WorldWideScience

Sample records for surface normal optoelectronic

  1. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  2. Computational design of surfaces, nanostructures and optoelectronic materials

    Science.gov (United States)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  3. Laser assisted fabrication of random rough surfaces for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Brissonneau, V., E-mail: vincent.brissonneau@im2np.fr [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Escoubas, L. [Institut Materiaux Microelectronique Nanosciences de Provence, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France); Flory, F. [Institut Materiaux Microelectronique Nanosciences de Provence, Ecole Centrale Marseille, Marseille (France); Berginc, G. [Thales Optronique SA, Avenue Gay-Lussac, 78995 Elancourt (France); Maire, G.; Giovannini, H. [Institut Fresnel, Aix Marseille Universite, Avenue Escadrille Normandie Niemen, 13397 Marseille (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Random rough surfaces are photofabricated using an argon ion laser. Black-Right-Pointing-Pointer Speckle and surface correlation function are linked. Black-Right-Pointing-Pointer Exposure beam is modified allowing tuning the correlation. Black-Right-Pointing-Pointer Theoretical examples are presented. Black-Right-Pointing-Pointer Experimental results are compared with theoretical expectation. - Abstract: Optical surface structuring shows great interest for antireflective or scattering properties. Generally, fabricated surface structures are periodical but random surfaces that offer new degrees of freedom and possibilities by the control of their statistical properties. We propose an experimental method to create random rough surfaces on silicon by laser processing followed by etching. A photoresist is spin coated onto a silicon substrate and then exposed to the scattering of a modified laser beam. The beam modification is performed by using a micromirror matrix allowing laser beam shaping. An example of tuning is presented. An image composed of two white circles with a black background is displayed and the theoretical shape of the correlation is calculated. Experimental surfaces are elaborated and the correlation function calculated from height mapping. We finally compared the experimental and theoretical correlation functions.

  4. Optoelectronic integrated circuits utilising vertical-cavity surface-emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Zakharov, S D; Fyodorov, V B; Tsvetkov, V V

    1999-01-01

    Optoelectronic integrated circuits with additional optical inputs/outputs, in which vertical-cavity surface-emitting (VCSE) lasers perform the data transfer functions, are considered. The mutual relationship and the 'affinity' between optical means for data transfer and processing, on the one hand, and the traditional electronic component base, on the other, are demonstrated in the case of implementation of three-dimensional interconnects with a high transmission capacity. Attention is drawn to the problems encountered when semiconductor injection lasers are used in communication lines. It is shown what role can be played by VCSE lasers in solving these problems. A detailed analysis is made of the topics relating to possible structural and technological solutions in the fabrication of single lasers and of their arrays, and also of the problems hindering integrating of lasers into emitter arrays. Considerable attention is given to integrated circuits with optoelectronic smart pixels. Various technological methods for vertical integration of GaAs VCSE lasers with the silicon substrate of a microcircuit (chip) are discussed. (review)

  5. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    Science.gov (United States)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  6. Correlation of surface contour, optoelectronic and spectroscopic properties of Cu(In,Ga)Se{sub 2} by SNOM and AFM

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Oliver; Heise, Stephan J.; Brueggemann, Rudolf; Meessen, Max; Bauer, Gottfried H. [Institute of Physics, Carl von Ossietzky University Oldenburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2012-07-01

    Chalcopyrite absorbers exhibit local fluctuations of structural, optical and optoelectronic properties. We study the correlation of the surface contour and the local properties such as the integrated photoluminescence (PL) yield and the splitting of the quasi-Fermi levels in a Cu(In,Ga)Se{sub 2}-based thin-film system at room temperature by AFM and spatially resolved PL measurements at the identical position with a scanning near-field optical microscope (SNOM). The Cu(In,Ga)Se{sub 2} layer is deposited on glass, etched with bromine-methanol to smooth the surface for a more homogeneous incoupling of laser light, and passivated with cadmium sulfide. Our measurements reveal a high structural correlation between surface contour, integrated PL yield and quasi-Fermi level splitting. Additionally, we observe trenches in the surface contour which correspond to a dip or to a peak in the splitting of the quasi-Fermi levels and integrated PL yield. Furthermore some trenches show spectral variation of the PL compared to their direct environment. We discuss these observations with respect to the optoelectronic property and the composition of the absorber.

  7. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    Science.gov (United States)

    Lawrence, Katie N.

    Semiconductor nanocrystals (SNCs) are a class of material with one dimension wave function 1) into the ligand monolayer using metal carboxylates and 2) beyond the ligand monolayer to provide strong inter-SNC electronic coupling using poly(ethylene) glycol (PEG)-thiolate was explored. Passivation of the Se sites of metal chalcogenide SNCs by metal carboxylates provided a two-fold outcome: (1) facilitating the delocalization of exciton wave functions into ligand monolayers (through appropriate symmetry matching and energy alignment) and (2) increasing fluorescence quantum yield (through passivation of midgap trap states). An ˜240 meV red-shift in absorbance was observed upon addition of Cd(O2CPh)2, as well as a ˜260 meV shift in emission with an increase in PL-QY to 73%. Through a series of control experiments, as well as full reversibility of our system, we were able to conclude that the observed bathochromic shifts were the sole consequence of delocalization, not a change in size or relaxation of the inorganic core, as previously reported. Furthermore, the outstanding increase in PL-QY was found to be a product of both passivation and delocalization effects. Next we used poly(ethylene) glycol (PEG)-thiolate ligands to passivate the SNC and provide unique solubility properties in both aqueous and organic solvents as well as utilized their highly conductive nature to explore inter-SNC electronic coupling. The electronic coupling was studied: 1) as a function of SNC size where the smallest SNC exhibited the largest coupling energy (170 meV) and 2) as a function of annealing temperature, where an exceptionally large (˜400 meV) coupling energy was observed. This strong electronic coupling in self-organized films could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device applications. Strong inter-SNC electronic coupling together with high solubility, such as that provided by PEG-thiolate-coated CdSe SNCs

  8. Normal Incidence for Graded Index Surfaces

    Science.gov (United States)

    Khankhoje, Uday K.; Van Zyl, Jakob

    2011-01-01

    A plane wave is incident normally from vacuum (eta(sub 0) = 1) onto a smooth surface. The substrate has three layers; the top most layer has thickness d(sub 1) and permittivity epsilon(sub 1). The corresponding numbers for the next layer are d(sub 2); epsilon(sub 2), while the third layer which is semi-in nite has index eta(sub 3). The Hallikainen model [1] is used to relate volumetric soil moisture to the permittivity. Here, we consider the relation for the real part of the permittivity for a typical loam soil: acute epsilon(mv) = 2.8571 + 3.9678 x mv + 118:85 x mv(sup 2).

  9. Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films.

    Science.gov (United States)

    Lian, Qing; Chen, Mu; Mokhtar, Muhamad Z; Wu, Shanglin; Zhu, Mingning; Whittaker, Eric; O'Brien, Paul; Saunders, Brian R

    2018-05-07

    Blends of semiconducting nanocrystals and conjugated polymers continue to attract major research interest because of their potential applications in optoelectronic devices, such as solar cells, photodetectors and light-emitting diodes. In this study we investigate the surface structure, morphological and optoelectronic properties of multilayer films constructed from ZnO nanocrystals (NCs) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV). The effects of layer number and ZnO concentration (C ZnO ) used on the multilayer film properties are investigated. An optimised solvent blend enabled well-controlled layers to be sequentially spin coated and the construction of multilayer films containing six ZnO NC (Z) and MDMO-PPV (M) layers (denoted as (ZM) 6 ). Contact angle data showed a strong dependence on C ZnO and indicated distinct differences in the coverage of MDMO-PPV by the ZnO NCs. UV-visible spectroscopy showed that the MDMO-PPV absorption increased linearly with the number of layers in the films and demonstrates highly tuneable light absorption. Photoluminescence spectra showed reversible quenching as well as a surprising red-shift of the MDMO-PPV emission peak. Solar cells were constructed to probe vertical photo-generated charge transport. The measurements showed that (ZM) 6 devices prepared using C ZnO = 14.0 mg mL -1 had a remarkably high open circuit voltage of ∼800 mV. The device power conversion efficiency was similar to that of a control bilayer device prepared using a much thicker MDMO-PPV layer. The results of this study provide insight into the structure-optoelectronic property relationships of new semiconducting multilayer films which should also apply to other semiconducting NC/polymer combinations.

  10. Optimization of light out-coupling in optoelectronic devices using nanostructured surface

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    C and GaN, these developed methods could be applied to other semicon ductors such as Si, etc. Furthermore, all optoelectronic devices having an optical interface such as solar cells, photo - detectors, could benefit from these developed methods for opto - electronic performance improvement....... the overall efficiency of the LEDs. In this paper we have developed various methods for two important semiconductors: silicon carbide (SiC) and gallium nitride (GaN), and demonstrated enormous extraction efficiency enhancement. SiC is an important su bstrate for LED devices. It has refractive index of 2.......6, and only a few percent of light could escape from it. We have developed periodic nanocone structures by using electron - beam lithography, periodic nanodome structures by using nanosphere lithography, random nanostructures by using self - assembled metal nanoparticles, and random nanostructures by directly...

  11. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    Science.gov (United States)

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  12. Organic optoelectronics

    CERN Document Server

    Hu, Wenping; Gong, Xiong; Zhan, Xiaowei; Fu, Hongbing; Bjornholm, Thomas

    2012-01-01

    Written by internationally recognized experts in the field with academic as well as industrial experience, this book concisely yet systematically covers all aspects of the topic.The monograph focuses on the optoelectronic behavior of organic solids and their application in new optoelectronic devices. It covers organic electroluminescent materials and devices, organic photonics, materials and devices, as well as organic solids in photo absorption and energy conversion. Much emphasis is laid on the preparation of functional materials and the fabrication of devices, from materials synthesis a

  13. Optoelectronic Mounting Structure

    Science.gov (United States)

    Anderson, Gene R.; Armendariz, Marcelino G.; Baca, Johnny R. F.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reber, Cathleen A.; Reysen, Bill H.

    2004-10-05

    An optoelectronic mounting structure is provided that may be used in conjunction with an optical transmitter, receiver or transceiver module. The mounting structure may be a flexible printed circuit board. Thermal vias or heat pipes in the head region may transmit heat from the mounting structure to the heat spreader. The heat spreader may provide mechanical rigidity or stiffness to the heat region. In another embodiment, an electrical contact and ground plane may pass along a surface of the head region so as to provide an electrical contact path to the optoelectronic devices and limit electromagnetic interference. In yet another embodiment, a window may be formed in the head region of the mounting structure so as to provide access to the heat spreader. Optoelectronic devices may be adapted to the heat spreader in such a manner that the devices are accessible through the window in the mounting structure.

  14. Surface tension of normal and heavy water

    International Nuclear Information System (INIS)

    Straub, J.; Rosner, N.; Grigull, V.

    1980-01-01

    A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard. The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the 'Scaling Laws'. In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data. (orig.) [de

  15. Normal Isocurvature Surfaces and Special Isocurvature Circles (SIC)

    Science.gov (United States)

    Manoussakis, Gerassimos; Delikaraoglou, Demitris

    2010-05-01

    An isocurvature surface of a gravity field is a surface on which the value of the plumblines' curvature is constant. Here we are going to study the isocurvature surfaces of the Earth's normal gravity field. The normal gravity field is a symmetric gravity field therefore the isocurvature surfaces are surfaces of revolution. But even in this case the necessary relations for their study are not simple at all. Therefore to study an isocurvature surface we make special assumptions to form a vector equation which will hold only for a small coordinate patch of the isocurvature surface. Yet from the definition of the isocurvature surface and the properties of the normal gravity field is possible to express very interesting global geometrical properties of these surfaces without mixing surface differential calculus. The gradient of the plumblines' curvature function is vertical to an isocurvature surface. If P is a point of an isocurvature surface and "Φ" is the angle of the gradient of the plumblines' curvature with the equatorial plane then this direction points to the direction along which the curvature of the plumbline decreases / increases the most, and therefore is related to the strength of the normal gravity field. We will show that this direction is constant along a line of curvature of the isocurvature surface and this line is an isocurvature circle. In addition we will show that at each isocurvature surface there is at least one isocurvature circle along which the direction of the maximum variation of the plumblines' curvature function is parallel to the equatorial plane of the ellipsoid of revolution. This circle is defined as a Special Isocurvature Circle (SIC). Finally we shall prove that all these SIC lye on a special surface of revolution, the so - called SIC surface. That is to say, a SIC is not an isolated curve in the three dimensional space.

  16. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system

    Science.gov (United States)

    Scherbak, Aleksandr; Yulmetova, Olga

    2018-05-01

    A pulsed fiber laser with the wavelength 1.06 μm was used to treat titanium nitride film deposited on beryllium substrates in the air with intensities below an ablation threshold to provide oxide formation. Laser oxidation results were predicted by the chemical thermodynamic method and confirmed by experimental techniques (X-ray diffraction). The developed technology of contrast image formation is intended to be used for optoelectronic read-out system.

  17. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  18. Body surface area prediction in normal, hypermuscular, and obese mice.

    Science.gov (United States)

    Cheung, Michael C; Spalding, Paul B; Gutierrez, Juan C; Balkan, Wayne; Namias, Nicholas; Koniaris, Leonidas G; Zimmers, Teresa A

    2009-05-15

    Accurate determination of body surface area (BSA) in experimental animals is essential for modeling effects of burn injury or drug metabolism. Two-dimensional surface area is related to three-dimensional body volume, which in turn can be estimated from body mass. The Meeh equation relates body surface area to the two-thirds power of body mass, through a constant, k, which must be determined empirically by species and size. We found older values of k overestimated BSA in certain mice; thus we determined empirically k for various strains of normal, obese, and hypermuscular mice. BSA was computed from digitally scanned pelts and nonlinear regression analysis was used to determine the best-fit k. The empirically determined k for C57BL/6J mice of 9.82 was not significantly different from other inbred and outbred mouse strains of normal body composition. However, mean k of the nearly spheroid, obese lepr(db/db) mice (k = 8.29) was significantly lower than for normals, as were values for dumbbell-shaped, hypermuscular mice with either targeted deletion of the myostatin gene (Mstn) (k = 8.48) or with skeletal muscle specific expression of a dominant negative myostatin receptor (Acvr2b) (k = 8.80). Hypermuscular and obese mice differ substantially from normals in shape and density, resulting in considerably altered k values. This suggests Meeh constants should be determined empirically for animals of altered body composition. Use of these new, improved Meeh constants will allow greater accuracy in experimental models of burn injury and pharmacokinetics.

  19. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  20. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  1. Stability analysis of rough surfaces in adhesive normal contact

    Science.gov (United States)

    Rey, Valentine; Bleyer, Jeremy

    2018-03-01

    This paper deals with adhesive frictionless normal contact between one elastic flat solid and one stiff solid with rough surface. After computation of the equilibrium solution of the energy minimization principle and respecting the contact constraints, we aim at studying the stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables qualifying the solution as stable or unstable and that gives the instability modes. This method has a low computational cost since no linear system inversion is required and is also suitable for parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.

  2. Integrated silicon optoelectronics

    CERN Document Server

    Zimmermann, Horst

    2000-01-01

    'Integrated Silicon Optoelectronics'assembles optoelectronics and microelectronics The book concentrates on silicon as the major basis of modern semiconductor devices and circuits Starting from the basics of optical emission and absorption and from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included The book, furthermore, contains a review of the state of research on eagerly expected silicon light emitters In order to cover the topic of the book comprehensively, integrated waveguides, gratings, and optoelectronic power devices are included in addition Numerous elaborate illustrations promote an easy comprehension 'Integrated Silicon Optoelectronics'will be of value to engineers, physicists, and scientists in industry and at universities The book is also recommendable for graduate students speciali...

  3. Organic optoelectronic materials

    CERN Document Server

    Li, Yongfang

    2015-01-01

    This volume reviews the latest trends in organic optoelectronic materials. Each comprehensive chapter allows graduate students and newcomers to the field to grasp the basics, whilst also ensuring that they have the most up-to-date overview of the latest research. Topics include: organic conductors and semiconductors; conducting polymers and conjugated polymer semiconductors, as well as their applications in organic field-effect-transistors; organic light-emitting diodes; and organic photovoltaics and transparent conducting electrodes. The molecular structures, synthesis methods, physicochemical and optoelectronic properties of the organic optoelectronic materials are also introduced and described in detail. The authors also elucidate the structures and working mechanisms of organic optoelectronic devices and outline fundamental scientific problems and future research directions. This volume is invaluable to all those interested in organic optoelectronic materials.

  4. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  5. FABRICATION, MORPHOLOGICAL AND OPTOELECTRONIC ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... porous silicon has better optoelectronic properties than bulk .... Measurement: The morphological properties of PS layer such as nanocrystalline size, the .... excess carrier removal by internal recombination and diffusion.

  6. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    Directory of Open Access Journals (Sweden)

    Huazhong Ren

    2015-03-01

    Full Text Available Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF is first extended to the thermal infrared (TIR domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  7. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  8. Preliminary surface analysis of etched, bleached, and normal bovine enamel

    International Nuclear Information System (INIS)

    Ruse, N.D.; Smith, D.C.; Torneck, C.D.; Titley, K.C.

    1990-01-01

    X-ray photoelectron spectroscopic (XPS) and secondary ion-mass spectroscopic (SIMS) analyses were performed on unground un-pumiced, unground pumiced, and ground labial enamel surfaces of young bovine incisors exposed to four different treatments: (1) immersion in 35% H2O2 for 60 min; (2) immersion in 37% H3PO4 for 60 s; (3) immersion in 35% H2O2 for 60 min, in distilled water for two min, and in 37% H3PO4 for 60 s; (4) immersion in 37% H3PO4 for 60 s, in distilled water for two min, and in 35% H2O2 for 60 min. Untreated unground un-pumiced, unground pumiced, and ground enamel surfaces, as well as synthetic hydroxyapatite surfaces, served as controls for intra-tooth evaluations of the effects of different treatments. The analyses indicated that exposure to 35% H2O2 alone, besides increasing the nitrogen content, produced no other significant change in the elemental composition of any of the enamel surfaces investigated. Exposure to 37% H3PO4, however, produced a marked decrease in calcium (Ca) and phosphorus (P) concentrations and an increase in carbon (C) and nitrogen (N) concentrations in unground un-pumiced specimens only, and a decrease in C concentration in ground specimens. These results suggest that the reported decrease in the adhesive bond strength of resin to 35% H2O2-treated enamel is not caused by a change in the elemental composition of treated enamel surfaces. They also suggest that an organic-rich layer, unaffected by acid-etching, may be present on the unground un-pumiced surface of young bovine incisors. This layer can be removed by thorough pumicing or by grinding. An awareness of its presence is important when young bovine teeth are used in a model system for evaluation of resin adhesiveness

  9. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  10. Perspectives in optoelectronics

    National Research Council Canada - National Science Library

    Jha, Sudhanshu S

    1995-01-01

    ..., optoelectronics is playing a major role in both applied as well as basic sciences. In years to come, i t is destined to change the face of information technology and robotics, involving optical sensing and control, information storage, signal and image processing, communications, and computing. Because of the possibility of using large bandwidths availa...

  11. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  12. Terahertz optoelectronics in graphene

    International Nuclear Information System (INIS)

    Otsuji, Taiichi

    2016-01-01

    Graphene has attracted considerable attention due to its extraordinary carrier transport, optoelectronic, and plasmonic properties originated from its gapless and linear energy spectra enabling various functionalities with extremely high quantum efficiencies that could never be obtained in any existing materials. This paper reviews recent advances in graphene optoelectronics particularly focused on the physics and device functionalities in the terahertz (THz) electromagnetic spectral range. Optical response of graphene is characterized by its optical conductivity and nonequilibrium carrier energy relaxation dynamics, enabling amplification of THz radiation when it is optically or electrically pumped. Current-injection THz lasing has been realized very recently. Graphene plasmon polaritons can greatly enhance the THz light and graphene matter interaction, enabling giant enhancement in detector responsivity as well as amplifier/laser gain. Graphene-based van der Waals heterostructures could give more interesting and energy-efficient functionalities. (author)

  13. Insulating materials for optoelectronics

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.

    1990-01-01

    Optoelectronics is an interdisciplinary field. Basic functions of an optoelectronic system include the generator of the optical signal, its transmission and handling and, finally, its detection, storage and display. A large variety of semiconductor and insulating materials are used or are being considered to perform those functions. The authors focus on insulating materials, mostly oxides. For signal generation, tunable solid state lasers, either vibronic or those based oon colour centres are briefly described, and their main operating parameters summarized. Reference is made to some developments on fiber and waveguide lasers. Relevant physical features of the silica fibres used for low-loss, long-band, optical transmission are reviewed, as well as present efforts to further reduce attenuation in the mid-infrared range. Particular attention is paid to photorefractive materials (LiNbO 3 , BGO, BSO, etc.), which are being investigated

  14. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  15. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  16. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  17. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  18. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated,

  19. Continuum modeling of ion-beam eroded surfaces under normal incidence: Impact of stochastic fluctuations

    International Nuclear Information System (INIS)

    Dreimann, Karsten; Linz, Stefan J.

    2010-01-01

    Graphical abstract: Deterministic surface pattern (left) and its stochastic counterpart (right) arising in a stochastic damped Kuramoto-Sivashinsky equation that serves as a model equation for ion-beam eroded surfaces and is systematically investigated. - Abstract: Using a recently proposed field equation for the surface evolution of ion-beam eroded semiconductor target materials under normal incidence, we systematically explore the impact of additive stochastic fluctuations that are permanently present during the erosion process. Specifically, we investigate the dependence of the surface roughness, the underlying pattern forming properties and the bifurcation behavior on the strength of the fluctuations.

  20. Materials for optoelectronic devices, OEICs and photonics

    International Nuclear Information System (INIS)

    Schloetterer, H.; Quillec, M.; Greene, P.D.; Bertolotti, M.

    1991-01-01

    The aim of the contributors in this volume is to give a current overview on the basic properties of nonlinear optical materials for optoelectronics and integrated optics. They provide a cross-linkage between different materials (III-V, II-VI, Si-Ge, etc.), various sample dimensions (from bulk crystals to quantum dots), and a range of techniques from growth (LPE to MOMBE) and for processing from surface passivation to ion beams. Major growth techniques and materials are discussed, including the sophisticated technologies required to exploit the exciting properties of low dimensional semiconductors. These proceedings will prove an invaluable guide to the current state of optoelectronic materials development, as well as indicating the growth techniques that will be in use around the year 2000

  1. Asymptotic Normality of the Optimal Solution in Multiresponse Surface Mathematical Programming

    OpenAIRE

    Díaz-García, José A.; Caro-Lopera, Francisco J.

    2015-01-01

    An explicit form for the perturbation effect on the matrix of regression coeffi- cients on the optimal solution in multiresponse surface methodology is obtained in this paper. Then, the sensitivity analysis of the optimal solution is studied and the critical point characterisation of the convex program, associated with the optimum of a multiresponse surface, is also analysed. Finally, the asymptotic normality of the optimal solution is derived by the standard methods.

  2. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing

  3. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  4. Normal Contacts of Lubricated Fractal Rough Surfaces at the Atomic Scale

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    The friction of contacting interfaces is a function of surface roughness and applied normal load. Under boundary lubrication, this frictional behavior changes as a function of lubricant wettability, viscosity, and density, by practically decreasing the possibility of dry contact. Many studies on

  5. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau; Lin, Chun-Ho

    2017-01-01

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a

  6. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  7. Reconfigurable Integrated Optoelectronics

    Directory of Open Access Journals (Sweden)

    Richard Soref

    2011-01-01

    Full Text Available Integrated optics today is based upon chips of Si and InP. The future of this chip industry is probably contained in the thrust towards optoelectronic integrated circuits (OEICs and photonic integrated circuits (PICs manufactured in a high-volume foundry. We believe that reconfigurable OEICs and PICs, known as ROEICs and RPICs, constitute the ultimate embodiment of integrated photonics. This paper shows that any ROEIC-on-a-chip can be decomposed into photonic modules, some of them fixed and some of them changeable in function. Reconfiguration is provided by electrical control signals to the electro-optical building blocks. We illustrate these modules in detail and discuss 3D ROEIC chips for the highest-performance signal processing. We present examples of our module theory for RPIC optical lattice filters already constructed, and we propose new ROEICs for directed optical logic, large-scale matrix switching, and 2D beamsteering of a phased-array microwave antenna. In general, large-scale-integrated ROEICs will enable significant applications in computing, quantum computing, communications, learning, imaging, telepresence, sensing, RF/microwave photonics, information storage, cryptography, and data mining.

  8. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  9. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid; Garnett, Erik C.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.

    2014-01-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  10. Modeling of normal contact of elastic bodies with surface relief taken into account

    Science.gov (United States)

    Goryacheva, I. G.; Tsukanov, I. Yu

    2018-04-01

    An approach to account the surface relief in normal contact problems for rough bodies on the basis of an additional displacement function for asperities is considered. The method and analytic expressions for calculating the additional displacement function for one-scale and two-scale wavy relief are presented. The influence of the microrelief geometric parameters, including the number of scales and asperities density, on additional displacements of the rough layer is analyzed.

