Toru; Watanabe, Yuji; Toyota, Koji; Ishizaka, Joji

    2005-09-01

    The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.

  20. Ocean Surface Wind Speed of Hurricane Helene Observed by SAR

    DEFF Research Database (Denmark)

    Xu, Qing; Cheng, Yongcun; Li, Xiaofeng

    2011-01-01

    The hurricanes can be detected by many remote sensors, but synthetic aperture radar (SAR) can yield high-resolution (sub-kilometer) and low-level wind information that cannot be seen below the cloud by other sensors. In this paper, an assessment of SAR capability of monitoring high......-resolution hurricane was conducted. A case study was carried out to retrieve ocean surface wind field from C-band RADARSAT-1 SAR image which captured the structure of hurricane Helene over the Atlantic Ocean on 20 September, 2006. With wind direction from the outputs of U.S. Navy Operational Global Atmospheric...... CIWRAP models have been tested to extract wind speed from SAR data. The SAR retrieved ocean surface winds were compared to the aircraft wind speed observations from stepped frequency microwave radiometer (SFMR). The results show the capability of hurricane wind monitoring by SAR....

  1. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  2. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT

    Directory of Open Access Journals (Sweden)

    B. Pfeil

    2013-04-01

    Full Text Available A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO2 parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC. Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC, were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007. Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities.

  3. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    combined fashion, have contributed to the superior performance of the present algorithm for generat- ing ocean surface current. Validation and error analysis of the OSCAR pro- ..... EC (figure 4) through the appearance of strong semiannual periodicity. The SEC peaks in July, the peak being smoother in OSCAR climatology.

  4. Phase spectral composition of wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...

  5. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  6. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    In this work, an auto-correlation analysis of a time series data of surface winds measured in situ by a deep water buoy in the Indian Ocean has been carried out. Hourly time series data available for 240 hours in the month of May, 1999 were subjected to an auto-correlation analysis. The analysis indicates an exponential fall ...

  7. The spatial and interannual dynamics of the surface water carbonate system and air-sea CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean

    Science.gov (United States)

    Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.

    2017-11-01

    The Arctic is undergoing dramatic changes which cover the entire range of natural processes, from extreme increases in the temperatures of air, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant processes in the Arctic seas improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic seas (the Barents, Kara, Laptev, and East Siberian seas) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic seas was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic sea-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic seas. The large, open, highly productive water area in the northern Barents Sea enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic seas under the 2007 environmental conditions

  8. Determining the high variability of pCO2 and pO2 in the littoral zone of a subtropical coastal lake

    Directory of Open Access Journals (Sweden)

    Denise Tonetta

    2014-09-01

    Full Text Available The aquatic metabolism comprises production and mineralization of organic matter through biological processes, such as primary production and respiration that can be estimated by gases concentration in the water column. AIM: The study aimed to assess the temporal variability of pCO2 and pO2 in the littoral zone of a subtropical coastal lake. Our hypotheses are i high variability in meteorological conditions, such as temperature and light, drive the high variability in pCO2 and pO2, and ii the lake is permanently heterotrophic due to the low phosphorus concentration. METHODS: We estimated pCO2 from pH-alkalinity method, and pO2 from dissolved oxygen concentration and water temperature measured in free-water during 24 hours in the autumn, winter, spring and summer. RESULTS: Our findings showed that limnological variables had low temporal variability, while the meteorological variables and pCO2 presented a high coefficient of variation, which is representative of each climatic season. In autumn and winter, it was recorded that the lake was supersaturated in CO2 relative to the atmosphere, while in spring and summer CO2 concentration was below the concentration found in the atmosphere. Over 24 hours, pCO2 also showed high variability, with autumn presenting higher concentration during the night when compared to daytime. Water temperature and chlorophyll a were negatively correlated with pCO2, while pO2 was positively correlated with wind and light. CONCLUSION: Agreeing with our first hypothesis, pCO2 showed an expressive temporal variation in a subtropical lake associated to the high variability in meteorological conditions. On the other hand, our second hypothesis was not confirmed, since Peri Lake exported CO2 to the atmosphere in some periods and in others, CO2 was removed from the atmosphere.

  9. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  10. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  11. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  12. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.

    Science.gov (United States)

    Hall-Spencer, Jason M; Rodolfo-Metalpa, Riccardo; Martin, Sophie; Ransome, Emma; Fine, Maoz; Turner, Suzanne M; Rowley, Sonia J; Tedesco, Dario; Buia, Maria-Cristina

    2008-07-03

    The atmospheric partial pressure of carbon dioxide (p(CO(2))) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years. The oceans are a principal sink for anthropogenic CO(2) where it is estimated to have caused a 30% increase in the concentration of H(+) in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100 (refs 2, 3). Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO(2) vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of p(CO(2)). Sea-grass production was highest in an area at mean pH 7.6 (1,827 (mu)atm p(CO(2))) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of p(CO(2)) and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.

  13. Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments

    KAUST Repository

    Treible, LM

    2017-08-15

    Eutrophication-induced hypoxia is one of the primary anthropogenic threats to coastal ecosystems. Under hypoxic conditions, a deficit of O2 and a surplus of CO2 will concurrently decrease pH, yet studies of hypoxia have seldom considered the potential interactions with elevated pCO2 (reduced pH). Previous studies on gelatinous organisms concluded that they are fairly robust to low oxygen and reduced pH conditions individually, yet the combination of stressors has only been examined for ephyrae. The goals of this study were to determine the individual and interactive effects of hypoxia and elevated pCO2 on the asexual reproduction and aerobic respiration rates of polyps of the scyphozoan Aurelia aurita during a manipulative experiment that ran for 36 d. pCO2 and pO2 were varied on a diel basis to closely mimic the diel conditions observed in the field. Exposure to low dissolved oxygen (DO) reduced asexual budding of polyps by ~50% relative to control conditions. Under hypoxic conditions, rates of respiration were elevated during an initial acclimation period (until Day 8), but respiration rates did not differ between DO levels under prolonged exposure. There was no significant effect of increased pCO2 on either asexual reproduction or aerobic respiration, suggesting that elevated pCO2 (reduced pH) did not exacerbate the negative reproductive effects of hypoxia on A. aurita polyps.

  14. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  15. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  16. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Energy Technology Data Exchange (ETDEWEB)

    Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d' Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

    2013-01-01

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  17. Antagonistic Effects of Ocean Acidification and Rising Sea Surface Temperature on the Dissolution of Coral Reef Carbonate Sediments

    Directory of Open Access Journals (Sweden)

    Daniel Trnovsky

    2016-11-01

    Full Text Available Increasing atmospheric CO2 is raising sea surface temperature (SST and increasing seawater CO2 concentrations, resulting in a lower oceanic pH (ocean acidification; OA, which is expected to reduce the accretion of coral reef ecosystems. Although sediments comprise most of the calcium carbonate (CaCO3 within coral reefs, no in situ studies have looked at the combined effects of increased SST and OA on the dissolution of coral reef CaCO3 sediments. In situ benthic chamber incubations were used to measure dissolution rates in permeable CaCO3 sands under future OA and SST scenarios in a coral reef lagoon on Australia’s Great Barrier Reef (Heron Island. End of century (2100 simulations (temperature +2.7°C and pH -0.3 shifted carbonate sediments from net precipitating to net dissolving. Warming increased the rate of benthic respiration (R by 29% per 1°C and lowered the ratio of productivity to respiration (P/R; ΔP/R = -0.23, which increased the rate of CaCO3 sediment dissolution (average net increase of 18.9 mmol CaCO3 m-2 d-1 for business as usual scenarios. This is most likely due to the influence of warming on benthic P/R which, in turn, was an important control on sediment dissolution through the respiratory production of CO2. The effect of increasing CO2 on CaCO3 sediment dissolution (average net increase of 6.5 mmol CaCO3 m-2 d-1 for business as usual scenarios was significantly less than the effect of warming. However, the combined effect of increasing both SST and pCO2 on CaCO3 sediment dissolution was non-additive (average net increase of 5.6 mmol CaCO3 m-2 d-1 due to the different responses of the benthic community. This study highlights that benthic biogeochemical processes such as metabolism and associated CaCO3 sediment dissolution respond rapidly to changes in SST and OA, and that the response to multiple environmental changes are not necessarily additive.

  18. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  19. Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century

    Directory of Open Access Journals (Sweden)

    C. Maier

    2013-08-01

    Full Text Available The rise of CO2 has been identified as a major threat to life in the ocean. About one-third of the anthropogenic CO2 produced in the last 200 yr has been taken up by the ocean, leading to ocean acidification. Surface seawater pH is projected to decrease by about 0.4 units between the pre-industrial revolution and 2100. The branching cold-water corals Madrepora oculata and Lophelia pertusa are important, habitat-forming species in the deep Mediterranean Sea. Although previous research has investigated the abundance and distribution of these species, little is known regarding their ecophysiology and potential responses to global environmental change. A previous study indicated that the rate of calcification of these two species remained constant up to 1000 μatm CO2, a value that is at the upper end of changes projected to occur by 2100. We examined whether the ability to maintain calcification rates in the face of rising pCO2 affected the energetic requirements of these corals. Over the course of three months, rates of respiration were measured at a pCO2 ranging between 350 and 1100 μatm to distinguish between short-term response and longer-term acclimation. Respiration rates ranged from 0.074 to 0.266 μmol O2 (g skeletal dry weight−1 h−1 and 0.095 to 0.725 μmol O2 (g skeletal dry weight−1 h−1 for L. pertusa and M. oculata, respectively, and were independent of pCO2. Respiration increased with time likely due to regular feeding, which may have provided an increased energy supply to sustain coral metabolism. Future studies are needed to confirm whether the insensitivity of respiration to increasing pCO2 is a general feature of deep-sea corals in other regions.

  20. Effect of temperature rise and ocean acidification on growth of calcifying tubeworm shells (Spirorbis spirorbis): an in situ benthocosm approach

    Science.gov (United States)

    Ni, Sha; Taubner, Isabelle; Böhm, Florian; Winde, Vera; Böttcher, Michael E.

    2018-03-01

    The calcareous tubeworm Spirorbis spirorbis is a widespread serpulid species in the Baltic Sea, where it commonly grows as an epibiont on brown macroalgae (genus Fucus). It lives within a Mg-calcite shell and could be affected by ocean acidification and temperature rise induced by the predicted future atmospheric CO2 increase. However, Spirorbis tubes grow in a chemically modified boundary layer around the algae, which may mitigate acidification. In order to investigate how increasing temperature and rising pCO2 may influence S. spirorbis shell growth we carried out four seasonal experiments in the Kiel Outdoor Benthocosms at elevated pCO2 and temperature conditions. Compared to laboratory batch culture experiments the benthocosm approach provides a better representation of natural conditions for physical and biological ecosystem parameters, including seasonal variations. We find that growth rates of S. spirorbis are significantly controlled by ontogenetic and seasonal effects. The length of the newly grown tube is inversely related to the initial diameter of the shell. Our study showed no significant difference of the growth rates between ambient atmospheric and elevated (1100 ppm) pCO2 conditions. No influence of daily average CaCO3 saturation state on the growth rates of S. spirorbis was observed. We found, however, net growth of the shells even in temporarily undersaturated bulk solutions, under conditions that concurrently favoured selective shell surface dissolution. The results suggest an overall resistance of S. spirorbis growth to acidification levels predicted for the year 2100 in the Baltic Sea. In contrast, S. spirorbis did not survive at mean seasonal temperatures exceeding 24 °C during the summer experiments. In the autumn experiments at ambient pCO2, the growth rates of juvenile S. spirorbis were higher under elevated temperature conditions. The results reveal that S. spirorbis may prefer moderately warmer conditions during their early life stages

  1. Primary Life Stage Boron Isotope and Trace Elements Incorporation in Aposymbiotic Acropora millepora Coral under Ocean Acidification and Warming

    Directory of Open Access Journals (Sweden)

    Henry C. Wu

    2017-05-01

    Full Text Available Early-life stages of reef-building corals are vital to coral existence and reef maintenance. It is therefore crucial to study juvenile coral response to future climate change pressures. Moreover, corals are known to be reliable recorders of environmental conditions in their skeletal materials. Aposymbiotic Acropora millepora larvae were cultured in different seawater temperature (27 and 29°C and pCO2 (390 and 750 μatm conditions to understand the impacts of “end of century” ocean acidification (OA and ocean warming (OW conditions on skeletal morphology and geochemistry. The experimental conditions impacted primary polyp juvenile coral skeletal morphology and growth resulting in asymmetric translucent appearances with brittle skeleton features. The impact of OA resulted in microstructure differences with decreased precipitation or lengthening of fasciculi and disorganized aragonite crystals that led to more concentrations of centers of calcifications. The coral skeletal δ11B composition measured by laser ablation MC-ICP-MS was significantly affected by pCO2 (p = 0.0024 and water temperature (p = 1.46 × 10−5. Reconstructed pH of the primary polyp skeleton using the δ11B proxy suggests a difference in coral calcification site and seawater pH consistent with previously observed coral pH up-regulation. Similarly, trace element results measured by laser ablation ICP-MS indicate the impact of pCO2. Primary polyp juvenile Sr/Ca ratio indicates a bias in reconstructed sea surface temperature (SST under higher pCO2 conditions. Coral microstructure content changes (center of calcification and fasciculi due to OA possibly contributed to the variability in B/Ca ratios. Our results imply that increasing OA and OW may lead to coral acclimation issues and species-specific inaccuracies of the commonly used Sr/Ca-SST proxy.

  2. Surface Ocean CO2 Atlas (SOCAT gridded data products

    Directory of Open Access Journals (Sweden)

    C. L. Sabine

    2013-04-01

    Full Text Available As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2 data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT. The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007. The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2 product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles, but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions.

  3. Seasonal dynamics of autotrophic and heterotrophic plankton metabolism and PCO2 in a subarctic Greenland fjord

    DEFF Research Database (Denmark)

    Sejr, Mikael K.; Krause-Jensen, Dorte; Dalsgaard, Tage

    2014-01-01

    of POC. The planktonic community was net heterotrophic in the photic zone in September (NCP = −21 ± 45 mmol O2 m−2 d−1) and February (NCP = −17 mmol O2 m−2 d−1) but net autotrophic during a developing spring bloom in May (NCP = 129 ± 102 mmol O2 m−2 d−1). In September, higher temperatures, shorter day...... lengths, and lower Chl a concentrations compared with May caused increased rates of CR, lower GPP rates, and net heterotrophy in the photic zone. The GPP required to exceed CR and where NCP becomes positive was low (in May: 1.58 ± 0.48 µmol O2 L−1 d−1 and September: 3.06 ± 0.82 µmol O2 L−1 d−1...... as an important driver of surface , with high rates of autotrophy and vertical export of POC reducing surface during summer. In winter, net heterotrophy added CO2 to the water column, but this postive effect on was balanced by simultaneous cooling of the water column, which decreased because of increased...

  4. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  5. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  6. Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995-2013); evidence of ocean acidification

    Science.gov (United States)

    Kitidis, Vassilis; Brown, Ian; Hardman-Mountford, Nicholas; Lefèvre, Nathalie

    2017-11-01

    Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995-2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-α spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-α was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100° of latitude in the Atlantic Ocean. Over the period 1995-2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 °C, (b) seawater fCO2 of 1.44 ± 0.84 μatm, (c) DIC of 0.87 ± 1.02 μmol per kg and (d) pH of -0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2.

  7. The Interrelationship of pCO2, Soil Moisture Content, and Biomass Fertilization Expressed in the Carbon Isotope Signature of C3 Plant Tissue

    Science.gov (United States)

    Schubert, B.; Jahren, A. H.

    2017-12-01

    Hundreds of chamber and field experiments have shown an increase in C3 plant biomass in response to elevated atmospheric carbon dioxide (pCO2); however, secondary water and nutrient deficits are thought to limit this response. Some have hypothesized that secondary limitation might be self-alleviating under elevated pCO2 as greater root biomass imparts enhanced access to water and nutrients. Here we present results of growth chamber experiments designed to test this hypothesis: we grew 206 Arabidopsis thaliana plants within 5 growth chambers, each set at a different level of pCO2: 390, 685, 1075, 1585, and 2175 ppmv. Within each growth chamber, soil moisture content (θm) was maintained across a spectrum: 1.50, 0.83, 0.44, and 0.38 g g-1. After 3 weeks of total growth, tissues were analyzed for both biomass and net carbon isotope discrimination (Δ13C) value. From these values, we calculated Δresidual, which represents the residual effect of water stress after subtraction of the effect of pCO2 due to photorespiration. Across the full range of moisture content, Δresidual displayed a significant 2.5‰ increase with increasing pCO2. This further implies a 0.1 unit increase in ci/ca, consistent with decreased water stress at elevated pCO2. The influence of CO2 fertilization on the alleviation of water stress was further evidenced in a positive correlation between percent biomass change and Δresidual, such that a doubling of plant biomass yielded a 1.85‰ increase in carbon isotope discrimination. In addition to providing new insight into water uptake in plants growing under elevated carbon dioxide, these data underscore the importance of separating the effects of increased pCO2 (via photorespiration) and altered ci/ca (via stomatal conductance) when considering changes in the Δ13C value of C3 land plants during the Anthropocene, or across any geological period that includes a marked change in global carbon cycling.

  8. Sea surface temperature and salinity from the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains the Global Ocean Surface Underway Data (GOSUD) from 1980-01-03 to present as submitted to NOAA/NCEI. The data includes information about sea...

  9. SWOT, The Surface Water and Ocean Topography Satellite Mission (Invited)

    Science.gov (United States)

    Alsdorf, D.; Andreadis, K.; Bates, P. D.; Biancamaria, S.; Clark, E.; Durand, M. T.; Fu, L.; Lee, H.; Lettenmaier, D. P.; Mognard, N. M.; Moller, D.; Morrow, R. A.; Rodriguez, E.; Shum, C.

    2009-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation fundamentally drives global climate variability, yet the ocean current and eddy field that affects ocean circulation and heat transport at the sub-mesoscale resolution and particularly near coastal and estuary regions, is poorly known. About 50% of the vertical exchange of water properties (nutrients, dissovled CO2, heat, etc) in the upper ocean is taking place at the sub-mesoscale. Measurements from the Surface Water and Ocean Topography satellite mission (SWOT) will make strides in understanding these processes and improving global ocean models for studying climate change. SWOT is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. The mission will provide measurements of storage changes in lakes, reservoirs, and wetlands as well as estimates of discharge in rivers. These measurements are important for global water and energy budgets, constraining hydrodynamic models of floods, carbon evasion through wetlands, and water management, especially in developing nations. Perhaps most importantly, SWOT measurements will provide a fundamental understanding of the spatial and temporal variations in global surface waters, which for many countries are the primary source of water. An on-going effort, the “virtual mission” (VM) is designed to help constrain the required height and slope accuracies, the spatial sampling (both pixels and orbital coverage), and the trade-offs in various temporal revisits. Example results include the following: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84-day simulation period, relative to a simulation without assimilation. (2) Ensemble-based data assimilation of SWOT like measurements yields

  10. [The influence of pH and pCO2 levels of umbilical cord blood obtained perinatally on selected parameters of stem cells].

    Science.gov (United States)

    Stojko, Rafał; Jendyk, Cecylia; Drosdzol-Cop, Agnieszka; Sadłocha, Marcin; Nowak-Brzezińska, Agnieszka; Boruczkowski, Dariusz; Ołdak, Tomasz

    2014-08-01

    The aim of the study was to demonstrate a correlation between pH and pCO2 levels in umbilical cord blood and the quality of the harvested material. Additionally the effect of pH and pCO2 on the number of cord blood CD34+ cells and their vitality was analyzed. The study included 50 pregnant women after vaginal delivery at term or elective cesarean section. Umbilical cord blood was collected immediately after birth. The probes were analyzed at the Polish Stem Cell Bank in Warsaw. The number of CD34+ cells ranged from 0.1-0.2 in white blood cells count over 12 thousand/ml and pH of > 7.3. If pH ranged between 7.35-7.40, the number of CD34+ was 0.3-0.4. The highest number of CD34+ cells was noted for pH of 7.30-7.35 and amounted to 0.4-0.5. Analysis of stem cell vitality showed that the highest level, over 98%, was obtained when pH was or = 7.4. The study revealed the viability of stem cells to drop to 97-98% at pH level of 7.3-7.4. Low values of CD34+ (0.01-0.09) were related to pCO2 of > 40.0 mmHg. For pCO2 or = 38 mmHg, the number of CD34+ ranged between 0.1-0.2. Viability of the umbilical cord stem cells increases along with the decrease of pH and pCO2 levels. The mode of delivery does not influence the viability of the stem cells.

  11. Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid.

    Science.gov (United States)

    Pörtner, H O; Boutilier, R G; Tang, Y; Toews, D P

    1990-08-01

    Mean intracellular pH (pHi) and PCO2 (PiCO2) have been analysed based on pH and total CO2 measurements in tissue homogenates. Tissues were sampled from undisturbed worms (Sipunculus nudus), squid (Illex illecebrosus), trout (Salmo gairdneri), toads (Bufo marinus), and rats. Homogenate metabolism was inhibited by the addition of potassium fluoride and nitrilotriacetic acid (NTA). Model calculations revealed that the influence of dilution, medium buffers, and contamination by extracellular fluids was negligible. In white muscle tissue the resulting pHi values were virtually the same as found in studies using DMO (dimethyloxazolidinedione). If large fractions of mitochondria were present (e.g. in heart muscle), DMO derived pHi values were considerably higher, probably representing overestimates. Homogenate derived pHi values are concluded to represent the effective mean pHi by taking into account pH gradients, and the volumes and buffering of cellular compartments. High time resolution and small variability make this method especially useful to assess rapid changes in pHi, e.g. in exercising animals.

  12. Sea surface salinity variability in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Heffner, D.M.

    . Thompson et al. (2006) reported the Indian Ocean circulation and SSS variability during IODZM events, using different OGCM (Ocean General Circulation Model) simulations and assimilated data sets of SODA (Simple Ocean Data Assimilation) and ECCO...

  13. Physical Retracking of Cryosat-2 Low Resolution Mode data for ocean surface height and gravity field estimation in open ocean

    Science.gov (United States)

    Jain, Maulik; Baltazar Andersen, Ole; Dall, Jorgen; Stenseng, Lars

    2014-05-01

    Cryosat-2 Low Resolution Mode (LRM) altimetric data is processed to determine precise ocean surface heights and gravity fields in open ocean. These ocean surface heights are corrected using various geophysical corrections available. The along track variation of the ocean surface height anomaly is used to determine the gravity field. The quality of this gravity field estimation is dependent on the precision in the ocean surface height anomaly. Thus a three/two parameter based physical model based on an error function is used, and the Cryosat-2 LRM waveforms are fit to this model. The fitting routines which employ the Levenberg Marquadt technique generate estimated values of retracked epochs which are used to compute the ocean surface heights. A two step processing system made up of sequential 3 parameter (amplitude, rise time, retracked epoch) and 2 parameter (amplitude, retracked epoch) fitting models are used to determine precise ocean surface heights. The quality of the processing system is judged by evaluating the standard deviation of the ocean surface height anomaly obtained after all corrections and the mean sea surface/geoid are removed. The lower the value of the standard deviation of the ocean surface height anomaly, the better the quality of processing is. Hence, different processing schemes are considered and evaluated in order to conclude towards the best retracking procedure which would eventually result in high accuracy gravity field estimations. Also, the quality on the precision is judged by analyzing the standard deviation in the gravity field anomaly. The gravity field anomaly is obtained by subtracting the retracked gravity field with the marine gravity field available. A lower value of the standard deviation in the gravity field anomaly indicates a more precise retracking algorithm. Using the two retracker performance evaluation strategies, namely the ocean surface height anomaly and the gravity field anomaly, it was concluded that the three

  14. Error estimates for CCMP ocean surface wind data sets

    Science.gov (United States)

    Atlas, R. M.; Hoffman, R. N.; Ardizzone, J.; Leidner, S.; Jusem, J.; Smith, D. K.; Gombos, D.