  11. Improved Topographic Normalization for Landsat TM Images by Introducing the MODIS Surface BRDF

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2015-05-01

    Full Text Available In rugged terrain, the accuracy of surface reflectance estimations is compromised by atmospheric and topographic effects. We propose a new method to simultaneously eliminate atmospheric and terrain effects in Landsat Thematic Mapper (TM images based on a 30 m digital elevation model (DEM and Moderate Resolution Imaging Spectroradiometer (MODIS atmospheric products. Moreover, we define a normalized factor of a Bidirectional Reflectance Distribution Function (BRDF to convert the sloping pixel reflectance into a flat pixel reflectance by using the Ross Thick-Li Sparse BRDF model (Ambrals algorithm and MODIS BRDF/albedo kernel coefficient products. Sole atmospheric correction and topographic normalization were performed for TM images in the upper stream of the Heihe River Basin. The results show that using MODIS atmospheric products can effectively remove atmospheric effects compared with the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH model and the Landsat Climate Data Record (CDR. Moreover, superior topographic effect removal can be achieved by considering the surface BRDF when compared with the surface Lambertian assumption of topographic normalization.

  12. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  13. Renal function maturation in children: is normalization to surface area valid?

    International Nuclear Information System (INIS)

    Rutland, M.D.; Hassan, I.M.; Que, L.

    1999-01-01

    Full text: Gamma camera DTPA renograms were analysed to measure renal function by the rate at which the kidneys took up tracer from the blood. This was expressed either directly as the fractional uptake rate (FUR), which is not related to body size, or it was converted to a camera-based GFR by the formula GFR blood volume x FUR, and this GFR was normalized to a body surface area of 1.73 m2. Most of the patients studied had one completely normal kidney, and one kidney with reflux but normal function and no large scars. The completely normal kidneys contributed, on average, 50% of the total renal function. The results were considered in age bands, to display the effect of age on renal function. The camera-GFR measurements showed the conventional results of poor renal function in early childhood, with a slow rise to near-adult values by the age of 2 years, and somewhat low values throughout childhood. The uptake values showed a different pattern, with renal function rising to adult equivalent values by the age of 4 months, and with children having better renal function than adults throughout most of their childhood. The standard deviations expressed as coefficients of variation (CV) were smaller for the FUR technique than the GFR (Wilcoxon rank test, P < 0.01). These results resemble recent published measurements of absolute DMSA uptake, which are also unrelated to body size and show early renal maturation. The results also suggest that the reason children have lower serum creatinine levels than adults is that they have better renal function. If this were confirmed, it would raise doubts about the usefulness of normalizing renal function to body surface area in children

  14. Dynamics of an optically confined nanoparticle diffusing normal to a surface.

    Science.gov (United States)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-06-01

    Here we measure the hindered diffusion of an optically confined nanoparticle in the direction normal to a surface, and we use this to determine the particle-surface interaction profile in terms of the absolute height. These studies are performed using the evanescent field of an optically excited single-mode silicon nitride waveguide, where the particle is confined in a height-dependent potential energy well generated from the balance of optical gradient and surface forces. Using a high-speed cmos camera, we demonstrate the ability to capture the short time-scale diffusion dominated motion for 800-nm-diam polystyrene particles, with measurement times of only a few seconds per particle. Using established theory, we show how this information can be used to estimate the equilibrium separation of the particle from the surface. As this measurement can be made simultaneously with equilibrium statistical mechanical measurements of the particle-surface interaction energy landscape, we demonstrate the ability to determine these in terms of the absolute rather than relative separation height. This enables the comparison of potential energy landscapes of particle-surface interactions measured under different experimental conditions, enhancing the utility of this technique.

  15. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  16. An introduction to optoelectronic sensors

    CERN Document Server

    Tajani, Antonella; Cutolo, Antonello

    2009-01-01

    This invaluable book offers a comprehensive overview of the technologies and applications of optoelectronic sensors. Based on the R&D experience of more than 70 engineers and scientists, highly representative of the Italian academic and industrial community in this area, this book provides a broad and accurate description of the state-of-the-art optoelectronic technologies for sensing. The most innovative approaches, such as the use of photonic crystals, squeezed states of light and microresonators for sensing, are considered. Application areas range from environment to medicine and healthcare

  17. Ultrafast Graphene Photonics and Optoelectronics

    Science.gov (United States)

    2017-04-14

    AFRL-AFOSR-JP-TR-2017-0032 Ultrafast Graphene Photonics and Optoelectronics Kuang-Hsiung Wu National Chiao Tung University Final Report 04/14/2017...DATES COVERED (From - To) 18 Apr 2013 to 17 Apr 2016 4. TITLE AND SUBTITLE Ultrafast Graphene Photonics and Optoelectronics 5a.  CONTRACT NUMBER 5b...Prescribed by ANSI Std. Z39.18 Final Report for AOARD Grant FA2386-13-1-4022 “Ultrafast Graphene Photonics and Optoelectronics” Date May 23th, 2016

  18. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  19. Internal structure of normal maize starch granules revealed by chemical surface gelatinization.

    Science.gov (United States)

    Pan, D D; Jane, J I

    2000-01-01

    Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.

  20. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    International Nuclear Information System (INIS)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong

    1994-01-01

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system

  1. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-06-15

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system.

  2. Identification of surface species by vibrational normal mode analysis. A DFT study

    Science.gov (United States)

    Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker

    2017-10-01

    Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.

  3. From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances.

    Science.gov (United States)

    Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi

    2015-10-01

    We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.

  4. Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals.

    Science.gov (United States)

    Banaee, Touka; Pourreza, Hamidreza; Doosti, Hassan; Abrishami, Mojtaba; Ehsaei, Asieh; Basiry, Mohsen; Pourreza, Reza

    2017-01-01

    To compare the distribution of different sized vessels using digital photographs of the ocular surface of diabetic and normal individuals. In this cross-sectional study, red-free conjunctival photographs of diabetic and normal individuals, aged 30-60 years, were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The image areas occupied by vessels (AOV) of different diameters were calculated. The main outcome measure was the distribution curve of mean AOV of different sized vessels. Secondary outcome measures included total AOV and standard deviation (SD) of AOV of different sized vessels. Two hundred and sixty-eight diabetic patients and 297 normal (control) individuals were included, differing in age (45.50 ± 5.19 vs. 40.38 ± 6.19 years, P distribution curves of mean AOV differed between patients and controls (smaller AOV for larger vessels in patients; P distribution curve of vessels compared to controls. Presence of diabetes mellitus is associated with contraction of larger vessels in the conjunctiva. Smaller vessels dilate with diabetic retinopathy. These findings may be useful in the photographic screening of diabetes mellitus and retinopathy.

  5. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  6. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

  7. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets

    International Nuclear Information System (INIS)

    Munoz-Garcia, Javier; Cuerno, Rodolfo; Castro, Mario

    2009-01-01

    Continuum models have proved their applicability to describe nanopatterns produced by ion-beam sputtering of amorphous or amorphizable targets at low and medium energies. Here we pursue the recently introduced 'hydrodynamic approach' in the cases of bombardment at normal incidence, or of oblique incidence onto rotating targets, known to lead to self-organized arrangements of nanodots. Our approach stresses the dynamical roles of material (defect) transport at the target surface and of local redeposition. By applying results previously derived for arbitrary angles of incidence, we derive effective evolution equations for these geometries of incidence, which are then numerically studied. Moreover, we show that within our model these equations are identical (albeit with different coefficients) in both cases, provided surface tension is isotropic in the target. We thus account for the common dynamics for both types of incidence conditions, namely formation of dots with short-range order and long-wavelength disorder, and an intermediate coarsening of dot features that improves the local order of the patterns. We provide for the first time approximate analytical predictions for the dependence of stationary dot features (amplitude and wavelength) on phenomenological parameters, that improve upon previous linear estimates. Finally, our theoretical results are discussed in terms of experimental data.

  8. Mid-infrared Semiconductor Optoelectronics

    CERN Document Server

    Krier, Anthony

    2006-01-01

    The practical realisation of optoelectronic devices operating in the 2–10 µm (mid-infrared) wavelength range offers potential applications in a variety of areas from environmental gas monitoring around oil rigs and landfill sites to the detection of pharmaceuticals, particularly narcotics. In addition, an atmospheric transmission window exists between 3 µm and 5 µm that enables free-space optical communications, thermal imaging applications and the development of infrared measures for "homeland security". Consequently, the mid-infrared is very attractive for the development of sensitive optical sensor instrumentation. Unfortunately, the nature of the likely applications dictates stringent requirements in terms of laser operation, miniaturisation and cost that are difficult to meet. Many of the necessary improvements are linked to a better ability to fabricate and to understand the optoelectronic properties of suitable high-quality epitaxial materials and device structures. Substantial progress in these m...

  9. The normalization of surface anisotropy effects present in SEVIRI reflectances by using the MODIS BRDF method

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI...... acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008....... It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI...

  10. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  11. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  12. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  13. Research surface resistance of copper normal and abnormal skin-effects depending on the frequency of electromagnetic field

    International Nuclear Information System (INIS)

    Kutovyi, V.A.; Komir, A.I.

    2013-01-01

    The results of the frequency dependence of surface resistance of copper in diffuse and specular reflection of electrons from the conductive surface of the high-frequency resonance of the system depending on the frequency of the electromagnetic field in the normal and anomalous skin effect. Found, the surface resistance of copper is reduced by more than 10 times at the temperature of liquid helium, as compared with a surface resistivity at room temperature, at frequencies f ≤ 173 MHz, for diffuse reflection of conduction electrons from the surface of the conductive layer, and the specular reflection - at frequencies f ≤ 346 MHz

  14. Lasers and optoelectronics fundamentals, devices and applications

    CERN Document Server

    Maini, Anil K

    2013-01-01

    With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diag

  15. A study on fungal flora of the normal eye surface in Iranian native cattle

    Directory of Open Access Journals (Sweden)

    tohid nouri

    2014-11-01

    Full Text Available The microflora of the normal ocular surface is one of the sources supplying fungal agents for keratomycosis. This study was conducted to identify fungal isolates of the conjunctiva in clinically healthy Iranian native cattle in Urmia district. Swabs were taken from both eyes of cattle (n=45 and cultured onto Sabouraud dextrose agar with chloramphenicol and malt extract agar. Plates were incubated at 25°C and examined for 7 days. Data were analyzed for the effect of age and sex by fisher’s exact test. Thirteen cattle (28.89% were found to be positive for fungal growth. The isolated fungal genera were Aspergillus spp-7 cases (53.84%, Penicillium spp-6 cases (46.15%, Rhodotorula sp-1 case (7.69% and Candida sp-1 case (7.69%. Yeast genera represented 13.3% of all the isolates. Sex and age of cattle had no significant effect on prevalence of isolates. Incidence of fungal colonization of the eyes compared with similar studies was low which may reflect differences in season and technique of sampling. Unexpected high frequency of Aspergillus may be due to geographic differences.

  16. The Normalization of Surface Anisotropy Effects Present in SEVIRI Reflectances by Using the MODIS BRDF Method

    Science.gov (United States)

    Proud, Simon Richard; Zhang, Qingling; Schaaf, Crystal; Fensholt, Rasmus; Rasmussen, Mads Olander; Shisanya, Chris; Mutero, Wycliffe; Mbow, Cheikh; Anyamba, Assaf; Pak, Ed; hide

    2014-01-01

    A modified version of the MODerate resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF) algorithm is presented for use in the angular normalization of surface reflectance data gathered by the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites. We present early and provisional daily nadir BRDFadjusted reflectance (NBAR) data in the visible and near-infrared MSG channels. These utilize the high temporal resolution of MSG to produce BRDF retrievals with a greatly reduced acquisition period than the comparable MODIS products while, at the same time, removing many of the angular perturbations present within the original MSG data. The NBAR data are validated against reflectance data from the MODIS instrument and in situ data gathered at a field location in Africa throughout 2008. It is found that the MSG retrievals are stable and are of high-quality across much of the SEVIRI disk while maintaining a higher temporal resolution than the MODIS BRDF products. However, a number of circumstances are discovered whereby the BRDF model is unable to function correctly with the SEVIRI observations-primarily because of an insufficient spread of angular data due to the fixed sensor location or localized cloud contamination.

  17. 3D modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes

    Science.gov (United States)

    Sredar, Nripun; Ivers, Kevin M.; Queener, Hope M.; Zouridakis, George; Porter, Jason

    2013-01-01

    En face adaptive optics scanning laser ophthalmoscope (AOSLO) images of the anterior lamina cribrosa surface (ALCS) represent a 2D projected view of a 3D laminar surface. Using spectral domain optical coherence tomography images acquired in living monkey eyes, a thin plate spline was used to model the ALCS in 3D. The 2D AOSLO images were registered and projected onto the 3D surface that was then tessellated into a triangular mesh to characterize differences in pore geometry between 2D and 3D images. Following 3D transformation of the anterior laminar surface in 11 normal eyes, mean pore area increased by 5.1 ± 2.0% with a minimal change in pore elongation (mean change = 0.0 ± 0.2%). These small changes were due to the relatively flat laminar surfaces inherent in normal eyes (mean radius of curvature = 3.0 ± 0.5 mm). The mean increase in pore area was larger following 3D transformation in 4 glaucomatous eyes (16.2 ± 6.0%) due to their more steeply curved laminar surfaces (mean radius of curvature = 1.3 ± 0.1 mm), while the change in pore elongation was comparable to that in normal eyes (−0.2 ± 2.0%). This 3D transformation and tessellation method can be used to better characterize and track 3D changes in laminar pore and surface geometries in glaucoma. PMID:23847739

  18. Organic optoelectronics:materials,devices and applications

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CUI Tian-hong

    2005-01-01

    The interest in organic materials for optoelectronic devices has been growing rapidly in the last two decades. This growth has been propelled by the exciting advances in organic thin films for displays, low-cost electronic circuits, etc. An increasing number of products employing organic electronic devices have become commercialized, which has stimulated the age of organic optoelectronics. This paper reviews the recent progress in organic optoelectronic technology. First, organic light emitting electroluminescent materials are introduced. Next, the three kinds of most important organic optoelectronic devices are summarized, including light emitting diode, organic photovoltaic cell, and photodetectors. The various applications of these devices are also reviewed and discussed in detail. Finally, the market and future development of optoelectronic devices are also demonstrated.

  19. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  20. Optoelectronics of Molecules and Polymers

    CERN Document Server

    Moliton, André

    2006-01-01

    Optoelectronic devices are being developed at an extraordinary rate. Organic light emitting diodes, photovoltaic devices and electro-optical modulators are pivotal to the future of displays, photosensors and solar cells, and communication technologies. This book details the theories underlying the relevant mechanisms in organic materials and covers, at a basic level, how the organic components are made. The first part of this book introduces the fundamental theories used to detail ordered solids and localised energy levels. The methods used to determine energy levels in perfectly ordered molecular and macromolecular systems are discussed, making sure that the effects of quasi-particles are not missed. The function of excitons and their transfer between two molecules are studied, and the problems associated with interfaces and charge injection into resistive media are presented. The second part details technological aspects such as the fabrication of devices based on organic materials by dry etching. The princ...

  1. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  2. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  3. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  4. Resonant and kinematical enhancement of He scattering from LiF(001) surface and pseudosurface vibrational normal modes

    International Nuclear Information System (INIS)

    Nichols, W.L.; Weare, J.H.

    1986-01-01

    One-phonon cross sections calculated from sagittally polarized vibrational normal modes account for most salient inelastic-scattering intensities seen in He-LiF(001) and measurements published by Brusdeylins, Doak, and Toennies. We have found that most inelastic intensities which cannot be attributed to potential resonances can be explained as kinematically enhanced scattering from both surface and pseudosurface bulk modes

  5. Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti

    Science.gov (United States)

    Pinzuti, Paul; Mignan, Arnaud; King, Geoffrey C. P.

    2010-10-01

    Tectonic-stretching models have been previously proposed to explain the process of continental break-up through the example of the Asal Rift, Djibouti, one of the few places where the early stages of seafloor spreading can be observed. In these models, deformation is distributed starting at the base of a shallow seismogenic zone, in which sub-vertical normal faults are responsible for subsidence whereas cracks accommodate extension. Alternative models suggest that extension results from localised magma intrusion, with normal faults accommodating extension and subsidence only above the maximum reach of the magma column. In these magmatic rifting models, or so-called magmatic intrusion models, normal faults have dips of 45-55° and root into dikes. Vertical profiles of normal fault scarps from levelling campaign in the Asal Rift, where normal faults seem sub-vertical at surface level, have been analysed to discuss the creation and evolution of normal faults in massive fractured rocks (basalt lava flows), using mechanical and kinematics concepts. We show that the studied normal fault planes actually have an average dip ranging between 45° and 65° and are characterised by an irregular stepped form. We suggest that these normal fault scarps correspond to sub-vertical en echelon structures, and that, at greater depth, these scarps combine and give birth to dipping normal faults. The results of our analysis are compatible with the magmatic intrusion models instead of tectonic-stretching models. The geometry of faulting between the Fieale volcano and Lake Asal in the Asal Rift can be simply related to the depth of diking, which in turn can be related to magma supply. This new view supports the magmatic intrusion model of early stages of continental breaking.

  6. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee; Zhao, Chao; Priante, Davide; Ooi, Boon S.; Hussein, Mohamed Ebaid Abdrabou

    2018-01-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  7. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee

    2018-02-01

    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  8. Evolution of normal stress and surface roughness in buckled thin films

    NARCIS (Netherlands)

    Palasantzas, G; De Hosson, JTM

    2003-01-01

    In this work we investigate buckling of compressed elastic thin films, which are bonded onto a viscous layer of finite thickness. It is found that the normal stress exerted by the viscous layer on the elastic film evolves with time showing a minimum at early buckling stages, while it increases at

  9. Nuclear physics and optoelectronics presence in industry, medicine and environment

    International Nuclear Information System (INIS)

    Robu, Maria; Peteu, Gh.

    2000-01-01

    This paper reveals applications of Nuclear Physics and Optoelectronics in numerous fields of interest in industry, medicine, environment. In the first part of the work basic elements are analyzed, among which: - the large possibilities offered by the investigation, analysis and testing techniques based on nuclear physics and optoelectronics; - the superior qualitative and quantitative characteristics of these techniques, with varied applicability in fields from industry, medicine and environment. These applications refers to: - elemental analyses of content and impurities; - non-destructive testing with X and gamma radiations; - investigations with radioactive and activable tracers in trophic chains as for instance, ground-vegetation-products-consumers-environment, including also the systemic pollution factors; - complex investigations in the interface tritium-vegetation-environment-humans; - techniques and radiopharmaceutical products for medical investigations; - determinations and automatic control for levels, density, thickness, humidity, surfaces covering; - monitoring by means of remote sensing for the evaluation of the environment, vegetation and pollution factors; - applications and production of laser and UV installations; - connections through optical fibres resistant to radiations; - imaging and medical bioengineering; - advances in X ray, laser and ultrasonic radiology; - monitoring with radiations beams. In the final part, there are presented examples of optoelectronics and nuclear physics applications in fields in industry, medicine and environment, with special stress on their basic characteristics and efficiency. (authors)

  10. Normalization in quantitative [18F]FDG PET imaging: the 'body surface area' may be a volume

    International Nuclear Information System (INIS)

    Laffon, Eric; Suarez, Kleydis; Berthoumieu, Yannick; Ducassou, Dominique; Marthan, Roger

    2006-01-01

    Non-invasive methods for quantifying [ 18 F]FDG uptake in tumours often require normalization to either body weight or body surface area (BSA), as a surrogate for [ 18 F]FDG distribution volume (DV). Whereas three dimensions are involved in DV and weight (assuming that weight is proportional to volume), only two dimensions are obviously involved in BSA. However, a fractal geometry interpretation, related to an allometric scaling, suggests that the so-called 'body surface area' may stand for DV. (note)

  11. Formation times of RbHe exciplexes on the surface of superfluid versus normal fluid helium nanodroplets

    International Nuclear Information System (INIS)

    Droppelmann, G.; Buenermann, O.; Stienkemeier, F.; Schulz, C.P.

    2004-01-01

    Nanodroplets of either superfluid He 4 or normal fluid He 3 are doped with Rb atoms that are bound to the surface of the droplets. The formation of RbHe exciplexes upon 5P 3/2 excitation is monitored in real time by femtosecond pump-probe techniques. We find formation times of 8.5 and 11.6 ps for Rb He 4 and Rb He 3 , respectively. A comparison to calculations based on a tunneling model introduced for these systems by Reho et al. [J. Chem. Phys. 113, 9694 (2000)] shows that the proposed mechanism cannot account for our findings. Apparently, a different relaxation dynamics of the superfluid opposed to the normal fluid surface is responsible for the observed formation times

  12. Investigation, study and practice of optoelectronic MOOCs

    Science.gov (United States)

    Shi, Jianhua; Liu, Wei; Lei, Bing; Yao, Tianfu; Fu, Sihua

    2017-08-01

    MOOC(Massive Open Online Course) is a new teaching model that has been springing up since 2012. The typical characters are short teaching video, massive learners, flexible place and time to study, etc. Although MOOC is very popular now, opto-electronic MOOCs are not much enough to meet the need of online learners. In this paper, the phylogeny, the current situation and the characters of MOOC were described, the most famous MOOCs' websites, such as Udacity, Coursera, edX, Chinese College MOOC, xuetangx, were introduced, the opto-electronic MOOCs come from these famous MOOCs' website were investigated extensively and studied deeply, the "Application of Opto-electronic Technology MOOC" which was established by our group is introduced, and some conclusions are obtained. These conclusions can give some suggestions to the online learners who are interested in opto-electronic and the teachers who are teaching the opto-electronic curriculums. The preparation of "Opto-electronic Technology MOOC" is described in short.

  13. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  14. Air loads on a rigid plate oscillating normal to a fixed surface

    NARCIS (Netherlands)

    Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.

    1997-01-01

    This paper deals with the theoretical and experimental investigation on a rigid, rectangular plate oscillating in the proximity of a fixed surface. The plate is suspended by springs. The airloads generated by the oscillating motion of the plate are determined. Due to the fact that the plate is

  15. IDENTIFYING RECENT SURFACE MINING ACTIVITIES USING A NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) CHANGE DETECTION METHOD

    Science.gov (United States)

    Coal mining is a major resource extraction activity on the Appalachian Mountains. The increased size and frequency of a specific type of surface mining, known as mountain top removal-valley fill, has in recent years raised various environmental concerns. During mountainto...

  16. Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production

    Science.gov (United States)

    Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.

    2016-01-01

    Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…

  17. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    Science.gov (United States)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  18. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    International Nuclear Information System (INIS)

    Saranwong, N.; Inthanon, K.; Wongkham, W.; Wanichapichart, P.; Suwannakachorn, D.; Yu, L.D.

    2012-01-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  19. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  20. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    Science.gov (United States)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  1. Normal emission photoelectron diffraction: a new technique for determining surface structure

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1980-05-01

    One technique, photoelectron diffraction (PhD) is characterized. It has some promise in surmounting some of the problems of LEED. In PhD, the differential (angle-resolved) photoemission cross-section of a core level localized on an adsorbate atom is measured as a function of some final state parameter. The photoemission final state consists of two components, one of which propagates directly to the detector and another which scatters off the surface and then propagates to the detector. These are added coherently, and interference between the two manifests itself as cross-section oscillations which are sensitive to the local structure around the absorbing atom. We have shown that PhD deals effectively with two- and probably also three-dimensionally disordered systems. Its non-damaging and localized, atom-specific nature gives PhD a good deal of promise in dealing with molecular overlayer systems. It is concluded that while PhD will never replace LEED, it may provide useful, complementary and possibly also more accurate surface structural information

  2. Transformation (normalization) of slope gradient and surface curvatures, automated for statistical analyses from DEMs

    Science.gov (United States)

    Csillik, O.; Evans, I. S.; Drăguţ, L.

    2015-03-01

    Automated procedures are developed to alleviate long tails in frequency distributions of morphometric variables. They minimize the skewness of slope gradient frequency distributions, and modify the kurtosis of profile and plan curvature distributions toward that of the Gaussian (normal) model. Box-Cox (for slope) and arctangent (for curvature) transformations are tested on nine digital elevation models (DEMs) of varying origin and resolution, and different landscapes, and shown to be effective. Resulting histograms are illustrated and show considerable improvements over those for previously recommended slope transformations (sine, square root of sine, and logarithm of tangent). Unlike previous approaches, the proposed method evaluates the frequency distribution of slope gradient values in a given area and applies the most appropriate transform if required. Sensitivity of the arctangent transformation is tested, showing that Gaussian-kurtosis transformations are acceptable also in terms of histogram shape. Cube root transformations of curvatures produced bimodal histograms. The transforms are applicable to morphometric variables and many others with skewed or long-tailed distributions. By avoiding long tails and outliers, they permit parametric statistics such as correlation, regression and principal component analyses to be applied, with greater confidence that requirements for linearity, additivity and even scatter of residuals (constancy of error variance) are likely to be met. It is suggested that such transformations should be routinely applied in all parametric analyses of long-tailed variables. Our Box-Cox and curvature automated transformations are based on a Python script, implemented as an easy-to-use script tool in ArcGIS.