    2011-12-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind data sets are now available at the Physical Oceanography Distributed Active Archive Center from July 1987 through December 2010. These data support wide-ranging air-sea research and applications. The main Level 3.0 data set has global ocean coverage (within 78S-78N) with 25-kilometer resolution every 6 hours. An enhanced variational analysis method (VAM) quality controls and optimally combines multiple input data sources to create the Level 3.0 data set. Data included are all available RSS DISCOVER wind observations, in situ buoys and ships, and ECMWF analyses. The VAM is set up to use the ECMWF analyses to fill in areas of no data and to provide an initial estimate of wind direction. As described in an article in the Feb. 2011 BAMS, when compared to conventional analyses and reanalyses, the CCMP winds are significantly different in some synoptic cases, result in different storm statistics, and provide enhanced high-spatial resolution time averages of ocean surface wind. We plan enhancements to produce estimated uncertainties for the CCMP data. We will apply the method of Desroziers et al. for the diagnosis of error statistics in observation space to the VAM O-B, O-A, and B-A increments. To isolate particular error statistics we will stratify the results by which individual instruments were used to create the increments. Then we will use cross-validation studies to estimate other error statistics. For example, comparisons in regions of overlap for VAM analyses based on SSMI and QuikSCAT separately and together will enable estimating the VAM directional error when using SSMI alone. Level 3.0 error estimates will enable construction of error estimates for the time averaged data sets.

  15. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  17. Sources and fates of silicon in the ocean: the role of diatoms in the climate and glacial cycles

    Directory of Open Access Journals (Sweden)

    R. C. Dugdale

    2001-12-01

    Full Text Available Diatoms with their fast growth rates and obligate requirement for Si have a unique relationship to the oceanic Si cycle with the potential for controlling the nutrient and CO2 environment of large important areas of the ocean. The new production of diatoms based on both new nitrogen and Si sources is described using a Si-pump based upon the differential regeneration of the two elements. This approach, applied to the eastern equatorial Pacific, showed diatoms to respond as in a Si-limited chemostat, to the low source Si(OH4 in the Equatorial UnderCurrent. Increased Si(OH4 results in increased diatom productivity, suppression of non-diatom populations and decreased surface pCO2. The deficiency in source concentrations of Si(OH4 results from low Si(OH4:NO3 water originating in the vicinity of the Antarctic Polar Front, a consequence of the extraordinary trapping of Si by the Southern Ocean. In glacial periods this trapping is reduced several fold and likely results in increased Si(OH4 export to the north, and increased Si(OH4 production and deposition at the equatorial Pacific which can be expected to reduce surface pCO2. The connections between the eastern equatorial Pacific export production and Southern Ocean Si trapping may provide a major biogeochemical feedback system with implications for contemporary and paleoclimatology.

  18. Surface Ocean CO2 Atlas Database Version 5 (SOCATv5) (NCEI Accession 0163180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Ocean CO2 Atlas (SOCAT, www.socat.info) is a synthesis activity by the international marine carbon research community and has more than 100 contributors...

  19. Ocean Surface Topography Mission (OSTM) /Jason-3: Auxiliary Files, 2015- (NODC Accession 0122597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  20. Ocean Surface Topography Mission (OSTM) /Jason-3: Orbital Information, 2015- (NODC Accession 0122598)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  1. Ocean Surface Topography Mission (OSTM) /Jason-3: Ancillary Files, 2015- (NCEI Accession 0122596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  2. Ocean Surface Topography Mission (OSTM) /Jason-3: Telemetry, 2015- (NODC Accession 0122599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  3. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    Science.gov (United States)

    Roberts, J. Brent; Clayson, C. A.

    2012-01-01

    Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.

  4. Application of SMAP Data for Ocean Surface Remote Sensing

    Science.gov (United States)

    Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as

  5. Assessment of carbon dioxide sink/source in the oceanic areas: the results of 1982-84 investigation. Final technical report

    International Nuclear Information System (INIS)

    Takahashi, T.; Chipman, D.W.; Smethie, W. Jr.; Goddard, J.; Trumbore, S.; Mathieu, G.G.; Sutherland, S.

    1985-07-01

    The oceanic CO 2 sink/source relationships over the tropical Atlantic Ocean, the eastern North and South Pacific Ocean, and the Ross Sea were investigated. The net CO 2 flux across the air-sea interface over these areas was estimated. Measurements of the Kr-85 in atmospheric samples collected over the central Pacific along the 155 0 W meridian were initiated. Based on the measurements of the difference between the pCO 2 values in the surface ocean water and the atmosphere and of the radon-222 distribution in the upper water column, we have found that the average net flux for the Atlantic equatorial belt, 10 0 N-10 0 S, is 1.3 moles CO 2 /m 2 .y out of the ocean, when our measurements were made in November 1982 through February 1983. The surface water pCO 2 data obtained over the eastern North and South Pacific during the period, October 1983 through January 1984, show that the equatorial zone between 2 0 N and 8 0 S is an intense CO 2 source area, whereas a 10 0 wide belt coinciding with the area between the Subtropical and Antarctic Convergence Zones is a strong CO 2 sink area. The temperate gyre area located north of about 5 0 N and that located between 8 0 S and 35 0 S are nearly in equilibrium with atmospheric CO 2 . The surface water pCO 2 data obtained in the Southern Ocean during the past ten or more years suggest strongly the existence of an intense CO 2 sink zone, the Circumpolar Low pCO 2 Zone, which is about 10 0 wide in latitude and centered at about 50 0 S surrounding the Antarctica Continent. The surface water of the Ross Sea is found to be a strong CO 2 sink during the period January 23 through February 12, 1984. Because of contamination problems, no reliable data for atmospheric krypton-85 have been obtained. 23 refs., 22 figs., 3 tabs

  6. An analysis of pH, pO2 and pCO2 in the peritoneal fluid of dogs with ascites of various etiologies.

    Science.gov (United States)

    Glińska-Suchocka, K; Sławuta, P; Jankowski, M; Kubiak, K; Spużak, J; Borusewicz, P

    2016-01-01

    The aim of the study was to assess pH, pO2 and pCO2 in peritoneal fluid. The study was conducted on a group of 22 dogs with symptoms of ascites. Group 1 consisted of 4 dogs with adenocarcinoma, group 2--of 6 dogs with glomerulonephritis, group 3 of 8 dogs with hepatic cirrhosis and group 4 of 4 dogs with bacterial peritonitis. An abdominal cavity puncture was performed in all dogs and the fluid was drawn into a heparinized syringe in order to assess pH, pO2 and pCO2 . The analysis of pH in the peritoneal fluid revealed statistically significant differences between group 4 and groups 1 (p=0.01), 2 (p=0.01), and 3 (p=0.01). The lowest pH value compared to the other studied groups was recorded in group 4. In group 4, the pO2 was the lowest compared to the other groups (group 1 p=0.01, group 2 p=0.01, group 3 p=0.01). The value of pCO2 was the highest in group 4 compared to groups 1, 2, and 3. The study found statistically significant differences in pH, pCO2 and pCO2 between group 4 (the group of dogs with bacterial peritonitis) and the other groups of dogs. This was probably linked to the pathogenesis of peritonitis. As a result of an inflammatory reaction within the peritoneal cavity, there is an increase in fibrin accumulations leading to a decreased oxygen supply causing the oxidative glucose metabolism to change into a non-oxidative glucose metabolism. This, in turn, causes a decrease in pH, acidosis, and a low oxidoreduction potential. It also impairs phagocytosis and activates proteolytic enzymes which create ideal conditions for the growth of anaerobic bacteria. The obtained results indicate that the pH, pO2 and pCO2 may be used to differentiate bacterial peritonitis from ascites of other etiologies.

  7. Underway pCO2 and other measurements aboard NOAA Ship Ronald H. Brown during the 2007 cruises (NODC Accession 0081023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081023 includes Surface underway, chemical, meteorological, optical and physical data collected from NOAA Ship RONALD H. BROWN in the Caribbean Sea,...

  8. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    National Research Council Canada - National Science Library

    Sullivan, Peter P; McWilliams, James C; Melville, W. K

    2008-01-01

    ... planetary boundary layers (PBL). Efforts were focused on the effects of surface gravity waves on the near-surface dynamics, surface fluxes, and coupling between the atmospheric and oceanic PBLs...

  9. On the interaction between ocean surface waves and seamounts

    Science.gov (United States)

    Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús

    2017-12-01

    Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

  10. Correlación de los valores de pCO2 obtenidos por gasometría arterial y capnografía transcutánea

    OpenAIRE

    M.ªD. Moronta Martín; C. Gutiérrez Ortega

    2013-01-01

    Introducción: La gasometría arterial es el método habitual y más exacto, utilizado para la medición, entre otros, de los valores en sangre arterial de anhídrido carbónico (pCO2). Es una técnica invasora y dolorosa que provoca rechazo en muchos de los pacientes a los que se les solicita, periódicamente, en las revisiones ambulatorias de sus enfermedades respiratorias crónicas. Objetivo: Comprobar si los valores de pCO2 obtenidos por una prueba no invasora y bien tolerada, como es la capnografí...

  11. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  12. Application of Satellite-Derived Ocean Surface Winds to the Detection of Weather Systems and the Prediction of Near-Ocean Surface Winds around Hawaii

    Directory of Open Access Journals (Sweden)

    Hsi-Chyi Yeh

    2010-01-01

    Full Text Available The Hawaiian Island chain is surrounded by the open ocean and is an ideal place to conduct the application of QuikSCAT satellite-derived ocean surface winds to the detection of weather systems. With the help of QuikSCAT winds, the associated circulation of the weather systems over the open ocean around Hawaii can be identified. In this study, the obvious cyclonic circulation associated with a Kona storm, the significant wind shift and wind confluence related to the surface cold front, and the anticyclonic circulation related to high-pressure systems for both a strong-wind event and a trade-wind condition are revealed over the open ocean through QuikSCAT winds. The propagation of a cold frontal boundary, defined by the wind shift and wind confluence, also can be clearly detected using the reanalyzed ocean-surface winds.

  13. Influence of elevated temperature and pCO2 on the marine periphytic diatom Navicula distans and its associated organisms in culture

    Digital Repository Service at National Institute of Oceanography (India)

    Baragi, L.V.; Khandeparker, L.; Anil, A.C.

    are available for diatoms (Sett et al., 2014; Torstensson et al., 2013). Diatoms are the major primary producers and dominate the fouling community in the shallow water photic system. Fouling diatoms are: (a) a source of primary production for higher... cyanobacteria as observed in earlier studies (Buck & Bentham 1998; Janson et al., 1995). Keeping this in mind, experiments were designed to elucidate the independent and synergistic effects of pCO2 and temperature on diatom and associated organisms...

  14. Symbiosis increases coral tolerance to ocean acidification

    Science.gov (United States)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  15. The effect of blood glucose and pCO2 on spectral EEG of premature infants during the first three days of life.

    Science.gov (United States)

    Schumacher, E M; Larsson, P G; Pripp, A H; Stiris, T A

    2014-01-01

    Spectral EEG analysis using automated quantification of total absolute band power (tABP) expresses brain function. We hypothesized that pCO2 or blood glucose affects tABP during the critical first days of life in premature infants. To use automated tABP quantification to determine whether EEG background activity in premature infants during the first 3 days of life is influenced by pCO2 or blood glucose levels. Preterm infants, group 1 [gestational age (GA) = 24-27 weeks] and group 2 (GA = 28-30 weeks), underwent continuous EEG monitoring for 3 days after birth. Biochemical data were extracted from the observational datasheet used during monitoring. Blood samples were taken at the request of the attending physician. Statistical analyses were performed as repeated measurements using linear mixed models with a random intercept. The effect of time was treated as a fixed covariate and the GA groups as a fixed factor in all models. Continuous data were described using the mean ± SD or median and range, and categorical data were described using the number of patients and percentages unless otherwise indicated. There was an association between increased pCO2 and tABP and between increased blood glucose and tABP. Further, there were no differences in the responses between groups 1 and 2. Both hyperglycemia and hypercapnia showed a negative effect on brain activity decreasing tABP during the first 3 days of life in premature infants.

  16. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2

    Science.gov (United States)

    Not, C.; Thibodeau, B.; Yokoyama, Y.

    2018-01-01

    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  17. Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii.

    Directory of Open Access Journals (Sweden)

    Maxwell B Kaplan

    Full Text Available Anthropogenic carbon dioxide (CO2 is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries. Atlantic longfin squid (Doryteuthis pealeii, an ecologically and economically valuable taxon, were reared from eggs to hatchlings (paralarvae under ambient and elevated CO2 concentrations in replicated experimental trials. Animals raised under elevated pCO2 demonstrated significant developmental changes including increased time to hatching and shorter mantle lengths, although differences were small. Aragonite statoliths, critical for balance and detecting movement, had significantly reduced surface area and were abnormally shaped with increased porosity and altered crystal structure in elevated pCO2-reared paralarvae. These developmental and physiological effects could alter squid paralarvae behavior and survival in the wild, directly and indirectly impacting marine food webs and commercial fisheries.

  18. Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean

    Science.gov (United States)

    Gregor, Luke; Kok, Schalk; Monteiro, Pedro M. S.

    2018-04-01

    Resolving and understanding the drivers of variability of CO2 in the Southern Ocean and its potential climate feedback is one of the major scientific challenges of the ocean-climate community. Here we use a regional approach on empirical estimates of pCO2 to understand the role that seasonal variability has in long-term CO2 changes in the Southern Ocean. Machine learning has become the preferred empirical modelling tool to interpolate time- and location-restricted ship measurements of pCO2. In this study we use an ensemble of three machine-learning products: support vector regression (SVR) and random forest regression (RFR) from Gregor et al. (2017), and the self-organising-map feed-forward neural network (SOM-FFN) method from Landschützer et al. (2016). The interpolated estimates of ΔpCO2 are separated into nine regions in the Southern Ocean defined by basin (Indian, Pacific, and Atlantic) and biomes (as defined by Fay and McKinley, 2014a). The regional approach shows that, while there is good agreement in the overall trend of the products, there are periods and regions where the confidence in estimated ΔpCO2 is low due to disagreement between the products. The regional breakdown of the data highlighted the seasonal decoupling of the modes for summer and winter interannual variability. Winter interannual variability had a longer mode of variability compared to summer, which varied on a 4-6-year timescale. We separate the analysis of the ΔpCO2 and its drivers into summer and winter. We find that understanding the variability of ΔpCO2 and its drivers on shorter timescales is critical to resolving the long-term variability of ΔpCO2. Results show that ΔpCO2 is rarely driven by thermodynamics during winter, but rather by mixing and stratification due to the stronger correlation of ΔpCO2 variability with mixed layer depth. Summer pCO2 variability is consistent with chlorophyll a variability, where higher concentrations of chlorophyll a correspond with lower pCO2

  19. The causes of alkalinity variations in the global surface ocean

    OpenAIRE

    Fry, Claudia Helen

    2016-01-01

    Human activities have caused the atmospheric concentration of carbon dioxide (CO2) to increase by 120 ppmv from pre-industrial times to 2014. The ocean takes up approximately a quarter of the anthropogenic CO2, causing ocean acidification (OA). Therefore it is necessary to study the ocean carbonate system, including alkalinity, to quantify the flux of CO2 into the ocean and understand OA. Since the 1970s, carbonate system measurements have been undertaken which can be analyzed to quantify the...

  20. Investigating the complex relationship between in situ Southern Ocean pCO2 and its ocean physics and biogeochemical drivers using a nonparametric regression approach

    CSIR Research Space (South Africa)

    Pretorius, W

    2014-01-01

    Full Text Available the relationship more accurately in terms of MSE, RMSE and MAE, than a standard parametric approach (multiple linear regression). These results provide a platform for using the developed nonparametric regression model based on in situ measurements to predict p...

  1. Oceanic pCO2 in the Indian sector of the southern Ocean during the austral summer-winter transition phase

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.; Mohan, R.; Patil, S.; Jena, B.; Chacko, R.; George, J.V.; Noronha, S.; Singh, N.; Priya, L.; Sudhakar, M.

    ) was on an average of 1.5 μM. The pHf (pH in free ion scale) was measured at 25 °C by cresol red spectrophotometry following Byrne and Breland (1989). The pH values on free ion scale were first converted to the pH in situ following the equation of Gieskes (1969... known amount of Nucleopore track-etched membrane filter paper (about 2 mm2) was cut and mounted on a 1 cm metal stub attached with double-sided carbon tape. A sputter coated with a thickness of 2 nm platinum was deposited on the mounted filter paper and3...

  2. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  3. Impact of Surface Waves on SWOT’s Projected Ocean Accuracy

    OpenAIRE

    Peral, Eva; Rodríguez, Ernesto; Esteban-Fernández, Daniel

    2015-01-01

    The Surface Water and Ocean Topography (SWOT) mission being considered by NASA has, as one of its main objectives, to measure ocean topography with centimeter scale accuracy over kilometer scale spatial resolution. This paper investigates the impact of ocean waves on SWOT’s projected performance. Several effects will be examined: volumetric decorrelation, aliasing of ocean waves, backscattering modulation, and the so-called surfboard sampling.

  4. Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp . A

    Science.gov (United States)

    Uthicke, S.; Liddy, M.; Nguyen, H. D.; Byrne, M.

    2014-09-01

    Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860-940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp . A. The greatest reduction in growth was under simultaneous temperature and pH/ pCO2 stress (marginally significant temperature × pH/ pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5-7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance.

  5. [Measurements of surface ocean carbon dioxide partial pressure during WOCE

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This paper discusses the research progress of the second year of research under Measurement of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' and proposes to continue measurements of underway pCO[sub 2]. During most of the first year of this grant, our efforts to measure pCO[sub 2] on WOCE WHP legs were frustrated by ship problems. The R/V Knorr, which was originally scheduled to carry out the first work on WHP lines P19 and P16 in the southeastem Pacific during the 1990-91 austral summer, was delayed in the shipyard during her mid-life refit for more than a year. In the interim, the smaller R/V Thomas Washington, was pressed into service to carry out lower-latitude portions of WHP lines P16 and P17 during mid-1991 (TUNES Expedition). We installed and operated our underway chromatographic system on this expedition, even though space and manpower on this smaller vessel were limited and no one from our group would be aboard any of the 3 WHP expedition legs. The results for carbon dioxide and nitrous oxide are shown. A map of the cruise track is shown for each leg, marked with cumulative distance. Following each track is a figure showing the carbon dioxide and nitrous oxide results as a function of distance along this track. The results are plotted as dry-gas mole fractions (in ppm and ppb, respectively) in air and in gas equilibrated with surface seawater at a total pressure equal to the barometric pressure. The air data are plotted as a 10-point running mean, and appear as a roughly horizontal line. The seawater data are plotted as individual points, using a 5-point Gaussian smoother. Equal values Of xCO[sub 2] in air and surface seawater indicate air-sea equilibrium.

  6. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    Science.gov (United States)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  7. Application of cavity ring-down spectroscopy for in situ, real-time measurements of properties of oceanographic interest in the surface ocean

    Science.gov (United States)

    Huang, Kuan; Ma, Jian; Winkler, Renato; Dennis, Kate

    2015-04-01

    In situ, real-time measurements of chemical properties, e.g., dissolved CO2 and its carbon isotopic compositions, dissolved inorganic carbon, water isotopes, etc., are highly desired for understanding various physical and biogeochemical processes in the surface ocean. Due to its high sensitivity, stability and portability, cavity ring-down spectroscopy (CRDS) has been increasingly used as a core technique for shipboard systems that automatically measure properties of oceanographic interest at high spatial-temporal resolution. These systems typically require front-end components that convert the sample into a continuous gas flow that can be continuously sampled by the CRDS. Here, we review the progress in the development of CRDS-based systems for shipboard, high-frequency measurements of various properties in the surface ocean, including pCO2, δ13C-CO2, pCH4, δ13C-CH4, and water isotopes. In most systems, gas extraction devices are keys to the sample preparation units that are coupled with the CRDS analyzers. In our present work, we summarize the major gas extraction techniques used in these methods (e.g. the showerhead-type equilibration, the bubbling equilibration, the high-porosity membrane contactor extraction, the expanded polytetrafluoroethylene-based extraction, etc.), present examples how these techniques are coupled with CRDS analyzers, and evaluate the major factors that determine the overall performance (precision, accuracy, response time, etc.) of the systems. Based on the working principles and field data generated by these systems, we were able to identify the major factors that affect the system performance, including the efficiency (completeness) of gas extraction, magnitude and stability of isotopic fractionation during the gas extraction, internal volume of the system (e.g., the volume of the equilibration chamber and that of the CRDS cavity) and the carrier gas flow rate. Finally, we make recommendations, for each type of system, the optimal

  8. Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.

    Science.gov (United States)

    Pansch, Christian; Schaub, Iris; Havenhand, Jonathan; Wahl, Martin

    2014-03-01

    Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca. 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2 , regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2 , irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to

  9. Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer

    Science.gov (United States)

    2016-09-14

    the potential impact of these fluxes on the barrier layer and Aquarius and Soil Moisture and Ocean Salinity (SMOS) satellite image formations. By...contributing to the salinity field detected in the Aquarius and Soil Moisture and Ocean Salinity (SMOS) sat- ellite footprints. The barrier layer (Lukas...operational algorithms for sea surface salinity satellites. Oceanic advection and mixing funda- mentally affect the sea surface salinity sig - nal

  10. Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study

    Directory of Open Access Journals (Sweden)

    Gregory Pelletier

    2018-01-01

    Full Text Available A pilot study of sampling, using monthly marine flights over spatially distributed stations, was conducted with the aim to characterize the carbonate system in Puget Sound over a full year-long period. Surface waters of Puget Sound were found to be under-saturated with respect to aragonite during October–March, and super-saturated during April–September. Highest pCO2 and lowest pH occurred during the corrosive October–March period. Lowest pCO2 and highest pH occurred during the super-saturated April–September period. The monthly variations in pCO2 , pH, and aragonite saturation state closely followed the variations in monthly average chlorophyll a. Super-saturated conditions during April–September are likely strongly influenced by photosynthetic uptake of CO2 during the phytoplankton growing season. The relationship between phytoplankton production, the carbonate system, and aragonite saturation state suggests that long-term trends in eutrophication processes may contribute to trends in ocean acidification in Puget Sound

  11. Avaliação inicial dos gradientes sistêmicos e regionais da pCO2 como marcadores de hipoperfusão mesentérica Initial evaluation of systemic and regional pCO2 gradients as markers of mesenteric hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ruy J. Cruz Jr.