  3. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  4. MR findings of facial nerve on oblique sagittal MRI using TMJ surface coil: normal vs peripheral facial nerve palsy

    International Nuclear Information System (INIS)

    Park, Yong Ok; Lee, Myeong Jun; Lee, Chang Joon; Yoo, Jeong Hyun

    2000-01-01

    To evaluate the findings of normal facial nerve, as seen on oblique sagittal MRI using a TMJ (temporomandibular joint) surface coil, and then to evaluate abnormal findings of peripheral facial nerve palsy. We retrospectively reviewed the MR findings of 20 patients with peripheral facial palsy and 50 normal facial nerves of 36 patients without facial palsy. All underwent oblique sagittal MRI using a T MJ surface coil. We analyzed the course, signal intensity, thickness, location, and degree of enhancement of the facial nerve. According to the angle made by the proximal parotid segment on the axis of the mastoid segment, course was classified as anterior angulation (obtuse and acute, or buckling), straight and posterior angulation. Among 50 normal facial nerves, 24 (48%) were straight, and 23 (46%) demonstrated anterior angulation; 34 (68%) showed iso signal intensity on T1W1. In the group of patients, course on the affected side was either straight (40%) or showed anterior angulation (55%), and signal intensity in 80% of cases was isointense. These findings were similar to those in the normal group, but in patients with post-traumatic or post-operative facial palsy, buckling, of course, appeared. In 12 of 18 facial palsy cases (66.6%) in which contrast materials were administered, a normal facial nerve of the opposite facial canal showed mild enhancement on more than one segment, but on the affected side the facial nerve showed diffuse enhancement in all 14 patients with acute facial palsy. Eleven of these (79%) showed fair or marked enhancement on more than one segment, and in 12 (86%), mild enhancement of the proximal parotid segment was noted. Four of six chronic facial palsy cases (66.6%) showed atrophy of the facial nerve. When oblique sagittal MR images are obtained using a TMJ surface coil, enhancement of the proximal parotid segment of the facial nerve and fair or marked enhancement of at least one segment within the facial canal always suggests pathology of

  5. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts.

    Science.gov (United States)

    Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I

    2013-06-13

    Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data

  6. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  7. Optoelectronic lessons as an interdisciplinary lecture

    Science.gov (United States)

    Wu, Dan; Wu, Maocheng; Gu, Jihua

    2017-08-01

    It is noticed that more and more students in college are passionately curious about the optoelectronic technology, since optoelectronic technology has advanced extremely quickly during the last five years and its applications could be found in a lot of domains. The students who are interested in this area may have different educational backgrounds and their majors cover science, engineering, literature and social science, etc. Our course "History of the Optoelectronic Technology" is set up as an interdisciplinary lecture of the "liberal education" at our university, and is available for all students with different academic backgrounds from any departments of our university. The main purpose of the course is to show the interesting and colorful historical aspects of the development of this technology, so that the students from different departments could absorb the academic nourishment they wanted. There are little complex derivations of physical formulas through the whole lecture, but there are still some difficulties about the lecture which is discussed in this paper.

  8. Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface.

    Science.gov (United States)

    Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E

    2016-04-01

    In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and

  9. Dual-scale topology optoelectronic processor.

    Science.gov (United States)

    Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H

    1991-12-15

    The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.

  10. Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch

    International Nuclear Information System (INIS)

    Wang, Guan M; Sandberg, William C; Kenny, Steven D

    2006-01-01

    The mechanical and dynamical properties of a model Au(111)/thiol surface system were investigated by using localized atomic-type orbital density functional theory in the local density approximation. Relaxing the system gives a configuration where the sulfur atom forms covalent bonds to two adjacent gold atoms as the lowest energy structure. Investigations based on ab initio molecular dynamics simulations at 300, 350 and 370 K show that this tethering system is stable. The rupture behaviour between the thiol and the surface was studied by displacing the free end of the thiol. Calculated energy profiles show a process of multiple successive ruptures that account for experimental observations. The process features successive ruptures of the two Au-S bonds followed by the extraction of one S-bonded Au atom from the surface. The force required to rupture the thiol from the surface was found to be dependent on the direction in which the thiol was displaced, with values comparable with AFM measurements. These results aid the understanding of failure dynamics of Au(111)-thiol-tethered biosurfaces in microfluidic devices where fluidic shear and normal forces are of concern

  11. [Experimental studies on the diffusion of excitation on the right ventricular surface in the dog, during normal and stimulated beats].

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Musso, E; Spaggiari, S; Stilli, D; Taccardi, B

    1982-01-01

    Previous work on the spread of excitation on the dog's ventricular surface enabled us to locate up to 30 breakthrough points (BKTPs) where excitation reaches the ventricular surface. In particular the equipotential contour maps enabled us to detect 3 to 5 BKTPs on the anterior right ventricular surface, near the a-v groove when a large part of ventricular surface was still at rest. With a view to investigating the mechanism underlying the early excitation of these basal regions, we stimulated the heart at several right ventricular BKTPs and in other points located at a distance from the BKTPs. The instantaneous equipotential maps showed that after stimulation most right ventricular BKTPs remained in the same position as observed the normal beats. The early appearance of epicardial wavefronts in the basal region and generally in other areas of the right ventricle was attributed to the rapid propagation of excitation waves through the Purkinje network, probably associated to a short transmural crossing time, due to a local thinness of the ventricular wall.

  12. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  13. Optoelectronic line transmission an introduction to fibre optics

    CERN Document Server

    Tricker, Raymond L

    2013-01-01

    Optoelectronic Line Transmission: An Introduction to Fibre Optics presents a basic introduction as well as a background reference manual on fiber optic transmission. The book discusses the basic principles of optical line transmission; the advantages and disadvantages of optical fibers and optoelectronic signalling; the practical applications of optoelectronics; and the future of optoelectronics. The text also describes the theories of optical line transmission; fibers and cables for optical transmission; transmitters including light-emitting diodes and lasers; and receivers including photodi

  14. Commercialization issues and funding opportunities for high-performance optoelectronic computing modules

    Science.gov (United States)

    Hessenbruch, John M.; Guilfoyle, Peter S.

    1997-01-01

    Low power, optoelectronic integrated circuits are being developed for high speed switching and data processing applications. These high performance optoelectronic computing modules consist of three primary components: vertical cavity surface emitting lasers, diffractive optical interconnect elements, and detector/amplifier/laser driver arrays. Following the design and fabrication of an HPOC module prototype, selected commercial funding sources will be evaluated to support a product development stage. These include the formation of a strategic alliance with one or more microprocessor or telecommunications vendors, and/or equity investment from one or more venture capital firms.

  15. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  16. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  17. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  18. Light-matter Interactions in Semiconductors and Metals: From Nitride Optoelectronics to Quantum Plasmonics

    Science.gov (United States)

    Narang, Prineha

    This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the

  19. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique.

    Science.gov (United States)

    Lopez-Diaz, D; Merino, C; Velázquez, M M

    2015-11-11

    Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP) and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  20. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  1. Modulating the Optoelectronic Properties of Silver Nanowires Films: Effect of Capping Agent and Deposition Technique

    Directory of Open Access Journals (Sweden)

    D. Lopez-Diaz

    2015-11-01

    Full Text Available Silver nanowires 90 nm in diameter and 9 µm in length have been synthesized using different capping agents: polyvinyl pyrrolidone (PVP and alkyl thiol of different chain lengths. The nanowire structure is not influenced by the displacement of PVP by alkyl thiols, although alkyl thiols modify the lateral aggregation of nanowires. We examined the effect of the capping agent and the deposition method on the optical and electrical properties of films prepared by Spray and the Langmuir-Schaefer methodologies. Our results revealed that nanowires capped with PVP and C8-thiol present the best optoelectronic properties. By using different deposition techniques and by modifying the nanowire surface density, we can modulate the optoelectronic properties of films. This strategy allows obtaining films with the optoelectronic properties required to manufacture touch screens and electromagnetic shielding.

  2. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    Science.gov (United States)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  3. M-dwarf exoplanet surface density distribution. A log-normal fit from 0.07 to 400 AU

    Science.gov (United States)

    Meyer, Michael R.; Amara, Adam; Reggiani, Maddalena; Quanz, Sascha P.

    2018-04-01

    Aims: We fit a log-normal function to the M-dwarf orbital surface density distribution of gas giant planets, over the mass range 1-10 times that of Jupiter, from 0.07 to 400 AU. Methods: We used a Markov chain Monte Carlo approach to explore the likelihoods of various parameter values consistent with point estimates of the data given our assumed functional form. Results: This fit is consistent with radial velocity, microlensing, and direct-imaging observations, is well-motivated from theoretical and phenomenological points of view, and predicts results of future surveys. We present probability distributions for each parameter and a maximum likelihood estimate solution. Conclusions: We suggest that this function makes more physical sense than other widely used functions, and we explore the implications of our results on the design of future exoplanet surveys.

  4. Studies on Impingement Effects of Low Density Jets on Surfaces — Determination of Shear Stress and Normal Pressure

    Science.gov (United States)

    Sathian, Sarith. P.; Kurian, Job

    2005-05-01

    This paper presents the results of the Laser Reflection Method (LRM) for the determination of shear stress due to impingement of low-density free jets on flat plate. For thin oil film moving under the action of aerodynamic boundary layer the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope is measured using a position sensing detector (PSD). The thinning rate of oil film is directly measured which is the major advantage of the LRM over LISF method. From the oil film slope history, direct calculation of the shear stress is done using a three-point formula. For the full range of experiment conditions Knudsen numbers varied till the continuum limit of the transition regime. The shear stress values for low-density flows in the transition regime are thus obtained using LRM and the measured values of shear show fair agreement with those obtained by other methods. Results of the normal pressure measurements on a flat plate in low-density jets by using thermistors as pressure sensors are also presented in the paper. The normal pressure profiles obtained show the characteristic features of Newtonian impact theory for hypersonic flows.

  5. Optoelectronic investigation of nanodiamond interactions with human blood

    Science.gov (United States)

    Ficek, M.; Wróbel, M. S.; Wasowicz, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    We present optoelectronic investigation of in vitro interactions of whole human blood with different nanodiamond biomarkers. Plasmo-chemical modifications of detonation nanodiamond particles gives the possibility for controlling their surface for biological applications. Optical investigations reveal the biological activity of nanodiamonds in blood dependent on its surface termination. We compare different types of nanodiamonds: commercial non-modified detonation nanodiamonds, and nanodiamonds modified by MW PACVD method with H2-termination, and chemically modified nanodiamond with O2-termination. The absorption spectra, and optical microscope investigations were conducted. The results indicate haemocompatibility of non-modified detonation nanodiamond as well as modified nanodiamonds, which enables their application for drug delivery, as well as sensing applications.

  6. Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.

    Science.gov (United States)

    Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo

    2017-07-19

    Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.

  7. A New Quantitative Method for the Non-Invasive Documentation of Morphological Damage in Paintings Using RTI Surface Normals

    Directory of Open Access Journals (Sweden)

    Marcello Manfredi

    2014-07-01

    Full Text Available In this paper we propose a reliable surface imaging method for the non-invasive detection of morphological changes in paintings. Usually, the evaluation and quantification of changes and defects results mostly from an optical and subjective assessment, through the comparison of the previous and subsequent state of conservation and by means of condition reports. Using quantitative Reflectance Transformation Imaging (RTI we obtain detailed information on the geometry and morphology of the painting surface with a fast, precise and non-invasive method. Accurate and quantitative measurements of deterioration were acquired after the painting experienced artificial damage. Morphological changes were documented using normal vector images while the intensity map succeeded in highlighting, quantifying and describing the physical changes. We estimate that the technique can detect a morphological damage slightly smaller than 0.3 mm, which would be difficult to detect with the eye, considering the painting size. This non-invasive tool could be very useful, for example, to examine paintings and artwork before they travel on loan or during a restoration. The method lends itself to automated analysis of large images and datasets. Quantitative RTI thus eases the transition of extending human vision into the realm of measuring change over time.

  8. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  9. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    Science.gov (United States)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  10. What Are Normal Metal Ion Levels After Total Hip Arthroplasty? A Serologic Analysis of Four Bearing Surfaces.

    Science.gov (United States)

    Barlow, Brian T; Ortiz, Philippe A; Boles, John W; Lee, Yuo-Yu; Padgett, Douglas E; Westrich, Geoffrey H

    2017-05-01

    The recent experiences with adverse local tissue reactions have highlighted the need to establish what are normal serum levels of cobalt (Co), chromium (Cr), and titanium (Ti) after hip arthroplasty. Serum Co, Cr, and Ti levels were measured in 80 nonconsecutive patients with well-functioning unilateral total hip arthroplasty and compared among 4 bearing surfaces: ceramic-on-ceramic (CoC); ceramic-on-polyethylene (CoP); metal-on-polyethylene (MoP), and dual mobility (DM). The preoperative and most recent University of California, Los Angeles (UCLA) and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were compared among the different bearing surfaces. No significant difference was found among serum Co and Cr levels between the 4 bearing surface groups (P = .0609 and P = .1577). Secondary analysis comparing metal and ceramic femoral heads demonstrated that the metal group (MoP, modular dual mobility (Stryker Orthopedics, Mahwah, NJ) [metal]) had significant higher serum Co levels compared with the ceramic group (CoC, CoP, MDM [ceramic]) (1.05 mg/L ± 1.25 vs 0.59 mg/L ± 0.24; P = .0411). Spearman coefficient identified no correlation between metal ion levels and patient-reported outcome scores. No serum metal ion level differences were found among well-functioning total hip arthroplasty with modern bearing couples. Significantly higher serum Co levels were seen when comparing metal vs ceramic femoral heads in this study and warrants further investigation. Metal ion levels did not correlate with patient-reported outcome measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Parallel optoelectronic trinary signed-digit division

    Science.gov (United States)

    Alam, Mohammad S.

    1999-03-01

    The trinary signed-digit (TSD) number system has been found to be very useful for parallel addition and subtraction of any arbitrary length operands in constant time. Using the TSD addition and multiplication modules as the basic building blocks, we develop an efficient algorithm for performing parallel TSD division in constant time. The proposed division technique uses one TSD subtraction and two TSD multiplication steps. An optoelectronic correlator based architecture is suggested for implementation of the proposed TSD division algorithm, which fully exploits the parallelism and high processing speed of optics. An efficient spatial encoding scheme is used to ensure better utilization of space bandwidth product of the spatial light modulators used in the optoelectronic implementation.

  12. Optoelectronic Devices Advanced Simulation and Analysis

    CERN Document Server

    Piprek, Joachim

    2005-01-01

    Optoelectronic devices transform electrical signals into optical signals and vice versa by utilizing the sophisticated interaction of electrons and light within micro- and nano-scale semiconductor structures. Advanced software tools for design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics, who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help to better understand internal device physics. The software packages used in the book are available to the public, on a commercial or noncommercial basis, so that the interested r...

  13. New Development of Membrane Base Optoelectronic Devices

    Directory of Open Access Journals (Sweden)

    Leon Hamui

    2017-12-01

    Full Text Available It is known that one factor that affects the operation of optoelectronic devices is the effective protection of the semiconductor materials against environmental conditions. The permeation of atmospheric oxygen and water molecules into the device structure induces degradation of the electrodes and the semiconductor. As a result, in this communication we report the fabrication of semiconductor membranes consisting of Magnesium Phthalocyanine-allene (MgPc-allene particles dispersed in Nylon 11 films. These membranes combine polymer properties with organic semiconductors properties and also provide a barrier effect for the atmospheric gas molecules. They were prepared by high vacuum evaporation and followed by thermal relaxation technique. For the characterization of the obtained membranes, Fourier-transform infrared spectroscopy (FT-IR, scanning electron microscopy (SEM, and energy dispersive spectroscopy (EDS were used to determine the chemical and microstructural properties. UV-ViS, null ellipsometry, and visible photoluminescence (PL at room temperature were used to characterize the optoelectronic properties. These results were compared with those obtained for the organic semiconductors: MgPc-allene thin films. Additionally, semiconductor membranes devices have been prepared, and a study of the device electronic transport properties was conducted by measuring electrical current density-voltage (J-V characteristics by four point probes with different wavelengths. The resistance properties against different environmental molecules are enhanced, maintaining their semiconductor functionality that makes them candidates for optoelectronic applications.

  14. Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene

    Directory of Open Access Journals (Sweden)

    Bing Huang

    2014-05-01

    Full Text Available Silicon is arguably the best electronic material, but it is not a good optoelectronic material. By employing first-principles calculations and the cluster-expansion approach, we discover that hydrogenated bilayer silicene (BS shows promising potential as a new kind of optoelectronic material. Most significantly, hydrogenation converts the intrinsic BS, a strongly indirect semiconductor, into a direct-gap semiconductor with a widely tunable band gap. At low hydrogen concentrations, four ground states of single- and double-sided hydrogenated BS are characterized by dipole-allowed direct (or quasidirect band gaps in the desirable range from 1 to 1.5 eV, suitable for solar applications. At high hydrogen concentrations, three well-ordered double-sided hydrogenated BS structures exhibit direct (or quasidirect band gaps in the color range of red, green, and blue, affording white light-emitting diodes. Our findings open opportunities to search for new silicon-based light-absorption and light-emitting materials for earth-abundant, high-efficiency, optoelectronic applications.

  15. Optoelectronic interconnects for 3D wafer stacks

    Science.gov (United States)

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  16. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  17. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    Science.gov (United States)

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-22

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  18. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    Directory of Open Access Journals (Sweden)

    Changjae Kim

    2016-01-01

    Full Text Available Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1 reduces the dimensions of the attribute space; (2 considers the attribute similarity and the proximity of the laser point simultaneously; and (3 works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  19. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    Science.gov (United States)

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  20. CuPc/C60 heterojunction thin film optoelectronic devices

    International Nuclear Information System (INIS)

    Murtaza, Imran; Karimov, Khasan S.; Qazi, Ibrahim

    2010-01-01

    The optoelectronic properties of heterojunction thin film devices with ITO/CuPc/C 60 /Al structure have been investigated by analyzing their current-voltage characteristics, optical absorption and photocurrent. In this organic photovoltaic device, CuPc acts as an optically active layer, C 60 as an electron-transporting layer and ITO and Al as electrodes. It is observed that, under illumination, excitons are formed, which subsequently drift towards the interface with C 60 , where an internal electric field is present. The excitons that reach the interface are subsequently dissociated into free charge carriers due to the electric field present at the interface. The experimental results show that in this device the total current density is a function of injected carriers at the electrode-organic semiconductor surface, the leakage current through the organic layer and collected photogenerated current that results from the effective dissociation of excitons. (semiconductor devices)

  1. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  2. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  3. Optoelectronic pH Meter: Further Details

    Science.gov (United States)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  4. Optoelectronic inventory system for special nuclear material

    International Nuclear Information System (INIS)

    Sieradzki, F.H.

    1994-01-01

    In support of the Department of Energy's Dismantlement Program, the Optoelectronics Characterization and Sensor Development Department 2231 at Sandia National Laboratories/New Mexico has developed an in situ nonintrusive Optoelectronic Inventory System (OIS) that has the potential for application wherever periodic inventory of selected material is desired. Using a network of fiber-optic links, the OIS retrieves and stores inventory signatures from data storage devices (which are permanently attached to material storage containers) while inherently providing electromagnetic pulse immunity and electrical noise isolation. Photovoltaic cells (located within the storage facility) convert laser diode optic power from a laser driver to electrical energy. When powered and triggered, the data storage devices sequentially output their digital inventory signatures through light-emitting diode/photo diode data links for retrieval and storage in a mobile data acquisition system. An item's exact location is determined through fiber-optic network and software design. The OIS provides an on-demand method for obtaining acceptable inventory reports while eliminating the need for human presence inside the material storage facility. By using modularization and prefabricated construction with mature technologies and components, an OIS installation with virtually unlimited capacity can be tailored to the customer's requirements

  5. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  6. Dental impression technique using optoelectronic devices

    Science.gov (United States)

    Sinescu, Cosmin; Barua, Souman; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Gabor, Alin Gabriel; Zaharia, Cristian; Bradu, Adrian; Podoleanu, Adrian G.

    2018-03-01

    INTRODUCTION: The use of Optical Coherence Tomography (OCT) as a non-invasive and high precision quantitative information providing tool has been well established by researches within the last decade. The marginal discrepancy values can be scrutinized in optical biopsy made in three dimensional (3D) micro millimetre scale and reveal detailed qualitative and quantitative information of soft and hard tissues. OCT-based high resolution 3D images can provide a significant impact on finding recurrent caries, restorative failure, analysing the precision of crown preparation, and prosthetic elements marginal adaptation error with the gingiva and dental hard tissues. During the CAD/CAM process of prosthodontic restorations, the circumvent of any error is important for the practitioner and the technician to reduce waste of time and material. Additionally, OCT images help to achieve a new or semi-skilled practitioner to analyse their crown preparation works and help to develop their skills faster than in a conventional way. The aim of this study is to highlight the advantages of OCT in high precision prosthodontic restorations. MATERIALS AND METHODS: 25 preparations of frontal and lateral teeth were performed for 7 different patients. The impressions of the prosthetic fields were obtained both using a conventional optoelectronic system (Apolo Di, Syrona) and a Spectral Domain using OCT (Dental prototype, working at 860 nm). For the conventional impression technique the preparation margins were been prelevated by gingival impregnated cords. No specific treatments were performed by the OCT impression technique. RESULTS: The scanning performed by conventional optoelectronic system proved to be quick and accurate in terms of impression technology. The results were represented by 3D virtual models obtained after the scanning procedure was completed. In order to obtain a good optical impression a gingival retraction cord was inserted between the prepared tooth and the gingival

  7. Metal Complexes for Organic Optoelectronic Applications

    Science.gov (United States)

    Huang, Liang

    Organic optoelectronic devices have drawn extensive attention by over the past two decades. Two major applications for Organic optoelectronic devices are efficient organic photovoltaic devices(OPV) and organic light emitting diodes (OLED). Organic Solar cell has been proven to be compatible with the low cost, large area bulk processing technology and processed high absorption efficiencies compared to inorganic solar cells. Organic light emitting diodes are a promising approach for display and solid state lighting applications. To improve the efficiency, stability, and materials variety for organic optoelectronic devices, several emissive materials, absorber-type materials, and charge transporting materials were developed and employed in various device settings. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. In this thesis, Chapter 1 provides an introduction to the background knowledge of OPV and OLED research fields presented. Chapter 2 discusses new porphyrin derivatives- azatetrabenzylporphyrins for OPV and near infrared OLED applications. A modified synthetic method is utilized to increase the reaction yield of the azatetrabenzylporphyrin materials and their photophysical properties, electrochemical properties are studied. OPV devices are also fabricated using Zinc azatetrabenzylporphyrin as donor materials. Pt(II) azatetrabenzylporphyrin were also synthesized and used in near infra-red OLED to achieve an emission over 800 nm with reasonable external quantum efficiencies. Chapter 3, discusses the synthesis, characterization, and device evaluation of a series of tetradentate platinum and palladium complexesfor single doped white OLED applications and RGB white OLED applications. Devices employing some of the developed emitters demonstrated impressively high external quantum efficiencies within the range of 22%-27% for various emitter concentrations. And the palladium complex, i

  8. Optoelectronic iron detectors for pharmaceutical flow analysis.

    Science.gov (United States)

    Rybkowska, Natalia; Koncki, Robert; Strzelak, Kamil

    2017-10-25

    Compact flow-through optoelectronic detectors fabricated by pairing of light emitting diodes have been applied for development of economic flow analysis systems dedicated for iron ions determination. Three analytical methods with different chromogens selectively recognizing iron ions have been compared. Ferrozine and ferene S based methods offer higher sensitivity and slightly lower detection limits than method with 1,10-phenantroline, but narrower ranges of linear response. Each system allows detection of iron in micromolar range of concentration with comparable sample throughput (20 injections per hour). The developed flow analysis systems have been successfully applied for determination of iron in diet supplements. The utility of developed analytical systems for iron release studies from drug formulations has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  10. Electroactive and Optoelectronically Active Graphene Nanofilms

    DEFF Research Database (Denmark)

    Chi, Qijin

    As an atomic-scale-thick two-dimensional material, graphene has emerged as one of the most miracle materials and has generated intensive interest in physics, chemistry and even biology in the last decade [1, 2]. Nanoscale engineering and functionalization of graphene is a crucial step for many...... applications ranging from catalysis, electronic devices, sensors to advanced energy conversion and storage [3]. This talk highlights our recent studies on electroactive and optoelectronically active graphene ultrathin films for chemical sensors and energy technology. The presentation includes a general theme...... for functionalization of graphene nanosheets, followed by showing several case studies. Our systems cover redox-active nanoparticles, electroactive supramolecular ensembles and redox enzymes which are integrated with graphene nanosheets as building blocks for the construction of functional thin films or graphene papers....

  11. Seeing smells: development of an optoelectronic nose

    Directory of Open Access Journals (Sweden)

    Kenneth S. Suslick

    2007-06-01

    Full Text Available The development of an array of chemically-responsive dyes on a porous membrane and in its use as a general sensor for odors and volatile organic compounds (VOCs is reviewed. These colorimetric sensor arrays (CSA act as an "optoelectronic nose" by using an array of multiple dyes whose color changes are based on the full range of intermolecular interactions. The CSA is digitally imaged before and after exposure and the resulting difference map provides a digital fingerprint for any VOC or mixture of odorants. The result is an enormous increase in discriminatory power among odorants compared to prior electronic nose technologies. For the detection of biologically important analytes, including amines, carboxylic acids, and thiols, high sensitivities (ppbv have been demonstrated. The array is essentially non-responsive to changes in humidity due to the hydrophobicity of the dyes and membrane.

  12. Investigation of mixed saliva by optoelectronic methods

    Science.gov (United States)

    Savchenko, Ekaterina; Nepomnyashchaya, Elina; Baranov, Maksim; Velichko, Elena; Aksenov, Evgenii; Bogomaz, Tatyana

    2018-04-01

    At present, saliva and its properties are being actively studied. Human saliva is a unique biological material that has potential in clinical practice. A detailed analysis of the characteristics and properties of saliva is relevant for diagnostic purposes. In this paper, the properties and characteristics of saliva are studied using optoelectronic methods: dynamic light scattering, electrophoretic light scattering and optical microscopy. Mixed saliva from a healthy patient and patient with diabetes mellitus type 2 was used as an object of the study. The dynamics of the behavior of a healthy and patient with diabetes mellitus type 2 is visible according to the results obtained. All three methods confirm hypothesis of structural changes in mixed saliva in the disease of diabetes mellitus type 2.