    2006-03-01

    Full Text Available RACIONAL: Apesar dos recentes avanços nos métodos de imagem e no cuidado dos doentes críticos, a taxa de mortalidade do abdome agudo vascular nas últimas duas décadas continua praticamente inalterada. OBJETIVOS: Avaliar as alterações imediatas dos gradientes regionais da pCO2 induzidas pela isquemia e reperfusão mesentérica. Determinar se outros marcadores sistêmicos de hipoperfusão esplâncnica são capazes de detectar precocemente as alterações circulatórias ocorridas na mucosa intestinal após oclusão da artéria mesentérica superior. MÉTODOS: Foram utilizados sete cães machos sem raça definida (20,6 ± 1,1 kg, submetidos a oclusão da artéria mesentérica superior por 45 minutos, sendo os animais observados por período adicional de 2 horas após a reperfusão. Variáveis hemodinâmicas sistêmicas foram avaliadas por meio de cateter arterial e Swan-Ganz. A perfusão do sistema digestório foi avaliada pela medida do fluxo sangüíneo da veia mesentérica superior e da serosa jejunal (fluxômetro ultra-sônico. Oferta, taxa de extração e consumo intestinal de oxigênio (DO2intest, TEO2intest e VO2intest, respectivamente, pH intramucoso (tonometria a gás e os gradientes veia mesentérica-arterial e mucosa-arterial da pCO2 (Dvm-a pCO2 e Dt-a pCO2, respectivamente, foram calculados. RESULTADOS: A oclusão da artéria mesentérica superior não esteve associada a alterações hemodinâmicas sistêmicas, mas pôde-se observar aumento significativo do Dvm-a pCO2 (1,7 ± 0,5 para 5,7 ± 1,8 mm Hg e do Dt-a pCO2 (8,2 ± 4,8 para 48,7 ± 4,6 mm Hg. Na fase de reperfusão observou-se redução da DO2intest (67,7 ± 9,9 para 38,8 ± 5,3 mL/min e conseqüente aumento da TEO2intest de 5,0 ± 1,1% para 12,4 ± 2,7%. Não houve correlação entre os gradientes da pCO2 analisados. CONCLUSÃO: A tonometria permite detectar de maneira precoce a redução de fluxo intestinal. Além disso, pudemos demonstrar que as variações dos gradientes regionais e/ou sistêmicos da pCO2 não são capazes de avaliar a magnitude da redução de fluxo da mucosa intestinal durante o fenômeno de isquemia e reperfusão mesentérica.BACKGROUND: Mesenteric ischemia is a life-threatening emergency with a mortality rates still ranging between 60% and 100%. AIM: To evaluate the systemic and regional pCO2 gradients changes induced by mesenteric ischemia-reperfusion injury. In addition, we sought to determine if other systemic marker of splanchnic hypoperfusion could detect the initial changes in intestinal mucosal microcirculation after superior mesenteric artery occlusion. METHODS: Seven pentobarbital anesthetized mongrel dogs (20.6 ± 1.1 kg were subjected to superior mesenteric artery occlusion for 45 minutes, and followed for an additional 120 minutes. Systemic hemodynamic was evaluated through a Swan-Ganz and arterial catheters, while gastrointestinal tract perfusion by superior mesenteric vein and jejunal serosal blood flows (ultrasonic flowprobe. Intestinal oxygen delivery, extraction and consumption (DO2intest, ERO2intest and VO2intest, respectively, intramucosal pH (gas tonometry, and mesenteric-arterial and mucosal arterial pCO2 gradients (Dvm-a pCO2 and Dt-a pCO2, respectively were calculated. RESULTS: Superior mesenteric artery occlusion was not associated with significant changes on systemic hemodynamics parameters. A significant increase of Dvm-a pCO2 (1.7 ± 0.5 to 5.7 ± 1.8 mm Hg and Dt-a pCO2 (8.2 ± 4.8 to 48.7 ± 4.6 mm Hg were detected. During the reperfusion period a significant decrease on DO2intest (67.7 ± 9.9 to 38.8 ± 5.3 mL/min and a compensatory increase on ERO2intest from 5.0 ± 1.1% to 12.4 ± 2.7% was observed. CONCLUSION: We conclude that gas tonometry can detect the mesenteric blood flow disturbances sooner than other analyzed parameters. Additionally, we demonstrated that changes on systemic or regional pCO2 gradients are not able to detect the magnitude of intestinal mucosal blood flow reduction after mesenteric ischemia-reperfusion injury.

  12. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    Digital Repository Service at National Institute of Oceanography (India)

    Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.E.; Pfeil, B.; Olsen, A; Metzl, N.; Kozyr, A; Fassbender, A; Manke, A; Malczyk, J.; Akl, J.; Alin, S.R.; Bellerby, R.G.J.; Borges, A; Boutin, J.; Brown, P.J.; Cai, W.-J.; Chavez, F.P.; Chen, A.; Cosca, C.; Feely, R.A.; Gonzalez-Davila, M.; Goyet, C.; Hardman-Mountford, N.; Heinze, C.; Hoppema, M.; Hunt, C.W.; Hydes, D.; Ishii, M.; Johannessen, T.; Key, R.M.; Kortzinger, A.; Landschutzer, P.; Lauvset, S.K.; Lefevre, N.; Lenton, A.; Lourantou, A.; Merlivat, L.; Midorikawa, T.; Mintrop, L.; Miyazaki, C.; Murata, A.; Nakadate, A.; Nakano, Y.; Nakaoka, S.; Nojiri, Y.; Omar, A.M.; Padin, X.A.; Park, G.-H.; Paterson, K.; Perez, F.F.; Pierrot, D.; Poisson, A.; Rios, A.F.; Salisbury, J.; Santana-Casiano, J.M.; Sarma, V.V.S.S.; et al.

    As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2...

  13. Surface Ocean Circulation and Dynamics in the Philippine Archipelago Region

    Science.gov (United States)

    Han, W.; Moore, A. M.; Levin, J.; Zhang, B.; Arango, H. G.; Curchitser, E.; di Lorenzo, E.; Gordon, A. L.; Lin, J.

    2008-12-01

    The dynamics of the seasonal surface circulation in the Philippine Archipelago (117E-128E, 0N-14N) are investigated using a high-resolution Regional Ocean Modeling System (ROMS) for the period of 2004 - March 2008. Three experiments are performed to estimate the relative importance of local, remote and tidal forcing. On annual mean, circulation in the Sulu Sea is dominated by the inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the Sulu basin. A strong jet forms in the northeast Sulu Sea when currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the western Pacific (WP) Water from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry part of the WP water from the San Bernardino Strait into the Sulu Sea via the Tablas Strait. The surface circulations exhibit strong seasonal variations or reversals from winter to summer. The variations of volume transports above 40m at the Mindoro Strait, Balabac Strait and Sibutu Passage of the Sulu Sea and at the Verde Island Passage are dominated by remote forcing, although local forcing can be large sometimes. At the Tablas and Dipolog Straits, variations of transports result from both remote and local forcing. The cyclonic (anticyclonic) gyres during winter (summer) in the Sulu Sea and seasonally reversing currents in the Archipelago result mainly from local forcing. Nonlinear rectification of tides acts to reduce the mean transports at the Surigao, San Bernardino and Dipolog Straits, and it also affects the Sulu Sea circulation perhaps by tidal mixing and shifting the locations of jets and eddies.

  14. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    Science.gov (United States)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  15. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-12-14 to 2006-12-26 (NODC Accession 0108159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108159 includes Surface underway data collected from ODEN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  16. Auto-correlation analysis of ocean surface wind vectors

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    satellite and in situ measurements. A case study using the TRMM Microwave Imager (TMI) and. Indian Ocean buoy wind speed data resulted in an improvement of about 10%. 1. Introduction. The need for studying temporal variability of oceanic winds has been pointed out by many authors (for example, Ezraty R S 1989).

  17. Investigating the Potential Impact of the Surface Water and Ocean Topography (SWOT) Altimeter on Ocean Mesoscale Prediction

    Science.gov (United States)

    Carrier, M.; Ngodock, H.; Smith, S. R.; Souopgui, I.

    2016-02-01

    NASA's Surface Water and Ocean Topography (SWOT) satellite, scheduled for launch in 2020, will provide sea surface height anomaly (SSHA) observations with a wider swath width and higher spatial resolution than current satellite altimeters. It is expected that this will help to further constrain ocean models in terms of the mesoscale circulation. In this work, this expectation is investigated by way of twin data assimilation experiments using the Navy Coastal Ocean Model Four Dimensional Variational (NCOM-4DVAR) data assimilation system using a weak constraint formulation. Here, a nature run is created from which SWOT observations are sampled, as well as along-track SSHA observations from simulated Jason-2 tracks. The simulated SWOT data has appropriate spatial coverage, resolution, and noise characteristics based on an observation-simulator program provided by the SWOT science team. The experiment is run for a three-month period during which the analysis is updated every 24 hours and each analysis is used to initialize a 96 hour forecast. The forecasts in each experiment are compared to the available nature run to determine the impact of the assimilated data. It is demonstrated here that the SWOT observations help to constrain the model mesoscale in a more consistent manner than traditional altimeter observations. The findings of this study suggest that data from SWOT may have a substantial impact on improving the ocean model analysis and forecast of mesoscale features and surface ocean transport.

  18. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations

    International Nuclear Information System (INIS)

    Iguchi, Akira; Kumagai, Naoki H.; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2014-01-01

    Highlights: • Growth rates of two corals in the acidified seawater were evaluated. • Highest growth rates were observed in pre-industrial pCO 2 level. • The growth rates also decreased in the near-future ocean acidification level. • The growth responses were affected by variations of parameters of carbon chemistry. • Bayesian modeling approach was effective for the inference of the best model. - Abstract: In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO 2 control system which can produce acidified seawater under stable pCO 2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO 2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO 2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO 2 values with low variations

  19. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.

    Science.gov (United States)

    Kübler, Janet E; Dudgeon, Steven R

    2015-01-01

    Seaweeds that lack carbon-concentrating mechanisms are potentially inorganic carbon-limited under current air equilibrium conditions. To estimate effects of increased atmospheric carbon dioxide concentration and ocean acidification on photosynthetic rates, we modeled rates of photosynthesis in response to pCO2, temperature, and their interaction under limiting and saturating photon flux densities. We synthesized the available data for photosynthetic responses of red seaweeds lacking carbon-concentrating mechanisms to light and temperature. The model was parameterized with published data and known carbonate system dynamics. The model predicts that direction and magnitude of response to pCO2 and temperature, depend on photon flux density. At sub-saturating light intensities, photosynthetic rates are predicted to be low and respond positively to increasing pCO2, and negatively to increasing temperature. Consequently, pCO2 and temperature are predicted to interact antagonistically to influence photosynthetic rates at low PFD. The model predicts that pCO2 will have a much larger effect than temperature at sub-saturating light intensities. However, photosynthetic rates under low light will not increase proportionately as pCO2 in seawater continues to rise. In the range of light saturation (Ik), both CO2 and temperature have positive effects on photosynthetic rate and correspondingly strong predicted synergistic effects. At saturating light intensities, the response of photosynthetic rates to increasing pCO2 approaches linearity, but the model also predicts increased importance of thermal over pCO2 effects, with effects acting additively. Increasing boundary layer thickness decreased the effect of added pCO2 and, for very thick boundary layers, overwhelmed the effect of temperature on photosynthetic rates. The maximum photosynthetic rates of strictly CO2-using algae are low, so even large percentage increases in rates with climate change will not contribute much to

  20. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.

    Directory of Open Access Journals (Sweden)

    Janet E Kübler

    Full Text Available Seaweeds that lack carbon-concentrating mechanisms are potentially inorganic carbon-limited under current air equilibrium conditions. To estimate effects of increased atmospheric carbon dioxide concentration and ocean acidification on photosynthetic rates, we modeled rates of photosynthesis in response to pCO2, temperature, and their interaction under limiting and saturating photon flux densities. We synthesized the available data for photosynthetic responses of red seaweeds lacking carbon-concentrating mechanisms to light and temperature. The model was parameterized with published data and known carbonate system dynamics. The model predicts that direction and magnitude of response to pCO2 and temperature, depend on photon flux density. At sub-saturating light intensities, photosynthetic rates are predicted to be low and respond positively to increasing pCO2, and negatively to increasing temperature. Consequently, pCO2 and temperature are predicted to interact antagonistically to influence photosynthetic rates at low PFD. The model predicts that pCO2 will have a much larger effect than temperature at sub-saturating light intensities. However, photosynthetic rates under low light will not increase proportionately as pCO2 in seawater continues to rise. In the range of light saturation (Ik, both CO2 and temperature have positive effects on photosynthetic rate and correspondingly strong predicted synergistic effects. At saturating light intensities, the response of photosynthetic rates to increasing pCO2 approaches linearity, but the model also predicts increased importance of thermal over pCO2 effects, with effects acting additively. Increasing boundary layer thickness decreased the effect of added pCO2 and, for very thick boundary layers, overwhelmed the effect of temperature on photosynthetic rates. The maximum photosynthetic rates of strictly CO2-using algae are low, so even large percentage increases in rates with climate change will not

  1. A computational analysis of sonic booms penetrating a realistic ocean surface.

    Science.gov (United States)

    Rochat, J L; Sparrow, V W

    2001-03-01

    The last decade has seen a revival of sonic boom research, a direct result of the projected market for a new breed of supersonic passenger aircraft, its design, and its operation. One area of the research involves sonic boom penetration into the ocean, one concern being the possible disturbance of marine mammals from the noise generated by proposed high-speed civil transport (HSCT) flyovers. Although theory is available to predict underwater sound levels due to a sonic boom hitting a homogeneous ocean with a flat surface, theory for a realistic ocean, one with a wavy surface and bubbles near the surface, is missing and will be presented in this paper. First, reviews are given of a computational method to calculate the underwater pressure field and the effects of a simple wavy ocean surface on the impinging sonic boom. Second, effects are described for the implementation of three additional conditions: a sonic boom/ocean "wavelength" comparison, complex ocean surfaces, and bubbles near the ocean surface. Overall, results from the model suggest that the realistic ocean features affect the penetrating proposed HSCT sonic booms by modifying the underwater sound-pressure levels only about 1 decibel or less.

  2. Evaluation of Oceanic Surface Observation for Reproducing the Upper Ocean Structure in ECHAM5/MPI-OM

    Science.gov (United States)

    Luo, Hao; Zheng, Fei; Zhu, Jiang

    2017-12-01

    Better constraints of initial conditions from data assimilation are necessary for climate simulations and predictions, and they are particularly important for the ocean due to its long climate memory; as such, ocean data assimilation (ODA) is regarded as an effective tool for seasonal to decadal predictions. In this work, an ODA system is established for a coupled climate model (ECHAM5/MPI-OM), which can assimilate all available oceanic observations using an ensemble optimal interpolation approach. To validate and isolate the performance of different surface observations in reproducing air-sea climate variations in the model, a set of observing system simulation experiments (OSSEs) was performed over 150 model years. Generally, assimilating sea surface temperature, sea surface salinity, and sea surface height (SSH) can reasonably reproduce the climate variability and vertical structure of the upper ocean, and assimilating SSH achieves the best results compared to the true states. For the El Niño-Southern Oscillation (ENSO), assimilating different surface observations captures true aspects of ENSO well, but assimilating SSH can further enhance the accuracy of ENSO-related feedback processes in the coupled model, leading to a more reasonable ENSO evolution and air-sea interaction over the tropical Pacific. For ocean heat content, there are still limitations in reproducing the long time-scale variability in the North Atlantic, even if SSH has been taken into consideration. These results demonstrate the effectiveness of assimilating surface observations in capturing the interannual signal and, to some extent, the decadal signal but still highlight the necessity of assimilating profile data to reproduce specific decadal variability.

  3. Interactive effects of increased temperature, pCO2and the synthetic progestin levonorgestrel on the fitness and breeding of the amphipod Gammarus locusta.

    Science.gov (United States)

    Cardoso, P G; Loganimoce, E M; Neuparth, T; Rocha, M J; Rocha, E; Arenas, F

    2018-05-01

    Given the lack of knowledge regarding climate change-chemical exposure interactions, it is vital to evaluate how these two drivers jointly impact aquatic species. Thus, for the first time, we aimed at investigating the combined effects of increased temperature, pCO 2 and the synthetic progestin levonorgestrel on survival, growth, consumption rate and reproduction of the amphipod Gammarus locusta. For that, a full factorial design manipulating temperature [ambient temperature and warming (+4 °C)], pCO 2 [normocapnia and hypercapnia (Δ pH 0.5 units)] and the progestin levonorgestrel (LNG: L1 - 10 ngLL -1 and L2 - 1000 ngLL -1 , control - no progestin and solvent control - vehicle ethanol (0.01%)) was implemented for 21 days. G. locusta was strongly negatively affected by warming, experiencing higher mortality rates (50-80%) than in any other treatments. Instead, growth rates were significantly affected by interactions of LNG with temperature and pCO 2 . It was observed, in the short-term (7d) that under ambient temperature (18 °C) and hypercapnic conditions (pH 7.6), the LNG presence promoted the amphipod's growth, while in the medium-term (21d) this response was not observed. Relative consumption rates (RCRs), during the first week were higher than in the third week. Furthermore, in the first week, RCRs were negatively affected by higher temperature while in the third week, RCRs were negatively affected by acidification. Furthermore, it was observed a negative effect of higher temperature and acidification on G. locusta fecundity, contrarily to LNG. Concluding, the impact of increased temperature and pCO 2 was clearly more adverse for the species than exposure to the synthetic progestin, however, some interactions between the progestin and the climate factors were observed. Thus, in a future scenario of global change, the presence of LNG (and other progestins alike) may modulate to a certain level the effects of climate drivers (and vice-versa) on the gammarids fitness and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record.

    Science.gov (United States)

    Currano, Ellen D; Laker, Rachel; Flynn, Andrew G; Fogt, Kari K; Stradtman, Hillary; Wing, Scott L

    2016-07-01

    Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well-preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65 million years (Ma). We also include similar published data from three US sites 49.4 to ~45 Ma in our analyses. Regional climate was subtropical or warmer throughout this period, and the second oldest assemblage (56 Ma) was deposited during the Paleocene-Eocene Thermal Maximum (PETM), a geologically abrupt global warming event caused by massive release of carbon into the atmosphere. Total and leaf-chewing damage are highest during the PETM, whether considering percent area damaged on the bulk flora, the average of individual host plants, or a single plant host that occurs at multiple sites. Another fossil assemblage in our study, the 52.65 Ma Fifteenmile Creek paleoflora, also lived during a period of globally high temperature and pCO 2, but does not have elevated herbivory. Comparison of these two sites, as well as regression analyses conducted on the entire dataset, demonstrates that, over long timescales, temperature and pCO 2 are uncorrelated with total insect consumption at the ecosystem level. Rather, the most important factor affecting herbivory is the relative abundance of plants with nitrogen-fixing symbionts. Legumes dominate the PETM site; their prevalence would have decreased nitrogen limitation across the ecosystem, buffering generalist herbivore populations against decreased leaf nutritional quality that commonly occurs at high pCO 2. We hypothesize that nitrogen concentration regulates the opposing effects of elevated temperature and CO 2 on insect abundance and thereby total insect consumption, which has important implications for agricultural practices in today's world of steadily increasing pCO 2.

  5. Ocean acidification reduces the crystallographic control in juvenile mussel shells.

    Science.gov (United States)

    Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, Nicholas A

    2014-10-01

    Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A cold and fresh ocean surface in the Nordic Seas during MIS 11: Significance for the future ocean

    NARCIS (Netherlands)

    Kandiano, E.S.; Van der Meer, M.T.J.; Bauch, H.A.; Helmke, J.; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-presentsea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTsin the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve

  7. A cold and fresh ocean surface in the Nordic Seas during MIS 11 : Significance for the future ocean

    NARCIS (Netherlands)

    Kandiano, Evgenia S.; van der Meer, M.T.J.; Bauch, H.A.; Helmke, Jan; Sinninghe Damsté, J.S.; Schouten, S.

    2016-01-01

    Paleoceanographical studies of Marine Isotope Stage (MIS) 11 have revealed higher-than-present sea surface temperatures (SSTs) in the North Atlantic and in parts of the Arctic but lower-than-present SSTs in the Nordic Seas, the main throughflow area of warm water into the Arctic Ocean. We resolve

  8. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.

    Science.gov (United States)

    Johnson, Kevin M; Hofmann, Gretchen E

    2017-10-23

    Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO 2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO 2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO 2 . In a global change context, exposure of L. h. antarctica to the low pH, high pCO 2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The

  9. Marine isoprene production and consumption in the mixed layer of the surface ocean - a field study over two oceanic regions

    Science.gov (United States)

    Booge, Dennis; Schlundt, Cathleen; Bracher, Astrid; Endres, Sonja; Zäncker, Birthe; Marandino, Christa A.

    2018-02-01

    Parameterizations of surface ocean isoprene concentrations are numerous, despite the lack of source/sink process understanding. Here we present isoprene and related field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean to investigate the production and consumption rates in two contrasting regions, namely oligotrophic open ocean and the coastal upwelling region. Our data show that the ability of different phytoplankton functional types (PFTs) to produce isoprene seems to be mainly influenced by light, ocean temperature, and salinity. Our field measurements also demonstrate that nutrient availability seems to have a direct influence on the isoprene production. With the help of pigment data, we calculate in-field isoprene production rates for different PFTs under varying biogeochemical and physical conditions. Using these new calculated production rates, we demonstrate that an additional significant and variable loss, besides a known chemical loss and a loss due to air-sea gas exchange, is needed to explain the measured isoprene concentration. We hypothesize that this loss, with a lifetime for isoprene between 10 and 100 days depending on the ocean region, is potentially due to degradation or consumption by bacteria.

  10. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

    International Nuclear Information System (INIS)

    Köhler, Peter; Abrams, Jesse F; Völker, Christoph; Hauck, Judith; Wolf-Gladrow, Dieter A

    2013-01-01

    Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO 2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%. (letter)

  11. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    DEFF Research Database (Denmark)

    He, Peng; Hou, Xiaolin; Aldahan, Ala

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the is...... 129I in ocean environments and impact on climate at the ocean boundary layer.......Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations...... of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters...

  12. Biochemical adaptation to ocean acidification.

    Science.gov (United States)

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  13. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  14. Ocean Acidification Disrupts Prey Responses to Predator Cues but Not Net Prey Shell Growth in Concholepas concholepas (loco)

    Science.gov (United States)

    Manríquez, Patricio H.; Jara, María Elisa; Mardones, María Loreto; Navarro, Jorge M.; Torres, Rodrigo; Lardies, Marcos A.; Vargas, Cristian A.; Duarte, Cristian; Widdicombe, Stephen; Salisbury, Joseph; Lagos, Nelson A.

    2013-01-01

    Background Most research on Ocean Acidification (OA) has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation. Methodology/Principal Findings The impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco) were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE) (716±12 and 1036±14 µatm CO2) compared to those reared at concentrations equivalent to those presently found in the surface ocean (388±8 µatm CO2). When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab. Conclusions and Significance These results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature. PMID:23844231

  15. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco).

    Science.gov (United States)

    Manríquez, Patricio H; Jara, María Elisa; Mardones, María Loreto; Navarro, Jorge M; Torres, Rodrigo; Lardies, Marcos A; Vargas, Cristian A; Duarte, Cristian; Widdicombe, Stephen; Salisbury, Joseph; Lagos, Nelson A

    2013-01-01

    Most research on Ocean Acidification (OA) has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation. The impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco) were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE) (716 ± 12 and 1036 ± 14 µatm CO2) compared to those reared at concentrations equivalent to those presently found in the surface ocean (388 ± 8 µatm CO2). When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab. These results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature.

  16. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco.

    Directory of Open Access Journals (Sweden)

    Patricio H Manríquez

    Full Text Available BACKGROUND: Most research on Ocean Acidification (OA has largely focused on the process of calcification and the physiological trade-offs employed by calcifying organisms to support the building of calcium carbonate structures. However, there is growing evidence that OA can also impact upon other key biological processes such as survival, growth and behaviour. On wave-swept rocky shores the ability of gastropods to self-right after dislodgement, and rapidly return to normal orientation, reduces the risk of predation. METHODOLOGY/PRINCIPAL FINDINGS: The impacts of OA on this self-righting behaviour and other important parameters such as growth, survival, shell dissolution and shell deposition in Concholepas concholepas (loco were investigated under contrasting pCO2 levels. Although no impacts of OA on either growth or net shell calcification were found, the results did show that OA can significantly affect self-righting behaviour during the early ontogeny of this species with significantly faster righting times recorded for individuals of C. concholepas reared under increased average pCO2 concentrations (± SE (716 ± 12 and 1036 ± 14 µatm CO2 compared to those reared at concentrations equivalent to those presently found in the surface ocean (388 ± 8 µatm CO2. When loco were also exposed to the predatory crab Acanthocyclus hassleri, righting times were again increased by exposure to elevated CO2, although self-righting times were generally twice as fast as those observed in the absence of the crab. CONCLUSIONS AND SIGNIFICANCE: These results suggest that self-righting in the early ontogeny of C. concholepas will be positively affected by pCO2 levels expected by the end of the 21st century and beginning of the next one. However, as the rate of self-righting is an adaptive trait evolved to reduce lethal predatory attacks, our result also suggest that OA may disrupt prey responses to predators in nature.