  13. Implantable optoelectronic probes for in vivo optogenetics

    Science.gov (United States)

    Iseri, Ege; Kuzum, Duygu

    2017-06-01

    More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.

  14. Integrated NEMS and optoelectronics for sensor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Czaplewski, David A.; Serkland, Darwin Keith; Olsson, Roy H., III; Bogart, Gregory R. (Symphony Acoustics, Rio Rancho, NM); Krishnamoorthy, Uma; Warren, Mial E.; Carr, Dustin Wade (Symphony Acoustics, Rio Rancho, NM); Okandan, Murat; Peterson, Kenneth Allen

    2008-01-01

    This work utilized advanced engineering in several fields to find solutions to the challenges presented by the integration of MEMS/NEMS with optoelectronics to realize a compact sensor system, comprised of a microfabricated sensor, VCSEL, and photodiode. By utilizing microfabrication techniques in the realization of the MEMS/NEMS component, the VCSEL and the photodiode, the system would be small in size and require less power than a macro-sized component. The work focused on two technologies, accelerometers and microphones, leveraged from other LDRD programs. The first technology was the nano-g accelerometer using a nanophotonic motion detection system (67023). This accelerometer had measured sensitivity of approximately 10 nano-g. The Integrated NEMS and optoelectronics LDRD supported the nano-g accelerometer LDRD by providing advanced designs for the accelerometers, packaging, and a detection scheme to encapsulate the accelerometer, furthering the testing capabilities beyond bench-top tests. A fully packaged and tested die was never realized, but significant packaging issues were addressed and many resolved. The second technology supported by this work was the ultrasensitive directional microphone arrays for military operations in urban terrain and future combat systems (93518). This application utilized a diffraction-based sensing technique with different optical component placement and a different detection scheme from the nano-g accelerometer. The Integrated NEMS LDRD supported the microphone array LDRD by providing custom designs, VCSELs, and measurement techniques to accelerometers that were fabricated from the same operational principles as the microphones, but contain proof masses for acceleration transduction. These devices were packaged at the end of the work.

  15. Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study

    Science.gov (United States)

    Zhang, Li; Lüttge, Andreas

    2009-11-01

    With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive

  16. Two-dimensional gold nanoparticle arrays. A platform for molecular optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Markus Andreas

    2011-11-15

    In my research, I study the optoelectronic properties of two-dimensional, hexagonal gold nanoparticle arrays formed by self-assembly. When the nanoparticle arrays are embedded in a matrix of alkane thiols, the photoresponse is dominated by a bolometric conductance increase. At room temperature, I observe a strong enhancement of the bolometric photoconductance when the surface plasmon resonance of the nanoparticles is excited. At cryogenic temperatures, the bolometric conductance enhancement leads to a redistribution of the potential landscape which dominates the optoelectronic response of the nanoparticle arrays. When optically active oligo(phenylene vinylene) (OPV) molecules are covalently bound to the nanoparticles, an increased photoconductance due to the resonant excitation of the OPV is observed. The results suggest that the charge carriers, which are resonantly excited in the OPV molecules, directly contribute to the current flow through the nanoparticle arrays. Thus, the conductance of OPV in its excited state is measured in the presented experiments. (orig.)

  17. A full-duplex working integrated optoelectronic device for optical interconnect

    Science.gov (United States)

    Liu, Kai; Fan, Huize; Huang, Yongqing; Duan, Xiaofeng; Wang, Qi; Ren, Xiaomin; Wei, Qi; Cai, Shiwei

    2018-05-01

    In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slop efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.

  18. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface in normal flow

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    Over the last two decades, several bridge cable manufacturers have introduced surface modi-fications on the high-density polyethylene (HDPE) sheathing that is often installed for the protection of inner strands. The main goal of this is rain rivulet impedance, leading to the suppression of rain......-wind induced vibrations (RWIVs). The modifications are based on re-search undertaken predominantly in Europe and Japan, with two different systems prevailing; HDPE tubing fitted with helical surface fillets and HDPE tubing with pattern-indented sur-faces. In the US and Europe, helical fillets dominate, whilst...

  19. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  20. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  1. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  2. Technical quality assessment of an optoelectronic system for movement analysis

    International Nuclear Information System (INIS)

    Sapienza University of Rome (Italy))" data-affiliation=" (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome (Italy))" >Di Marco, R; Sapienza University of Rome (Italy))" data-affiliation=" (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome (Italy))" >Patanè, F; Sapienza University of Rome (Italy))" data-affiliation=" (Department of Mechanical and Aerospace Engineering, Sapienza University of Rome (Italy))" >Cappa, P; Rossi, S

    2015-01-01

    The Optoelectronic Systems (OS) are largely used in gait analysis to evaluate the motor performances of healthy subjects and patients. The accuracy of marker trajectories reconstruction depends on several aspects: the number of cameras, the dimension and position of the calibration volume, and the chosen calibration procedure. In this paper we propose a methodology to evaluate the effects of the mentioned sources of error on the reconstruction of marker trajectories. The novel contribution of the present work consists in the dimension of the tested calibration volumes, which is comparable with the ones normally used in gait analysis; in addition, to simulate trajectories during clinical gait analysis, we provide non-default paths for markers as inputs. Several calibration procedures are implemented and the same trial is processed with each calibration file, also considering different cameras configurations. The RMSEs between the measured trajectories and the optimal ones are calculated for each comparison. To investigate the significant differences between the computed indices, an ANOVA analysis is implemented. The RMSE is sensible to the variations of the considered calibration volume and the camera configurations and it is always inferior to 43 mm

  3. Stereoscopic construction and practice of optoelectronic technology textbook

    Science.gov (United States)

    Zhou, Zigang; Zhang, Jinlong; Wang, Huili; Yang, Yongjia; Han, Yanling

    2017-08-01

    It is a professional degree course textbook for the Nation-class Specialty—Optoelectronic Information Science and Engineering, and it is also an engineering practice textbook for the cultivation of photoelectric excellent engineers. The book seeks to comprehensively introduce the theoretical and applied basis of optoelectronic technology, and it's closely linked to the current development of optoelectronic industry frontier and made up of following core contents, including the laser source, the light's transmission, modulation, detection, imaging and display. At the same time, it also embodies the features of the source of laser, the transmission of the waveguide, the electronic means and the optical processing methods.

  4. Surface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A low-energy electron diffraction study

    International Nuclear Information System (INIS)

    Firment, L.E.; Somorjai, G.A.

    1977-01-01

    The surfaces of the normal paraffins (C 3 --C 8 ) and cyclohexane have been studied using low-energy electron diffraction (LEED). The samples were prepared by vapor deposition on the (111) face of a platinum single crystal in ultrahigh vacuum, and were studied both as thick films and as adsorbed monolayers. These molecules form ordered monolayers on the clean metal surface in the temperature range 100--220 K and at a vapor flux corresponding to 10 -7 Torr. In the adsorbed monolayers of the normal paraffins (C 4 --C 8 ), the molecules lie with their chain axes parallel to the Pt surface and Pt[110]. The paraffin monolayer structures undergo order--disorder transitions as a function of temperature. Multilayers condensed upon the ordered monolayers maintained the same orientation and packing as found in the monolayers. The surface structures of the growing organic crystals do not corresond to planes in their reported bulk crystal structures and are evidence for epitaxial growth of pseudomorphic crystal forms. Multilayers of n-octane and n-heptane condensed upon disordered monolayers have also grown with the (001) plane of the triclinic bulk crystal structures parallel to the surface. n-Butane has three monolayer structures on Pt(111) and one of the three is maintained during growth of the crystal. Cyclohexane forms an ordered monolayer, upon which a multilayer of cyclohexane grows exhibiting the (001) surface orientation of the monoclinic bulk crystal structure. Surface structures of saturated hydrocarbons are found to be very susceptible to electron beam induced damage. Surface charging interferes with LEED only at sample thicknesses greater than 200 A

  5. Parallel Fabrication and Optoelectronic Characterization of Nanostructured Surfaces

    National Research Council Canada - National Science Library

    Douglas, Kenneth

    2002-01-01

    .... This has been performed without the need for silicon nitride layers or multi-layered resists. (2) We have conducted experiments using a closed-loop MM to measure the coefficient of thermal expansion...

  6. A Study on the Fatigue-Fractured Surface of Normalized SS41 Steel and M.E.F. Dual Phase Steel by an X-ray Diffraction Technique

    International Nuclear Information System (INIS)

    Oh, Sae Wook; Park, Young Chul; Park, Soo Young; Kim, Deug Jin; Hue, Sun Chul

    1996-01-01

    This study verified the relationship between fracture mechanics parameters and X-ray parameters for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation test were carried out and X-ray diffraction technique was applied to fatigue fractured surface. The change in X-ray parameters(residual stress, half-value breadth) according to the depth of fatigue fractured surface were investigated. The depth of maximum plastic zone, W y , were determined on the basis of the distribution of the half-value breadth for normalized SS41 steel and that of the residual stress for M.E.F. dual phase steel. K max could be estimated by the measurement of W y

  7. Temperatures of the Ocular Surface, Lid, and Periorbital Regions of Sjögren's, Evaporative, and Aqueous-Deficient Dry Eyes Relative to Normals.

    Science.gov (United States)

    Abreau, Kerstin; Callan, Christine; Kottaiyan, Ranjini; Zhang, Aizhong; Yoon, Geunyoung; Aquavella, James V; Zavislan, James; Hindman, Holly B

    2016-01-01

    To compare the temperatures of the ocular surface, eyelid, and periorbital skin in normal eyes with Sjögren's syndrome (SS) eyes, evaporative dry eyes (EDE), and aqueous deficient dry eyes (ADDE). 10 eyes were analyzed in each age-matched group (normal, SS, EDE, and ADDE). A noninvasive infrared thermal camera captured two-dimensional images in three regions of interest (ROI) in each of three areas: the ocular surface, the upper eyelid, and the periorbital skin within a controlled environmental chamber. Mean temperatures in each ROI were calculated from the videos. Ocular surface time-segmented cooling rates were calculated over a 5-s blink interval. Relative to normal eyes, dry eyes had lower initial central OSTs (SS -0.71°C, EDE -0.55°C, ADDE -0.95°C, KW Peyes had the lowest initial central OST (Peyes had the lowest central lid temperature and lower periorbital temperatures (Pdry eye. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  9. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  10. Ultrafast characterization of optoelectronic devices and systems

    Science.gov (United States)

    Zheng, Xuemei

    The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency

  11. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    Science.gov (United States)

    Liang, Yu Teng

    Over the past couple decades, fundamental research into carbon nanomaterials has produced a steady stream of groundbreaking physical science. Their record setting mechanical strength, chemical stability, and optoelectronic performance have fueled many optimistic claims regarding the breadth and pace of carbon nanotube and graphene integration. However, present synthetic, processing, and economic constraints have precluded these materials from many practical device applications. To overcome these limitations, novel synthetic techniques, processing methodologies, device geometries, and mechanistic insight were developed in this dissertation. The resulting advancements in material production and composite device performance have brought carbon nanomaterials ever closer to commercial implementation. For improved materials processing, vacuum co-deposition was first demonstrated as viable technique for forming carbon nanocomposite films without property distorting covalent modifications. Co-deposited nanoparticle, carbon nanotube, and graphene composite films enabled rapid device prototyping and compositional optimization. Cellulosic polymer stabilizers were then shown to be highly effective carbon nanomaterial dispersants, improving graphene production yields by two orders of magnitude in common organic solvents. By exploiting polarity interactions, iterative solvent exchange was used to further increase carbon nanomaterial dispersion concentrations by an additional order of magnitude, yielding concentrated inks. On top of their low causticity, these cellulosic nanomaterial inks have highly tunable viscosities, excellent film forming capacity, and outstanding thermal stability. These processing characteristics enable the efficient scaling of carbon nanomaterial coatings and device production using existing roll-to-roll fabrication techniques. Utilizing these process improvements, high-performance gas sensing, energy storage, transparent conductor, and photocatalytic

  12. Organic Optoelectronic Devices Employing Small Molecules

    Science.gov (United States)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  13. A simple encapsulation method for organic optoelectronic devices

    International Nuclear Information System (INIS)

    Sun Qian-Qian; An Qiao-Shi; Zhang Fu-Jun

    2014-01-01

    The performances of organic optoelectronic devices, such as organic light emitting diodes and polymer solar cells, have rapidly improved in the past decade. The stability of an organic optoelectronic device has become a key problem for further development. In this paper, we report one simple encapsulation method for organic optoelectronic devices with a parafilm, based on ternary polymer solar cells (PSCs). The power conversion efficiencies (PCE) of PSCs with and without encapsulation decrease from 2.93% to 2.17% and from 2.87% to 1.16% after 168-hours of degradation under an ambient environment, respectively. The stability of PSCs could be enhanced by encapsulation with a parafilm. The encapsulation method is a competitive choice for organic optoelectronic devices, owing to its low cost and compatibility with flexible devices. (atomic and molecular physics)

  14. Optoelectronic and nonlinear optical processes in low dimensional ...

    Indian Academy of Sciences (India)

    Optoelectronic process; nonlinear optical process; semiconductor. Quest for ever faster and intelligent information processing technologies has sparked ..... Schematic energy level diagram for the proposed 4-level model. States other than the.

  15. Optoelectronic properties of doped hydrothermal ZnO thin films

    KAUST Repository

    Mughal, Asad J.; Carberry, Benjamin; Oh, Sang Ho; Myzaferi, Anisa; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2017-01-01

    , or In were evaluated for their optoelectronic properties. Inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of dopants within the ZnO films. While Al and Ga-doped films showed linear incorporation rates

  16. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells

    International Nuclear Information System (INIS)

    Wu, Jiang; Chen, Siming; Seeds, Alwyn; Liu, Huiyun

    2015-01-01

    Nanometre-scale semiconductor devices have been envisioned as next-generation technologies with high integration and functionality. Quantum dots, or the so-called ‘artificial atoms’, exhibit unique properties due to their quantum confinement in all 3D. These unique properties have brought to light the great potential of quantum dots in optoelectronic applications. Numerous efforts worldwide have been devoted to these promising nanomaterials for next-generation optoelectronic devices, such as lasers, photodetectors, amplifiers, and solar cells, with the emphasis on improving performance and functionality. Through the development in optoelectronic devices based on quantum dots over the last two decades, quantum dot devices with exceptional performance surpassing previous devices are evidenced. This review describes recent developments in quantum dot optoelectronic devices over the last few years. The paper will highlight the major progress made in 1.3 μm quantum dot lasers, quantum dot infrared photodetectors, and quantum dot solar cells. (topical review)

  17. Basic opto-electronics on silicon for sensor applications

    NARCIS (Netherlands)

    Joppe, J.L.; Bekman, H.H.P.Th.; de Krijger, A.J.T.; Albers, H.; Chalmers, J.; Chalmers, J.D.; Holleman, J.; Ikkink, T.J.; Ikkink, T.; van Kranenburg, H.; Zhou, M.-J.; Zhou, Ming-Jiang; Lambeck, Paul

    1994-01-01

    A general platform for integrated opto-electronic sensor systems on silicon is proposed. The system is based on a hybridly integrated semiconductor laser, ZnO optical waveguides and monolithic photodiodes and electronic circuiry.

  18. Advanced Optoelectronic Components for All-Optical Networks

    National Research Council Canada - National Science Library

    Shapiro, Jeffrey H

    2002-01-01

    Under APOSR Grant F49620-96-1-0126, 'Advanced Optoelectronic Components for All-Optical Networks', we have worked to develop key technologies and components to substantially improve the performance...

  19. Opto-electronic devices from block copolymers and their oligomers.

    NARCIS (Netherlands)

    Hadziioannou, G

    1997-01-01

    This paper presents research activities towards the development of polymer materials and devices for optoelectronics, An approach to controlling the conjugation length and transferring the luminescence properties of organic molecules to polymers through black copolymers containing well-defined

  20. Integrated graphene-based devices for optoelectronic applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultralarge absorption bandwidth, and extremely fast material response. Here I present novel integrated grapheneplasmonic waveguide modulator showing high modulation depth, thus giving a promising way...

  1. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Directory of Open Access Journals (Sweden)

    Cheng Chuantong

    2017-07-01

    Full Text Available Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  2. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors

    Science.gov (United States)

    Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda

    2017-07-01

    Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.

  3. Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow

    NARCIS (Netherlands)

    Swartjes, Jan J. T. M.; Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2014-01-01

    Bacterial adhesion is problematic in many diverse applications. Coatings of hydrophilic polymer chains in a brush configuration reduce bacterial adhesion by orders of magnitude, but not to zero. Here, the mechanism by which polymer-brush functionalized surfaces reduce bacterial adhesion from a

  4. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  5. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  6. Hybrid optoelectronic device with multiple bistable outputs

    Energy Technology Data Exchange (ETDEWEB)

    Costazo-Caso, Pablo A; Jin Yiye; Gelh, Michael; Granieri, Sergio; Siahmakoun, Azad, E-mail: pcostanzo@ing.unlp.edu.are, E-mail: granieri@rose-hulma.edu, E-mail: siahmako@rose-hulma.edu [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 (United States)

    2011-01-01

    Optoelectronic circuits which exhibit optical and electrical bistability with hysteresis behavior are proposed and experimentally demonstrated. The systems are based on semiconductor optical amplifiers (SOA), bipolar junction transistors (BJT), PIN photodiodes (PD) and laser diodes externally modulated with integrated electro-absorption modulators (LD-EAM). The device operates based on two independent phenomena leading to both electrical bistability and optical bistability. The electrical bistability is due to the series connection of two p-i-n structures (SOA, BJT, PD or LD) in reverse bias. The optical bistability is consequence of the quantum confined Stark effect (QCSE) in the multi-quantum well (MQW) structure in the intrinsic region of the device. This effect produces the optical modulation of the transmitted light through the SOA (or reflected from the PD). Finally, because the optical transmission of the SOA (in reverse bias) and the reflected light from the PD are so small, a LD-EAM modulated by the voltage across these devices are employed to obtain a higher output optical power. Experiments show that the maximum switching frequency is in MHz range and the rise/fall times lower than 1 us. The temporal response is mainly limited by the electrical capacitance of the devices and the parasitic inductances of the connecting wires. The effects of these components can be reduced in current integration technologies.

  7. Software for Use with Optoelectronic Measuring Tool

    Science.gov (United States)

    Ballard, Kim C.

    2004-01-01

    A computer program has been written to facilitate and accelerate the process of measurement by use of the apparatus described in "Optoelectronic Tool Adds Scale Marks to Photographic Images" (KSC-12201). The tool contains four laser diodes that generate parallel beams of light spaced apart at a known distance. The beams of light are used to project bright spots that serve as scale marks that become incorporated into photographic images (including film and electronic images). The sizes of objects depicted in the images can readily be measured by reference to the scale marks. The computer program is applicable to a scene that contains the laser spots and that has been imaged in a square pixel format that can be imported into a graphical user interface (GUI) generated by the program. It is assumed that the laser spots and the distance(s) to be measured all lie in the same plane and that the plane is perpendicular to the line of sight of the camera used to record the image

  8. Recent trend in graphene for optoelectronics

    International Nuclear Information System (INIS)

    Chen, Yu-Bin; Liu, John S.; Lin Pang

    2013-01-01

    This study analyzes the scientific knowledge diffusion paths of graphene for optoelectronics (GFO), where graphene offers wide applications due to its thinness, high conductivity, excellent transparency, chemical stability, robustness, and flexibility. Our investigation is based on the main path analysis which establishes the citation links among the literature data in order to trace the significant sequence of knowledge development in this emerging field. We identify the main development paths of GFO up to the year 2012, along which a series of influential papers in this field are identified. The main path graph shows that knowledge diffusion occurs in key subareas, including reduced graphene oxide, chemical vapor deposition, and exfoliation techniques, which are developed for the preparation and applications of GFO. The applications cover solar cells, laser devices, sensing devices, and LCD. In addition, the main theme of GFO research evolves in sequence from small-graphene-sample preparation, to large-scale film growth, and onto prototype device fabrication. This evolution reflects a strong industrial demand for a new transparent–conductive film technology.

  9. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Angel García-Cabañes

    2018-01-01

    Full Text Available This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.

  10. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Science.gov (United States)

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  11. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  12. Tenskinmetric Evaluation of Surface Energy Changes in Adult Skin: Evidence from 834 Normal Subjects Monitored in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Camilla Dal Bosco

    2014-03-01

    Full Text Available To evaluate the influence of the skin aging critical level on the adult skin epidermal functional state, an improved analytical method based on the skin surface energetic measurement (TVS modeling was developed. Tenskinmetric measurements were carried out non-invasively in controlled conditions by contact angle method using only a water-drop as reference standard liquid. Adult skin was monitored by TVS Observatory according to a specific and controlled thermal protocol (Camianta protocol in use at the interconnected “Mamma Margherita Terme spa” of Terme Euganee. From June to November 2013, the surface free energy and the epidermal hydration level of adult skin were evaluated on arrival of 265 male and 569 female adult volunteers (51–90 years of age and when they departed 2 weeks later. Sensitive measurements were carried out at 0.1 mN/m. High test compliance was obtained (93.2% of all guests. Very interesting results are obtained. The high sensitivity and discrimination power of tenskinmetry combined with a thermal Camianta protocol demonstrate the possibility to evaluate at baseline level the surface energetic changes and the skin reactivity which occurs on adult skin.

  13. Surface faulting along the inland Itozawa normal fault (eastern Japan) and relation to the 2011 Tohoku-oki megathrust earthquake

    Science.gov (United States)

    Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji

    2013-04-01

    The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping

  14. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  15. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  16. Toward high-resolution optoelectronic retinal prosthesis

    Science.gov (United States)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  17. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    International Nuclear Information System (INIS)

    Huang, H; Shi, H; Chen, W; Yu, Y; Lin, D; Xu, Q; Feng, S; Lin, J; Huang, Z; Li, Y; Chen, R

    2013-01-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites. (letter)

  18. Research on the application of optoelectronics to nuclear power plants

    International Nuclear Information System (INIS)

    Shirosaki, Hidekazu; Mitsuda, Hiromichi; Kurata, Toshikazu; Soramoto, Seiki; Maekawa, Tatsuyuki.

    1995-01-01

    Optoelectronics, which is based on technologies such as laser diodes and optical fibers, is approaching the realm of practical application in the fields of optical fiber communications and compact disks etc,. In addition, laser enrichment, a type of uranium enrichment technique used in the nuclear field, can also be regarded as a product of optoelectronics. Application of optoelectronics in a wide range of fields is likely to continue in the future, and research is being conducted on coherent optical communication, optical integrated circuits, optical computers and other subjects in hopes of attaining practical application of these technologies in the future. On the other hand, digital control equipment and other related devices have been installed and data transfer using optical fibers has been implemented on a partial basis at nuclear power plants, and optoelectronics is anticipated to be applied on an even broader scale in the future, thereby creating the potential for improving plant reliability. In this research, we conducted an investigative study of technologies relating to optoelectronics, and proposed a remote monitoring system for manually operated valves that employs optical switches. Moreover, we conducted theoretical verification tests on the proposed system and carried out a feasibility study relating to application to nuclear power plants. As a result, the proposed system was found to be effective, and confirmed to have the potential of realization as a valve switching monitoring system. (author)

  19. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  20. Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

    Science.gov (United States)

    Malfavon-Ochoa, Mario

    dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.

  1. Thickness, morphology, and optoelectronic characteristics of pristine and surfactant-modified DNA thin films

    International Nuclear Information System (INIS)

    Arasu, Velu; Reddy Dugasani, Sreekantha; Son, Junyoung; Gnapareddy, Bramaramba; Ha Park, Sung; Jeon, Sohee; Jeong, Jun-Ho

    2017-01-01

    Although the preparation of DNA thin films with well-defined thicknesses controlled by simple physical parameters is crucial for constructing efficient, stable, and reliable DNA-based optoelectronic devices and sensors, it has not been comprehensively studied yet. Here, we construct DNA and surfactant-modified DNA thin films by drop-casting and spin-coating techniques. The DNA thin films formed with different control parameters, such as drop-volume and spin-speed at given DNA concentrations, exhibit characteristic thickness, surface roughness, surface potential, and absorbance, which are measured by a field emission scanning electron microscope, a surface profilometer, an ellipsometer, an atomic force microscope, a Kelvin probe force microscope, and an UV–visible spectroscope. From the observations, we realized that thickness significantly affects the physical properties of DNA thin films. This comprehensive study of thickness-dependent characteristics of DNA and surfactant-modified DNA thin films provides insight into the choice of fabrication techniques in order for the DNA thin films to have desired physical characteristics in further applications, such as optoelectronic devices and sensors. (paper)

  2. Practical opto-electronics an illustrated guide for the laboratory

    CERN Document Server

    Protopopov, Vladimir

    2014-01-01

    This book explains how to create opto-electronic systems in a most efficient way, avoiding typical mistakes. It covers light detection techniques, imaging, interferometry, spectroscopy, modulation-demodulation, heterodyning, beam steering, and many other topics common to laboratory applications. The focus is made on self-explanatory figures rather than on words. The book guides the reader through the entire process of creating problem-specific opto-electronic systems, starting from optical source, through beam transportation optical arrangement, to photodetector and data acquisition system. The relevant basics of beam propagation and computer-based raytracing routines are also explained, and sample codes are listed. the book teaches important know-how and practical tricks that are never disclosed in scientific publications.  The book can become the reader's personal adviser in the world of opto-electronics and navigator in the ocean of the market of optical components and systems. Succinct, well-illustrate...

  3. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  4. CARBON-FIBRE-REINFORCED POLYMER PARTS EFFECT ON SPACECRAFT OPTOELECTRONIC MODULE LENS SCATTERING

    Directory of Open Access Journals (Sweden)

    S. S. Kolasha

    2016-01-01

    Full Text Available Spacecraft optoelectronic modules traditionally have aluminum alloy or titanium alloy casing which substantial weight increases fuel consumption required to put them into orbit and, consequently, total cost of the project. Carbon fiber reinforced polymer based composite constructive materials is an efficient solution that allows reducing weight and dimensions of large optoelectronic modules 1,5–3 times and the coefficient of linear thermal expansion 15–20 times if compared with metals. Optical characteristic is a crucial feature of carbon-fibre-reinforced polymer that determines composite material interaction with electromagnetic emission within the optical range. This work was intended to develop a method to evaluate Carbon fiber reinforced polymer optoelectronic modules casing effect on lens scattering by computer simulation with Zemax application software package. Degrees of scattered, reflected and absorbed radiant flux effect on imaging quality are described here. The work included experimental study in order to determine bidirectional reflectance distribution function by goniometric method for LUP-0.1 carbon fabric check test pieces of EDT-69U epoxy binder with EPOFLEX-0.4 glue layer and 5056-3.5-23-A aluminium honeycomb filler. The scattered emission was registered within a hemisphere above the check test piece surface. Optical detection direction was determined with zenith (0º < θ < 90º and azimuth (0º < φ < 180º angles with 10° increment. The check test piece surface was proved to scatter emission within a narrow angle range (approximately 20° with clear directivity. Carbon fiber reinforced polymers was found to feature integrated reflectance coefficient 3 to 4 times greater than special coatings do. 

  5. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Science.gov (United States)

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  6. Optoelectronic devices product assurance guideline for space application

    Science.gov (United States)

    Bensoussan, A.; Vanzi, M.

    2017-11-01

    New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.

  7. The construction of bilingual teaching of optoelectronic technology

    Science.gov (United States)

    Zhang, Yang; Zhao, Enming; Yang, Fan; Li, Qingbo; Zhu, Zheng; Li, Cheng; Sun, Peng

    2017-08-01

    This paper combines the characteristics of optoelectronic technology with that of bilingual teaching. The course pays attention to integrating theory with practice, and cultivating learners' ability. Reform and exploration have been done in the fields of teaching materials, teaching content, teaching methods, etc. The concrete content mainly includes five parts: selecting teaching materials, establishing teaching syllabus, choosing suitable teaching method, making multimedia courseware and improving the test system, which can arouse students' interest in their study and their autonomous learning ability to provide beneficial references for improving the quality of talents of optoelectronic bilingual courses.

  8. High bandgap III-V alloys for high efficiency optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Alberi, Kirstin; Mascarenhas, Angelo; Wanlass, Mark

    2017-01-10

    High bandgap alloys for high efficiency optoelectronics are disclosed. An exemplary optoelectronic device may include a substrate, at least one Al.sub.1-xIn.sub.xP layer, and a step-grade buffer between the substrate and at least one Al.sub.1-xIn.sub.xP layer. The buffer may begin with a layer that is substantially lattice matched to GaAs, and may then incrementally increase the lattice constant in each sequential layer until a predetermined lattice constant of Al.sub.1-xIn.sub.xP is reached.

  9. Electrical and optoelectronic properties of gallium nitride

    International Nuclear Information System (INIS)

    Flannery, Lorraine Barbara

    2002-01-01

    substrates using the CARS25 RF source. The chemical concentration of Mg, [Mg] and the hole density, p H were found to increase both with layer thickness and Mg cell temperature in material grown at 700 deg C. A maximum free hole density, p H and mobility, μ H of 4.8 x 10 17 cm -3 and 10.7 cm 2 V -1 s -1 respectively were obtained for a 2.1 μm layer grown at a Mg cell temperature of 507 deg C. Photoconductive UV detectors were successfully fabricated from the highest quality n and p-type GaN layers grown by MBE on sapphire substrates. The p-type UV devices represented the first Mg doped p-type GaN based UV photoconductive detectors grown on sapphire substrates produced by the MBE growth method. The performances of both the n and p-type detectors were assessed by measurement of their optoelectronic and electrical properties and some conclusions were drawn regarding their operating principles. (author)

  10. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Science.gov (United States)

    2012-10-30

    ... Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Institution... certain optoelectronic devices for fiber optic communications, components thereof, and products containing... optoelectronic devices for fiber optic communications, components thereof, and products containing the same that...

  11. Advanced Optoelectronic Devices based on Si Quantum Dots/Si Nanowires Hetero-structures

    International Nuclear Information System (INIS)

    Xu, J; Zhai, Y Y; Cao, Y Q; Chen, K J

    2017-01-01

    Si quantum dots are currently extensively studied since they can be used to develop many kinds of optoelectronic devices. In this report, we review the fabrication of Si quantum dots (Si QD) /Si nanowires (Si NWs) hetero-structures by deposition of Si QDs/SiO 2 or Si QDs/SiC multilayers on Si NWs arrays. The electroluminescence and photovoltaic devices based on the formed hetero-structures have been prepared and the improved performance is confirmed. It is also found that the surface recombination via the surface defects states on the Si NWs, especially the ones obtained by the long-time etching, may deteriorate the device properties though they exhibit the better anti-reflection characteristics. The possible surface passivation approaches are briefly discussed. (paper)

  12. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    Science.gov (United States)

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  13. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells

    International Nuclear Information System (INIS)

    Ackerman, G.A.; Wolken, K.W.

    1981-01-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites

  14. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.

    2001-01-01

    The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.

  15. Growth and domain structure of YBa2Cu3Ox films on neodymium gallate substrates with deviation of surface normal from [110] NdGaO3

    International Nuclear Information System (INIS)

    Bdikin, I.K.; Mozhaev, P.B.; Ovsyannikov, G.A.; Komissinskij, F.V.; Kotelyanskij, I.M.; Raksha, E.I.

    2001-01-01

    One investigated into growth, crystalline structure and electrophysical properties of YBa 2 Cu 3 O x (YBCO) epitaxial films grown on NdGaO 3 (NGO) substrates with substrate surface normal deviation from [110] by 5-26.6 deg angle around [001] with CeO 2 epitaxial sublayer or without it. Orientation of YBCO epitaxial films grown at these substrates is shown to be governed by occurrence of symmetrically equipment directions in substrates and in CeO 2 layer, as well as, by film precipitation rate. At precipitation high rate YBCO films on CeO 2 sublayer grow in [001] orientation independently of orientation of substrate and sublayer. One determined that at increase of substrate plane deviation angle from (110) NGO twinning of one or of both twin complexes in YBCO might be suppressed [ru

  16. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles.

    Science.gov (United States)

    Ye, Hui; Zhu, Liqun; Li, Weiping; Liu, Huicong; Chen, Haining

    2017-01-11

    Superhydrophobic coatings have drawn much attention in recent years for their wide potential applications. However, a simple, cost-effective, and environmentally friendly approach is still lacked. Herein, a promising approach using nonhazardous chemicals was proposed, in which multiple hydrophobic functionalized silica nanoparticles (SiO 2 NPs) were first prepared as core component, through the efficient reaction between amino group containing SiO 2 NPs and the isocyanate containing hydrophobic surface modifiers synthesized by normal alcohols, followed by simply spraying onto various substrates for superhydrophobic functionalization. Furthermore, to further improve the mechanical durability, an organic-inorganic composite superhydrophobic coating was fabricated by incorporating cross-linking agent (polyisocyanate) into the mixture of hydrophobic-functionalized SiO 2 NPs and hydroxyl acrylic resin. The hybrid coating with cross-linked network structures is very stable with excellent mechanical durability, self-cleaning property and corrosion resistance.

  17. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  18. ``New'' energy states lead to phonon-less optoelectronic properties in nanostructured silicon

    Science.gov (United States)

    Singh, Vivek; Yu, Yixuan; Korgel, Brian; Nagpal, Prashant

    2014-03-01

    Silicon is arguably one of the most important technological material for electronic applications. However, indirect bandgap of silicon semiconductor has prevented optoelectronic applications due to phonon assistance required for photon light absorption/emission. Here we show, that previously unexplored surface states in nanostructured silicon can couple with quantum-confined energy levels, leading to phonon-less exciton-recombination and photoluminescence. We demonstrate size dependence (2.4 - 8.3 nm) of this coupling observed in small uniform silicon nanocrystallites, or quantum-dots, by direct measurements of their electronic density of states and low temperature measurements. To enhance the optical absorption of the these silicon quantum-dots, we utilize generation of resonant surface plasmon polariton waves, which leads to several fold increase in observed spectrally-resolved photocurrent near the quantum-confined bandedge states. Therefore, these enhanced light emission and absorption enhancement can have important implications for applications of nanostructured silicon for optoelectronic applications in photovoltaics and LEDs.

  19. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Science.gov (United States)

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  20. Oral associated bacterial infection in horses: studies on the normal anaerobic flora from the pharyngeal tonsillar surface and its association with lower respiratory tract and paraoral infections.

    Science.gov (United States)

    Bailey, G D; Love, D N

    1991-02-15

    Two hundred and seventy bacterial isolates were obtained from the pharyngeal tonsillar surface of 12 normal horses and 98 obligatory anaerobic bacteria were characterised. Of these, 57 isolates belonging to 7 genera (Peptostreptococcus (1); Eubacterium (9); Clostridium (6); Veillonella (6); Megasphera (1); Bacteroides (28); Fusobacterium (6)) were identified, and 16 of these were identified to species level (P. anaerobius (1); E. fossor (9); C. villosum (1); B. fragilis (1); B. tectum (2); B. heparinolyticus (2)). Three hundred and twenty isolates were obtained from 23 samples from horses with lower respiratory tract (LRT) or paraoral (PO) bacterial infections. Of the 143 bacteria selected for detailed characterisation, obligate anaerobes accounted for 100 isolates, facultative anaerobes for 42 isolates and obligate aerobes for one isolate. Phenotypic characterisation separated 99 of the isolates into 14 genera. Among the obligately anaerobic species, Gram-positive cocci including P. anaerobius comprised 25% of isolates, E. fossor 11% and other Gram-positive rods (excluding Clostridium sp.) 18% of isolates. The Gram-negative rods comprised B. fragilis 5%, B. heparinolyticus 5%, asaccharolytic pigmented Bacteroides 3% and other Bacteroides 13%, while a so-far unnamed species of Fusobacterium (7%), and Gram-negative corroding rods (3%) were isolated. Among the facultatively anaerobic isolates, S. equi subsp. zooepidemicus accounted for 31% of isolates, followed by Pasteurella spp. 19%, Escherichia coli 17%, Actinomyces spp. 9%, Streptococcus spp. 9%. Incidental facultative isolates were Enterococcus spp. 2%, Enterobacter cloaceae 2%, Actinobacillus spp. 2% and Gram-negative corroding rods 5%. On the basis of the similarities (as determined by DNA hybridization data and/or phenotypic characteristics) of some of the bacterial species (e.g. E. fossor and B. heparinolyticus) isolated from both the normal pharyngeal tonsillar surfaces and LRT and PO diseases of horses, it

  1. Divergent synthesis and optoelectronic properties of oligodiacetylene building blocks

    NARCIS (Netherlands)

    Pilzak, G.S.; Lagen, van B.; Sudhölter, E.J.R.; Zuilhof, H.

    2008-01-01

    A new and divergent synthetic route to oligodiacetylene (ODA) building blocks has been developed via Sonogashira reactions under a reductive atmosphere. These central building blocks provide a new way for rapid preparation of long ODAs. In addition, we report on their optoelectronic properties which

  2. Electron microscopy study of advanced heterostructures for optoelectronics

    NARCIS (Netherlands)

    Katcki, J.; Ratajczak, J.; Phillipp, F.; Muszalski, J.; Bugajski, M.; Chen, J.X.; Fiore, A.

    2003-01-01

    The application of cross-sectional transmission electron microscopy and SEM to the investigation of optoelectronic devices are reviewed. Special attention was paid to the electron microscopy assessment of the growth perfection of such crucial elements of the devices like quantum wells, quantum dots,

  3. Advances in wide bandgap SiC for optoelectronics

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    2014-01-01

    Silicon carbide (SiC) has played a key role in power electronics thanks to its unique physical properties like wide bandgap, high breakdown field, etc. During the past decade, SiC is also becoming more and more active in optoelectronics thanks to the progress in materials growth and nanofabrication...

  4. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    Science.gov (United States)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  5. Comparison of Placido disc and Scheimpflug image-derived topography-guided excimer laser surface normalization combined with higher fluence CXL: the Athens Protocol, in progressive keratoconus

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-07-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis11Laservision.gr Eye Institute, Athens, Greece; 2New York University School of Medicine, Department of Opthalmology, NY, NY, USABackground: The purpose of this study was to compare the safety and efficacy of two alternative corneal topography data sources used in topography-guided excimer laser normalization, combined with corneal collagen cross-linking in the management of keratoconus using the Athens protocol, ie, a Placido disc imaging device and a Scheimpflug imaging device.Methods: A total of 181 consecutive patients with keratoconus who underwent the Athens protocol between 2008 and 2011 were studied preoperatively and at months 1, 3, 6, and 12 postoperatively for visual acuity, keratometry, and anterior surface corneal irregularity indices. Two groups were formed, depending on the primary source used for topoguided photoablation, ie, group A (Placido disc and group B (Scheimpflug rotating camera. One-year changes in visual acuity, keratometry, and seven anterior surface corneal irregularity indices were studied in each group.Results: Changes in visual acuity, expressed as the difference between postoperative and preoperative corrected distance visual acuity were +0.12 ± 0.20 (range +0.60 to -0.45 for group A and +0.19 ± 0.20 (range +0.75 to -0.30 for group B. In group A, K1 (flat keratometry changed from 45.202 ± 3.782 D to 43.022 ± 3.819 D, indicating a flattening of -2.18 D, and K2 (steep keratometry changed from 48.670 ± 4.066 D to 45.865 ± 4.794 D, indicating a flattening of -2.805 D. In group B, K1 (flat keratometry changed from 46.213 ± 4.082 D to 43.190 ± 4.398 D, indicating a flattening of -3.023 D, and K2 (steep keratometry changed from 50.774 ± 5.210 D to 46.380 ± 5.006 D, indicating a flattening of -4.394 D. For group A, the index of surface variance decreased to -5.07% and the index of height decentration to -26.81%. In group B, the index of surface variance

  6. Clarifying Normalization

    Science.gov (United States)

    Carpenter, Donald A.

    2008-01-01

    Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. This author's industry and classroom experiences indicate such simplification yields quicker…

  7. Exploration on the training mode of application-oriented talents majoring in optoelectronic information

    Science.gov (United States)

    Lv, Hao; Liu, Aimei; Zhang, Shengyi; Xiao, Yongjun

    2017-08-01

    The optoelectronic information major is a strong theoretical and practical specialty. In view of the problems existing in the application-oriented talents training in the optoelectronic information specialty. Five aspects of the talent cultivation plan, the teaching staff, the teaching content, the practical teaching and the scientific research on the training mode of application-oriented talents majoring in optoelectronic information are putted forward. It is beneficial to the specialty construction of optoelectronic information industry which become close to the development of enterprises, and the depth of the integration of school and enterprise service regional economic optoelectronic information high-end skilled personnel base.

  8. Normal Raman and surface enhanced Raman spectroscopic experiments with thin layer chromatography spots of essential amino acids using different laser excitation sources

    Science.gov (United States)

    István, Krisztina; Keresztury, Gábor; Szép, Andrea

    2003-06-01

    A comparative study of the feasibility and efficiency of Raman spectroscopic detection of thin layer chromatography (TLC) spots of some weak Raman scatterers (essential amino acids, namely, glycine and L-forms of alanine, serine, valine, proline, hydroxyproline, and phenylalanine) was carried out using four different visible and near-infrared (NIR) laser radiations with wavelengths of 532, 633, 785, and 1064 nm. Three types of commercial TLC plates were tested and the possibility of inducing surface enhanced Raman scattering (SERS) by means of Ag-sol was also investigated. The spectra obtained from spotted analytes adsorbed on TLC plates were of very different quality strongly depending on the excitation wavelength, the wetness of the samples, and the compounds examined. The best results were obtained with the simple silica TLC plate, and it has been established that the longest wavelength (lowest energy) NIR excitation of a Nd:YAG laser is definitely more suitable for generating normal Raman scattering of analyte spots than any of the visible radiations. Concerning SERS with application of Ag-sol to the TLC spots, 1-3 orders of magnitude enhancement was observed with wet samples, the greatest with the 532 nm radiation and gradually smaller with the longer wavelength excitations. It is shown, however, that due to severe adsorption-induced spectral distortions and increased sensitivity to microscopic inhomogeneity of the sample, none of the SERS spectra obtained with the dispersive Raman microscope operating in the visible region were superior to the best NIR normal FT-Raman spectra, as far as sample identification is concerned.

  9. Research on the processing technology of medium-caliber aspheric lens in the optoelectronic integrated test system

    Science.gov (United States)

    Liu, Dan; Yu, Xin-ying; Wang, Wei

    2016-10-01

    In the optoelectronic integrated test system, surface profile and finish of the optical element are put forward higher request. Taking an aspherical quartz glass lens with a diameter of 200mm as example, taking Preston hypothesis as the theoretical basis, analyze the influence of surface quality of various process parameters, including the workpiece and the tool axis spindle speed, wheel type, concentration polishing, polishing mold species, dwell time, polishing pressure and other parameters. Using CNC method for the surface profile and surface quality of the lens were investigated. Taking profilometer measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 2µm and the surface finish is, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  10. Performance of iron–chromium–aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Heuser, Brent J., E-mail: bheuser@illinois.edu [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Mandapaka, Kiran K.; Was, Gary S. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI 48109 (United States)

    2016-03-15

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe–Zr is addressed with the FeCrAl-YSZ system. - Graphical abstract: Weight gain normalized to total sample surface area versus time during 700 °C steam exposure for FeCrAl samples with different composition (A) and Fe/Cr/Al:62/4/34 (B). In both cases, the responses of uncoated Zry2 (Zry2-13A and Zry2-19A) are shown for comparison. This uncoated Zry2 response shows the expected pre-transition quasi-cubic kinetic behavior and eventual breakaway (linear) kinetics. Highlights: • FeCrAl coatings deposited on Zy2 have been tested with respect to oxidation in high-temperature steam. • FeCrAl compositions promoting alumina formation inhibited oxidation of Zy2 and delay weight gain. • Autoclave testing to 20 days of coated Zy2 in a simulated BWR environment demonstrates minimal weight gain and no film degradation. • The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  11. Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance

    KAUST Repository

    Banavoth, Murali

    2016-12-14

    Hybrid organic-inorganic perovskite crystals have recently become one of the most important classes of photoactive materials in the solar cell and optoelectronic communities. Albeit improvements have focused on state-of-the-art technology including various fabrication methods, device architectures, and surface passivation, progress is yet to be made in understanding the actual operational temperature on the electronic properties and the device performances. Therefore, the substantial effect of temperature on the optoelectronic properties, charge separation, charge recombination dynamics, and photoconversion efficiency are explored. The results clearly demonstrated a significant enhancement in the carrier mobility, photocurrent, charge carrier lifetime, and solar cell performance in the 60 ± 5 °C temperature range. In this temperature range, perovskite crystal exhibits a highly symmetrical relaxed cubic structure with well-aligned domains that are perpendicular to a principal axis, thereby remarkably improving the device operation. This finding provides a new key variable component and paves the way toward using perovskite crystals in highly efficient photovoltaic cells.

  12. Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene.

    Science.gov (United States)

    Lee, Hanleem; Kim, Meeree; Kim, Ikjoon; Lee, Hyoyoung

    2016-06-01

    Many studies have accompanied the emergence of a great interest in flexible or/and stretchable devices for new applications in wearable and futuristic technology, including human-interface devices, robotic skin, and biometric devices, and in optoelectronic devices. Especially, new nanodimensional materials enable flexibility or stretchability to be brought based on their dimensionality. Here, the emerging field of flexible devices is briefly introduced using silver nanowires and graphene, which are famous nanomaterials for the use of transparent conductive electrodes, as examples, and their unique functions originating from the intrinsic property of these nanomaterials are highlighted. It is thought that this work will evoke more interest and idea exchanges in this emerging field and hopefully can trigger a breakthrough on a new type of optoelectronics and optogenetic devices in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Recent advances in flexible and wearable organic optoelectronic devices

    Science.gov (United States)

    Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin

    2018-01-01

    Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).

  14. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  15. Advances in graphene-based optoelectronics, plasmonics and photonics

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu

    2016-01-01

    Since the early works on graphene it has been remarked that graphene is a marvelous electronic material. Soon after its discovery, graphene was efficiently utilized in the fabrication of optoelectronic, plasmonic and photonic devices, including graphene-based Schottky junction solar cells. The present work is a review of the progress in the experimental research on graphene-based optoelectronics, plasmonics and photonics, with the emphasis on recent advances. The main graphene-based optoelectronic devices presented in this review are photodetectors and modulators. In the area of graphene-based plasmonics, a review of the plasmonic nanostructures enhancing or tuning graphene-light interaction, as well as of graphene plasmons is presented. In the area of graphene-based photonics, we report progress on fabrication of different types of graphene quantum dots as well as functionalized graphene and graphene oxide, the research on the photoluminescence and fluorescence of graphene nanostructures as well as on the energy exchange between graphene and semiconductor quantum dots. In particular, the promising achievements of research on graphene-based Schottky junction solar cells is presented. (review)

  16. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  17. The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage.

  18. Optoelectronics-related competence building in Japanese and Western firms

    Science.gov (United States)

    Miyazaki, Kumiko

    1992-05-01

    In this paper, an analysis is made of how different firms in Japan and the West have developed competence related to optoelectronics on the basis of their previous experience and corporate strategies. The sample consists of a set of seven Japanese and four Western firms in the industrial, consumer electronics and materials sectors. Optoelectronics is divided into subfields including optical communications systems, optical fibers, optoelectronic key components, liquid crystal displays, optical disks, and others. The relative strengths and weaknesses of companies in the various subfields are determined using the INSPEC database, from 1976 to 1989. Parallel data are analyzed using OTAF U.S. patent statistics and the two sets of data are compared. The statistical analysis from the database is summarized for firms in each subfield in the form of an intra-firm technology index (IFTI), a new technique introduced to assess the revealed technology advantage of firms. The quantitative evaluation is complemented by results from intensive interviews with the management and scientists of the firms involved. The findings show that there is a marked variation in the way firms' technological trajectories have evolved giving rise to strength in some and weakness in other subfields for the different companies, which are related to their accumulated core competencies, previous core business activities, organizational, marketing, and competitive factors.

  19. Light box for investigation of characteristics of optoelectronics detectors

    Science.gov (United States)

    Szreder, Agnieszka; Mazikowski, Adam

    2017-09-01

    In this paper, a light box for investigation of characteristics of optoelectronic detectors is described. The light box consists of an illumination device, an optical power sensor and a mechanical enclosure. The illumination device is based on four types of high-power light emitting diodes (LED): white light, red, green and blue. The illumination level can be varied for each LED independently by the driver and is measured by optical power sensor. The mechanical enclosure provides stable mounting points for the illumination device, sensor and the examined detector and protects the system from external light, which would otherwise strongly influence the measurement results. Uniformity of illumination distribution provided by the light box for all colors is good, making the measurement results less dependent on the position of the examined detector. The response of optoelectronic detectors can be investigated using the developed light box for each LED separately or for any combination of up to four LED types. As the red, green and blue LEDs are rather narrow bandwidth sources, spectral response of different detectors can be examined for these wavelength ranges. The described light box can be used for different applications. Its primary use is in a student laboratory setup for investigation of characteristics of optoelectronic detectors. Moreover, it can also be used in various colorimetric or photographic applications. Finally, it will be used as a part of demonstrations from the fields of vision and color, performed during science fairs and outreach activities increasing awareness of optics and photonics.

  20. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH 3 NH 3 ) 3 Bi 2 I 9

    KAUST Repository

    Abulikemu, Mutalifu

    2016-07-14

    Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate an emerging lead-free and air stable compound (CH3NH3)3Bi2I9 as a non-toxic potential alternative to lead halide perovskites. We have synthesized thin films, powders and millimeter-scale single crystals of (CH3NH3)3Bi2I9 and investigated their structural and optoelectronic properties. We demonstrate that the degree of crystallinity strongly affects the optoelectronic properties of the material, resulting in significantly different band gaps in polycrystalline thin films and single crystals. Surface photovoltage spectroscopy reveals outstanding photocharge generation in the visible (<700 nm), while transient absorption spectroscopy and space charge limited current measurements point to a long exciton lifetime and a high carrier mobility, respectively, similar to lead halide perovskites, pointing to the remarkable potential of this semiconductor. Photovoltaic devices fabricated using this material yield low power conversion efficiency (PCE) to date, but the PCE is expected to rise with improvements in thin film processing and device engineering.

  1. Birkhoff normalization

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for

  2. An anisotropic shear velocity model of the Earth's mantle using normal modes, body waves, surface waves and long-period waveforms

    Science.gov (United States)

    Moulik, P.; Ekström, G.