  17. Ocean acidification reduces growth and calcification in a marine dinoflagellate.

    Directory of Open Access Journals (Sweden)

    Dedmer B Van de Waal

    Full Text Available Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.

  18. Transport and scavenging of Pu in surface waters of the Southern Hemisphere Oceans

    DEFF Research Database (Denmark)

    Gastaud, J.; Povinec, P.P.; Aoyama, M.

    2011-01-01

    of the conservative 137Cs tracer are in all three oceanic basins comparable. The primary productivity reflected by the chlorophyll content in surface waters has similar longitudinal distribution as 239Pu. Radioactive and chlorophyll tracers revealed that the most important current system in each southern oceanic...

  19. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science

    NARCIS (Netherlands)

    Law, Cliff S.; Breviere, Emilie; de Leeuw, Gerrit; Garcon, Veronique; Guieu, Cecile; Kieber, David J.; Kontradowitz, Stefan; Paulmier, Aurelien; Quinn, Patricia K.; Saltzman, Eric S.; Stefels, Jacqueline; von Glasow, Roland

    2013-01-01

    This review focuses on critical issues in ocean-atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean-Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission

  20. The Surface Water and Ocean Topography Mission: a mission concept to study the world's oceans and fresh water

    Science.gov (United States)

    Vaze, Parag; Albuys, Vincent; Esteban-Fernandez, Daniel; Lafon, Thierry; Lambin, Juliette; Mallet, Alain; Rodriguez, Ernesto

    2010-10-01

    The Surface Water and Ocean Topography (SWOT) is a planned satellite mission to study the world's oceans and terrestrial surface water bodies. The SWOT mission concept has been proposed jointly by the global Hydrology and Oceanography science communities to make the first global survey of the Earth's surface water, observe the fine details of the ocean's surface topography, and measure how water bodies change over time. SWOT was one of 15 missions listed in the 2007 National Research Council's Decadal Survey for Earth science as a mission that NASA should implement in the incoming decade. This mission concept builds upon the heritage of prior missions and technologies such as Topex/Poseidon, Jason-1/ 2, the Shuttle Radar Topography Mission (SRTM), and the initial development of the Wide Swatch Ocean Altimeter intended for the Ocean Surface Topography Mission/Jason-2. The key measurement capability for SWOT is provided by a Ka-band synthetic aperture radar interferometer (KaRIn). With an orbit altitude of 970 km, the KaRIn instrument provides a high-resolution swath width of 120 km enabling global coverage (~90%) of the world's ocean's and fresh water bodies. The KaRIn measurement is being designed to provide a spatial resolution of 1 km for the oceans (after on-board processing), and 100 m for land water, both at centimetric accuracy. An additional instrument suite similar to the Jason series will complement KaRIn: a Ku-band nadir altimeter, a Microwave Radiometer and Precision Orbit Determination (POD) systems. To enable this challenging measurement performance, the SWOT mission concept is designed to overcome several challenges, such as very high raw data rate (320 Mbps), large on-board data volumes, high power demand, stringent pointing and stability requirements, and ground data processing systems, to produce meaningful science data products to our user community. The SWOT mission concept is being developed as a cooperative effort between NASA and CNES. This

  1. Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic ocean

    Science.gov (United States)

    Evans, Claire; Gómez-Pereira, Paola R.; Martin, Adrian P.; Scanlan, David J.; Zubkov, Mikhail V.

    2015-06-01

    Accurate measurements in the Southern Hemisphere were obtained to test a hypothesis of the ubiquity of photoheterotrophy in the oligotrophic ocean. We present experimental results of light-enhanced uptake of methionine, leucine and ATP by bacterioplankton during two large-scale transects of the South Atlantic. Light increased the uptake of substrates by both dominant bacterioplankton groups, Prochlorococcus and SAR11, as well as for the bulk microbial community. Our consistent experimental evidence strongly indicates that photoheterotrophy is characteristic of dominant bacterioplankton populations in the global oligotrophic ocean.

  2. Using the Regional Ocean Modelling System (ROMS to improve the sea surface temperature predictions of the MERCATOR Ocean System

    Directory of Open Access Journals (Sweden)

    Pedro Costa

    2012-09-01

    Full Text Available Global models are generally capable of reproducing the observed trends in the globally averaged sea surface temperature (SST. However, the global models do not perform as well on regional scales. Here, we present an ocean forecast system based on the Regional Ocean Modelling System (ROMS, the boundary conditions come from the MERCATOR ocean system for the North Atlantic (1/6° horizontal resolution. The system covers the region of the northwestern Iberian Peninsula with a horizontal resolution of 1/36°, forced with the Weather Research and Forecasting Model (WRF and the Soil Water Assessment Tool (SWAT. The ocean model results from the regional ocean model are validated using real-time SST and observations from the MeteoGalicia, INTECMAR and Puertos Del Estado real-time observational networks. The validation results reveal that over a one-year period the mean absolute error of the SST is less than 1°C, and several sources of measured data reveal that the errors decrease near the coast. This improvement is related to the inclusion of local forcing not present in the boundary condition model.

  3. Near-surface circulation and kinetic energy in the tropical Indian Ocean derived from lagrangian drifters

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Saji, P.K.; Almeida, A.M.

    Trajectories of 412 satellite-tracked drifting buoys deployed in the tropical Indian Ocean have been analyzed to document the surface circulation and kinetic energy field. Only drifters drogued at 15 m depth and having drag area ratio greater than...

  4. Calibration and Validation of High Frequency Radar for Ocean Surface Current Mapping

    National Research Council Canada - National Science Library

    Kim, Kyung

    2004-01-01

    High Frequency (HF) radar backscatter instruments are being developed and tested in the marine science and defense science communities for their abilities to sense surface parameters remotely in the coastal ocean over large areas...

  5. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    The sea surface air temperature is an important parameter required for computation of air-sea fluxes over oceans which at present cannot be directly measured from remote sensing. In the present article, an empirical approach is proposed to determine...

  6. A comparison of the incidence of hypercapnea in non-obese and morbidly obese peri-operative patients using the SenTec transcutaneous pCO(2) monitor.

    Science.gov (United States)

    Soto, Roy G; Davis, Maurice; Faulkner, Michael J

    2014-06-01

    Obese patients are at increased risk for hypoventilation, leading to hypercapnea and acidosis. The primary objective of this study was to compare the incidence of perioperative hypercapnea in non-obese and morbidly obese patients using the SenTec transcutaneous PCO2 (tcPCO2) monitor. 10 morbidly obese subjects (BMI > 40 kg/m(2)) undergoing laparoscopic bariatric surgery, and 10 non-obese subjects (BMI TcPCO2 and SpO2 were monitored continuously intraoperatively, and during the first 24 h postoperatively. Opiate consumption, respiratory rate (RR), and pain scores were collected from postanesthesia care unit (PACU) and ward nursing notes. RR, SpO2, and tcPCO2 did not differ significantly between groups during PACU or ward time periods. End-tidal CO2 (EtCO2) values were similar between groups during the intraoperative period, but tcPCO2 was significantly higher in the obese group at specific time points, and trended towards being higher throughout the case. Our study did not show significant tcPCO2 differences between non-obese and obese post-surgical patients, however, it did allow for continuous, trendable, nonobtrusive monitoring throughout the perioperative period. As V/Q mismatch increases with the PaCO2/EtCO2 gradient, and this effect is most pronounced in morbidly obese patients, tcPCO2 monitoring may prove to be a useful additional monitor in these patients during the intraoperative period.

  7. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  8. Retrieval of sea surface velocities using sequential Ocean Colour ...

    Indian Academy of Sciences (India)

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4 OCM has been analysed over parts ...

  9. Retrieval of sea surface velocities using sequential Ocean Colour ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The Indian remote sensing satellite, IRS-P4 (Oceansat-I) launched on May 26th, 1999 carried two sensors on board, i.e., the Ocean Colour Monitor (OCM) and the Multi-frequency Scanning. Microwave Radiometer (MSMR) dedicated for oceanographic research. Sequential data of IRS-P4. OCM has been analysed over ...

  10. Seasonal variations in the aragonite saturation state in the upper open-ocean waters of the North Pacific Ocean

    Science.gov (United States)

    Kim, Tae-Wook; Park, Geun-Ha; Kim, Dongseon; Lee, Kitack; Feely, Richard A.; Millero, Frank J.

    2015-06-01

    Seasonal variability of the aragonite saturation state (ΩAR) in the upper (50 m and 100 m depths) North Pacific Ocean (NPO) was investigated using multiple linear regression (MLR). The MLR algorithm derived from a high-quality carbon data set accurately predicted the ΩAR of evaluation data sets (three time series stations and P02 section) with acceptable uncertainty (<0.1 ΩAR). The algorithm was combined with seasonal climatology data, and the estimated ΩAR varied in the range of 0.4-0.6 in the midlatitude western NPO, with the largest variation found for the tropical eastern NPO. These marked variations were largely controlled by seasonal changes in vertical mixing and thermocline depth, both of which determine the degree of entrainment of CO2-rich corrosive waters from deeper depths. Our MLR-based subsurface ΩAR climatology is complementary to surface climatology based on pCO2 measurements.

  11. Extensional terrain formation on Europa and Ganymede: Implications for ocean-surface interaction

    Science.gov (United States)

    Howell, S. M.; Pappalardo, R. T.

    2017-12-01

    Europa and Ganymede, Galilean satellites of Jupiter, exhibit geologic activity in their outer H2O ice shells that might convey material from water oceans within the satellites to their surfaces. Imagery from the Voyager and Galileo spacecraft reveal surfaces rich with tectonic deformation, including dilational bands on Europa and groove lanes on Ganymede. These features are generally attributed to the extension of a brittle ice lithosphere overlaying a possibly convecting ice asthenosphere. To explore band formation and interaction with interior oceans, we employ fully visco-elasto-plastic 2-D models of faulting and convection with complex, realistic pure ice rheologies. In these models, material entering from below is tracked and considered to be "fossilized ocean," ocean material that has frozen into the ice shell and evolves through geologic time. We track the volume fraction of fossil ocean material in the ice shell as a function of depth, and the exposure of both fresh ice and fossil ocean material at the ice shell surface. We vary ice shell thickness, fault localization, melting-temperature ice viscosity, and the presence of pre-existing weaknesses. Mechanisms which act to weaken the ice shell and thin the lithosphere (e.g. vigorous convection, thinner shells, pre-existing weaknesses) tend to plastically yield to form smooth bands at high strains, and are more likely to incorporate fossil ocean material in the ice shell and expose it at the surface. In contrast, lithosphere strengthened by rapid fault annealing or increased viscosity, for example, exhibits large-scale tectonic rifting at low strains superimposed over pre-existing terrains, and inhibits the incorporation and delivery of fossil ocean material to the surface. Thus, our results identify a spectrum of extensional terrain formation mechanisms as linked to lithospheric strength, rather than any specific mechanism being unique to each type of band, and where in this spectrum ocean material

  12. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Jurado, Elena; Lohmann, Rainer; Meijer, Sandra; Jones, Kevin C.; Dachs, Jordi

    2004-01-01

    The oceans play an important role as a global reservoir and ultimate sink of persistent organic pollutants (POPs) such as polychlorinated biphenyls congeners (PCBs). However, the physical and biogeochemical variables that affect the oceanic capacity to retain PCBs show an important spatial and temporal variability which have not been studied in detail, so far. The objective of this paper is to assess the seasonal and spatial variability of the ocean's maximum capacity to act as a reservoir of atmospherically transported and deposited PCBs. A level I fugacity model is used which incorporates the environmental variables of temperature, phytoplankton biomass, and mixed layer depth, as determined from remote sensing and from climatological datasets. It is shown that temperature, phytoplankton biomass and mixed layer depth influence the potential PCB reservoir of the oceans, being phytoplankton biomass specially important in the oceanic productive regions. The ocean's maximum capacities to hold PCBs are estimated. They are compared to a budget of PCBs in the surface oceans derived using a level III model that assumes steady state and which incorporates water column settling fluxes as a loss process. Results suggest that settling fluxes will keep the surface oceanic reservoir of PCBs well below its maximum capacity, especially for the more hydrophobic compounds. The strong seasonal and latitudinal variability of the surface ocean's storage capacity needs further research, because it plays an important role in the global biogeochemical cycles controlling the ultimate sink of PCBs. Because this modeling exercise incorporates variations in downward fluxes driven by phytoplankton and the extent of the water column mixing, it predicts more complex latitudinal variations in PCBs concentrations than those previously suggested. - Model calculations estimate the latitudinal and seasonal storage capacity of the surface oceans for PCBs

  13. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    Science.gov (United States)

    2013-09-30

    PUBLICATIONS 1. Xu, Z. and D. K. P. Yue (2013a), Mixture model for probability of inherent shortwave radiation intensity in strong scattering mediums...reflections for various solar incidence conditions, particularly the shadowing effect for large zenith solar incidence case. With the numerical tool, we...We provided direct and empirical derivations of parameters needed for the model using priori information of ocean wave spectra, solar incidence and

  14. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability

    Science.gov (United States)

    Melville, W. Kendall

    2009-11-01

    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  15. Statistical fluctuations of an ocean surface inferred from shoes and ships

    Science.gov (United States)

    Lerche, Ian; Maubeuge, Frédéric

    1995-12-01

    This paper shows that it is possible to roughly estimate some ocean properties using simple time-dependent statistical models of ocean fluctuations. Based on a real incident, the loss by a vessel of a Nike shoes container in the North Pacific Ocean, a statistical model was tested on data sets consisting of the Nike shoes found by beachcombers a few months later. This statistical treatment of the shoes' motion allows one to infer velocity trends of the Pacific Ocean, together with their fluctuation strengths. The idea is to suppose that there is a mean bulk flow speed that can depend on location on the ocean surface and time. The fluctuations of the surface flow speed are then treated as statistically random. The distribution of shoes is described in space and time using Markov probability processes related to the mean and fluctuating ocean properties. The aim of the exercise is to provide some of the properties of the Pacific Ocean that are otherwise calculated using a sophisticated numerical model, OSCURS, where numerous data are needed. Relevant quantities are sharply estimated, which can be useful to (1) constrain output results from OSCURS computations, and (2) elucidate the behavior patterns of ocean flow characteristics on long time scales.

  16. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain

    Science.gov (United States)

    Li, Yunxiao; Yang, Xufeng; Han, Ping; Xue, Liang; Zhang, Longjun

    2017-09-01

    Due to the combined effects of natural processes and human activities, carbon source/sink processes and mechanisms in the coastal ocean are becoming more and more important in current ocean carbon cycle research. Based on differences in the ratio of total alkalinity (TA) to dissolved inorganic carbon (DIC) associated with terrestrial input, biological process (production and respiration), calcium carbonate (CaCO3) process (precipitation and dissolution) and CO2 evasion/invasion, we discuss the mechanisms controlling the surface partial pressure of CO2 (pCO2) in Jiaozhou Bay (JZB) during summer and the influence of heavy rain, via three cruises performed in mid-June, early July and late July of 2014. In mid-June and in early July, without heavy rain or obvious river input, sea surface pCO2 ranged from 521 to 1080 μatm and from 547 to 998 μatm, respectively. The direct input of DIC from sewage and the intense respiration produced large DIC additions and the highest pCO2 values in the northeast of the bay near the downtown of Qingdao. However, in the west of the bay, significant CaCO3 precipitation led to DIC removal but no obvious increase in pCO2, which was just close to that in the central area. Due to the shallow depth and longer water residence time in this region, this pattern may be related to the sustained release of CO2 into the atmosphere. In late July, heavy rain promoted river input in the western and eastern portions of JZB. Strong primary production led to a significant decrease in pCO2 in the western area, with the lowest pCO2 value of 252 μatm. However, in the northeastern area, the intense respiration remained, and the highest pCO2 value was 1149 μatm. The average air-sea CO2 flux in mid-June and early July was 20.23 mmol m- 2 d- 1 and 23.56 mmol m- 2 d- 1, respectively. In contrast, in late July, sources became sinks for atmospheric CO2 in the western and central areas of the bay, halving the average air-sea CO2 flux to a value of 10.58 mmol m- 2

  17. Is plasticity within the retrotrapezoid nucleus responsible for the recovery of the PCO2 set‐point after carotid body denervation in rats?

    Science.gov (United States)

    Basting, Tyler M.; Abe, Chikara; Viar, Kenneth E.; Stornetta, Ruth L.

    2016-01-01

    Key points Arterial PCO2 is kept constant via breathing adjustments elicited, at least partly, by central chemoreceptors (CCRs) and the carotid bodies (CBs).The CBs may be active in a normal oxygen environment because their removal reduces breathing. Thereafter, breathing slowly returns to normal. In the present study, we investigated whether an increase in the activity of CCRs accounts for this return.One week after CB excision, the hypoxic ventilatory reflex was greatly reduced as expected, whereas ventilation and blood gases at rest under normoxia were normal.Optogenetic inhibition of Phox2b‐expressing neurons including the retrotrapezoid nucleus, a cluster of CCRs, reduced breathing proportionally to arterial pH. The hypopnoea was greater after CB excision but only in a normal or hypoxic environment. The difference could be simply explained by the loss of fast feedback from the CBs.We conclude that, in rats, CB denervation may not produce CCR plasticity. We also question whether the transient hypoventilation elicited by CB denervation means that these afferents are active under normoxia. Abstract Carotid body denervation (CBD) causes hypoventilation and increases the arterial PCO2 set‐point; these effects eventually subside. The hypoventilation is attributed to reduced CB afferent activity and the PCO2 set‐point recovery to CNS plasticity. In the present study, we investigated whether the retrotrapezoid nucleus (RTN), a group of non‐catecholaminergic Phox2b‐expressing central respiratory chemoreceptors (CCRs), is the site of such plasticity. We evaluated the contribution of the RTN to breathing frequency (F R), tidal volume (V T) and minute volume (V E) by inhibiting this nucleus optogenetically for 10 s (archaerhodopsinT3.0) in unanaesthetized rats breathing various levels of O2 and/or CO2. The measurements were made in seven rats before and 6–7 days after CBD and were repeated in seven sham‐operated rats. Seven days post‐CBD, blood gases and

  18. Water flow modulates the response of coral reef communities to ocean acidification.

    Science.gov (United States)

    Comeau, S; Edmunds, P J; Lantz, C A; Carpenter, R C

    2014-10-20

    By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.

  19. Autonomous Optofluidic Chemical Analyzers for Marine Applications: Insights from the Submersible Autonomous Moored Instruments (SAMI for pH and pCO2

    Directory of Open Access Journals (Sweden)

    Chun-Ze Lai

    2018-01-01

    Full Text Available The commercial availability of inexpensive fiber optics and small volume pumps in the early 1990's provided the components necessary for the successful development of low power, low reagent consumption, autonomous optofluidic analyzers for marine applications. It was evident that to achieve calibration-free performance, reagent-based sensors would require frequent renewal of the reagent by pumping the reagent from an impermeable, inert reservoir to the sensing interface. Pumping also enabled measurement of a spectral blank further enhancing accuracy and stability. The first instrument that was developed based on this strategy, the Submersible Autonomous Moored Instrument for CO2 (SAMI-CO2, uses a pH indicator for measurement of the partial pressure of CO2 (pCO2. Because the pH indicator gives an optical response, the instrument requires an optofluidic design where the indicator is pumped into a gas permeable membrane and then to an optical cell for analysis. The pH indicator is periodically flushed from the optical cell by using a valve to switch from the pH indicator to a blank solution. Because of the small volume and low power light source, over 8,500 measurements can be obtained with a ~500 mL reagent bag and 8 alkaline D-cell battery pack. The primary drawback is that the design is more complex compared to the single-ended electrode or optode that is envisioned as the ideal sensor. The SAMI technology has subsequently been used for the successful development of autonomous pH and total alkalinity analyzers. In this manuscript, we will discuss the pros and cons of the SAMI pCO2 and pH optofluidic technology and highlight some past data sets and applications for studying the carbon cycle in aquatic ecosystems.

  20. Response of halocarbons to ocean acidification in the Arctic

    NARCIS (Netherlands)

    Hopkins, F.E.; Kimmance, S.A.; Stephens, J.A.; Bellerby, R.G.J.; Brussaard, C.P.D.; Czerny, J.; Schulz, K.G.; Archer, S.D.

    2013-01-01

    The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June-July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments

  1. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Van de Waal, D.B.; John, U.; Ziveri, P.; Reichart, G.J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate

  2. Ocean acidification reduces growth and calcification in a marine dinoflagellate

    NARCIS (Netherlands)

    Waal, D.B. van de; John, U.; Ziveri, P.; Reichart, G.-J.; Hoins, M.; Sluijs, A.; Rost, B.

    2013-01-01

    Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous

  3. How do uncertainties in NCEP R2 and CFSR surface fluxes impact tropical ocean simulations?

    Science.gov (United States)

    Wen, Caihong; Xue, Yan; Kumar, Arun; Behringer, David; Yu, Lisan

    2017-11-01

    NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface fluxes are widely used by the research community to understand surface flux climate variability, and to drive ocean models as surface forcings. However, large discrepancies exist between these two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase in difference after 2000. The goals of this study are to examine the sensitivity of ocean simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of the two products. A set of experiments, where an ocean model was driven by a combination of surface flux components from R2 and CFSR, were carried out. The model simulations were contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. The accuracy of the model simulations was validated against the tropical moorings data, altimetry SSH and SST reanalysis products. Sensitivity of ocean simulations showed that temperature bias difference in the upper 100 m is mostly sensitive to the differences in surface heat fluxes, while depth of 20 °C (D20) bias difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have large negative bias similar to those with R2 winds after 2000, partly because easterly winds over the central Pacific were underestimated in both CFSR and R2. On the other hand, the observed temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual variability in all three tropical oceans to a varying degree. The improvement in the tropical Atlantic is most significant and is largely attributed to differences in surface winds.

  4. System for Monitoring, Determining, and Reporting Directional Spectra of Ocean Surface Waves in Near Realtime from a Moored Buoy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A moored buoy floating at the ocean surface and anchored to the seafloor precisely measures acceleration, pitch, roll, and Earth's magnetic flux field of the buoy...

  5. Enhanced Decadal Warming of the Southeast Indian Ocean During the Recent Global Surface Warming Slowdown

    Science.gov (United States)

    Li, Yuanlong; Han, Weiqing; Zhang, Lei

    2017-10-01

    The rapid Indian Ocean warming during the early-21th century was a major heat sink for the recent global surface warming slowdown. Analysis of observational data and ocean model experiments reveals that during 2003-2012 more than half of the increased upper Indian Ocean heat content was concentrated in the southeast Indian Ocean (SEIO), causing a warming "hot spot" of 0.8-1.2 K decade-1 near the west coast of Australia. This SEIO warming was primarily induced by the enhancements of the Pacific trade winds and Indonesian throughflow associated with the Interdecadal Pacific Oscillation's (IPO) transition to its negative phase, and to a lesser degree by local atmospheric forcing within the Indian Ocean. Large-ensemble climate model simulations suggest that this warming event was likely also exacerbated by anthropogenic forcing and thus unprecedentedly strong as compared to previous IPO transition periods. Climate model projections suggest an increasing possibility of such strong decadal warming in future.

  6. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Flores, Hauke; van Franeker, Jan-Andries; Cisewski, Boris; Leach, Harry; Van de Putte, Anton P.; Meesters, Erik (H. W. G.); Bathmann, Ulrich; Wolff, Wirn J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0-2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  7. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean

    NARCIS (Netherlands)

    Florentino De Souza Silva, A.P.; Franeker, van J.A.; Cisewski, B.; Leach, H.; Putte, van de A.P.; Meesters, H.W.G.; Bathmann, U.; Wolff, W.J.

    2011-01-01

    A new fishing gear was used to sample the macrozooplankton and micronekton community in the surface layer (0–2 m) under ice and in open water, the Surface and Under Ice Trawl (SUIT). In total, 57 quantitative hauls were conducted in the Lazarev Sea (Southern Ocean) during 3 different seasons (autumn

  8. Effects of ocean acidification on the swimming ability, development and biochemical responses of sand smelt larvae

    International Nuclear Information System (INIS)

    Silva, Cátia S.E.; Novais, Sara C.; Lemos, Marco F.L.; Mendes, Susana; Oliveira, Ana P.; Gonçalves, Emanuel J.; Faria, Ana M.

    2016-01-01

    Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO 2 . However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO 2 , highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO 2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO 2 levels (control: ~ 600 μatm, pH = 8.03; medium: ~ 1000 μatm, pH = 7.85; high: ~ 1800 μatm, pH = 7.64) up to 15 days, after which critical swimming speed (U crit ), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress — superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism — total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO 2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO 2 treatment and smaller larvae in medium pCO 2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO 2 treatment may indicate that at higher pCO 2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO 2 levels on organisms. - Highlights: • Exposure to high pCO 2

  9. Ocean sunfish rewarm at the surface after deep excursions to forage for siphonophores.

    Science.gov (United States)

    Nakamura, Itsumi; Goto, Yusuke; Sato, Katsufumi

    2015-05-01

    Ocean sunfish (Mola mola) were believed to be inactive jellyfish feeders because they are often observed lying motionless at the sea surface. Recent tracking studies revealed that they are actually deep divers, but there has been no evidence of foraging in deep water. Furthermore, the surfacing behaviour of ocean sunfish was thought to be related to behavioural thermoregulation, but there was no record of sunfish body temperature. Evidence of ocean sunfish feeding in deep water was obtained using a combination of an animal-borne accelerometer and camera with a light source. Siphonophores were the most abundant prey items captured by ocean sunfish and were typically located at a depth of 50-200 m where the water temperature was Ocean sunfish were diurnally active, made frequently deep excursions and foraged mainly at 100-200 m depths during the day. Ocean sunfish body temperatures were measured under natural conditions. The body temperatures decreased during deep excursions and recovered during subsequent surfacing periods. Heat-budget models indicated that the whole-body heat-transfer coefficient between sunfish and the surrounding water during warming was 3-7 times greater than that during cooling. These results suggest that the main function of surfacing is the recovery of body temperature, and the fish might be able to increase heat gain from the warm surface water by physiological regulation. The thermal environment of ocean sunfish foraging depths was lower than their thermal preference (c. 16-17 °C). The behavioural and physiological thermoregulation enables the fish to increase foraging time in deep, cold water. Feeding rate during deep excursions was not related to duration or depth of the deep excursions. Cycles of deep foraging and surface warming were explained by a foraging strategy, to maximize foraging time with maintaining body temperature by vertical temperature environment. © 2015 The Authors. Journal of Animal Ecology © 2015 British

  10. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire

    Science.gov (United States)

    Nelson, David M.; Urban, Michael A.; Kershaw, A. Peter; Hu, Feng Sheng

    2016-05-01

    Climate, atmospheric pCO2, and fire all may exert major influences on the relative abundance of C3 and C4 grasses in the present-day vegetation. However, the relative role of these factors in driving variation in C3 and C4 grass abundances in the paleorecord is uncertain, and C4 abundance is often interpreted narrowly as a proxy indicator of aridity or pCO2. We measured δ13C values of individual grains of grass (Poaceae) pollen in the sediments of two sites in southeastern Australia to assess changes in the proportions of C3 and C4 grasses during the past 25,000 years. These data were compared with shifts in pCO2, temperature, moisture balance, and fire to assess how these factors were related to long-term variation of C4 grass abundance during the late Quaternary. At Caledonia Fen, a high-elevation site in the Snowy Mountains, C4 grass abundance decreased from an average of 66% during the glacial period to 11% during the Holocene, primarily in response to increased pCO2 and temperature. In contrast, this pattern did not exist in low-elevation savannah woodlands around Tower Hill Northwest Crater, where C4 grass abundance instead varied in response to shifts in regional aridity. Fire did not appear to have strongly influenced the proportions of C3 and C4 grasses on the landscape at millennial timescales at either site. These patterns are similar to those of a recent study in East Africa, suggesting that elevation-related climatic differences influence how the abundance of C3 and C4 grasses responds to shifts in climate and pCO2. These results caution against using C4 plant abundance as a proxy indicator of either climate or pCO2 without an adequate understanding of key controlling factors.

  11. Sea surface temperature predictions using a multi-ocean analysis ensemble scheme

    Science.gov (United States)

    Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang

    2017-08-01

    This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.

  12. Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) science

    OpenAIRE

    Law, CS; Brévière, E; De Leeuw, G; Garçon, V; Guieu, C; Kieber, DJ; Kontradowitz, S; Paulmier, A; Quinn, PK; Saltzman, ES; Stefels, J; Von Glasow, R

    2013-01-01

    This review focuses on critical issues in ocean-atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean-Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO 2 and trace gas emission to the atmosphere, and the proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the climate system. The second regional research focu...

  13. Artificial ocean upwelling utilizing the energy of surface waves

    Science.gov (United States)

    Soloviev, Alexander

    2016-04-01

    Artificial upwelling can bring cold water from below the thermocline to the sea surface. Vershinsky, Pshenichnyy, and Soloviev (1987) developed a prototype device, utilizing the energy of surface waves to create an upward flow of water in the tube. This is a wave-inertia pump consisting of a vertical tube, a valve, and a buoy to keep the device afloat. An outlet valve at the top of the unit synchronizes the operation of the device with surface waves and prevents back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10 oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. A system of artificial upwelling devices can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from a deeper layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps and climatic consequences are estimated for different environmental conditions using a computational fluid dynamics model.

  14. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Müller, Marius N; Trull, Thomas W; Hallegraeff, Gustaaf M

    2017-08-01

    Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50 o S, 149 o E) with pH/CO 2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO 2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO 2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO 2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO 2 . Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO 2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies.

  15. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  16. Late Holocene diatom-based sea-surface temperature reconstruction from the Conrad Rise, Southern Ocean

    Science.gov (United States)

    Orme, Lisa; Mietinnen, Arto; Crosta, Xavier; Mohan, Rahul

    2017-04-01

    The Southern Ocean plays an important role in the global climate system. The temperature and sea ice extent alter the latitudinal temperature gradient of the Southern Ocean, which can be transferred to the atmosphere resulting in changes in the southern westerly winds. The temperature, sea ice and wind variations are also factors influencing Antarctic Bottom Water formation, which is a control on the strength of the Atlantic Meridional Overturning Circulation. Therefore conditions in the Southern Ocean may influence the climate in the northern and southern hemispheres. The Southern Ocean and North Atlantic were connected during the Last Glacial during Dansgaard-Oeschger events, when variations in ocean circulation caused a bipolar seesaw of temperatures. For the Holocene there is less evidence for a bipolar seesaw, although recent research shows concurrent, opposite trends in ocean circulation in the North Atlantic and in the Southern Ocean. Further reconstructions are required from the Southern Ocean in particular to enable greater understanding of how the temperature and sea ice varied during the Holocene. The OCTEL project (Ocean-sea-ice-atmosphere teleconnections between the Southern Ocean and North Atlantic during the Holocene) aims to investigate the ocean, atmosphere and sea-ice teleconnections for the Holocene using new, high resolution records from both the Southern Ocean and North Atlantic. We here present initial results from diatom analysis conducted on a sediment core from the Southern Ocean, sampled from the Conrad Rise (54˚ 16.04'S, 39˚ 45.98'W). The preliminary results highlight a dominance of diatom species Fragilariopsis kerguelensis and Thalassiosira lentiginosa, with lower abundances of Thalassiothrix antarctica and Thalassiosira gracilis among others, which suggests an open ocean setting close to the polar front. The diatom data will be converted to quantitative reconstructions of summer sea surface temperature and sea ice presence using the

  17. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Science.gov (United States)

    Waldbusser, George G; Hales, Burke; Langdon, Chris J; Haley, Brian A; Schrader, Paul; Brunner, Elizabeth L; Gray, Matthew W; Miller, Cale A; Gimenez, Iria; Hutchinson, Greg

    2015-01-01

    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by

  18. Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae.

    Directory of Open Access Journals (Sweden)

    George G Waldbusser

    Full Text Available Ocean acidification (OA is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4 with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material

  19. Mechanisms for SAR imaging of ocean surface phenomena: Theory and experiment

    Science.gov (United States)

    Vesecky, J. F.

    1983-01-01

    Understanding the SAR response to surface wave is a central issue in the analysis of SAR ocean images. The imaging mechanism for gravity waves and the practical question of just which characteristics of the ocean wave field can be measured remotely using SAR were examined. Assessments of wave imaging theory are based primarily on comparisons of the directional wave height variance spectrum psi (K) measured by in situ buoys with estimates from SAR images. Other criteria are also recommended, e.g., the effects of focus adjustments. It is assumed that fluctuations in SAR image intensity are proportional to fluctuations in ocean surface height. If this were true, the Fourier power spectrum of a SAR image and corresponding surface measurements of psi would coincide. Differences between SAR estimates based on this hypothesis and buoy measurements of psi are then used to begin the assessment of rival wave imaging theories.

  20. Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    KAUST Repository

    Arrieta, Jesus

    2016-01-20

    Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.

  1. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming.

    Science.gov (United States)

    Tarling, Geraint A; Ward, Peter; Thorpe, Sally E

    2018-01-01

    The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It

  2. Multi-mission mean sea surface and geoid models for ocean monitoring within the GOCINA project

    Science.gov (United States)

    Andersen, O. B.; Knudsen, P.; Anne, V. L.

    2004-05-01

    A major goal of the EU project GOCINA (Geoid and Ocean Circulation In the North Atlantic) is to develop tools for ocean monitoring using satellite altimetry combined with satellite gravimetry. Furthermore, the project will determine an accurate geoid in the region between Greenland and the UK and, hereby, create a platform for validation of future GOCE Level 2 data and higher order scientific products. The central quantity bridging the geoid and the ocean circulation is the mean dynamic topography, which is the difference between the mean sea surface and the geoid. The mean dynamic topography provides the absolute reference surface for the ocean circulation. The improved determination of the mean circulation will advance the understanding of the role of the ocean mass and heat transport in climate change. To calculate the best possible synthetic mean dynamic topographies a new mean sea surface (KMS03) has been derived from nine years of altimetric data (1993-2001). The regional geoid has furthermore being updated using GRACE and gravimetric data from a recent airborne survey. New synthetic mean dynamic topography models have been computed from the best available geoid models (EGM96, GRACE, GOCINA) and the present mean sea surface models (i.e. CLS01, GSFC00, KMS03). These models will be compared with state of the art hydrodynamic mean dynamic topography models in the North Atlantic GOCINA area. An extended comparison in the Artic Ocean will also be presented to demonstrate the impact of improved geoid and mean sea surface modeling. Particularly using the GRACE derived geoid models, and the KMS03 mean sea surface.

  3. Soliton turbulence in shallow water ocean surface waves.

    Science.gov (United States)

    Costa, Andrea; Osborne, Alfred R; Resio, Donald T; Alessio, Silvia; Chrivì, Elisabetta; Saggese, Enrica; Bellomo, Katinka; Long, Chuck E

    2014-09-05

    We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm, for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described theoretically by the soliton limit of the Korteweg-deVries equation, a completely integrable soliton system: Hence the phrase "soliton turbulence" is synonymous with "integrable soliton turbulence." For periodic-quasiperiodic boundary conditions the ergodic solutions of Korteweg-deVries are exactly solvable by finite gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the energetic peak of a storm have low frequency power spectra that behave as ∼ω-1. We use the linear Fourier transform to estimate this power law from the power spectrum and to filter densely packed soliton wave trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω-1 region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation, which supports our interpretation of the data as soliton turbulence. From the probability density of the solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

  4. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Andreas et al (1995), and figure 1 of Monahan and Spillane (1984). et al (1995) made detailed measurements in a large wave basin of the increases in brightness tempera- ture associated with measured increases in stage A whitecap coverage. It follows that the fraction of the sea surface covered by stage A whitecaps can ...

  5. A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?

    Science.gov (United States)

    Monerie, Paul-Arthur; Robson, Jon; Dong, Buwen; Dunstone, Nick

    2017-10-01

    We assess the ability of the DePreSys3 prediction system to predict the summer (JJAS) surface-air temperature over North East Asia. DePreSys3 is based on a high resolution ocean-atmosphere coupled climate prediction system ( 60 km in the atmosphere and 25 km in the ocean), which is full-field initialized from 1960 to 2014 (26 start-dates). We find skill in predicting surface-air temperature, relative to a long-term trend, for 1 and 2-5 year lead-times over North East Asia, the North Atlantic Ocean and Eastern Europe. DePreSys3 also reproduces the interdecadal evolution of surface-air temperature over the North Atlantic subpolar gyre and North East Asia for both lead times, along with the strong warming that occurred in the mid-1990s over both areas. Composite analysis reveals that the skill at capturing interdecadal changes in North East Asia is associated with the propagation of an atmospheric Rossby wave, which follows the subtropical jet and modulates surface-air temperature from Europe to Eastern Asia. We hypothesise that this `circumglobal teleconnection' pattern is excited over the Atlantic Ocean and is related to Atlantic multi-decadal variability and the associated changes in precipitation over the Sahel and the subtropical Atlantic Ocean. This mechanism is robust for the 2-5 year lead-time. For the 1 year lead-time the Pacific Ocean also plays an important role in leading to skill in predicting SAT over Northeast Asia. Increased temperatures and precipitation over the western Pacific Ocean was found to be associated with a Pacific-Japan like-pattern, which can affect East Asia's climate.

  6. Effects of Tidally Driven Variation on the Response of Coralline Algae to Ocean Acidification

    Science.gov (United States)

    Ets-Hokin, J. M.; Fachon, E.; Donham, E. M.; Price, N.

    2016-02-01

    As atmospheric CO2 levels continue to rise, our oceans are becoming more acidic, making it difficult for calcareous organisms like coralline algae to calcify. Coralline algae are early colonizers after disturbances and foundational species that initiate succession by inducing larval settlement of many invertebrate species. However, coralline algae tend to be more susceptible to experimentally elevated pCO2 than other calcifiers, likely due to the higher magnesium content in their calcite skeleton, which can render them more soluble. Magnesium content varies between individuals and is context dependent, thus could be a mechanism of acclimation for algae recruiting to harsh environments. To test this hypothesis, we collected Corallina officinalis from tide pools that experience extreme daily variation and from a well-flushed site that experiences lower daily variation in seawater pH. Samples were placed for 22 days in 1L microcosms bubbled with air enriched with pCO2, with values ranging from preindustrial lows (280 uatm) to predicted highs over the next century (1120 uatm) over 6 treatment levels. C. officinalis collected in the isolated tide pools showed decreased growth ( 50%) both in net calcification (measured via buoyant weight method) and linear extension (visualized with fluorescent stain) in low and high pCO2 levels, with growth peaking at an optimal pCO2 value of approximatly 300 uatm similar to present-day conditions. In contrast C. officinalis collected from the flushed site had no response to pCO2 treatments but had significantly lower growth overall. Tide pool two showed higher inclusion of magnesium in its carbonate skeleton which could explain its more pronounced response to the pCO2 treatments. While living in harsh environments can acclimate coralline algae to high pCO2, overall growth rates are substantially lower and will likely be insufficient to alleviate effects of ocean acidification.

  7. Distinct global warming rates tied to multiple ocean surface temperature changes

    Science.gov (United States)

    Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang; Wang, Pengfei

    2017-07-01

    The globally averaged surface temperature has shown distinct multi-decadal fluctuations since 1900, characterized by two weak slowdowns in the mid-twentieth century and early twenty-first century and two strong accelerations in the early and late twentieth century. While the recent global warming (GW) hiatus has been particularly ascribed to the eastern Pacific cooling, causes of the cooling in the mid-twentieth century and distinct intensity differences between the slowdowns and accelerations remain unclear. Here, our model experiments with multiple ocean sea surface temperature (SST) forcing reveal that, although the Pacific SSTs play essential roles in the GW rates, SST changes in other basins also exert vital influences. The mid-twentieth-century cooling results from the SST cooling in the tropical Pacific and Atlantic, which is partly offset by the Southern Ocean warming. During the recent hiatus, the tropical Pacific-induced strong cooling is largely compensated by warming effects of other oceans. In contrast, during the acceleration periods, ubiquitous SST warming across all the oceans acts jointly to exaggerate the GW. Multi-model simulations with separated radiative forcing suggest diverse causes of the SST changes in multiple oceans during the GW acceleration and slowdown periods. Our results highlight the importance of multiple oceans on the multi-decadal GW rates.

  8. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  9. Ocean surface waves and winds over the north Indian Ocean from satellite altimeter - preliminary results of SAC-NIO joint project

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; Rajkumar, R.; Gairola, R.M.; Gohil, B.S.; Vethamony, P.; Rao, L.V.G.

    With the aim of retrieving, validating and mapping ocean surface winds and waves in the north Indian Ocean, GEOSAT altimeter data for the period November 1986 to October 1987 and available sea truth data for the above period were processed in SAC...

  10. SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth

    Science.gov (United States)

    Fu, Lee-Lueng (Editor); Alsdorf, Douglas (Editor); Morrow, Rosemary; Rodriguez, Ernesto; Mognard, Nelly

    2012-01-01

    The elevation of the surface of the ocean and freshwater bodies on land holds key information on many important processes of the Earth System. The elevation of the ocean surface, called ocean surface topography, has been measured by conventional nadirlooking radar altimeter for the past two decades. The data collected have been used for the study of large-scale circulation and sea level change. However, the spatial resolution of the observations has limited the study to scales larger than about 200 km, leaving the smaller scales containing substantial kinetic energy of ocean circulation that is responsible for the flux of heat, dissolved gas and nutrients between the upper and the deep ocean. This flux is important to the understanding of the ocean's role in regulatingfuture climate change.The elevation of the water bodies on land is a key parameter required for the computation of storage and discharge of freshwater in rivers, lakes, and wetlands. Globally, the spatial and temporal variability of water storage and discharge is poorly known due to the lack of well-sampled observations. In situ networks measuring river flows are declining worldwide due to economic and political reasons. Conventional altimeter observations suffers from the complexity of multiple peaks caused by the reflections from water, vegetation canopy and rough topography, resulting in much less valid data over land than over the ocean. Another major limitation is the large inter track distance preventing good coverage of rivers and other water bodies.This document provides descriptions of a new measurement technique using radar interferometry to obtain wide-swath measurement of water elevation at high resolution over both the ocean and land. Making this type of measurement, which addresses the shortcomings of conventional altimetry in both oceanographic and hydrologic applications, is the objective of a mission concept called Surface Water and Ocean Topography (SWOT), which was recommended by

  11. Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations

    Science.gov (United States)

    Chen, Shuyi S.; Curcic, Milan

    2016-07-01

    Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.

  12. The influence of food supply on the response of Olympia oyster larvae to ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Hettinger

    2013-10-01

    Full Text Available Increases in atmospheric carbon dioxide drive accompanying changes in the marine carbonate system as carbon dioxide (CO2 enters seawater and alters ocean pH (termed "ocean acidification". However, such changes do not occur in isolation, and other environmental factors have the potential to modulate the consequences of altered ocean chemistry. Given that physiological mechanisms used by organisms to confront acidification can be energetically costly, we explored the potential for food supply to influence the response of Olympia oyster (Ostrea lurida larvae to ocean acidification. In laboratory experiments, we reared oyster larvae under a factorial combination of pCO2 and food level. Elevated pCO2 had negative effects on larval growth, total dry weight, and metamorphic success, but high food availability partially offset these influences. The combination of elevated pCO2 and low food availability led to the greatest reduction in larval performance. However, the effects of food and pCO2 interacted additively rather than synergistically, indicating that they operated independently. Despite the potential for abundant resources to counteract the consequences of ocean acidification, impacts were never completely negated, suggesting that even under conditions of enhanced primary production and elevated food availability, impacts of ocean acidification may still accrue in some consumers.

  13. The Ocean's Vital Skin: Toward an Integrated Understanding of the Sea Surface Microlayer

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Anja; Bange, Hermann W.; Cunliffe, Michael; Burrows, Susannah M.; Friedrichs, Gernot; Galgani, Luisa; Herrmann, Hartmut; Hertkorn, Norbert; Johnson, Martin; Liss, Peter S.; Quinn, Patricia K.; Schartau, Markus; Soloviev, Alexander; Stolle, Christian; Upstill-Goddard, Robert C.; van Pinxteren, Manuela; Zäncker, Birthe

    2017-05-30

    Despite the huge extent of the ocean’s surface, until now relatively little attention has been paid to the sea surface microlayer (SML) as the ultimate interface where heat, momentum and mass exchange between the ocean and the atmosphere takes place. Via the SML, large-scale environmental changes in the ocean such as warming, acidification, deoxygenation, and eutrophication potentially influence cloud formation, precipitation, and the global radiation balance. Due to the deep connectivity between biological, chemical, and physical processes, studies of the SML may reveal multiple sensitivities to global and regional changes. Understanding the processes at the ocean’s surface, in particular involving the SML as an important and determinant interface, could therefore provide an essential contribution to the reduction of uncertainties regarding ocean-climate feedbacks. This review identifies gaps in our current knowledge of the SML and highlights a need to develop a holistic and mechanistic understanding of the diverse biological, chemical, and physical processes occurring at the ocean-atmosphere interface. We advocate the development of strong interdisciplinary expertise and collaboration in order to bridge between ocean and atmospheric sciences. Although this will pose significant methodological challenges, such an initiative would represent a new role model for interdisciplinary research in Earth System sciences.

  14. Mechanisms for Seasonal and Interannual Sea Surface Salinity Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, J.; Stammer, D.; Serra, N.; Bryan, F.

    2016-12-01

    Space-borne salinity data in the Indian Ocean are analyzed over the period 2000-2015 based on data from the European Space Agency's (ESA) "Soil Moisture and Ocean Salinity" (SMOS) and the National Aeronautical Space Agency's (NASA) "Aquarius/SAC-D" missions. The seasonal variability is the dominant mode of sea surface salinity (SSS) variability in the Indian Ocean, accounting for more than 50% of salinity variance. Through a combined analysis of the satellite and ARGO data, dominant forcing terms for seasonal salinity changes are identified. It is found, that E-P controls seasonal salinity tendency in the western Indian Ocean, where the ITCZ has a strong seasonal cycle. In contrast, Ekman advection is the dominant term in the northern and eastern equatorial Indian Ocean. The influence of vertical processes on the salinity tendency is enhanced in coastal upwelling regions and south of the equator due to mid-ocean upwelling. Jointly those processes can explain most of the observed seasonal cycle with a correlation of 0.85 and an RMS difference of 0.07/month. However, the detailed composition of driving terms depends on underlying data products. In general, our study confirms previous results from Lisan Yu (2011); however, in the eastern Indian Ocean contrasting results indicate the leading role of meridional Ekman advection to the seasonal salinity tendency instead of surface external forces due to precipitation. The inferred dominant salinity budget terms are confirmed by results obtained from a high resolution NCAR Core model run driven by NCEP forcing fields. From an EOF analysis of the salinity fields after substracting the annual and semiannual cycle we found that the first EOF mode explains more than 20% of salinity variance. The first principal component of SSS EOF is correlated with the Indian Ocean Dipole Mode Index. Nevertheless the EOF pattern shows a meridional tripole structure, while the IOD describes a zonal SST dipole (Saji et al, 1999).