    2014-12-01

    We use normal-mode splitting functions in addition to surface wave phase anomalies, body wave traveltimes and long-period waveforms to construct a 3-D model of anisotropic shear wave velocity in the Earth's mantle. Our modelling approach inverts for mantle velocity and anisotropy as well as transition-zone discontinuity topographies, and incorporates new crustal corrections for the splitting functions that are consistent with the non-linear corrections we employ for the waveforms. Our preferred anisotropic model, S362ANI+M, is an update to the earlier model S362ANI, which did not include normal-mode splitting functions in its derivation. The new model has stronger isotropic velocity anomalies in the transition zone and slightly smaller anomalies in the lowermost mantle, as compared with S362ANI. The differences in the mid- to lowermost mantle are primarily restricted to features in the Southern Hemisphere. We compare the isotropic part of S362ANI+M with other recent global tomographic models and show that the level of agreement is higher now than in the earlier generation of models, especially in the transition zone and the lower mantle. The anisotropic part of S362ANI+M is restricted to the upper 300 km in the mantle and is similar to S362ANI. When radial anisotropy is allowed throughout the mantle, large-scale anisotropic patterns are observed in the lowermost mantle with vSV > vSH beneath Africa and South Pacific and vSH > vSV beneath several circum-Pacific regions. The transition zone exhibits localized anisotropic anomalies of ˜3 per cent vSH > vSV beneath North America and the Northwest Pacific and ˜2 per cent vSV > vSH beneath South America. However, small improvements in fits to the data on adding anisotropy at depth leave the question open on whether large-scale radial anisotropy is required in the transition zone and in the lower mantle. We demonstrate the potential of mode-splitting data in reducing the trade-offs between isotropic velocity and

  3. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Science.gov (United States)

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  5. Optoelectronic Characterization of Infrared Photodetector Fabricated on Ge-on-Si Substrate.

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Kim, Taek Sung; Shim, Kyu-Hwan; Hong, Hyobong; Choi, Chel-Jong

    2015-10-01

    We report on the optoelectronic characterization of Ge p-i-n infrared photodetector fabricated on Ge-on-Si substrate using rapid thermal chemical vapor deposition (RTCVD). The phosphorous doping concentration and the root mean square (RMS) surface roughness of epitaxial layer was estimated to be 2 x 10(18) cm(-3) and 1.2 nm, respectively. The photodetector were characterized with respect to their dark, photocurrent and responsivities in the wavelength range of 1530-1630 nm. At 1550 nm wavelength, responsivity of 0.32 A/W was measured for a reverse bias of 1 V, corresponding to 25% external quantum efficiency, without an optimal antireflection coating. Responsivity drastically reduced from 1560 nm wavelength which could be attributed to decreased absorption of Ge at room temperature.

  6. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    Science.gov (United States)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  7. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.

    Science.gov (United States)

    Wu, Wei; Tassi, Nancy G; Zhu, Hongli; Fang, Zhiqiang; Hu, Liangbing

    2015-12-09

    Nanocellulose is a biogenerated and biorenewable organic material. Using a process based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)/NaClO/NaBr system, a highly translucent and light-diffusive film consisting of many layers of nanocellulose fibers and wood pulp microfibers was made. The film demonstrates a combination of large optical transmittance of ∼90% and tunable diffuse transmission of up to ∼78% across the visible and near-infrared spectra. The detailed characterizations of the film indicate the combination of high optical transmittance and haze is due to the film's large packing density and microstructured surface. The superior optical properties make the film a translucent light diffuser and applicable for improving the efficiencies of optoelectronic devices such as thin-film silicon solar cells and organic light-emitting devices.

  8. Advanced educational program in optoelectronics for undergraduates and graduates in electronics

    Science.gov (United States)

    Vladescu, Marian; Schiopu, Paul

    2015-02-01

    The optoelectronics education included in electronics curricula at Faculty of Electronics, Telecommunications and Information Technology of "Politehnica" University of Bucharest started in early '90s, and evolved constantly since then, trying to address the growing demand of engineers with a complex optoelectronics profile and to meet the increased requirements of microelectronics, optoelectronics, and lately nanotechnologies. Our goal is to provide a high level of theoretical background combined with advanced experimental tools in laboratories, and also with simulation platforms. That's why we propose an advanced educational program in optoelectronics for both grades of our study program, bachelor and master.

  9. Analysis of optoelectronic strategic planning in Taiwan by artificial intelligence portfolio tool

    Science.gov (United States)

    Chang, Rang-Seng

    1992-05-01

    Taiwan ROC has achieved significant advances in the optoelectronic industry with some Taiwan products ranked high in the world market and technology. Six segmentations of optoelectronic were planned. Each one was divided into several strategic items, design artificial intelligent portfolio tool (AIPT) to analyze the optoelectronic strategic planning in Taiwan. The portfolio is designed to provoke strategic thinking intelligently. This computer- generated strategy should be selected and modified by the individual. Some strategies for the development of the Taiwan optoelectronic industry also are discussed in this paper.

  10. Graduate studies on optoelectronics in Argentina: an experience

    Science.gov (United States)

    Fernández, Juan C.; Garea, María. T.; Isaurralde, Silvia; Perez, Liliana I.; Raffo, Carlos A.

    2014-07-01

    The number of graduate programs in Optoelectronics in Argentina is scarce. The current Optics and Photonics Education Directory lists only three programs. One of them was launched in 2001 in the Facultad de Ingeniería (College of Engineering), Universidad de Buenos Aires (UBA). This was the first graduate program in the field, leading to a Master Degree in Optoelectronics. This decision arose from the demand of telecommunications industries and several estate- or private-funded research institutions working with us in the fields of lasers, optics, remote sensing, etc. A great bonus was the steady work, during several decades, of research groups in the College on the development of different type of lasers and optical non destructive tests and their engineering applications. As happened in many engineering graduate programs in Argentina at that time, few non full-time students could finish their studies, which called for 800 hours of traditional lecture-recitation classes, and the Master Thesis. In recent years Argentine Education authorities downsized the Master programs to 700 hours of blended learning and we redesigned the Graduate Optoelectronic Engineering Program to meet the challenge, dividing it in two successive one year programs, the first aimed at a professional training for almost immediate insertion in the labor market (called Especialización en Ingeniería Optoelectrónica), and the second (called Maestría en Ingeniería Optoelectrónica y Fotónica) aimed at a more academic and research target to comply with the UBA standards for Master degrees. The present work is a presentation of the new program design, which has begun in the current year.

  11. Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications

    Science.gov (United States)

    Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.

    2015-05-01

    The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.

  12. Integrated Automatic Test System for Airborne Optoelectronic Pods

    International Nuclear Information System (INIS)

    Zhang, Z M; Ding, M J; Wang, L

    2006-01-01

    Based on the introduction of the construction and basic principle of the airborne optoelectronic pod, in accordance with the performance standards of the pod, the total solution scheme of the automatic test system used for testing the combination property is proposed in this paper. The main structure, hardware and software design of the system based on the virtual instruments technology are also discussed in detail. The result of the true run proves the practicality, efficiency, high accuracy and other characteristics of the computer aided testing system based on virtual instruments

  13. Wonder of nanotechnology quantum optoelectronic devices and applications

    CERN Document Server

    Razeghi, Manijeh; von Klitzing, Klaus

    2013-01-01

    When you look closely, Nature is nanotechnology at its finest. From a single cell, a factory all by itself, to complex systems, such as the nervous system or the human eye, each is composed of specialized nanostructures that exist to perform a specific function. This same beauty can be mirrored when we interact with the tiny physical world that is the realm of quantum mechanics.The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, edited by Manijeh Razeghi, Leo Esaki, and Klaus von Klitzing focuses on the application of nanotechnology to modern semiconductor optoelectr

  14. SPEKTROP DPU: optoelectronic platform for fast multispectral imaging

    Science.gov (United States)

    Graczyk, Rafal; Sitek, Piotr; Stolarski, Marcin

    2010-09-01

    In recent years it easy to spot and increasing need of high-quality Earth imaging in airborne and space applications. This is due fact that government and local authorities urge for up to date topological data for administrative purposes. On the other hand, interest in environmental sciences, push for ecological approach, efficient agriculture and forests management are also heavily supported by Earth images in various resolutions and spectral ranges. "SPEKTROP DPU: Opto-electronic platform for fast multi-spectral imaging" paper describes architectural datails of data processing unit, part of universal and modular platform that provides high quality imaging functionality in aerospace applications.

  15. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  16. Measuring processes with opto-electronic semiconductor components

    International Nuclear Information System (INIS)

    1985-01-01

    This is a report on the state of commercially available semiconductor emitters and detectors for the visible, near, middle and remote infrared range. A survey is given on the distance, speed, flow and length measuring techniques using opto-electronic components. Automatic focussing, the use of light barriers, non-contact temperature measurements, spectroscopic gas, liquid and environmental measurement techniques and gas analysis in medical techniques show further applications of the new components. The modern concept of guided radiation in optical fibres and their use in system technology is briefly explained. (DG) [de

  17. Optoelectronic imaging of speckle using image processing method

    Science.gov (United States)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  18. Design of optoelectronic system for optical diffusion tomography

    Directory of Open Access Journals (Sweden)

    Erakhtin Igor

    2017-01-01

    Full Text Available This article explores issues connected with the circuit design of a device for optical diffusion tomography, which we are currently designing. We plan to use the device in experimental studies for the development of a faster method of brain hematoma detection. We reviewed currently existing methods for emergency diagnosis of hematomas, primarily the Infrascanner model 2000, for which we identified weaknesses, and outlined suggestions for improvements. This article describes the method of scanning tissues based on a triangulated arrangement of sources and receivers of optical radiation, and it discusses the optoelectronic system that implements that principle.

  19. All-optoelectronic continuous wave THz imaging for biomedical applications

    International Nuclear Information System (INIS)

    Siebert, Karsten J; Loeffler, Torsten; Quast, Holger; Thomson, Mark; Bauer, Tobias; Leonhardt, Rainer; Czasch, Stephanie; Roskos, Hartmut G

    2002-01-01

    We present an all-optoelectronic THz imaging system for ex vivo biomedical applications based on photomixing of two continuous-wave laser beams using photoconductive antennas. The application of hyperboloidal lenses is discussed. They allow for f-numbers less than 1/2 permitting better focusing and higher spatial resolution compared to off-axis paraboloidal mirrors whose f-numbers for practical reasons must be larger than 1/2. For a specific histological sample, an analysis of image noise is discussed

  20. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  1. Combination of silicon nitride and porous silicon induced optoelectronic features enhancement of multicrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, Mohamed Ben; Dimassi, Wissem; Gaidi, Mounir; Ezzaouia, Hatem; Bessais, Brahim [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2011-06-15

    The effects of antireflection (ARC) and surface passivation films on optoelectronic features of multicrystalline silicon (mc-Si) were investigated in order to perform high efficiency solar cells. A double layer consisting of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride (SiN{sub x}) on porous silicon (PS) was achieved on mc-Si surfaces. It was found that this treatment decreases the total surface reflectivity from about 25% to around 6% in the 450-1100 nm wavelength range. As a result, the effective minority carrier diffusion length, estimated from the Laser-beam-induced current (LBIC) method, was found to increase from 312 {mu}m for PS-treated cells to about 798 {mu}m for SiN{sub x}/PS-treated ones. The deposition of SiN{sub x} was found to impressively enhance the minority carrier diffusion length probably due to hydrogen passivation of surface, grain boundaries and bulk defects. Fourier Transform Infrared Spectroscopy (FTIR) shows that the vibration modes of the highly suitable passivating Si-H bonds exhibit frequency shifts toward higher wavenumber, depending on the x ratio of the introduced N atoms neighbors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer

    Science.gov (United States)

    Al-Alwani, Ammar J.; Chumakov, A. S.; Begletsova, N. N.; Shinkarenko, O. A.; Markin, A. V.; Gorbachev, I. A.; Bratashov, D. N.; Gavrikov, M. V.; Venig, S. B.; Glukhovskoy, E. G.

    2018-04-01

    The formation of CdSe quantum dots (QDs) monolayers was studied by Langmuir Blodgett method. The fluorescence (PL) spectra of QD monolayers were investigated at different substrate type (glass, silicon and ITO glass) and the influence of graphene sheets layer (as a conductive surface) on the QDs properties has also been studied. The optoelectronic properties of QDs can be tuned by deposition of insulating nano-size layers of the liquid crystal between QDs and conductive substrate. The monolayer of QDs transferred on conductive surface (glass with ITO) has lowest intensity of PL spectra due to quenching effect. The PL intensity of QDs could be tuned by using various type of substrates or/and by transformed high conductive layer. Also the photooxidation processes of CdSe QDs monolayer on the solid surface can be controlled by selection of suitable substrate. The current-voltage (I–V) characteristics of QDs thin film on ITO surface was studied using scanning tunneling microscope (STM).

  3. An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system

    Science.gov (United States)

    Alharbi, Samah; Hu, Sijung; Mulvaney, David; Blanos, Panagiotis

    2018-02-01

    The ability to gather physiological parameters such as heart rate (HR) and oxygen saturation (SpO2%) during physical movement allows to continuously monitor personal health status without disrupt their normal daily activities. Photoplethysmography (PPG) based pulse oximetry and similar principle devices are unable to extract the HR and SpO2% reliably during physical movement due to interference in the signals that arise from motion artefacts (MAs). In this research, a flexible reflectance multi-wavelength optoelectronic patch sensor (OEPS) has been developed to overcome the susceptibility of conventional pulse oximetry readings to MAs. The OEPS incorporates light embittered diodes as illumination sources with four different wavelengths, e.g. green, orange, red, and infrared unlike the conventional pulse oximetry devices that normally measure the skin absorption of only two wavelengths (red and infrared). The additional green and orange wavelengths were found to be distinguish to the absorption of deoxyhemoglobin (RHb) and oxyhemoglobin (HbO2). The reliability of extracting physiological parameters from the green and orange wavelengths is due to absorbed near to the surface of the skin, thereby shortening the optical path and so effectively reducing the influence of physical movements. To compensate of MAs, a three-axis accelerometer was used as a reference with help of adaptive filter to reduce MAs. The experiments were performed using 15 healthy subjects aged 20 to 30. The primary results show that there are no significant difference of heart rate and oxygen saturation measurements between commercial devices and OEPS Green (r=0.992), Orange(r=0.984), Red(r=0.952) and IR(r=0.97) and SpO2% (r = 0.982, p = 0.894).

  4. Optoelectronic polarimeter controlled by a graphical user interface of Matlab

    International Nuclear Information System (INIS)

    Vilardy, J M; Torres, R; Jimenez, C J

    2017-01-01

    We show the design and implementation of an optical polarimeter using electronic control. The polarimeter has a software with a graphical user interface (GUI) that controls the optoelectronic setup and captures the optical intensity measurement, and finally, this software evaluates the Stokes vector of a state of polarization (SOP) by means of the synchronous detection of optical waves. The proposed optoelectronic polarimeter can determine the Stokes vector of a SOP in a rapid and efficient way. Using the polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the SOP when the optical waves pass through to the linear polarizers and retarder waves plates. The polarimeter prototype could be used as a main tool for the students in order to learn the theory and experimental aspects of the SOP for optical waves via the Stokes vector measurement. The proposed polarimeter controlled by a GUI of Matlab is more attractive and suitable to teach and to learn the polarization of optical waves. (paper)

  5. Growing perovskite into polymers for easy-processable optoelectronic devices

    Science.gov (United States)

    Masi, Sofia; Colella, Silvia; Listorti, Andrea; Roiati, Vittoria; Liscio, Andrea; Palermo, Vincenzo; Rizzo, Aurora; Gigli, Giuseppe

    2015-01-01

    Here we conceive an innovative nanocomposite to endow hybrid perovskites with the easy processability of polymers, providing a tool to control film quality and material crystallinity. We verify that the employed semiconducting polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), controls the self-assembly of CH3NH3PbI3 (MAPbI3) crystalline domains and favors the deposition of a very smooth and homogenous layer in one straightforward step. This idea offers a new paradigm for the implementation of polymer/perovskite nanocomposites towards versatile optoelectronic devices combined with the feasibility of mass production. As a proof-of-concept we propose the application of such nanocomposite in polymer solar cell architecture, demonstrating a power conversion efficiency up to 3%, to date the highest reported for MEH-PPV. On-purpose designed polymers are expected to suit the nanocomposite properties for the integration in diverse optoelectronic devices via facile processing condition.

  6. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer.

    Science.gov (United States)

    Zilberman, Yael; Sonkusale, Sameer R

    2015-05-15

    We present a microfluidic optoelectronic sensor for saliva diagnostics with a potential application for non-invasive early diagnosis of stomach cancer. Stomach cancer is the second most common cause of cancer-related deaths in the world. The primary identified cause is infection by a gram-negative bacterium Helicobacter pylori. These bacteria secrete the enzyme urease that converts urea into carbon dioxide (CO2) and ammonia (NH3), leading to their elevated levels in breath and body fluids. The proposed optoelectronic sensor will detect clinically relevant levels of CO2 and NH3 in saliva that can potentially be used for early diagnosis of stomach cancer. The sensor is composed of the embedded in a microfluidic device array of microwells filled with ion-exchange polymer microbeads doped with various organic dyes. The optical response of this unique highly diverse sensor is monitored over a broad spectrum, which provides a platform for cross-reactive sensitivity and allows detection of CO2 and NH3 in saliva at ppm levels. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Laser applications in the electronics and optoelectronics industry in Japan

    Science.gov (United States)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  8. Development of an optoelectronic holographic platform for otolaryngology applications

    Science.gov (United States)

    Harrington, Ellery; Dobrev, Ivo; Bapat, Nikhil; Flores, Jorge Mauricio; Furlong, Cosme; Rosowski, John; Cheng, Jeffery Tao; Scarpino, Chris; Ravicz, Michael

    2010-08-01

    In this paper, we present advances on our development of an optoelectronic holographic computing platform with the ability to quantitatively measure full-field-of-view nanometer-scale movements of the tympanic membrane (TM). These measurements can facilitate otologists' ability to study and diagnose hearing disorders in humans. The holographic platform consists of a laser delivery system and an otoscope. The control software, called LaserView, is written in Visual C++ and handles communication and synchronization between hardware components. It provides a user-friendly interface to allow viewing of holographic images with several tools to automate holography-related tasks and facilitate hardware communication. The software uses a series of concurrent threads to acquire images, control the hardware, and display quantitative holographic data at video rates and in two modes of operation: optoelectronic holography and lensless digital holography. The holographic platform has been used to perform experiments on several live and post-mortem specimens, and is to be deployed in a medical research environment with future developments leading to its eventual clinical use.

  9. Study and practice of flipped classroom in optoelectronic technology curriculum

    Science.gov (United States)

    Shi, Jianhua; Lei, Bing; Liu, Wei; Yao, Tianfu; Jiang, Wenjie

    2017-08-01

    "Flipped Classroom" is one of the most popular teaching models, and has been applied in more and more curriculums. It is totally different from the traditional teaching model. In the "Flipped Classroom" model, the students should watch the teaching video afterschool, and in the classroom only the discussion is proceeded to improve the students' comprehension. In this presentation, "Flipped Classroom" was studied and practiced in opto-electronic technology curriculum; its effect was analyzed by comparing it with the traditional teaching model. Based on extensive and deep investigation, the phylogeny, the characters and the important processes of "Flipped Classroom" are studied. The differences between the "Flipped Classroom" and the traditional teaching model are demonstrated. Then "Flipped Classroom" was practiced in opto-electronic technology curriculum. In order to obtain high effectiveness, a lot of teaching resources were prepared, such as the high-quality teaching video, the animations and the virtual experiments, the questions that the students should finish before and discussed in the class, etc. At last, the teaching effect was evaluated through analyzing the result of the examination and the students' surveys.

  10. Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale

    KAUST Repository

    Kumar, Naresh

    2017-01-12

    Novel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy. We demonstrate that this combined approach offers subsurface sensitivity that can be exploited to provide molecular information with a nanoscale resolution in all three spatial dimensions. By applying the technique to an organic solar cell device, we show that the inferred surface and subsurface composition distribution correlates strongly with the local photocurrent generation and explains macroscopic device performance. For instance, the direct measurement of fullerene phase purity can distinguish between high purity aggregates that lead to poor performance and lower purity aggregates (fullerene intercalated with polymer) that result in strong photocurrent generation and collection. We show that the reliable determination of the structure-property relationship at the nanoscale can remove ambiguity from macroscopic device data and support the identification of the best routes for device optimisation. The multi-parameter measurement approach demonstrated herein is expected to play a significant role in guiding the rational design of nanomaterial-based optoelectronic devices, by opening a new realm of possibilities for advanced investigation via the combination of nanoscale optical spectroscopy with a whole range of scanning probe microscopy modes.

  11. Malware Normalization

    OpenAIRE

    Christodorescu, Mihai; Kinder, Johannes; Jha, Somesh; Katzenbeisser, Stefan; Veith, Helmut

    2005-01-01

    Malware is code designed for a malicious purpose, such as obtaining root privilege on a host. A malware detector identifies malware and thus prevents it from adversely affecting a host. In order to evade detection by malware detectors, malware writers use various obfuscation techniques to transform their malware. There is strong evidence that commercial malware detectors are susceptible to these evasion tactics. In this paper, we describe the design and implementation of a malware normalizer ...

  12. Optoelectronic switch matrix as a look-up table for residue arithmetic.

    Science.gov (United States)

    Macdonald, R I

    1987-10-01

    The use of optoelectronic matrix switches to perform look-up table functions in residue arithmetic processors is proposed. In this application, switchable detector arrays give the advantage of a greatly reduced requirement for optical sources by comparison with previous optoelectronic residue processors.

  13. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  14. Digital optical computers at the optoelectronic computing systems center

    Science.gov (United States)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  15. Design and Radiation Assessment of Optoelectronic Transceiver Circuits for ITER

    CERN Document Server

    Leroux, P; Van Uffelen, M; Steyaert, M

    2008-01-01

    The presented work describes the design and characterization results of different electronic building blocks for a MGy gamma radiation tolerant optoelectronic transceiver aiming at ITER applications. The circuits are implemented using the 70GHz fT SiGe HBT in a 0.35μm BiCMOS technology. A VCSEL driver circuit has been designed and measured up to a TID of 1.6 MGy and up to a bit rate of 622Mbps. No significant degradation is seen in the eye opening of the output signal. On the receiver side, both a 1GHz, 3kΩ transimpedance and a 5GHz Cherry-Hooper amplifier with over 20dB voltage gain have been designed.

  16. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback.

    Science.gov (United States)

    Shahin, S; Vallini, F; Monifi, F; Rabinovich, M; Fainman, Y

    2016-11-15

    Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.

  17. Optoelectronic analogue signal transfer for LHC detectors, 1991

    CERN Document Server

    Dowell, John D; Homer, R J; Jovanovic, P; Kenyon, I; Staley, R; Webster, K; Da Via, C; Feyt, J; Nappey, P; Stefanini, G; Dwir, B; Reinhart, F K; Davies, J; Green, N; Stewart, W; Young, T; Hall, G; Akesson, T; Jarlskog, G; Kröll, S; Nickerson, R; Jaroslawski, S; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    We propose to study and develop opto-electronic analogue front-ends based on electro-optic intensity modulators. These devices translate the detector electrical analogue signals into optical signals which are then transferred via optical fibres to photodetector receivers at the remote readout. In comparison with conventional solutions based on copper cables, this technique offers the advantages of high speed, very low power dissipation and transmission losses, compactness and immunity to electromagnetic interference. The linearity and dynamic range that can be obtained are more than adequate for central tracking detectors, and the proposed devices have considerable radiation- hardness capabilities. The large bandwidth and short transit times offer possibilities for improved triggering schemes. The proposed R&D programme is aimed at producing multi-channel "demonstrator" units for evaluation both in laboratory and beam tests. This will allow the choice of the most effective technology. A detailed study wil...

  18. Complete diagnostics of pyroactive structures for smart systems of optoelectronics

    Science.gov (United States)

    Bravina, Svetlana L.; Morozovsky, Nicholas V.

    1998-04-01

    The results of study of pyroelectric phenomena in ferroelectric materials for evidence of the possibility to embody the functions promising for creation of smart systems for optoelectronic applications are presented. Designing such systems requires the development of methods for non- destructive complete diagnostics preferably by developing the self-diagnostic ability inherent in materials with the features of smart/intelligent ones. The complex method of complete non-destructive qualification of pyroactive materials based on the method of dynamic photopyroelectric effect allows the determination of pyroelectric, piezoelectric, ferroelectric, dielectric and thermophysical characteristics. The measuring system which allows the study of these characteristics and also memory effects, switching effects, fatigue and degradation process, self-repair process and others is presented. Sample pyroactive system with increased intelligence, such as systems with built-in adaptive controllable domain structure promising for functional optics are developed and peculiarities of their characterization are discussed.

  19. Reconstructing Normality

    DEFF Research Database (Denmark)

    Gildberg, Frederik Alkier; Bradley, Stephen K.; Fristed, Peter Billeskov

    2012-01-01

    Forensic psychiatry is an area of priority for the Danish Government. As the field expands, this calls for increased knowledge about mental health nursing practice, as this is part of the forensic psychiatry treatment offered. However, only sparse research exists in this area. The aim of this study...... was to investigate the characteristics of forensic mental health nursing staff interaction with forensic mental health inpatients and to explore how staff give meaning to these interactions. The project included 32 forensic mental health staff members, with over 307 hours of participant observations, 48 informal....... The intention is to establish a trusting relationship to form behaviour and perceptual-corrective care, which is characterized by staff's endeavours to change, halt, or support the patient's behaviour or perception in relation to staff's perception of normality. The intention is to support and teach the patient...