  15. Ocean acidification effects on Caribbean scleractinian coral calcification using a recirculating system: a novel approach to OA research

    Science.gov (United States)

    Projected increases in ocean pCO2 levels are likely to affect calcifying organisms more rapidly and to a greater extent than any other marine organisms. The effects of ocean acidification (OA) has been documented in numerous species of corals in both laboratory and field studies....

  16. Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories

    Directory of Open Access Journals (Sweden)

    D. M. Summers

    2002-01-01

    Full Text Available An impulse-based model is developed to represent a coupling between turbulent flow in the atmosphere and turbulent flow in the ocean. In particular, it is argued that the atmosphere flowing horizontally over the ocean surface generates a velocity fluctuation field in the latter's near-surface flow. The mechanism for this can be understood kinematically in terms of an exchange of tangentially-oriented fluid impulse at the air-sea interface. We represent this exchange numerically through the creation of Lagrangian elements of impulse density. An indication of the efficacy of such a model would lie in its ability to predict the observed fractal dimension of lateral trajectories of submerged floats set adrift in the ocean. To this end, we examine the geometry of lateral tracer-paths determined from the present model.

  17. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    Science.gov (United States)

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  18. Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris

    International Nuclear Information System (INIS)

    Lacoue-Labarthe, T.; Reveillac, E.; Oberhaensli, F.; Teyssie, J.L.; Jeffree, R.; Gattuso, J.P.

    2011-01-01

    Highlights: → We study radiotracer uptake in squid embryo and paralarvae under relevant pCO 2 . → We examine metal distribution and concentration factors in egg compartments. → Increasing pCO 2 affects eggshell shielding properties and metal uptake in animals. → Chemical signature in statoliths is modified by higher Zn incorporation under high pCO 2 . → Both element chemical properties and embryo physiology could account for the observed effects. - Abstract: The anthropogenic release of carbon dioxide (CO 2 ) into the atmosphere leads to an increase in the CO 2 partial pressure (pCO 2 ) in the ocean, which may reach 950 μatm by the end of the 21st century. The resulting hypercapnia (high pCO 2 ) and decreasing pH ('ocean acidification') are expected to have appreciable effects on water-breathing organisms, especially on their early-life stages. For organisms like squid that lay their eggs in coastal areas where the embryo and then paralarva are also exposed to metal contamination, there is a need for information on how ocean acidification may influence trace element bioaccumulation during their development. In this study, we investigated the effects of enhanced levels of pCO 2 (380, 850 and 1500 μatm corresponding to pH T of 8.1, 7.85 and 7.60) on the accumulation of dissolved 110m Ag, 109 Cd, 57 Co, 203 Hg, 54 Mn and 65 Zn radiotracers in the whole egg strand and in the different compartments of the egg of Loligo vulgaris during the embryonic development and also in hatchlings during their first days of paralarval life. Retention properties of the eggshell for 110m Ag, 203 Hg and 65 Zn were affected by the pCO 2 treatments. In the embryo, increasing seawater pCO 2 enhanced the uptake of both 110m Ag and 65 Zn while 203 Hg showed a minimum concentration factor (CF) at the intermediate pCO 2 . 65 Zn incorporation in statoliths also increased with increasing pCO 2 . Conversely, uptake of 109 Cd and 54 Mn in the embryo decreased as a function of increasing

  19. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    Science.gov (United States)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of

  20. Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE; FINAL

    International Nuclear Information System (INIS)

    Weiss, R.F.

    1998-01-01

    All of the technical goals of the World Ocean Circulation Experiment (WOCE) field program which were supported under the Department of Energy research grant ''Measurements of Surface Ocean Carbon Dioxide Partial Pressure During WOCE'' (DE-FG03-90ER60981) have been met. This has included the measurement of the partial pressures of carbon dioxide (C0(sub 2)) and nitrous oxide (N(sub 2)O) in both the surface ocean and the atmosphere on 24 separate shipboard expedition legs of the WOCE Hydrographic Programme. These measurements were made in the Pacific, Indian and Atlantic Oceans over a six-and-a-half year period, and over a distance of nearly 200,000 kilometers of ship track. The total number of measurements, including ocean measurements, air measurements and standard gas measurements, is about 136,000 for each gas, or about 34,000 measurements of each gas in the ocean and in the air. This global survey effort is directed at obtaining a better understanding of the role of the oceans in th e global atmospheric budgets of two important natural and anthropogenic modulators of climate through the ''greenhouse effect'', CO(sub 2) and N(sub 2)O, and an important natural and anthropogenic modulator of the Earth's protective ozone layer through catalytic processes in the stratosphere, N(sub 2)O. For both of these compounds, the oceans play a major role in their global budgets. In the case of CO(sub 2), roughly half of the anthropogenic production through the combustion of fossil fuels has been absorbed by the world's oceans. In the case of N(sub 2)O, roughly a third of the natural flux to the atmosphere originates in the oceans. As the interpretation of the variability in the oceanic distributions of these compounds improves, measurements such as those supported by this research project are playing an increasingly important role in improving our understanding of natural and anthropogenic influences on climate and ozone

  1. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover

  2. Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf

    Science.gov (United States)

    Guo, Lanli; Sheng, Jinyu

    2017-05-01

    A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.

  3. Operational use of ocean surface drifters for tracking spilled oil

    International Nuclear Information System (INIS)

    Aamo, O. M.; Jensen, H.

    1997-01-01

    The use of Argos-positioned surface drifters by Norwegian engineers to monitor oil slicks in the North Sea was discussed. The system that was tested in June 1996 during the Norwegian Clean Seas Association oil-on-water exercise consisted of several GPS-positioned Argos drift trackers, an Argos receiver, a GPS navigator for the ship's position, and a PC with software for logging and displaying positions. Results of the field trial have been positive in that the system worked as expected. The range of direct transmission of signals from the buoys to the ship was about three nautical miles. The degree of accuracy of the relative positioning between the buoy GPS and the ship-borne GPS navigator was similar to the absolute positioning of single buoys. For best results, a minimum of two buoys and the use of lithium cells to increase battery capacity, were recommended. 3 refs., 5 figs

  4. Low reservoir ages for the surface ocean from mid-Holocene Florida corals

    Science.gov (United States)

    Druffel, E.R.M.; Robinson, L.F.; Griffin, S.; Halley, R.B.; Southon, J.R.; Adkins, J.F.

    2008-01-01

    The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908-4955 and 3008-3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ?? 33 and 291 ?? 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ?? 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal ??18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased ??14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ???3040 and ???4930 cal years B.P. is ???292 ?? 30 years, less than the canonical value of 404 ?? 20 years. Copyright 2008 by the American Geophysical Union.

  5. Photo-oxidation : Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W. W. C.; Laane, R. W. P. M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  6. Photo-oxidation: Major sink of oxygen in the ocean surface layer

    NARCIS (Netherlands)

    Gieskes, W.W.C.; Laane, R.W.P.M.; Ruardij, P.

    2015-01-01

    Evidence is presented that the oxygen demand associated with photochemical processes in the surface layer of oceans and seas worldwide is of the same order of magnitude as the amount of oxygen released by photosynthesis of the world's marine phytoplankton. Both estimates are of necessity quite rough

  7. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    Science.gov (United States)

    Somavilla, R; González-Pola, C; Fernández-Diaz, J

    2017-09-01

    Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m  decade-1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long-term hydrographic time-series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing.

  8. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  9. Surface temperature of the equatorial Pacific Ocean and the Indian rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The time variation of the monthly mean surface temperature of the equatorial Pacific Ocean during 1982-1987 has been studied in relation to summer monsoon rainfall over India The ENSO events of 1982 and 1987 were related to a significant reduction...

  10. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    Science.gov (United States)

    Somavilla, R.; González-Pola, C.; Fernández-Diaz, J.

    2017-09-01

    Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m decade-1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long-term hydrographic time-series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing.

  11. Attributing seasonal pH variability in surface ocean waters to governing factors

    NARCIS (Netherlands)

    Hagens, M.; Middelburg, J.J.

    2016-01-01

    On-going ocean acidification and increasing availability of high-frequency pH data have stimulated interest to understand seasonal pH dynamics in surface waters. Here we show that it is possible to accurately reproduce observed pH values by combining seasonal changes in temperature (T), dissolved

  12. Ocean acidification accelerates reef bioerosion.

    Directory of Open Access Journals (Sweden)

    Max Wisshak

    Full Text Available In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide partial pressure (pCO(2 in the marine realm, substantial research is devoted to calcifiers such as stony corals. The antagonistic process - biologically induced carbonate dissolution via bioerosion - has largely been neglected. Unlike skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO(2 world. This study focuses on one of the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia's Great Barrier Reef. Experimental exposure to lowered and elevated levels of pCO(2 confirms a significant enforcement of the sponges' bioerosion capacity with increasing pCO(2 under more acidic conditions. Considering the substantial contribution of sponges to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic carbonate build-up and degradation.

  13. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    Science.gov (United States)

    2008-06-06

    than about 5 m s −1 (Makin, Kudryavtsev & Mastenbroek 1995; Banner & Peirson 1998). Ocean boundary layers with vortex force and stochastic breaking...amplitude. Proc. Roy. Soc. Lond. A 342, 157–174. Makin, V. K., Kudryavtsev , V. N. & Mastenbroek, C. 1995 Drag of the sea surface. Boundary- Layer Met. 73...to study some of the impacts of fast-moving waves on marine surface layers (e.g., Gent and Taylor 1976; Gent 1977; Li 1995; Kudryavtsev and Makin 2004

  14. Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients

    DEFF Research Database (Denmark)

    Boeckel, B.; Baumann, K.-H.; Henrich, R.

    2006-01-01

    In this study, the coccolith compositions of 213 surface sediment samples from the South Atlantic and Southern Ocean were analysed with respect to the environmental parameters of the overlying surface waters. From this data set, the abundance patterns of the main species and their ecological...... seems to be associated with high temperatures and salinities under low-nutrient conditions. Based on the relative abundances of Calcidiscus leptoporus, F. profunda, Gladiolithus flabellatus, Helicosphaera spp., Umbilicosphaera foliosa, Umbilicosphaera sibogae and a group of subordinate subtropical...

  15. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    Science.gov (United States)

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  16. Physical Retracking of Jason-1 LRM data for ocean surface height/gravity field determination

    Science.gov (United States)

    Jain, Maulik; Baltazar Andersen, Ole; Stenseng, Lars; Dall, Jørgen

    2013-04-01

    Jason-1 Low Resolution Mode (LRM) waveforms can be processed to extract accurate heights of the ocean surface. These heights are adjusted taking into account various corrections available. Further the along surface slope/variation of these ocean heights can be used to make an estimation of the gravity field. An important part of this gravity field estimation is dependent on the way the LRM waveform is processed. Thus a physical model based on an error function is used, and the LRM waveforms are fit to this model. A processing system made up of 2 parameter and 3 parameter fitting models are used in order to extract the most reliable ocean surface heights. The quality of the processing system is judged by evaluating the standard deviation of the sea surface anomaly obtained after all corrections and the mean sea surface/geoid are removed. The lower the value of the standard deviation of the sea surface anomaly, the better the quality of processing is. Hence, different processing schemes are considered and evaluated in order to conclude towards the best retracking procedure which would eventually result in high accuracy gravity field estimations.

  17. Responses of calcification of massive and encrusting corals to past, present, and near-future ocean carbon dioxide concentrations.

    Science.gov (United States)

    Iguchi, Akira; Kumagai, Naoki H; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2014-12-15

    In this study, we report the acidification impact mimicking the pre-industrial, the present, and near-future oceans on calcification of two coral species (Porites australiensis, Isopora palifera) by using precise pCO2 control system which can produce acidified seawater under stable pCO2 values with low variations. In the analyses, we performed Bayesian modeling approaches incorporating the variations of pCO2 and compared the results between our modeling approach and classical statistical one. The results showed highest calcification rates in pre-industrial pCO2 level and gradual decreases of calcification in the near-future ocean acidification level, which suggests that ongoing and near-future ocean acidification would negatively impact coral calcification. In addition, it was expected that the variations of parameters of carbon chemistry may affect the inference of the best model on calcification responses to these parameters between Bayesian modeling approach and classical statistical one even under stable pCO2 values with low variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Changes in Energy Imbalance at the Ocean Surface during the "hiatus" period

    Science.gov (United States)

    Yu, L.

    2016-02-01

    Despite the recent slowdown in the rate of surface warming, a general consensus exists, that is, the Earth continues to gain energy and almost all the energy added to the Earth system is accumulated in the oceans. Nevertheless, key issues remain unaddressed regarding the actual energy imbalance at the top-of-atmosphere and the Earth surface, their changes over time, and their storage and distribution in the oceans. Quantifying and tracking the energy flow through the Earth System require consistent and accurate record of observations, but existing observation platforms contain various degrees of uncertainty. There is a need to cross-validate the energy budget estimates from different resources and from different approaches. In this study, we conducted an assessment of net energy budget at the ocean surface estimated from three general sources, the satellite-based analysis (WHOI OAFlux and NASA CERES), an ocean state estimator (MIT ECCO), and the atmospheric reanalysis products. For the "hiatus" period (2001-2010) in study, all products show that the oceans have been on net energy gain, but the magnitude varies and the differences in the rate of the decadal change in energy imbalance are large. While the reanalysis products show either upward or downward trends, ECCO and OAFlux/CERES indicate that the energy imbalance remains near constant. The downward trend in ERA-Interim started from 2006, driven by a peculiar pattern change in the Pacific. ECCO, which used ERA-Interim as initial surface forcing, corrected the pattern and maintained a near steady rate. ECCO assimilates observations from oceanographic satellites and Argo profiles, while the OAFlux/CERES Qnet were obtained from satellite atmospheric and near-surface observations using no dynamical models but the state-of-the-art flux algorithms and statistical approaches. Given the differences in input data sources and approaches, the agreement between ECCO and OAFlux/CERES is encouraging and instructive.

  19. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  20. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    Science.gov (United States)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  1. Atmospheric response to multidecadal sea surface temperature variability in the Pacific Ocean (IPV) and the North Atlantic Ocean (AMV)

    Science.gov (United States)

    Elsbury, D.; Peings, Y.; Magnusdottir, G.

    2017-12-01

    Multidecadal modes of sea surface temperature (SST) variability in the Pacific and Atlantic Oceans act as forcing fields in a series of atmospheric global climate model (AGCM) simulations. These modes, Interdecadal Pacific Variability (IPV) and Atlantic Multidecadal Variability (AMV), are important regulators of global temperature, precipitation, extreme climate events (droughts and temperature extremes), and have recently been implicated as playing an important role in the global warming hiatus. Despite a growing recognition of the importance of these climate modes, the most fundamental atmospheric and climatic responses to the long-term internal variability and interplay of these two ocean basins is not well understood. In a series of 200-yr experiments using the Whole Atmosphere Community Climate Model (WACCM), the atmosphere is forced by the 9 different combinations of the AMV and IPV states (neutral, positive, negative) using a single polarity from each the IPV and the AMV, and different combinations. The atmospheric response associated with each combination of SST anomalies is investigated, with a focus on modes of variability such as the North Atlantic Oscillation (NAO) and associated temperature/precipitation variability. Of particular interest is the response related to forcing from the tropical Pacific, the stratospheric response and associated stratosphere-troposphere interactions, and the response of extreme weather events in both winter and summer. These results yield a more complete understanding of climate predictability associated with each basin at multidecadal time scales, and how their respective influences interfere with each other.

  2. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    OpenAIRE

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-01-01

    Ocean currents play a key role in Earth's climate – they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dy...

  3. Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions.

    Science.gov (United States)

    Louis, Justine; Pedrotti, Maria Luiza; Gazeau, Frédéric; Guieu, Cécile

    2017-01-01

    The evolution of organic carbon export to the deep ocean, under anthropogenic forcing such as ocean warming and acidification, needs to be investigated in order to evaluate potential positive or negative feedbacks on atmospheric CO2 concentrations, and therefore on climate. As such, modifications of aggregation processes driven by transparent exopolymer particles (TEP) formation have the potential to affect carbon export. The objectives of this study were to experimentally assess the dynamics of organic matter, after the simulation of a Saharan dust deposition event, through the measurement over one week of TEP abundance and size, and to evaluate the effects of ocean acidification on TEP formation and carbon export following a dust deposition event. Three experiments were performed in the laboratory using 300 L tanks filled with filtered seawater collected in the Mediterranean Sea, during two 'no bloom' periods (spring at the start of the stratification period and autumn at the end of this stratification period) and during the winter bloom period. For each experiment, one of the two tanks was acidified to reach pH conditions slightly below values projected for 2100 (~ 7.6-7.8). In both tanks, a dust deposition event of 10 g m-2 was simulated at the surface. Our results suggest that Saharan dust deposition triggered the abiotic formation of TEP, leading to the formation of organic-mineral aggregates. The amount of particulate organic carbon (POC) exported was proportional to the flux of lithogenic particles to the sediment traps. Depending on the season, the POC flux following artificial dust deposition ranged between 38 and 90 mg m-2 over six experimental days. Such variability is likely linked to the seasonal differences in the quality and quantity of TEP-precursors initially present in seawater. Finally, these export fluxes were not significantly different at the completion of the three experiments between the two pH conditions.

  4. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. (NCEI Accession 0157795)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Total Alkalinity fields were estimated from five regional TA relationships presented in Lee et al. 2006, using monthly mean sea surface temperature and...

  5. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  6. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  7. Calcification responses of symbiotic and aposymbiotic corals to near-future levels of ocean acidification

    Science.gov (United States)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-11-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (± 5% pCO2), to assess the impact of ocean acidification on the calcification of recently settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of ~100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that: (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e., broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  8. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  9. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  10. Origin, dynamics and evolution of ocean garbage patches from observed surface drifters

    International Nuclear Information System (INIS)

    Van Sebille, Erik; England, Matthew H; Froyland, Gary

    2012-01-01

    Much of the debris in the near-surface ocean collects in so-called garbage patches where, due to convergence of the surface flow, the debris is trapped for decades to millennia. Until now, studies modelling the pathways of surface marine debris have not included release from coasts or factored in the possibilities that release concentrations vary with region or that pathways may include seasonal cycles. Here, we use observational data from the Global Drifter Program in a particle-trajectory tracer approach that includes the seasonal cycle to study the fate of marine debris in the open ocean from coastal regions around the world on interannual to centennial timescales. We find that six major garbage patches emerge, one in each of the five subtropical basins and one previously unreported patch in the Barents Sea. The evolution of each of the six patches is markedly different. With the exception of the North Pacific, all patches are much more dispersive than expected from linear ocean circulation theory, suggesting that on centennial timescales the different basins are much better connected than previously thought and that inter-ocean exchanges play a large role in the spreading of marine debris. This study suggests that, over multi-millennial timescales, a significant amount of the debris released outside of the North Atlantic will eventually end up in the North Pacific patch, the main attractor of global marine debris. (letter)

  11. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    Science.gov (United States)

    Landschützer, P.; Gruber, N.; Bakker, D. C. E.; Schuster, U.; Nakaoka, S.; Payne, M. R.; Sasse, T.; Zeng, J.

    2013-05-01

    The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from (i) a continuous improvement of the observations, i.e., the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed technique to interpolate the observations in space and time. In particular, we use a 2 step neural network approach to reconstruct basin-wide monthly maps of the sea surface partial pressure of CO2 (pCO2) at a resolution of 1° × 1°. From those, we compute the air-sea CO2 flux maps using a standard gas exchange parameterization and high-resolution wind speeds. The neural networks fit the observed pCO2 data with a root mean square error (RMSE) of about 10 μatm and with almost no bias. A check against independent time series data reveals a larger RMSE of about 17 μatm. We estimate a decadal mean uptake flux of -0.45 ± 0.15 Pg C yr-1 for the Atlantic between 44° S and 79° N, representing the sum of a strong uptake north of 18° N (-0.39 ± 0.10 Pg C yr-1), outgassing in the tropics (18° S-18° N, 0.11 ± 0.07 Pg C yr-1), and uptake in the subtropical/temperate South Atlantic south of 18° S (-0.16 ± 0.06 Pg C yr-1), consistent with recent studies. We find the strongest seasonal variability of the CO2 flux in the temperature driven subtropical North Atlantic, with uptake in winter and outgassing in summer. The seasonal cycle is antiphased in the subpolar latitudes relative to the subtropics largely as a result of the biologically driven winter-to-summer drawdown of CO2. Over the analysis period (1998 to 2007) sea surface pCO2 increased faster than that of the atmosphere in large areas poleward of 40° N, but many other parts of the North Atlantic increased more slowly, resulting in a barely changing Atlantic carbon sink north of the

  12. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  13. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment

    Science.gov (United States)

    Algueró-Muñiz, María; Alvarez-Fernandez, Santiago; Thor, Peter; Bach, Lennart T.; Esposito, Mario; Horn, Henriette G.; Ecker, Ursula; Langer, Julia A. F.; Taucher, Jan; Malzahn, Arne M.; Riebesell, Ulf; Boersma, Maarten

    2017-01-01

    Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females’ condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future. PMID:28410436

  14. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  15. Assimilation of ocean sea-surface height observations of mesoscale eddies

    Science.gov (United States)

    Weiss, Jeffrey B.; Grooms, Ian

    2017-12-01

    Mesoscale eddies are one of the dominant sources of variability in the world's oceans. With eddy-resolving global ocean models, it becomes important to assimilate observations of mesoscale eddies to correctly represent the state of the mesoscale. Here, we investigate strategies for assimilating a reduced number of sea-surface height observations by focusing on the coherent mesoscale eddies. The study is carried out in an idealized perfect-model framework using two-layer forced quasigeostrophic dynamics, which captures the dominant dynamics of ocean mesoscale eddies. We study errors in state-estimation as well as error growth in forecasts and find that as fewer observations are assimilated, assimilating at vortex locations results in reduced state estimation and forecast errors.

  16. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009

    DEFF Research Database (Denmark)

    Koldunov, Nikolay V.; Serra, Nuno; Koehl, Armin

    2014-01-01

    is in reasonable agreement with available measurements. Focusing on results from one of the models for a detailed analysis, it is shown that the decadal-scale SSH variability over shelf areas and deep parts of the Arctic Ocean have pronounced differences that are determined mostly by salinity variations. A further......The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970-2009) are analyzed. In comparison to observations, all tested models...... of low-salinity shelf water. Overall, we show that present-day models can be used for investigating the reasons for low-frequency SSH variability in the region....

  17. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    I. Obernosterer

    2008-05-01

    Full Text Available The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold and nitrogen (1.4 to 7-fold, and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m. The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76% to those in surface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in surface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers.

  18. Impact of ocean acidification on the early development and escape behavior of marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Wang, Xiaojie; Song, Lulu; Chen, Yi; Ran, Haoyu; Song, Jiakun

    2017-10-01

    Ocean acidification is predicted to affect a wide diversity of marine organisms. However, no studies have reported the effects of ocean acidification on Indian Ocean fish. We have used the Indian Ocean medaka (Oryzias melastigma) as a model species for a marine fish that lives in coastal waters. We investigated the impact of ocean acidification on the embryonic development and the stereotyped escape behavior (mediated by the Mauthner cell) in newly hatched larvae. Newly fertilized eggs of medaka were reared in seawater at three different partial pressures of carbon dioxide (pCO 2 ): control at 450 μatm, moderate at 1160 μatm, and high at 1783 μatm. Hatch rates, embryonic duration, and larval malformation rates were compared and were not significantly different between the treatments and the control. In the high pCO 2 group, however, the yolks of larvae were significantly smaller than in the control group, and the newly hatched larvae were significantly longer than the larvae in the control. In the moderate pCO 2 group, the eye distance decreased significantly. No significantly negative growth effects were observed in the larvae when exposed to pCO 2 levels that are predicted as a result of ocean acidification in the next 100-200 years. Larvae reared under control conditions readily produced C-start escape behavior to mechanosensory stimuli; however, in the moderate and high pCO 2 experimental groups, the probabilities of C-start were significantly lower than those of the control group. Therefore, the sensory integration needed for the C-start escape behavior appears to be vulnerable to ocean acidification. Altered behavior in marine larval fish, particularly behaviors involved in escape from predation, could have potentially negative implications to fish populations, and, further, to the marine ecosystems at the levels of CO 2 projected for the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of Ocean acidification on growth, calcification and reproduction of calcifying and non-calcifying epibionts of brown algae

    Science.gov (United States)

    Saderne, V.; Wahl, M.

    2012-04-01

    Anthropogenic emissions of CO2 are leading to an acidification of the oceans of 0.4 pH units in the course of this century according to the more severe model scenarios. The excess of CO2 could notably affect the benthic communities of calcifiers and macrophytes in different aspects (photosynthesis, respiration and calcification). Seaweeds are one of the key species of nearshore benthic ecosystems of the Baltic Sea. They are the substratum of several fouling epibionts like bryozoans and tubeworms. Most of those species are bearing calcified structures and could therefore be potentially impacted by the seawater pCO2. On the other hand, the biological activity of the host may substantially modulate the pH and pCO2 conditions in the boundary layer where the epibionts live. The aim of the present study was to test the sensitivity of seaweed macrofouling communities to higher pCO2 concentration. Fragments of macroalgae Fucus serratus bearing the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium gelatinosum (Bryozoa) were maintained for 30 days under three pCO2: natural 460 ± 59 µatm and enriched 1193 ± 166 µatm and 3150 ± 446 µatm. Our study showed a significant reduction of growth rates and reproduction of Spirorbis individuals at the highest pCO2. Tubeworms Juveniles exhibited enhanced calcification of 40 % when in the light compare to dark, presumably due to effect of photosynthetic and respiratory activities of the host alga. Electra colonies showed significantly improved growth rates at 1193 µatm. The overall net dissolution of the communities was significantly higher at 3150 µatm. No effect on Alcyonidium colonies growth rates was observed. Those results suggest a remarkable resistance of the algal macro-epibiontic communities to the most elevated pCO2 predicted for 2100 for open ocean (~1000 µatm) conditions. Concerns remains with regards to higher pCO2 possibly found in the future Baltic Sea.

  20. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    DEFF Research Database (Denmark)

    Zribi, Mehrez; Parde, Mickael; Boutin, Jacquline

    2011-01-01

    The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed ...... is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity.......The "Cooperative Airborne Radiometer for Ocean and Land Studies" (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed...... flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight...

  1. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida

    NARCIS (Netherlands)

    Dissard, D.; Nehrke, G.; Reichart, G.-J.; Bijma, J.

    2010-01-01

    Evidence of increasing concentrations of dissolved carbon dioxide, especially in the surface ocean and its associated impacts on calcifying organisms, is accumulating. Among these organisms, benthic and planktonic foraminifera are responsible for a large amount of the globally precipitated calcium

  2. Northerly surface winds over the eastern North Pacific Ocean in spring and summer

    Science.gov (United States)

    Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.

    2008-01-01

    Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.

  3. Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center; Allison, L. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1997-11-01

    This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

  4. Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-01-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  5. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  6. Magnetic Signatures of Fine-scale Processes in the Ocean Surface Layer

    Science.gov (United States)

    Soloviev, A.; Dean, C.; Avera, W. E.

    2015-12-01

    Fine-scale processes in the upper ocean turbulent boundary layer may have a measurable electromagnetic signature. In order to study magnetic signatures of these fine-scale processes, we have applied a magnetohydrodynamic (MHD) model combining a 3D computational fluid dynamics model and electromagnetic block, based on ANSYS Fluent software. In addition, the hydrodynamic component of the MHD model is coupled with a radar imaging algorithm, which potentially provides a link to synthetic aperture radar (SAR) satellite imagery. Capabilities of this model have been demonstrated using a simulation and observation of an internal wave soliton in the Straits of Florida, observed with in situ instrumentation (ADCP mooring) and COSMO Sky Med (SAR) satellite image. We have applied this model to study magnetic signatures of surface waves, freshwater lenses, spatially coherent organized motions in the near-surface layer of the ocean (Langmuir circulation and ramp-like structures), and bio-turbulence induced by diel vertical migrations of zooplankton in some areas of the ocean. Investigation of electromagnetic signatures in upper ocean processes offers a valuable new prospect in air-sea interaction.

  7. Oceanic transport of surface meltwater from the southern Greenland ice sheet

    Science.gov (United States)

    Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.

    2016-07-01

    The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamics and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.

  8. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    Digital Repository Service at National Institute of Oceanography (India)

    Bakker, D.C.E.; Hankin, S.; Olsen, A.; Pfeil, B.; Smith, K.; Alin, S.R.; Cosca, C.; Hales, B.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; OBrien, K.M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N.; Boutin, J.; Cai, W.J.; Castle, R.D.; Chavez, F.; Chen, L.; Chierici, M.; Currie, K.; Evans, W.; Feely, R.A.; Fransson, A.; Gao, Z.; Hardman-Mountford, N.; Hoppema, M.; Huang, W.J.; Hunt, C.W.; Huss, B.; Ichikawa, T.; Jacobson, A.; Johannessen, T.; Jones, E.M.; Jones, S.; Sara, J.; Kitidis, V.; Kortzinger, A.; Lauvset, S.; Lefevre, N.; Manke, A.B.; Mathis, J.; Metzl, N.; Monteiro, P.; Murata, A.; Newberger, T.; Nobuo, T.; Ono, T.; Paterson, K.; Pierrot, D.; Rios, A.F.; Sabine, C.L.; Saito, S.; Salisbury, J.; Sarma, V.V.S.S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K.; Sutherland, S.C.; Suzuki, T.; Sutton, A.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; VanHeuven, S.; Vandemark, D.; Vlahos, P.; Wallace, D.W.R.; Wanninkhof, R.; Watson, A.J.

    /69/2014/ Earth Syst. Sci. Data, 6, 69–90, 2014 78 D. C. E. Bakker et al.: An update to the Surface Ocean CO2 Atlas (SOCAT version 2) 0 2 4 6 8 10 12 x 105 N um be r o f f C O 2 va lu es N at ha ni el B . P al m er E xp lo re r o f t he S ea s La ur en ce M.... Sci. Data, 6, 69–90, 2014 www.earth-syst-sci-data.net/6/69/2014/ doi:10.5194/essd-6-69-2014 © Author(s) 2014. CC Attribution 3.0 License. Op en A cc es s Earth System Science Data An update to the Surface Ocean CO2 Atlas (SOCAT version 2) D. C. E...

  9. Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem.

    Science.gov (United States)

    Lidbury, Ian; Johnson, Vivienne; Hall-Spencer, Jason M; Munn, Colin B; Cunliffe, Michael

    2012-05-01

    The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Surface Drift in the South-East Atlantic Ocean | Wedepohl | African ...

    African Journals Online (AJOL)

    Surface drift in the South-East Atlantic Ocean is described using historical shipdrift data. The Benguela Current has a width of 200 km in the south and 750 km in the north. The mean speeds of the current vary from <11 cm.s-1 to a maximum of 23 cm.s-1. The highest current speeds occur during summer in the southern ...

  11. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    Science.gov (United States)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  12. KARIN: The Ka-Band Radar Interferometer for the Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard

    2013-01-01

    Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.

  13. The Surface Ocean Carbon Dioxide Atlas (SOCAT) - A Solid Data Base for Carbon Related Research

    Science.gov (United States)

    Steinhoff, T.; Bakker, D. C. E.; Wanninkhof, R. H.; Currie, K.; Landa, C.; Landschutzer, P.; Metzl, N.; Nakaoka, S. I.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Pfeil, B.; Schuster, U.; Smith, K. M.; Tilbrook, B. D.

    2016-02-01

    The Surface Ocean CO2 Atlas (SOCAT) is an activity by the international marine carbon research community. It improves access to surface water CO2 data by regular releases of quality controlled and documented, synthesis fCO2 (fugacity of carbon dioxide) data products for the global surface oceans and coastal seas. The first version of SOCAT was publicly released in September 2011(Bakker et al., 2011) with 6.3 million observations. In June 2013 version 2 was released including already over 10 million observations and in September 2015 SOCAT version 3 was released with more than 14 million observations. With the release of version 3 in September 2015 a big step was made in the direction of an annual updated database by using an automated data ingestion and quality control tool. The database holds now data from 1957 to today which enables SOCAT data products the detection of changes in the ocean carbon sink. Here we present the innovations in version 3 and give an outlook of the next version(s) of SOCAT. A major improvement in version 3 is the inclusion of data from alternative sensors with a lower accuracy (better than 10 µatm) compared to the standard instrumentation (2 µatm), since their number will increase in the future. In addition exemplary studies using the SOCAT database will be presented which demonstrate the potential of the SOCAT database and point out possible improvements for the future.

  14. Unveiling the role and life strategies of viruses from the surface to the dark ocean

    KAUST Repository

    Lara, Elena

    2017-09-07

    Viruses are a key component of marine ecosystems, but the assessment of their global role in regulating microbial communities and the flux of carbon is precluded by a paucity of data, particularly in the deep ocean. We assessed patterns in viral abundance and production and the role of viral lysis as a driver of prokaryote mortality, from surface to bathypelagic layers, across the tropical and subtropical oceans. Viral abundance showed significant differences between oceans in the epipelagic and mesopelagic, but not in the bathypelagic, and decreased with depth, with an average power-law scaling exponent of −1.03 km−1 from an average of 7.76 × 106 viruses ml−1 in the epipelagic to 0.62 × 106 viruses ml−1 in the bathypelagic layer with an average integrated (0 to 4000 m) viral stock of about 0.004 to 0.044 g C m−2, half of which is found below 775 m. Lysogenic viral production was higher than lytic viral production in surface waters, whereas the opposite was found in the bathypelagic, where prokaryotic mortality due to viruses was estimated to be 60 times higher than grazing. Free viruses had turnover times of 0.1 days in the bathypelagic, revealing that viruses in the bathypelagic are highly dynamic. On the basis of the rates of lysed prokaryotic cells, we estimated that viruses release 145 Gt C year−1 in the global tropical and subtropical oceans. The active viral processes reported here demonstrate the importance of viruses in the production of dissolved organic carbon in the dark ocean, a major pathway in carbon cycling.

  15. Rapid removal of plutonium from the oceanic surface layer by zooplankton faecal pellets

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Cherry, R.D.; Heyraud, M.; Fowler, S.W.

    1977-01-01

    In view of the possibility that increasing quantities of Pu may in due course be introduced into the marine environment, it is important to have a detailed knowledge of its oceanic behaviour. It has been suggested that algae and perhaps the phytoplanktonic mass may have an important role in determining the chemical and physical forms of Pu predominant in the ocean. The role of the zooplanktonic mass has not been investigated in detail, but it is known that for several elements zooplankton metabolism may be an important biological factor in the removal of elements from the surface layers of the ocean. The particular importance of zooplankton faecal pellets in this process has been stressed, and it has been found that M. norvegica is rich in the naturally-occurring α-emitter 210 Po when compared with whole organism levels. A study is here described for Pu, and it is reported that M. norvegica faecal pellets are relatively rich in Pu. It is suggested that zooplankton faecal pellet deposition might be an important vector in the vertical oceanic transport of this element. Experimental details are given and results are shown in tabular form. The implications of the high concentrations of Pu in faecal pellets are described, and rough estimates are made for the removal time of Pu from the upper mixed ocean layers by zooplankton pellets alone; the result is 3.6 years. It is suggested that faecal pellets may have a significant role in the removal of Pu from the surface layers of the sea. (U.K.)

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from S. A. AGULHAS in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2009-01-26 to 2011-01-10 (NODC Accession 0081024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0081024 includes Surface underway, chemical, meteorological and physical data collected from S. A. AGULHAS in the Indian Ocean, South Atlantic Ocean...

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from Hakuho Maru in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2009-12-16 to 2010-01-26 (NCEI Accession 0163190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163190 includes chemical, meteorological, physical and surface underway data collected from Hakuho Maru in the Indian Ocean, South Atlantic Ocean and...

  18. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    Energy Technology Data Exchange (ETDEWEB)

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  19. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  20. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Directory of Open Access Journals (Sweden)

    J. Isern-Fontanet

    2017-10-01

    Full Text Available Ocean currents play a key role in Earth's climate – they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  1. Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean

    Science.gov (United States)

    Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.

    1999-01-01

    Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature

  2. Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data

    Science.gov (United States)

    Fu, Lee-Lueng

    2007-01-01

    The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.

  3. Overview and preliminary results of the Surface Ocean Aerosol Production (SOAP campaign

    Directory of Open Access Journals (Sweden)

    C. S. Law

    2017-11-01

    Full Text Available Establishing the relationship between marine boundary layer (MBL aerosols and surface water biogeochemistry is required to understand aerosol and cloud production processes over the remote ocean and represent them more accurately in earth system models and global climate projections. This was addressed by the SOAP (Surface Ocean Aerosol Production campaign, which examined air–sea interaction over biologically productive frontal waters east of New Zealand. This overview details the objectives, regional context, sampling strategy and provisional findings of a pilot study, PreSOAP, in austral summer 2011 and the following SOAP voyage in late austral summer 2012. Both voyages characterized surface water and MBL composition in three phytoplankton blooms of differing species composition and biogeochemistry, with significant regional correlation observed between chlorophyll a and DMSsw. Surface seawater dimethylsulfide (DMSsw and associated air–sea DMS flux showed spatial variation during the SOAP voyage, with maxima of 25 nmol L−1 and 100 µmol m−2 d−1, respectively, recorded in a dinoflagellate bloom. Inclusion of SOAP data in a regional DMSsw compilation indicates that the current climatological mean is an underestimate for this region of the southwest Pacific. Estimation of the DMS gas transfer velocity (kDMS by independent techniques of eddy covariance and gradient flux showed good agreement, although both exhibited periodic deviations from model estimates. Flux anomalies were related to surface warming and sea surface microlayer enrichment and also reflected the heterogeneous distribution of DMSsw and the associated flux footprint. Other aerosol precursors measured included the halides and various volatile organic carbon compounds, with first measurements of the short-lived gases glyoxal and methylglyoxal in pristine Southern Ocean marine air indicating an unidentified local source. The application of a real-time clean sector

  4. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans

    NARCIS (Netherlands)

    Lohmann, R.; Jurado Cojo, E.; Dijkstra, H.A.; Dachs, J.

    2013-01-01

    Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole

  5. Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, Gadus morhua.

    Science.gov (United States)

    Dahlke, Flemming T; Leo, Elettra; Mark, Felix C; Pörtner, Hans-Otto; Bickmeyer, Ulf; Frickenhaus, Stephan; Storch, Daniela

    2017-04-01

    Thermal tolerance windows serve as a powerful tool for estimating the vulnerability of marine species and their life stages to increasing temperature means and extremes. However, it remains uncertain to which extent additional drivers, such as ocean acidification, modify organismal responses to temperature. This study investigated the effects of CO 2 -driven ocean acidification on embryonic thermal sensitivity and performance in Atlantic cod, Gadus morhua, from the Kattegat. Fertilized eggs were exposed to factorial combinations of two PCO 2 conditions (400 μatm vs. 1100 μatm) and five temperature treatments (0, 3, 6, 9 and 12 °C), which allow identifying both lower and upper thermal tolerance thresholds. We quantified hatching success, oxygen consumption (MO 2 ) and mitochondrial functioning of embryos as well as larval morphometrics at hatch and the abundance of acid-base-relevant ionocytes on the yolk sac epithelium of newly hatched larvae. Hatching success was high under ambient spawning conditions (3-6 °C), but decreased towards both cold and warm temperature extremes. Elevated PCO 2 caused a significant decrease in hatching success, particularly at cold (3 and 0 °C) and warm (12 °C) temperatures. Warming imposed limitations to MO 2 and mitochondrial capacities. Elevated PCO 2 stimulated MO 2 at cold and intermediate temperatures, but exacerbated warming-induced constraints on MO 2 , indicating a synergistic interaction with temperature. Mitochondrial functioning was not affected by PCO 2 . Increased MO 2 in response to elevated PCO 2 was paralleled by reduced larval size at hatch. Finally, ionocyte abundance decreased with increasing temperature, but did not differ between PCO 2 treatments. Our results demonstrate increased thermal sensitivity of cod embryos under future PCO 2 conditions and suggest that acclimation to elevated PCO 2 requires reallocation of limited resources at the expense of embryonic growth. We conclude that ocean acidification

  6. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set.

    Science.gov (United States)

    Law, Kara Lavender; Morét-Ferguson, Skye E; Goodwin, Deborah S; Zettler, Erik R; Deforce, Emelia; Kukulka, Tobias; Proskurowski, Giora

    2014-05-06

    We present an extensive survey of floating plastic debris in the eastern North and South Pacific Oceans from more than 2500 plankton net tows conducted between 2001 and 2012. From these data we defined an accumulation zone (25 to 41 °N, 130 to 180 °W) in the North Pacific subtropical gyre that closely corresponds to centers of accumulation resulting from the convergence of ocean surface currents predicted by several oceanographic numerical models. Maximum plastic concentrations from individual surface net tows exceeded 10(6) pieces km(-2), with concentrations decreasing with increasing distance from the predicted center of accumulation. Outside the North Pacific subtropical gyre the median plastic concentration was 0 pieces km(-2). We were unable to detect a robust temporal trend in the data set, perhaps because of confounded spatial and temporal variability. Large spatiotemporal variability in plastic concentration causes order of magnitude differences in summary statistics calculated over short time periods or in limited geographic areas. Utilizing all available plankton net data collected in the eastern Pacific Ocean (17.4 °S to 61.0 °N; 85.0 to 180.0 °W) since 1999, we estimated a minimum of 21,290 t of floating microplastic.

  7. Chemical characterization of detrital sugar chains with peptides in oceanic surface particulate organic matter

    Science.gov (United States)

    Tsukasaki, A.; Nishida, T.; Tanoue, E.

    2016-02-01

    For better understanding of the dynamics of organic matter in the ocean interior, particulate organic matter (POM) in oceanic surface water is a key material as a starting material in food chain and biological carbon pump, and the source of dissolved organic matter. POM consists of a mixture of non-living POM (detritus) and small amount of living POM (organisms). Particulate combined amino acids (PCAAs) are one of the major components of POM and the most important source of nitrogen and carbon for heterotrophic organisms in marine environments. In our previous studies of molecular-level characterization of PCAAs using electrophoretic separation (SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with specific detection of protein/peptide and sugar chains, we reported that most of PCAAs existed as small-sized peptide chains with carbohydrate-rich remnants. Although carbohydrates are one of the major carbon components of POM, the details of molecular-level structures including sugar chains are unknown. In this study, we applied electrophoretic separation for sugar chains (FACE: fluorophore-assisted carbohydrate electrophoresis) to the POM samples collected from the surface water of the Pacific Ocean. The results showed that sugar chains with various degree of polymerization were detected in POM. The possible roles of such sugar chains in marine biogeochemical cycle of organic matter are discussed in the presentation.

  8. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    Science.gov (United States)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  9. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  10. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  11. A simple mathematical model to predict sea surface temperature over the northwest Indian Ocean

    Science.gov (United States)

    Noori, Roohollah; Abbasi, Mahmud Reza; Adamowski, Jan Franklin; Dehghani, Majid

    2017-10-01

    A novel and simple mathematical model was developed in this study to enhance the capacity of a reduced-order model based on eigenvectors (RMEV) to predict sea surface temperature (SST) in the northwest portion of the Indian Ocean, including the Persian and Oman Gulfs and Arabian Sea. Developed using only the first two of 12,416 possible modes, the enhanced RMEV closely matched observed daily optimum interpolation SST (DOISST) values. Spatial distribution of the first mode indicated the greatest variations in DOISST occurred in the Persian Gulf. Also, the slightly increasing trend in the temporal component of the first mode observed in the study area over the last 34 years properly reflected the impact of climate change and rising DOISST. Given its simplicity and high level of accuracy, the enhanced RMEV can be applied to forecast DOISST in oceans, which the poor forecasting performance and large computational-time of other numerical models may not allow.

  12. Sea surface temperature (SST) and surface current data collected from the Mar Mostro during the around-the-world Volvo Ocean Race (VOR) from 2011-11-05 to 2012-07-12 (NCEI Accession 0130694)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Navigation, surface current, sea surface temperature, wind, and atmospheric pressure data collected by the Mar Mostro during the around-the-world Volvo Ocean Race...

  13. Surfactant-Associated Bacteria in the Near Surface Layer of the Ocean

    Science.gov (United States)

    Kurata, Naoko; Vella, Katie; Soloviev, Alexander; Matt, Silvia; Tartar, Aurelien; Shivji, Mahmood; Perrie, William

    2013-04-01

    It has recently been realized that biogeochemical processes in the ocean are, to a large extent, the result of nanoscale processes in the microbial part of the pelagic food web. Bacteria found in thin near-surface layers of the ocean - bacterioneuston - are of special interest due to a number of practical applications, including air-sea gas exchange, production of climate-active marine aerosols and remote sensing of the ocean. In particular, bacteria involved in the production of the surface active materials resulting in slicks on the sea surface can potentially be observed from space using high-resolution remote sensing techniques. In this work done by a multidisciplinary team, we demonstrate a direct connection between surfactant-associated bacteria, identified with an advanced DNA analysis, and fine-scale features on the sea surface in synthetic aperture radar (SAR) imagery. Experiments were conducted in the Straits of Florida during RASRASAT 2 satellite overpasses. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the bacteria community structure at a specific space and time. Microbial composition was determined using DNA analysis of 16S rRNA genes. A new generation high-throughput sequencing method (454) was employed to compensate for the small sample size. A total of 27,006 nucleotide sequences with an average 437.8 bp in length were analyzed. From in situ samples taken during satellite overpasses, we found a higher abundance of surfactant-associated bacteria in slick (visible in SAR from space) as compared to non-slick areas; furthermore, higher abundance of this type of bacteria was observed in subsurface samples than in those taken from the sea surface. These observations suggest that surfactants are produced by marine bacteria mostly in the water column and migrate up to the sea surface by diffusion, air bubbles, or

  14. Remote sensing of global surface shortwave radiation and PAR over the ocean

    Science.gov (United States)

    Gautier, Catherine H.; Byers, Michael L.

    1992-12-01

    During the past few years many methods have been proposed for estimating surface radiative fluxes (shortwave radiation, photosynthetically active radiation - PAR) from satellite observations. We have developed algorithms for computing the shortwave radiative flux (shortwave irradiance) at the ocean surface from visible radiance observations and they have been found to be quite successful under most atmospheric and cloud conditions. For broken clouds, however, the simple plane parallel assumption for solving the radiative transfer equations may need to be corrected to account for cloud geometry. The estimation of PAR is simpler because the most commonly used satellite radiance measurements cover a similar region of the solar spectrum. We are in the process of producing global $ARDNSW and PAR as a contribution to the Sequoia 2000 project (to implement a distributed processing system designed for the needs of global change researchers). Results from our algorithms developed for Sequoia and preliminary global surface solar irradiance and PAR fields are presented and discussed.

  15. Drivers of Antarctic sea-ice expansion and Southern Ocean surface cooling over the past four decades

    Science.gov (United States)

    Purich, Ariaan; England, Matthew

    2017-04-01

    Despite global warming, total Antarctic sea-ice coverage has increased overall during the past four decades. In contrast, the majority of CMIP5 models simulate a decline. In addition, Southern Ocean surface waters have largely cooled, in stark contrast to almost all historical CMIP5 simulations. Subantarctic Surface Waters have cooled and freshened while waters to the north of the Antarctic Circumpolar Current have warmed and increased in salinity. It remains unclear as to what extent the cooling and Antarctic sea-ice expansion is due to natural variability versus anthropogenic forcing; due for example to changes in the Southern Annular Mode (SAM). It is also unclear what the respective role of surface buoyancy fluxes is compared to internal ocean circulation changes, and what the implications are for longer-term climate change in the region. In this presentation we will outline three distinct drivers of recent Southern Ocean surface trends that have each made a significant contribution to regional cooling: (1) wind-driven surface cooling and sea-ice expansion due to shifted westerly winds, (2) teleconnections of decadal variability from the tropical Pacific, and (3) surface cooling and ice expansion due to large-scale Southern Ocean freshening, most likely driven by SAM-related precipitation trends over the open ocean. We will also outline the main reasons why climate models for the most part miss these Southern Ocean cooling trends, despite capturing overall trends in the SAM.