  20. Pursuing Normality

    DEFF Research Database (Denmark)

    Madsen, Louise Sofia; Handberg, Charlotte

    2018-01-01

    implying an influence on whether to participate in cancer survivorship care programs. Because of "pursuing normality," 8 of 9 participants opted out of cancer survivorship care programming due to prospects of "being cured" and perceptions of cancer survivorship care as "a continuation of the disease......BACKGROUND: The present study explored the reflections on cancer survivorship care of lymphoma survivors in active treatment. Lymphoma survivors have survivorship care needs, yet their participation in cancer survivorship care programs is still reported as low. OBJECTIVE: The aim of this study...... was to understand the reflections on cancer survivorship care of lymphoma survivors to aid the future planning of cancer survivorship care and overcome barriers to participation. METHODS: Data were generated in a hematological ward during 4 months of ethnographic fieldwork, including participant observation and 46...

  1. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Science.gov (United States)

    Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien

    2017-11-01

    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.

  2. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid.

    Science.gov (United States)

    Ahmed, Syed Rahin; Mogus, Jack; Chand, Rohit; Nagy, Eva; Neethirajan, Suresh

    2018-04-30

    An optoelectronic sensor is a rapid diagnostic tool that allows for an accurate, reliable, field-portable, low-cost device for practical applications. In this study, template-free In situ gold nanobundles (Au NBs) were fabricated on an electrode for optoelectronic sensing of fowl adenoviruses (FAdVs). Au NB film was fabricated on carbon electrodes working area using L(+) ascorbic acid, gold chroloauric acid and poly-l-lysine (PLL) through modified layer-by-layer (LbL) method. A scanning electron microscopic (SEM) image of the Au NBs revealed a NB-shaped Au structure with many kinks on its surface, which allow local electric field enhancement through light-matter interaction with graphene quantum dots (GQDs). Here, GQDs were synthesized through an autoclave-assisted method. Characterization experiments revealed blue-emissive, well-dispersed GQDs that were 2-3nm in size with the fluorescence emission peak of GQDs located at 405nm. Both Au NBs and GQDs were conjugated with target FAdVs specific antibodies that bring them close to each other with the addition of target FAdVs through antibody-antigen interaction. At close proximity, light-matter interaction between Au NBs and QDs produces a local electric signal enhancement under Ultraviolet-visible (UV-visible) light irradiation that allows the detection of very low concentrations of target virus even in complex biological media. A proposed optoelectronic sensor showed a linear relationship between the target FAdVs and the electric signal up to 10 Plaque forming unit (PFU)/mL with a limit of detection (LOD) of 8.75 PFU/mL. The proposed sensing strategy was 100 times more sensitive than conventional ELISA method. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Normalization of satellite imagery

    Science.gov (United States)

    Kim, Hongsuk H.; Elman, Gregory C.

    1990-01-01

    Sets of Thematic Mapper (TM) imagery taken over the Washington, DC metropolitan area during the months of November, March and May were converted into a form of ground reflectance imagery. This conversion was accomplished by adjusting the incident sunlight and view angles and by applying a pixel-by-pixel correction for atmospheric effects. Seasonal color changes of the area can be better observed when such normalization is applied to space imagery taken in time series. In normalized imagery, the grey scale depicts variations in surface reflectance and tonal signature of multi-band color imagery can be directly interpreted for quantitative information of the target.

  4. The effect of bridge exercise accompanied by the abdominal drawing-in maneuver on an unstable support surface on the lumbar stability of normal adults.

    Science.gov (United States)

    Gong, Wontae

    2015-01-01

    [Purpose] The present study sought to investigate the influence on static and dynamic lumbar stability of bridge exercise accompanied by an abdominal drawing-in maneuver (ADIM) performed on an uneven support surface. [Subjects] A total of 30 participants were divided into an experimental group (15 participants) and a control group (15 participants). [Methods] The experimental group performed bridge exercise on an unstable surface, whereas the control group performed bridge exercise on a stable surface. The respective bridge exercises were performed for 30 minutes, 3 times per week, for 6 weeks. The static lumbar stability (SLS) and dynamic lumbar stability (DLS) of both the experimental group and the control group were measured using a pressure biofeedback unit. [Results] In the comparison of the initial and final results of the experimental and control groups, only the SLS and DLS of the experimental group were found to be statistically significant. [Conclusion] The results of the present study show that when using bridge exercise to improve SLS and DLS, performing the bridge exercise accompanied by ADIM on an uneven surface is more effective than performing the exercise on a stable surface.

  5. Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films

    International Nuclear Information System (INIS)

    Prathap, P; Revathi, N; Subbaiah, Y P Venkata; Reddy, K T Ramakrishna

    2008-01-01

    Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity

  6. Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes

    Science.gov (United States)

    Del Socorro Hernández-Montes, Maria; Furlong, Cosme; Rosowski, John J.; Hulli, Nesim; Harrington, Ellery; Cheng, Jeffrey Tao; Ravicz, Michael E.; Santoyo, Fernando Mendoza

    2009-05-01

    Current methodologies for characterizing tympanic membrane (TM) motion are usually limited to either average acoustic estimates (admittance or reflectance) or single-point mobility measurements, neither of which suffices to characterize the detailed mechanical response of the TM to sound. Furthermore, while acoustic and single-point measurements may aid in diagnosing some middle-ear disorders, they are not always useful. Measurements of the motion of the entire TM surface can provide more information than these other techniques and may be superior for diagnosing pathology. We present advances in our development of a new compact optoelectronic holographic otoscope (OEHO) system for full field-of-view characterization of nanometer-scale sound-induced displacements of the TM surface at video rates. The OEHO system consists of a fiber optic subsystem, a compact otoscope head, and a high-speed image processing computer with advanced software for recording and processing holographic images coupled to a computer-controlled sound-stimulation and recording system. A prototype OEHO system is in use in a medical research environment to address basic science questions regarding TM function. The prototype provides real-time observation of sound-induced TM displacement patterns over a broad frequency range. Representative time-averaged and stroboscopic holographic interferometry results in animals and human cadaver samples are shown, and their potential utility is discussed.

  7. Tungsten oxides as interfacial layers for improved performance in hybrid optoelectronic devices

    International Nuclear Information System (INIS)

    Vasilopoulou, M.; Palilis, L.C.; Georgiadou, D.G.; Argitis, P.; Kennou, S.; Kostis, I.; Papadimitropoulos, G.; Stathopoulos, N.A.; Iliadis, A.A.; Konofaos, N.; Davazoglou, D.; Sygellou, L.

    2011-01-01

    Tungsten oxide (WO 3 ) films with thicknesses ranging from 30 to 100 nm were grown by Hot Filament Vapor Deposition (HFVD). Films were studied by X-Ray Photoemission Spectroscopy (XPS) and were found to be stoichiometric. The surface morphology of the films was characterized by Atomic Force Microscopy (AFM). Samples had a granular form with grains in the order of 100 nm. The surface roughness was found to increase with film thickness. HFVD WO 3 films were used as conducting interfacial layers in advanced hybrid organic-inorganic optoelectronic devices. Hybrid-Organic Light Emitting Diodes (Hy-OLEDs) and Organic Photovoltaics (Hy-OPVs) were fabricated with these films as anode and/or as cathode interfacial conducting layers. The Hy-OLEDs showed significantly higher current density and a lower turn-on voltage when a thin WO 3 layer was inserted at the anode/polymer interface, while when inserted at the cathode/polymer interface the device performance was found to deteriorate. The improvement was attributed to a more efficient hole injection and transport from the Fermi level of the anode to the Highest Occupied Molecular Orbital (HOMO) of a yellow emitting copolymer (YEP). On the other hand, the insertion of a thin WO 3 layer at the cathode/polymer interface of Hy-OPV devices based on a polythiophene-fullerene bulk-heterojunction blend photoactive layer resulted in an increase of the produced photogenerated current, more likely due to improved electron extraction at the Al cathode.

  8. New pathways in electronics and optoelectronics driven by new physics of nonconventional materials

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2015-01-01

    Nonconventional materials (NCM) - 2D materials and topological insulators (TI) - have opened a gateway to search new physical phenomena and states of the condensed matter as well as to pave new platform of modern technology. This stems on their unique attributes - non equivalence of electronic and dielectric states to vacuum ones, topological protection (reduced backscattering), spin momentum locking property, magnetoelectric coupling, generations of new quasiparticles like Majorana fermions. Increasing the surface state contribution in proportion to the bulk is critical to investigate the surface states and for future innovative device applications. The way to achieve this is to configure NCM into nanostructures, which at the same time in combination with others materials significantly enlarge the variety of new states and phenomena. This article reviews the recent progress made in NCM and nano heterostructures investigation. The state of art of different new scenario of engineering topologically interface states in the TI heterostructures are revealed, in particular by using polarization fields and antiferromagnetic ordering. Some of new proposals for innovative electronic and optoelectronic devices are discussed. (author)

  9. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    Science.gov (United States)

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  10. Progress in the optoelectronic analog signal transfer for high energy particle detectors

    International Nuclear Information System (INIS)

    Tsang, T.; Radeka, V.

    1992-05-01

    We report the progress in the development of a radiation hard Optoelectronic analog system to transfer particle detector signals with high accuracy. We will present the motivation of this study, the operating principle of the optoelectronic system, the system noise study, the recent R ampersand D efforts on radiation effect, temperature stability, and the realization of an integrated l x l6 optical modulator. The issue of photon source for driving such a large-scale optoelectronic modulators is a major concern. We will address this problem by examining different possible photon sources and comment on other possible alternative for signal transfer

  11. Sintering effect on the optoelectronic characteristics of HgSe nanoparticle films on plastic substrates

    International Nuclear Information System (INIS)

    Byun, Kwangsub; Cho, Kyoungah; Kim, Sangsig

    2010-01-01

    The optoelectronic characteristics of HgSe nanoparticle films spin-coated on flexible plastic substrates are investigated under the illumination of 1.3 μm wavelength light. The sintering process improves the optoelectronic characteristics of the HgSe nanoparticle films. The photocurrent of the sintered HgSe nanoparticle films under the illumination of 1.3 μm wavelength light is approximately 20 times larger in magnitude than that of the non-sintered films in air at room temperature. Moreover, the endurance of the flexible optoelectronic device investigated by the continuous substrate bending test reveals that the photocurrent efficiency changes negligibly up to 250 cycles.

  12. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    Science.gov (United States)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de

  13. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    Science.gov (United States)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  14. Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template

    International Nuclear Information System (INIS)

    Jiang Wei; Gao Hong; Xu Ling-Ling; Ma Jia-Ning; Zhang E; Wei Ping; Lin Jia-Qi

    2011-01-01

    Optoelectronic characterisation of an individual ZnO nanowire in contact with a micro-grid template has been studied. The low-cost micro-grid template made by photolithography is used to fabricate the ohmic contact metal electrodes. The current increases linearly with the bias, indicating good ohmic contacts between the nanowire and the electrodes. The resistivity of the ZnO nanowire is calculated to be 3.8 Ω·cm. We investigate the photoresponses of an individual ZnO nanowire under different light illumination using light emitting diodes (λ = 505 nm, 460 nm, 375 nm) as excitation sources in atmosphere. When individual ZnO nanowire is exposured to different light irradiation, we find that it is extremely sensitive to UV illumination; the conductance is much larger upon UV illumination than that in the dark at room temperature. This phenomenon may be related to the surface oxygen molecule adsorbtion, which indicates their potential application to the optoelectronic switching device. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  16. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    KAUST Repository

    Tsai, Yu-Lin; Lai, Kun-Yu; Lee, Ming-Jui; Liao, Yu-Kuang; Ooi, Boon S.; Kuo, Hao-Chung; He, Jr-Hau

    2016-01-01

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via

  17. GaN nano-membrane for optoelectronic and electronic device applications

    KAUST Repository

    Ooi, Boon S.

    2014-01-01

    The ~25nm thick threading dislocation free GaN nanomembrane was prepared using ultraviolet electroless chemical etching method offering the possibility of flexible integration of (Al,In,Ga)N optoelectronic and electronic devices.

  18. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.; El, Labban Abdulrahman; Usman, Anwar; Beaujuge, Pierre; Mohammed, Omar F.

    2016-01-01

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc

  19. Comparing of γ-ray, proton and neutron radiation effects on optoelectronics for space

    International Nuclear Information System (INIS)

    Yu Qingkui; Tang Min; Meng Meng; Li Pengwei; Wen Ping; Li Haian; Tang Jiesen; Wang Sixin; Song Yamei

    2014-01-01

    We performed irradiation test on optoelectronics with γ-rays, proton and neutron. The electrical measurements were performed pre and after irradiation. The degradations induced by each radiation source was compared. (authors)

  20. 78 FR 16296 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Science.gov (United States)

    2013-03-14

    ... Fiber Optic Communications, Components Thereof, and Products Containing Same; Commission Determination... United States after importation of certain optoelectronic devices for fiber optic communications... Fiber IP (Singapore) Pte. Ltd. of Singapore (``Avago Fiber IP''); Avago General IP and Avago...

  1. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.; Fan, Shanhui

    2010-01-01

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from

  2. Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance

    KAUST Repository

    Banavoth, Murali; Yengel, Emre; Peng, Wei; Chen, Zhijie; Alias, Mohd Sharizal; Alarousu, Erkki; Ooi, Boon S.; Burlakov, Victor; Goriely, Alain; Eddaoudi, Mohamed; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Hybrid organic-inorganic perovskite crystals have recently become one of the most important classes of photoactive materials in the solar cell and optoelectronic communities. Albeit improvements have focused on state-of-the-art technology including

  3. Progress on Crystal Growth of Two-Dimensional Semiconductors for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Bingqi Sun

    2018-06-01

    Full Text Available Two-dimensional (2D semiconductors are thought to belong to the most promising candidates for future nanoelectronic applications, due to their unique advantages and capability in continuing the downscaling of complementary metal–oxide–semiconductor (CMOS devices while retaining decent mobility. Recently, optoelectronic devices based on novel synthetic 2D semiconductors have been reported, exhibiting comparable performance to the traditional solid-state devices. This review briefly describes the development of the growth of 2D crystals for applications in optoelectronics, including photodetectors, light-emitting diodes (LEDs, and solar cells. Such atomically thin materials with promising optoelectronic properties are very attractive for future advanced transparent optoelectronics as well as flexible and wearable/portable electronic devices.

  4. Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal.

    Science.gov (United States)

    Joshi, Varun; Srinivasan, Manoj

    2015-02-08

    Understanding how humans walk on a surface that can move might provide insights into, for instance, whether walking humans prioritize energy use or stability. Here, motivated by the famous human-driven oscillations observed in the London Millennium Bridge, we introduce a minimal mathematical model of a biped, walking on a platform (bridge or treadmill) capable of lateral movement. This biped model consists of a point-mass upper body with legs that can exert force and perform mechanical work on the upper body. Using numerical optimization, we obtain energy-optimal walking motions for this biped, deriving the periodic body and platform motions that minimize a simple metabolic energy cost. When the platform has an externally imposed sinusoidal displacement of appropriate frequency and amplitude, we predict that body motion entrained to platform motion consumes less energy than walking on a fixed surface. When the platform has finite inertia, a mass- spring-damper with similar parameters to the Millennium Bridge, we show that the optimal biped walking motion sustains a large lateral platform oscillation when sufficiently many people walk on the bridge. Here, the biped model reduces walking metabolic cost by storing and recovering energy from the platform, demonstrating energy benefits for two features observed for walking on the Millennium Bridge: crowd synchrony and large lateral oscillations.

  5. Design of a high-resolution optoelectronic retinal prosthesis.

    Science.gov (United States)

    Palanker, Daniel; Vankov, Alexander; Huie, Phil; Baccus, Stephen

    2005-03-01

    It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm(-2) (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.

  6. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh; Curutchet, Antton; Ziani, Ahmed; Ait Ahsaine, Hassan; Sautet, Philippe; Takanabe, Kazuhiro; Le Bahers, Tangui

    2017-01-01

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  7. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh

    2017-09-18

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  8. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  9. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  10. Prospects of III-nitride optoelectronics grown on Si

    International Nuclear Information System (INIS)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-01-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al 2 O 3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. (review article)

  11. CMOS Optoelectronic Lock-In Amplifier With Integrated Phototransistor Array.

    Science.gov (United States)

    An Hu; Chodavarapu, Vamsy P

    2010-10-01

    We describe the design and development of an optoelectronic lock-in amplifier (LIA) for optical sensing and spectroscopy applications. The prototype amplifier is fabricated using Taiwan Semiconductor Manufacturing Co. complementary metal-oxide semiconductor 0.35-μm technology and uses a phototransistor array (total active area is 400 μm × 640μm) to convert the incident optical signals into electrical currents. The photocurrents are then converted into voltage signals using a transimpedance amplifier for subsequent convenient signal processing by the LIA circuitry. The LIA is optimized to be operational at 20-kHz modulation frequency but is operational in the frequency range from 13 kHz to 25 kHz. The system is tested with a light-emitting diode (LED) as the light source. The noise and signal distortions are suppressed with filters and a phase-locked loop (PLL) implemented in the LIA. The output dc voltage of the LIA is proportional to the incident optical power. The minimum measured dynamic reserve and sensitivity are 1.31 dB and 34 mV/μW, respectively. The output versus input relationship has shown good linearity. The LIA consumes an average power of 12.79 mW with a 3.3-V dc power supply.

  12. Opto-electronic system for a formal neural network

    Science.gov (United States)

    Heggarty, Keven

    A study on the construction of an optoelectronic system which makes use of the capacities of holographic optics for performing interconnections is presented. In the chosen application (digit recognition) the system acts as an associative memory treating two dimensional data structures (images) in parallel. Starting from the Hopfield model, the synaptic matrix algorithm is modified to adapt the network to optical implementation and improve its discrimination of similar memory vectors. The approach leads to a correlation-reconstruction interpretation of pseudo-inverse techniques. The coding of the computed generated hologram used to perform the connections between two planes which form the outputs and the inputs of the neurons is addressed. This hologram is unusual in that it fulfills simultaneously the necessary correlation and reconstruction functions. The standard techniques of digital holography, usually optimized for one or the other of these functions, is therefore adapted to the specific needs of the connection hologram. In particular, the reduction of the dynamic range of the hologram, whilst retaining the correlation function and a useful degree of shift invariance, is demonstrated. The construction of the prototype system and the adaptation of a laser lithography facility to the fabrication of the holograms are described. The potential of the system is illustrated with experimental results demonstrating its capacity to recognize and discriminate to correlated images from noisy, translated input images. Generalization of the system for use as an interconnection stage in more complicated architectures is illustrated.

  13. Design of a high-resolution optoelectronic retinal prosthesis

    Science.gov (United States)

    Palanker, Daniel; Vankov, Alexander; Huie, Phil; Baccus, Stephen

    2005-03-01

    It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm-2 (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.

  14. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  15. Light Management in Optoelectronic Devices with Disordered and Chaotic Structures

    KAUST Repository

    Khan, Yasser

    2012-07-01

    With experimental realization, energy harvesting capabilities of chaotic microstructures were explored. Incident photons falling into chaotic trajectories resulted in energy buildup for certain frequencies. As a consequence, many fold enhancement in light trapping was observed. These ellipsoid like chaotic microstructures demonstrated 25% enhancement in light trapping at 450nm excitation and 15% enhancement at 550nm excitation. Optimization of these structures can drive novel chaos-assisted energy harvesting systems. In subsequent sections of the thesis, prospect of broadband light extraction from white light emitting diodes were investigated, which is an unchallenged but quintessential problem in solid-state lighting. Size dependent scattering allows microstructures to interact strongly with narrow-band light. If disorder is introduced in spread and sizes of microstructures, broadband light extraction is possible. A novel scheme with Voronoi tessellation to quantify disorder in physical systems was also introduced, and a link between voronoi disorder and state disorder of statistical mechanics was established. Overall, in this thesis some nascent concepts regarding disorder and chaos were investigated to efficiently manage electromagnetic waves in optoelectronic devices.

  16. Flexible Synthetic Semiconductor Applied in Optoelectronic Organic Sensor

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2017-06-01

    Full Text Available The synthesis and application of new nanostructured organic materials, for the development of technology based on organic devices, have taken great interest from the scientific community. The greatest interest in studying organic semiconductor materials has been connected to its already known potential applications, such as: batteries, organic solar cells, flexible organic solar cells, organic light emitting diodes, organic sensors and others. Phototherapy makes use of different radiation sources, and the treatment of hyperbilirubinemia the most common therapeutic intervention occurs in the neonatal period. In this work we developed an organic optoelectronic sensor capable of detecting and determining the radiation dose rate emitted by the radiation source of neonatal phototherapy equipment. The sensors were developed using optically transparent substrate with Nanostructured thin film layers of Poly(9-Vinylcarbazole covered by a layer of Poly(P-Phenylene Vinylene. The samples were characterized by UV-Vis Spectroscopy, Electrical Measurements and SEM. With the results obtained from this study can be developed dosimeters organics to the neonatal phototherapy equipment.

  17. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  18. Optoelectronic properties of doped hydrothermal ZnO thin films

    KAUST Repository

    Mughal, Asad J.

    2017-03-10

    Group III impurity doped ZnO thin films were deposited on MgAl2O3 substrates using a simple low temperature two-step deposition method involving atomic layer deposition and hydrothermal epitaxy. Films with varying concentrations of either Al, Ga, or In were evaluated for their optoelectronic properties. Inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of dopants within the ZnO films. While Al and Ga-doped films showed linear incorporation rates with the addition of precursors salts in the hydrothermal growth solution, In-doped films were shown to saturate at relatively low concentrations. It was found that Ga-doped films showed the best performance in terms of electrical resistivity and optical absorbance when compared to those doped with In or Al, with a resistivity as low as 1.9 mΩ cm and an optical absorption coefficient of 441 cm−1 at 450 nm.

  19. Radiation-hard Optoelectronics for LHC detector upgrades.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00375195; Newbold, Dave

    A series of upgrades foreseen for the LHC over the next decade will allow the proton-proton collisions to reach the design center of mass energy of 14 TeV and increase the luminosity to five times (High Luminosity-LHC) the design luminosity by 2027. Radiation-tolerant high-speed optical data transmission links will continue to play an important role in the infrastructure of particle physics experiments over the next decade. A new generation of optoelectronics that meet the increased performance and radiation tolerance limits imposed by the increase in the intensity of the collisions at the interaction points are currently being developed. This thesis focuses on the development of a general purpose bi-directional 5 Gb/s radiation tolerant optical transceiver, the Versatile Transceiver (VTRx), for use by the LHC experiments over the next five years, and on exploring the radiation-tolerance of state-of-the art silicon photonics modulators for HL-LHC data transmission applications. The compliance of the VTRx ...

  20. Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS

    Science.gov (United States)

    Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.

    2003-06-01

    We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.

  1. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    Science.gov (United States)

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  2. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    Science.gov (United States)

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  3. Organic semiconductor photodiode based on indigo carmine/n-Si for optoelectronic applications

    Science.gov (United States)

    Ganesh, V.; Manthrammel, M. Aslam; Shkir, Mohd.; Yahia, I. S.; Zahran, H. Y.; Yakuphanoglu, F.; AlFaify, S.

    2018-06-01

    The fabrication of indigo carmine/n-Si photodiode has been done, and a robust dark and photocurrent-voltage ( I- V), capacitance vs. voltage ( C-V) and conductance vs. voltage ( G-V) studies were done over a wide range of applied voltage and frequencies. The surface morphology was assessed by atomic force microscope (AFM), and the grain size was measured to be about 66 nm. The reverse current increased with both increasing illumination intensity and bias potential, whereas the forward current increased exponentially with bias potential. The responsivity value was also calculated. Barrier height and ideality factor of diode were estimated through a log (I) vs log (V) plot, and obtained to be 0.843 and 4.75 eV, respectively. The Vbi values are found between 0.95 and 1.2V for frequencies ranging between 100 kHz and 1 MHz. The value of R s is found to be lower at higher frequencies which may be due to a certain distribution of localized interface states. A strong frequency and voltage dependency were observed for interface states density N ss in the present indigo carmine/n-Si photodiode, and this explained the observed capacitance and resistance variation with frequency. These results suggest that the fabricated diode has the potential to be applied in optoelectronic devices.