  16. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    2011-02-01

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-24 (NCEI Accession 0144349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144349 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2013-12-31 to 2014-12-20 (NCEI Accession 0144532)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144532 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-30 to 2008-10-28 (NCEI Accession 0144348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144348 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-22 (NCEI Accession 0144528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144528 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-12-29 to 2003-11-30 (NCEI Accession 0144351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144351 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-23 to 2002-12-23 (NCEI Accession 0148766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148766 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-12-30 to 2012-12-23 (NCEI Accession 0148774)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148774 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-01-01 to 2011-12-19 (NCEI Accession 0148765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148765 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  5. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-02 to 2006-12-26 (NCEI Accession 0148764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148764 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  6. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-01-02 to 2007-12-20 (NCEI Accession 0148773)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148773 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2014-01-01 to 2014-12-20 (NCEI Accession 0145200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0145200 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2003-01-01 to 2003-12-29 (NCEI Accession 0148770)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148770 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  9. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2007-12-31 to 2008-10-27 (NCEI Accession 0148763)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148763 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-01-02 to 2011-12-18 (NCEI Accession 0148767)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148767 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2006-01-01 to 2006-12-27 (NCEI Accession 0144535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144535 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2002-03-07 to 2002-12-23 (NCEI Accession 0144356)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144356 includes Surface underway data collected from LAURENCE M. GOULD in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (> 60...

  13. Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Grunseich, G.; Subrahmanyam, B.; Murty, V.S.N.; Giese, B.S.

    into the southwestern tropical Indian Ocean. The impact of concomitant La Niña with negative IOD is also large with an intense freshening in the southeastern Arabian Sea and salting off the northern Sumatra coast....

  14. Annual and interannual variability of scatterometer ocean surface wind over the South China Sea

    DEFF Research Database (Denmark)

    Zhang, GS; Xu, Q.; Gong, Z.

    2014-01-01

    To investigate the annual and interannual variability of ocean surface wind over the South China Sea (SCS), the vector empirical orthogonal function (VEOF) method and the Hilbert-Huang transform (HHT) method were employed to analyze a set of combined satellite scatterometer wind data during...... the period from December 1992 to October 2009. The merged wind data were generated from European Remote Sensing Satellite (ERS)-1/2 Scatterometer, NASA Scatterometer (NSCAT) and NASA's Quick Scatterometer (QuikSCAT) wind products. The first VEOF mode corresponds to a winter-summer mode which accounts for 87...

  15. Coralline algal barium as indicator for 20th century northwestern North Atlantic surface ocean freshwater variability.

    Science.gov (United States)

    Hetzinger, S; Halfar, J; Zack, T; Mecking, J V; Kunz, B E; Jacob, D E; Adey, W H

    2013-01-01

    During the past decades climate and freshwater dynamics in the northwestern North Atlantic have undergone major changes. Large-scale freshening episodes, related to polar freshwater pulses, have had a strong influence on ocean variability in this climatically important region. However, little is known about variability before 1950, mainly due to the lack of long-term high-resolution marine proxy archives. Here we present the first multidecadal-length records of annually resolved Ba/Ca variations from Northwest Atlantic coralline algae. We observe positive relationships between algal Ba/Ca ratios from two Newfoundland sites and salinity observations back to 1950. Both records capture episodical multi-year freshening events during the 20th century. Variability in algal Ba/Ca is sensitive to freshwater-induced changes in upper ocean stratification, which affect the transport of cold, Ba-enriched deep waters onto the shelf (highly stratified equals less Ba/Ca). Algal Ba/Ca ratios therefore may serve as a new resource for reconstructing past surface ocean freshwater changes.

  16. Volcanic ash as an iron-fertilizer in ocean surface water

    Science.gov (United States)

    Olgun, N.; Duggen, S.; Croot, P.; Dietze, H.; Schacht, U.; Oskarsson, N.; Siebe, C.; Auer, A.

    2007-12-01

    Surface ocean fertilisation with iron may affect the marine primary productivity, C-cycles and eventually climate development. Volcanic ash has the potential to release iron on contact with seawater and to stimulate phytoplankton growth (1,2) but the relative importance of volcanism at destructive plate margins (subduction zones, SZ) and intraplate volcanic settings (ocean islands at hot spots) remains unknown. Here we present new results from geochemical experiments with natural seawater and numerous volcanic ash samples from SZ volcanoes in the Pacific Ring of Fire (Alaska, Japan, Kamchatka, Northern and Central America and Papua New Guinea) and hot spot volcanoes (on Iceland and Hawaii). The release of iron as a function of time was determined in situ in seawater by means of Cathodic Stripping Voltammetry. Our experiments show that: A) volcanic ash from both SZ and hot spot volcanic areas mobilise significant amounts of iron, B) with the highest mobilisation rates within the first 10-20 minutes and C) indicate that volcanic ash from hot spot volcanoes mobilise less iron than volcanic ash from SZ. We propose that the higher iron-mobilisation potential of SZ volcanic ash results from higher HCl/HF ratios in SZ volcanic gases that seem to be involved in the formation of Fe-bearing soluble salt coatings (condensed gases and adsorbed aerosols) on ash particles (1,2,3). Higher HCl/HF ratios in SZ volcanic gases thus appear to be linked to the recycling of seawater through subduction of oceanic lithosphere at destructive plate margins. Together, taking into account differences in ash-fluxes from SZ and hot spot volcanoes into the oceans, our study suggests that SZ volcanic ash plays a more important role for the global surface ocean iron budget than ash from volcanoes in hot spot areas. 1 Frogner, Gislason, Oskarsson (2001). Geology, 29, 487-490. 2 Duggen, Croot, Schacht, Hofmann (2007) Geoph. Res. Letters 34, 5. 3 Oskarsson (1980), J. Volc. and Geoth. Res. 8, 251-266.

  17. Surface signature of Mediterranean water eddies in the Northeastern Atlantic: effect of the upper ocean stratification

    Directory of Open Access Journals (Sweden)

    I. Bashmachnikov

    2012-11-01

    Full Text Available Meddies, intra-thermocline eddies of Mediterranean water, can often be detected at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry.

    While pushing its way through the water column, a meddy raises isopycnals above. As a consequence of potential vorticity conservation, negative relative vorticity is generated in the upper layer. During the initial period of meddy acceleration after meddy formation or after a stagnation stage, a cyclonic signal is also generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy.

    Based on geostrophy and potential vorticity balance, we present theoretical estimates of the intensity of the surface signature. It appears to be proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Using climatic distribution of the stratification intensity, we claim that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 10–15 km should lie in the subtropics (35–45° N, while large meddies (with radii of 25–30 km could be detected as far south as the northern tropics (25–35° N. Those results agree with observations.

  18. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-31 to 2005-12-26 (NCEI Accession 0144531)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144531 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean, South Pacific Ocean and others from 2007-02-04 to 2007-03-16 (NCEI Accession 0144252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144252 includes Surface underway data collected from ROGER REVELLE in the Indian Ocean, South Pacific Ocean, Southern Oceans (> 60 degrees South)...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2004-12-30 to 2005-11-20 (NCEI Accession 0148772)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148772 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-21 (NCEI Accession 0148771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0148771 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean and others from 2008-12-31 to 2009-12-22 (NCEI Accession 0144533)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144533 includes Surface underway data collected from LAURENCE M. GOULD in the North Pacific Ocean, South Atlantic Ocean, South Pacific Ocean and...

  3. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  4. An Anisotropic Ocean Surface Emissivity Model Based on WindSat Polarimetric Brightness Observations

    Science.gov (United States)

    Smith, D. F.; Gasiewski, A. J.; Sandeep, S.; Weber, B. L.

    2012-12-01

    The goal of this research has been to develop a standardized fast full-Stokes ocean surface emissivity model with Jacobian for a wind-driven ocean surface applicable at arbitrary microwave frequencies, polarizations, and incidence angles. The model is based on the Ohio State University (OSU) two-scale code for surface emission developed by Johnson (2006, IEEE TGRS, 44, 560) but modified as follows: (1) the Meissner-Wentz dielectric permittivity (2012, IEEE TGRS, 50, 3004) replaces the original permittivity, (2) the Elfouhaily sea surface spectrum (1997, JGR, 102, C7,15781) replaces the Durden-Vesecky spectrum (1985, IEEE TGRS, OE-10, 445), but the Durden-Vesecky angular spreading function is retained, (3) the high-frequency portion of the Elfouhaily spectrum is multiplied by the Pierson-Moskowitz shape spectrum to correct an error in the original paper, (4) the generalized Phillips-Kitaigorodskii equilibrium range parameter for short waves is modeled as a continuous function of the friction velocity at the water surface to eliminate a discontinuous jump in the original paper. A total of five physical tuning parameters were identified, including the spectral strength and the hydrodynamic modulation factor. The short wave part of the spectrum is also allowed to have an arbitrary ratio relative to the long wave part. The foam fraction is multiplied by a variable correction factor, and also modulated to allow an anisotropic foam fraction with more foam on the leeward side of a wave. The model is being tuned against multi-year sequences of WindSat and Special Sensor Microwave/Imager (SSMI) data as analyzed by Meissner and Wentz (2012, IEEE TGRS, 50, 3004) for up to four Stokes brightnesses and in all angular harmonics up to two in twenty five wind bins from 0.5-25.5 m/s and of 1 m/s width. As a result there are 40 brightnesses per wind bin, for a total of 1000 brightnesses used to constrain the modified model. A chi-squared tuning criterion based on error standard

  5. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma).

    Science.gov (United States)

    Wolfe, Kennedy; Dworjanyn, Symon A; Byrne, Maria

    2013-09-01

    Co-occurring ocean warming, acidification and reduced carbonate mineral saturation have significant impacts on marine biota, especially calcifying organisms. The effects of these stressors on development and calcification in newly metamorphosed juveniles (ca. 0.5 mm test diameter) of the intertidal sea urchin Heliocidaris erythrogramma, an ecologically important species in temperate Australia, were investigated in context with present and projected future conditions. Habitat temperature and pH/pCO2 were documented to place experiments in a biologically and ecologically relevant context. These parameters fluctuated diurnally up to 10 °C and 0.45 pH units. The juveniles were exposed to three temperature (21, 23 and 25 °C) and four pH (8.1, 7.8, 7.6 and 7.4) treatments in all combinations, representing ambient sea surface conditions (21 °C, pH 8.1; pCO2 397; ΩCa 4.7; ΩAr 3.1), near-future projected change (+2-4 °C, -0.3-0.5 pH units; pCO2 400-1820; ΩCa 5.0-1.6; ΩAr 3.3-1.1), and extreme conditions experienced at low tide (+4 °C, -0.3-0.7 pH units; pCO2 2850-2967; ΩCa 1.1-1.0; ΩAr 0.7-0.6). The lowest pH treatment (pH 7.4) was used to assess tolerance levels. Juvenile survival and test growth were resilient to current and near-future warming and acidification. Spine development, however, was negatively affected by near-future increased temperature (+2-4 °C) and extreme acidification (pH 7.4), with a complex interaction between stressors. Near-future warming was the more significant stressor. Spine tips were dissolved in the pH 7.4 treatments. Adaptation to fluctuating temperature-pH conditions in the intertidal may convey resilience to juvenile H. erythrogramma to changing ocean conditions, however, ocean warming and acidification may shift baseline intertidal temperature and pH/pCO2 to levels that exceed tolerance limits. © 2013 John Wiley & Sons Ltd.

  6. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    Science.gov (United States)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  7. Modeled Oceanic Response and Sea Surface Cooling to Typhoon Kai-Tak

    Directory of Open Access Journals (Sweden)

    Yu-Heng Tseng

    2010-01-01

    Full Text Available An ocean response to typhoon Kai-Tak is simulated using an accurate fourth-order, basin-scale ocean model. The surface winds of typhoon Kai-Tak were obtained from QuikSCAT satellite images blended with the ECMWF wind fields. An intense nonlinear mesoscale eddy is generated in the northeast South China Sea (SCS with a Rossby number of O(1 and on a 50 - 100 km horizontal scale. Inertial oscillation is clearly observed. Advection dominates as a strong wind shear drives the mixed layer flows outward, away from the typhoon center, thus forcing upwelling from deep levels with a high upwelling velocity (> 30 m day-1. A drop in sea surface temperature (SST of more than 9°C is found in both observation and simulation. We attribute this significant SST drop to the influence of the slow moving typhoon, initial stratification and bathymetry-induced upwelling in the northeast of the SCS where the typhoon hovered.

  8. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    Science.gov (United States)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-12-01

    In eastern East Africa (the southern Ethiopia, eastern Kenya and southern Somalia region), poor boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent East African droughts to a stronger Walker circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant modes of East African boreal spring rainfall variability are tied to SST fluctuations in the western central Pacific and central Indian Ocean, respectively. Variations in these two rainfall modes can thus be predicted using two SST indices - the western Pacific gradient (WPG) and central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-validated skill (rcv ≈ 0.6). In contrast, the current generation of coupled forecast models show no skill during the long rains. Our SST indices also appear to capture most of the major recent drought events such as 2000, 2009 and 2011. Predictions based on these simple indices can be used to support regional forecasting efforts and land surface data assimilations to help inform early warning and guide climate outlooks.

  10. Lagrangian modelling of ocean surface waves and synthetic aperture radar wave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fouques, Sebastien

    2005-07-01

    The present thesis is concerned with the estimation of the ocean wave spectrum from synthetic aperture radar imaging and the modelling of ocean surface waves using the Lagrangian formalism. The first part gives a short overview of the theories of ocean surface waves and synthetic aperture radar (SAR) whereas the second part consists of five independent publications. The first two articles investigate the influence of the radar backscatter model on the SAR imaging of ocean waves. In Article I, Monte Carlo simulations of SAR images of the ocean surface are carried out using a nonlinear backscatter model that include both specular reflection and Bragg scattering and the results are compared to simulations from the classical Hasselmann integral transform (Hasselmann and Hasselmann, 1991). It is shown that nonlinearities in the backscatter model strongly influence the imaging of range-travelling waves and that the former can suppress the range-splitting effect (Bruning et al., 1988). Furthermore, in Article II a database of Envisat-ASAR Wave Mode products co-located with directional wave spectra from the numerical model WAM and which contains range-travelling wave cases only, is set up. The WAM spectra are used as input to several ocean-to-SAR integral transforms, with various real aperture radar (RAR) models and the obtained SAR image cross-spectra are compared to the Envisat-ASAR observations. A first result is that the use of a linear backscatter model leads to a high proportion of non-physical negative backscatter values in the RAR image, as suggested by Schulz-Stellenfleth (2001). Then, a comparison between the observed SAR cross-spectra and the ones simulated through Hasselmann's integral transform reveals that only twenty percents of the observations show a range-splitting effect as strong as in the simulations. A much better agreement is obtained when using the integral transform by Schulz-Stellenfleth (2003), which is based on a nonlinear hackscatter model

  11. Ocean Circulation

    OpenAIRE

    Thompson, Andrew F.; Rahmstorf, Stefan

    2009-01-01

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In ...

  12. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  13. Reconstructing surface ocean circulation with129I time series records from corals.

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S; Jull, A J Timothy; Russell, Joellen L; Biddulph, Dana; White, Lara; Prouty, Nancy G; Chen, Yue-Gau; Shen, Chuan-Chou; Zhou, Weijian; Lam, Doan Dinh

    2016-12-01

    The long-lived radionuclide 129 I (half-life: 15.7 × 10 6  yr) is well-known as a useful environmental tracer. At present, the global 129 I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129 I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129 I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129 I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129 I record features a sudden increase in 129 I in 1959. The Xisha coral shows similar peak values for 129 I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129 I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129 I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129 I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129 I time series data provide a broad picture of the surface distribution and depth penetration of 129 I in the Pacific Ocean over the past 60 years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Reconstructing surface ocean circulation with 129I time series records from corals

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S.; Jull, A. J. Timothy; Russell, Joellen L.; Biddulph, Dana; White, Lara; Prouty, Nancy G.; Chen, Yue-Gau; Chuan-Chou Shen,; Zhou, Weijian; Lam, Doan Dinh

    2016-01-01

    The long-lived radionuclide 129I (half-life: 15.7 × 106 yr) is well-known as a useful environmental tracer. At present, the global 129I in surface water is about 1–2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129I record features a sudden increase in 129I in 1959. The Xisha coral shows similar peak values for 129I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129I time series data provide a broad picture of the surface distribution and depth penetration of 129I in the Pacific Ocean over the past 60 years.

  15. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  16. Investigation of the interactions of critical scale-up parameters (pH, pO2 and pCO2) on CHO batch performance and critical quality attributes.

    Science.gov (United States)

    Brunner, Matthias; Fricke, Jens; Kroll, Paul; Herwig, Christoph

    2017-02-01

    Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO 2 and pCO 2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO 2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO 2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.

  17. Ocean Surface Topography Mission (OSTM) /Jason-3: Near Real-Time Altimetry Validation System (NRTAVS) QA Reports, 2015 - (NCEI Accession 0122600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Jason-3 is the fourth mission in U.S.-European series of satellite missions that measure the height of the ocean surface. Scheduled to launch in 2015, the mission...

  18. The Sentinel-3 Surface Topography Mission (S-3 STM): Level 2 SAR Ocean Retracker

    Science.gov (United States)

    Dinardo, S.; Lucas, B.; Benveniste, J.

    2015-12-01

    The SRAL Radar Altimeter, on board of the ESA Mission Sentinel-3 (S-3), has the capacity to operate either in the Pulse-Limited Mode (also known as LRM) or in the novel Synthetic Aperture Radar (SAR) mode. Thanks to the initial results from SAR Altimetry obtained exploiting CryoSat-2 data, lately the interest by the scientific community in this new technology has significantly increased and consequently the definition of accurate processing methodologies (along with validation strategies) has now assumed a capital importance. In this paper, we present the algorithm proposed to retrieve from S-3 STM SAR return waveforms the standard ocean geophysical parameters (ocean topography, wave height and sigma nought) and the validation results that have been so far achieved exploiting the CryoSat-2 data as well as the simulated data. The inversion method (retracking) to extract from the return waveform the geophysical information is a curve best-fitting scheme based on the bounded Levenberg-Marquardt Least-Squares Estimation Method (LEVMAR-LSE). The S-3 STM SAR Ocean retracking algorithm adopts, as return waveform’s model, the “SAMOSA” model [Ray et al, 2014], named after the R&D project SAMOSA (led by Satoc and funded by ESA), in which it has been initially developed. The SAMOSA model is a physically-based model that offers a complete description of a SAR Altimeter return waveform from ocean surface, expressed in the form of maps of reflected power in Delay-Doppler space (also known as stack) or expressed as multilooked echoes. SAMOSA is able to account for an elliptical antenna pattern, mispointing errors in roll and yaw, surface scattering pattern, non-linear ocean wave statistics and spherical Earth surface effects. In spite of its truly comprehensive character, the SAMOSA model comes with a compact analytical formulation expressed in term of Modified Bessel functions. The specifications of the retracking algorithm have been gathered in a technical document (DPM

  19. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Science.gov (United States)

    Kleidon, Axel; Renner, Maik

    2017-09-01

    Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface-atmosphere system to maintain turbulent fluxes over day and night, while the land surface-atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface-atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface-atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  20. The Role of Carbon Concentrating Mechanisms in the Varied Response of the Green Macroalga, Ulva Lactuca, To Ocean Acidification

    Science.gov (United States)

    Scoma, S. R.; Kubler, J.; Nisumaa, A. M.

    2016-02-01

    The majority of fleshy macroalgae, across all groups, contain carbon-concentrating mechanisms (CCMs) that facilitate use of dissolved inorganic carbon. Rising atmospheric CO2 concentrations and the resulting shift in seawater carbonate chemistry (ocean acidification, OA) may have varying effects on algae depending on their mode of inorganic carbon concentration, if any, and its regulation. Energetic costs of carbon uptake mechanisms may change with rising pCO2 and that may explain the variability in effects of OA on growth and photosynthesis. We investigated the relative activity of CCMs in the green alga Ulva lactuca across a range of atmospheric CO2 concentrations (385-1200 μatm) spanning recent concentrations to the high end predictions for 2100 (IPCC). U. lactuca is a fast growing species with a well characterized, multistep CCM that uses HCO3- to saturate photosynthesis with inorganic carbon. To test for responses to OA, we cultured the alga for 21 days at various pCO2 concentrations. A pH drift experiment was then performed to determine the relative activity of the CCMs if present. The CCM of Ulva showed a potentially bimodal response with sustained activity of bicarbonate anion exchange proteins in some individuals with a declining efficiency of external carbonic anhydrase, as pCO2 increased. The growth rate was enhanced by intermediate pCO2 relative to recent and very high pCO2. The results indicate that the CCM of Ulva is regulated in response to ocean acidification, and there is substantial variation between individual responses. This concurs with the finding that growth increases in Ulva as pCO2 increases, but indicates an upper threshold of this benefit and potentially high variation within populations.

  1. Coccolithophore surface distributions in the North Atlantic and their modulation of the air-sea flux of CO2 from 10 years of satellite Earth observation data

    Directory of Open Access Journals (Sweden)

    J. D. Shutler

    2013-04-01

    Full Text Available Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3. These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50% and their calcification can affect the atmosphere-to-ocean (air-sea uptake of carbon dioxide (CO2 through increasing the seawater partial pressure of CO2 (pCO2. Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007, using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS. We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C production of 0.14–1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production can fluctuate inter-annually by −54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO climate oscillation index (r=0.75, pE. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3–28%.

  2. The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses

    Science.gov (United States)

    Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie

    2017-04-01

    As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant

  3. Analysis of the global ocean sampling (GOS project for trends in iron uptake by surface ocean microbes.

    Directory of Open Access Journals (Sweden)

    Eve Toulza

    Full Text Available Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+ versus Fe(3+ uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.

  4. A Note on the Relationship of Temperature and Water Vapor over Oceans, as well as the Sea Surface Temperature Impact

    Science.gov (United States)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2005-01-01

    This note follows up on a recent study by Shie et al. (2005) and extends the investigation of the domain-averaged moisture-temperature (Q-T) relationship from the Tropics (i.e., the previous study) to the tropical Pacific, Atlantic and Indian Oceans. The Q and T data examined in this study are obtained from the GEOS-3 [Goddard Earth Observing System Version-3] global re-analysis monthly products. Similar to what was found earlier in the Tropics, Q is also found to increase with T over the entire oceanic region; however, Q increases faster with T over oceans than over the Tropics. The Q-T distribution for the Tropics is in a quasi-linear relationship, which is embedded in a global Q-T distribution that is, however, in a more complex curvilinear relationship. The Q-T distribution over the oceanic regions seems to fall within the lower bound (ie., the relatively colder and driver regime) of the tropical Q-T distribution. T over oceans is also found increasing with SST (sea surface temperature), which seemingly implies that an air mass might have gained heat more readily from a warmer ocean as compared to a colder ocean. Q is also found to increase with SST in a manner that quantitatively resembles an earlier finding by Stevens (1990). We also found that relative humidity exhibits similar behaviors for oceanic and tropical regions, respectively, i.e., it increases with both SST and T over oceans and increases with T in the Tropics (Shie et al. 2005). All these similar features found between oceanic and tropical regions seem to inform us that oceans</