  4. Near infrared group IV optoelectronics and novel pre-cursors for CVD epitaxy

    Science.gov (United States)

    Hazbun, Ramsey Michael

    Near infrared and mid infrared optoelectronic devices have become increasingly important for the telecommunications, security, and medical imaging industries. The addition of nitrogen to III-V alloys has been widely studied as a method of modifying the band gap for mid infrared (IR) applications. In xGa1-xSb1-y Ny/InAs strained-layer superlattices with type-II (staggered) energy offsets on GaSb substrates, were modeled using eight-band k˙p simulations to analyze the superlattice miniband energies. Three different zero-stress strain balance conditions are reported: fixed superlattice period thickness, fixed InAs well thickness, and fixed InxGa1-xSb 1-yNy barrier thickness. Optoelectronics have traditionally been the realm of III-V semiconductors due to their direct band gap, while integrated circuit chips have been the realm of Group IV semiconductors such as silicon because of its relative abundance and ease of use. Recently the alloying of Sn with Ge and Si has been shown to allow direct band-gap light emission. This presents the exciting prospect of integrating optoelectronics into current Group IV chip fabrication facilities. However, new approaches for low temperature growth are needed to realize these new SiGeSn alloys. Silicon-germanium epitaxy via ultra-high vacuum chemical vapor deposition has the advantage of allowing low process temperatures. Deposition processes are sensitive to substrate surface preparation and the time delay between oxide removal and epitaxial growth. A new monitoring process utilizing doped substrates and defect decoration etching is demonstrated to have controllable and unique sensitivity to interfacial contaminants. Doped substrates were prepared and subjected to various loading conditions prior to the growth of typical Si/SiGe bilayers. The defect densities were correlated to the concentration of interfacial oxygen suggesting this monitoring process may be an effective complement to monitoring via secondary ion mass spectrometry

  5. Optoelectronic properties of four azobenzene-based iminopyridine ligands for photovoltaic application

    Directory of Open Access Journals (Sweden)

    Aziz El alamy

    2017-11-01

    Full Text Available Because of organic π-conjugated materials’ optoelectronic properties and potential applications in a wide range of electronic and optoelectronic devices, such as organic solar cells, these materials, including both polymers and oligomers, have been widely studied in recent years. This work reposts a theoretical study using the DFT method on four azobenzene-based iminopyridines. The theoretical ground-state geometry, electronic structure and optoelectronic parameters (highest occupied molecular orbital (HOMO, lowest unoccupied molecular orbital (LUMO energy levels, open-circuit voltage (Voc and oscillator strengths (O.S of the studied molecules were obtained using the density functional theory (DFT and time-dependent (TDDFT approaches. The effects of the structure length and substituents on the geometric and optoelectronic properties of these materials are discussed to investigate the relationship between the molecular structure and the optoelectronic properties. The results of this study are consistent with the experimental ones and suggest that these materials as good candidates for use in photovoltaic devices. Keywords: π-conjugated materials, azobenzene, optoelectronic properties, DFT calculations, HOMO-LUMO gap

  6. Effect of Exercise-induced Sweating on facial sebum, stratum corneum hydration, and skin surface pH in normal population.

    Science.gov (United States)

    Wang, Siyu; Zhang, Guirong; Meng, Huimin; Li, Li

    2013-02-01

    Evidence demonstrated that sweat was an important factor affecting skin physiological properties. We intended to assess the effects of exercise-induced sweating on the sebum, stratum corneum (SC) hydration and skin surface pH of facial skin. 102 subjects (aged 5-60, divided into five groups) were enrolled to be measured by a combination device called 'Derma Unit SSC3' in their frontal and zygomatic regions when they were in a resting state (RS), at the beginning of sweating (BS), during excessive sweating (ES) and an hour after sweating (AS), respectively. Compared to the RS, SC hydration in both regions increased at the BS or during ES, and sebum increased at the BS but lower during ES. Compared to during ES, Sebum increased in AS but lower than RS. Compared to the RS, pH decreased in both regions at the BS in the majority of groups, and increased in frontal region during ES and in zygomatic region in the AS. There was an increase in pH in both regions during ES in the majority of groups compared to the BS, but a decrease in the AS compared to during ES. The study implies that even in summer, after we sweat excessively, lipid products should be applied locally in order to maintain stability of the barrier function of the SC. The study suggests that after a short term(1 h or less) of self adjustment, excessive sweat from moderate exercise will not impair the primary acidic surface pH of the facial skin. Exercise-induced sweating significantly affected the skin physiological properties of facial region. © 2012 John Wiley & Sons A/S.

  7. Surface Traps in Colloidal Quantum Dot Solar Cells, their Mitigation and Impact on Manufacturability

    KAUST Repository

    Kirmani, Ahmad R.

    2017-01-01

    charge transport and threaten their otherwise wonderful optoelectronic properties. Surface traps have also, indirectly, impeded scalable and industry-compatible fabrication of these solar cells, as all of the reports, to date, have relied on spin

  8. Thin film technologies for optoelectronic components in fiber optic communication

    Science.gov (United States)

    Perinati, Agostino

    1998-02-01

    will grow at an annual average rate of 22 percent from 1.3 million fiber-km in 1995 to 3.5 million fiber-km in 2000. The worldwide components market-cable, transceivers and connectors - 6.1 billion in 1994, is forecasted to grow and show a 19 percent combined annual growth rate through the year 2000 when is predicted to reach 17.38 billion. Fiber-in-the-loop and widespread use of switched digital services will dominate this scenario being the fiber the best medium for transmitting multimedia services. As long as communication will partially replace transportation, multimedia services will push forward technology for systems and related components not only for higher performances but for lower cost too in order to get the consumers wanting to buy the new services. In the long distance transmission area (trunk network) higher integration of electronic and optoelectronic functions are required for transmitter and receiver in order to allow for higher system speed, moving from 2.5 Gb/s to 5, 10, 40 Gb/s; narrow band wavelength division multiplexing (WDM) filters are required for higher transmission capacity through multiwavelength technique and for optical amplifier. In the access area (distribution network) passive components as splitters, couplers, filters are needed together with optical amplifiers and transceivers for point-to-multipoint optical signal distribution: main issue in this area is the total cost to be paid by the customer for basic and new services. Multimedia services evolution, through fiber to the home and to the desktop approach, will be mainly affected by the availability of technologies suitable for component consistent integration, high yield manufacturing processes and final low cost. In this paper some of the optoelectronic components and related thin film technologies expected to mainly affect the fiber optic transmission evolution, either for long distance telecommunication systems or for subscriber network, are presented.

  9. Strain-tuned optoelectronic properties of hollow gallium sulphide microspheres

    Science.gov (United States)

    Zhang, Yin; Chen, Chen; Liang, C. Y.; Liu, Z. W.; Li, Y. S.; Che, Renchao

    2015-10-01

    Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its intrinsic inhomogeneous strain distribution. Geometric phase analysis (GPA) based on high-resolution transmission electron microscopy (HRTEM) imaging reveals that the strain distribution and the associated PL properties can be accurately controlled by changing the growth temperature gradient, which depends on the distance between the boats used for raw material evaporation and microsphere deposition. The stacking-fault density, lattice distortion degree and strain distribution at the shell interfacial region of the Ga2S3 microspheres could be readily adjusted. Ab initio first-principles calculations confirm that the lowest conductive band (LCB) is dominated by S-3s and Ga-4p states, which shift to the low-energy band as a result of the introduction of tensile strain, well in accordance with the observed PL evolution. Therefore, based on our strain driving strategy, novel guidelines toward the reasonable design of sulfide semiconductors with tunable photoluminescence properties are proposed.Sulfide semiconductors have attracted considerable attention. The main challenge is to prepare materials with a designable morphology, a controllable band structure and optoelectronic properties. Herein, we report a facile chemical transportation reaction for the synthesis of Ga2S3 microspheres with novel hollow morphologies and partially filled volumes. Even without any extrinsic dopant, photoluminescence (PL) emission wavelength could be facilely tuned from 635 to 665 nm, depending on its

  10. Optoelectronics and defect levels in hydroxyapatite by first-principles

    Science.gov (United States)

    Avakyan, Leon A.; Paramonova, Ekaterina V.; Coutinho, José; Öberg, Sven; Bystrov, Vladimir S.; Bugaev, Lusegen A.

    2018-04-01

    Hydroxyapatite (HAp) is an important component of mammal bones and teeth, being widely used in prosthetic implants. Despite the importance of HAp in medicine, several promising applications involving this material (e.g., in photo-catalysis) depend on how well we understand its fundamental properties. Among the ones that are either unknown or not known accurately, we have the electronic band structure and all that relates to it, including the bandgap width. We employ state-of-the-art methodologies, including density hybrid-functional theory and many-body perturbation theory within the dynamically screened single-particle Green's function approximation, to look at the optoelectronic properties of HAp. These methods are also applied to the calculation of defect levels. We find that the use of a mix of (semi-)local and exact exchange in the exchange-correlation functional brings a drastic improvement to the band structure. Important side effects include improvements in the description of dielectric and optical properties not only involving conduction band (excited) states but also the valence. We find that the highly dispersive conduction band bottom of HAp originates from anti-bonding σ* states along the ⋯OH-OH-⋯ infinite chain, suggesting the formation of a conductive 1D-ice phase. The choice of the exchange-correlation treatment to the calculation of defect levels was also investigated by using the OH-vacancy as a testing model. We find that donor and acceptor transitions obtained within semi-local density functional theory (DFT) differ from those of hybrid-DFT by almost 2 eV. Such a large discrepancy emphasizes the importance of using a high-quality description of the electron-electron interactions in the calculation of electronic and optical transitions of defects in HAp.

  11. Development of optoelectronic monitoring system for ear arterial pressure waveforms

    Science.gov (United States)

    Sasayama, Satoshi; Imachi, Yu; Yagi, Tamotsu; Imachi, Kou; Ono, Toshirou; Man-i, Masando

    1994-02-01

    Invasive intra-arterial blood pressure measurement is the most accurate method but not practical if the subject is in motion. The apparatus developed by Wesseling et al., based on a volume-clamp method of Penaz (Finapres), is able to monitor continuous finger arterial pressure waveforms noninvasively. The limitation of Finapres is the difficulty in measuring the pressure of a subject during work that involves finger or arm action. Because the Finapres detector is attached to subject's finger, the measurements are affected by inertia of blood and hydrostatic effect cause by arm or finger motion. To overcome this problem, the authors made a detector that is attached to subject's ear and developed and optoelectronic monitoring systems for ear arterial pressure waveform (Earpres). An IR LEDs, photodiode, and air cuff comprised the detector. The detector was attached to a subject's ear, and the space adjusted between the air cuff and the rubber plate on which the LED and photodiode were positioned. To evaluate the accuracy of Earpres, the following tests were conducted with participation of 10 healthy male volunteers. The subjects rested for about five minutes, then performed standing and squatting exercises to provide wide ranges of systolic and diastolic arterial pressure. Intra- and inter-individual standard errors were calculated according to the method of van Egmond et al. As a result, average, the averages of intra-individual standard errors for earpres appeared small (3.7 and 2.7 mmHg for systolic and diastolic pressure respectively). The inter-individual standard errors for Earpres were about the same was Finapres for both systolic and diastolic pressure. The results showed the ear monitor was reliable in measuring arterial blood pressure waveforms and might be applicable to various fields such as sports medicine and ergonomics.

  12. Electronic and optoelectronic materials and devices inspired by nature

    International Nuclear Information System (INIS)

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  13. Biotunable Nanoplasmonic Filter on Few-Layer MoS2 for Rapid and Highly Sensitive Cytokine Optoelectronic Immunosensing.

    Science.gov (United States)

    Park, Younggeun; Ryu, Byunghoon; Oh, Bo-Ram; Song, Yujing; Liang, Xiaogan; Kurabayashi, Katsuo

    2017-06-27

    Monitoring of the time-varying immune status of a diseased host often requires rapid and sensitive detection of cytokines. Metallic nanoparticle-based localized surface plasmon resonance (LSPR) biosensors hold promise to meet this clinical need by permitting label-free detection of target biomolecules. These biosensors, however, continue to suffer from relatively low sensitivity as compared to conventional immunoassay methods that involve labeling processes. Their response speeds also need to be further improved to enable rapid cytokine quantification for critical care in a timely manner. In this paper, we report an immunobiosensing device integrating a biotunable nanoplasmonic optical filter and a highly sensitive few-layer molybdenum disulfide (MoS 2 ) photoconductive component, which can serve as a generic device platform to meet the need of rapid cytokine detection with high sensitivity. The nanoplasmonic filter consists of anticytokine antibody-conjugated gold nanoparticles on a SiO 2 thin layer that is placed 170 μm above a few-layer MoS 2 photoconductive flake device. The principle of the biosensor operation is based on tuning the delivery of incident light to the few-layer MoS 2 photoconductive flake thorough the nanoplasmonic filter by means of biomolecular surface binding-induced LSPR shifts. The tuning is dependent on cytokine concentration on the nanoplasmonic filter and optoelectronically detected by the few-layer MoS 2 device. Using the developed optoelectronic biosensor, we have demonstrated label-free detection of IL-1β, a pro-inflammatory cytokine, with a detection limit as low as 250 fg/mL (14 fM), a large dynamic range of 10 6 , and a short assay time of 10 min. The presented biosensing approach could be further developed and generalized for point-of-care diagnosis, wearable bio/chemical sensing, and environmental monitoring.

  14. Conducting polymers, buckminsterfullerenes, and carbon nanotubes: optoelectronic materials based on architectural diversity of the π-conjugated structure

    International Nuclear Information System (INIS)

    Dai, L.

    2001-01-01

    Recent discovery of superconductivity in self assembled poly(3-hexylthiophene) two-dimensional conjugated sheets indicates the possible applications of plastics even in superconducting optoelectronic devices. Just as the discovery of C 60 has created an entirely new branch of carbon chemistry, the subsequent discovery of carbon nanotubes by lijima in 1991 opened up a new era in material science and nanotechnology. These elongated nanotubes consist of carbon hexagons arranged in a concentric manner with both ends normally capped by fullerene-like structures containing pentagons. Having a conjugated all-carbon structure with unusual molecular symmetries, fullerenes and carbon nanotubes also show interesting electronic, photonic, magnetic and mechanical properties, attractive for various applications, including optical limiters, photovoltaic cells and field emitting displays. For most of the above applications, it is highly desirable to prepare ordered/micropatterned conducting polymers, fullerenes, and carbon nanotubes. Although the microfabrication of conducting polymers has been an active research area for some years, it is a very recent development for fullerenes and carbon nanotubes. Recently, we doped polyaniline (PANI) with a hydrogensulfated fullerenol derivative containing multiple -OSO 3 H groups (i.e. C 60 (OH) 6 (OSO 3 H) 6 ) to produce three-dimensional PANI conductors with a room-temperature conductivity of up to 100 S cm -1 . This value of conductivity is about six orders of magnitude higher than the typical value for C 60 doped conducting polymers. Later, in collaboration with Wan's group at the Chinese Academy of Sciences, we have also synthesized PANI nanotubes via a self assembled C 60 (OH) 6 (OSO 3 H) 6 supramolecular template using (NH 4 ) 2 S 2 O 8 as an oxidant. These results, together with the more recent discovery of a hollow sphere, self assembled by the potassium salt of pentaphenyl fullerene (Ph 5 C 60 K) in water, clearly indicate that

  15. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping; Sutter-Fella, Carolin M.; Lobaccaro, Peter; Hettick, Mark; Zheng, Maxwell; Lien, Der-Hsien; Miller, D. Westley; Warren, Charles W.; Roe, Ellis T; Lonergan, Mark C; Guthrey, Harvey L.; Haegel, Nancy M.; Ager, Joel W.; Carraro, Carlo; Maboudian, Roya; He, Jr-Hau; Javey, Ali

    2016-01-01

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  16. Increased Optoelectronic Quality and Uniformity of Hydrogenated p-InP Thin Films

    KAUST Repository

    Wang, Hsin-Ping

    2016-06-08

    The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. A combination of low temperature photoluminescence and transient photocurrent spectroscopy were used to analyze the energy position and relative density of defect states before and after hydrogenation. Notably, hydrogenation reduces the intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average open-circuit voltage (VOC) of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices.

  17. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  18. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Ioan Botiz

    2014-03-01

    Full Text Available It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties.

  19. Demonstration of an optoelectronic interconnect architecture for a parallel modified signed-digit adder and subtracter

    Science.gov (United States)

    Sun, Degui; Wang, Na-Xin; He, Li-Ming; Weng, Zhao-Heng; Wang, Daheng; Chen, Ray T.

    1996-06-01

    A space-position-logic-encoding scheme is proposed and demonstrated. This encoding scheme not only makes the best use of the convenience of binary logic operation, but is also suitable for the trinary property of modified signed- digit (MSD) numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder and subtractor is built using optoelectronic switch technologies in conjunction with fiber-multistage 3D optoelectronic interconnects. Thus an effective combination of a parallel algorithm and a parallel architecture is implemented. In addition, the performance of the optoelectronic switches used in this system is experimentally studied and verified. Both the 3-bit experimental model and the experimental results of a parallel addition and a parallel subtraction are provided and discussed. Finally, the speed ratio between the MSD adder and binary adders is discussed and the advantage of the MSD in operating speed is demonstrated.

  20. Progress in complementary metal–oxide–semiconductor silicon photonics and optoelectronic integrated circuits

    International Nuclear Information System (INIS)

    Chen Hongda; Zhang Zan; Huang Beiju; Mao Luhong; Zhang Zanyun

    2015-01-01

    Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal–oxide–semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems. (review)

  1. Estimation of Dynamic Errors in Laser Optoelectronic Dimension Gauges for Geometric Measurement of Details

    Directory of Open Access Journals (Sweden)

    Khasanov Zimfir

    2018-01-01

    Full Text Available The article reviews the capabilities and particularities of the approach to the improvement of metrological characteristics of fiber-optic pressure sensors (FOPS based on estimation estimation of dynamic errors in laser optoelectronic dimension gauges for geometric measurement of details. It is shown that the proposed criteria render new methods for conjugation of optoelectronic converters in the dimension gauge for geometric measurements in order to reduce the speed and volume requirements for the Random Access Memory (RAM of the video controller which process the signal. It is found that the lower relative error, the higher the interrogetion speed of the CCD array. It is shown that thus, the maximum achievable dynamic accuracy characteristics of the optoelectronic gauge are determined by the following conditions: the parameter stability of the electronic circuits in the CCD array and the microprocessor calculator; linearity of characteristics; error dynamics and noise in all electronic circuits of the CCD array and microprocessor calculator.

  2. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    Science.gov (United States)

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  3. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    KAUST Repository

    Botiz, Ioan; Stingelin, Natalie

    2014-01-01

    It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.

  4. Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Fabrim, Zacarias Eduardo; Ahmadpour, Mehrad

    2015-01-01

    In this letter, we report on the effect of oxygen partial pressure and sputtering power on amorphous DC-sputtered MoOx films. We observe abrupt changes in the optoelectronic properties of the reported films by increasing the oxygen partial pressure from 1.00 ? 10?3 mbar to 1.37 ? 10?3 mbar during...... significantly the microstructure of the studied films. The presence of states within the band gap due to the lack of oxygen is the most probable mechanism for generat- ing a change in electrical conductivity as well as optical absorption in DC-sputtered MoOx. The large tuning range of the optoelectronic...... properties in these films holds strong promise for their implementation in optoelectronic devices....

  5. Influence of Molecular Conformations and Microstructure on the Optoelectronic Properties of Conjugated Polymers

    KAUST Repository

    Botiz, Ioan

    2014-03-19

    It is increasingly obvious that the molecular conformations and the long-range arrangement that conjugated polymers can adopt under various experimental conditions in bulk, solutions or thin films, significantly impact their resulting optoelectronic properties. As a consequence, the functionalities and efficiencies of resulting organic devices, such as field-effect transistors, light-emitting diodes, or photovoltaic cells, also dramatically change due to the close structure/property relationship. A range of structure/optoelectronic properties relationships have been investigated over the last few years using various experimental and theoretical methods, and, further, interesting correlations are continuously revealed by the scientific community. In this review, we discuss the latest findings related to the structure/optoelectronic properties interrelationships that exist in organic devices fabricated with conjugated polymers in terms of charge mobility, absorption, photoluminescence, as well as photovoltaic properties. © 2014 by the authors.

  6. Optoelectronics in TESLA, LHC and pi-of-the-sky experiments

    CERN Document Server

    Romaniuk, Ryszard; Simrock, Stefan; Wrochna, Grzegorz

    2004-01-01

    Optical and optoelectronics technologies are more and more widely used in the biggest world experiments of high energy and nuclear physics, as well as in the astronomy. The paper is a kind of a broad digest describing the usage of optoelectronics is such experiments and information about some of the involved teams. The described experiments include: TESLA linear accelerator and FEL, Compact Muon Solenoid at LHC and recently started pi-of-the-sky global gamma ray bursts (with associated optical flashes) observation experiment. Optoelectronics and photonics offer several key features which are either extending the technical parameters of existing solutions or adding quite new practical application possibilities. Some of these favorable features of photonic systems are: high selectivity of optical sensors, immunity to some kinds of noise processes, extremely broad bandwidth exchangeable for either terabit rate transmission or ultrashort pulse generation, parallel image processing capability, etc. The following g...

  7. Optimizing the Recognition of Surface Crystallography

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Mika, Filip; Müllerová, Ilona

    2015-01-01

    Roč. 21, S4 (2015), s. 124-129 ISSN 1431-9276 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : surface crystallography Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2015

  8. Asymmetric transmission of surface plasmon polaritons

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A.

    2012-01-01

    Roč. 86, č. 4 (2012), s. 043805 ISSN 1050-2947 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : one-way duffarction grating * scattering * surface plasmon polarirton Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.042, year: 2012

  9. Recent developments of truly stretchable thin film electronic and optoelectronic devices.

    Science.gov (United States)

    Zhao, Juan; Chi, Zhihe; Yang, Zhan; Chen, Xiaojie; Arnold, Michael S; Zhang, Yi; Xu, Jiarui; Chi, Zhenguo; Aldred, Matthew P

    2018-03-29

    Truly stretchable electronics, wherein all components themselves permit elastic deformation as the whole devices are stretched, exhibit unique advantages over other strategies, such as simple fabrication process, high integrity of entire components and intimate integration with curvilinear surfaces. In contrast to the stretchable devices using stretchable interconnectors to integrate with rigid active devices, truly stretchable devices are realized with or without intentionally employing structural engineering (e.g. buckling), and the whole device can be bent, twisted, or stretched to meet the demands for practical applications, which are beyond the capability of conventional flexible devices that can only bend or twist. Recently, great achievements have been made toward truly stretchable electronics. Here, the contribution of this review is an effort to provide a panoramic view of the latest progress concerning truly stretchable electronic devices, of which we give special emphasis to three kinds of thin film electronic and optoelectronic devices: (1) thin film transistors, (2) electroluminescent devices (including organic light-emitting diodes, light-emitting electrochemical cells and perovskite light-emitting diodes), and (3) photovoltaics (including organic photovoltaics and perovskite solar cells). We systematically discuss the device design and fabrication strategies, the origin of device stretchability and the relationship between the electrical and mechanical behaviors of the devices. We hope that this review provides a clear outlook of these attractive stretchable devices for a broad range of scientists and attracts more researchers to devote their time to this interesting research field in both industry and academia, thus encouraging more intelligent lifestyles for human beings in the coming future.

  10. One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application

    Science.gov (United States)

    Luo, Lin-Bao; Wang, Xian-He; Xie, Chao; Li, Zhong-Jun; Lu, Rui; Yang, Xiao-Bao; Lu, Jian

    2014-11-01

    In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 [InlineEquation not available: see fulltext.] 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.

  11. Granulometric composition study of mineral resources using opto-electronic devices and Elsieve software system

    Directory of Open Access Journals (Sweden)

    Kaminski Stanislaw

    2016-01-01

    Full Text Available The use of mechanical sieves has a great impact on measurement results because occurrence of anisometric particles causes undercounting the average size. Such errors can be avoided by using opto-electronic measuring devices that enable measurement of particles from 10 μm up to a few dozen millimetres in size. The results of measurement of each particle size fraction are summed up proportionally to its weight with the use of Elsieve software system and for every type of material particle-size distribution can be obtained. The software allows further statistical interpretation of the results. Beam of infrared radiation identifies size of particles and counts them precisely. Every particle is represented by an electronic impulse proportional to its size. Measurement of particles in aqueous suspension that replaces the hydrometer method can be carried out by using the IPS L analyser (range from 0.2 to 600 μm. The IPS UA analyser (range from 0.5 to 2000 μm is designed for measurement in the air. An ultrasonic adapter enables performing measurements of moist and aggregated particles from 0.5 to 1000 μm. The construction and software system allow to determine second dimension of the particle, its shape coefficient and specific surface area. The AWK 3D analyser (range from 0.2 to 31.5 mm is devoted to measurement of various powdery materials with subsequent determination of particle shape. The AWK B analyser (range from 1 to 130 mm measures materials of thick granulation and shape of the grains. The presented method of measurement repeatedly accelerates and facilitates study of granulometric composition.

  12. Improving the security of optoelectronic delayed feedback system by parameter modulation and system coupling

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.

  13. Design of optoelectronic system to meter of electrical current to the habitation house

    International Nuclear Information System (INIS)

    Camas, J.; Flores, M.; Anzuelo, G.; Garcia, C.; Juarez, N.; Torres, W.; Mota, R.

    2009-01-01

    In this work, we present an optoelectronic digital meter of electrical current. The development of this design is described step by step with diagram to blocks. The advantage over conventional meters of CFE (Comision Federal de electricidad) and the design proposed are analyzed. Information in the optoelectronic design is controlled by Microcontroller PIC16F877. This Microcontroller uses an external crystal as an oscillator with a 4 MHz frequency. The information is shown in a LCD (Liquid Crystal Display). In addition, to quantify the electrical current was necessary an interruption of light. (Author)

  14. Normalization: A Preprocessing Stage

    OpenAIRE

    Patro, S. Gopal Krishna; Sahu, Kishore Kumar

    2015-01-01

    As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are ...

  15. Piezophototronic Effect in Single-Atomic-Layer MoS 2 for Strain-Gated Flexible Optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhuo [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Wang, Lei [Department of Electrical Engineering, Columbia University, New York NY 10027 USA; Yu, Ruomeng [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Liu, Yuanyue [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Wei, Su-Huai [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Hone, James [Department of Mechanical Engineering, Columbia University, New York NY 10027 USA; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing China

    2016-08-03

    Strain-gated flexible optoelectronics are reported based on monolayer MoS2. Utilizing the piezoelectric polarization created at metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.

  16. Influence of TiO2 Nanoparticles on Enhancement of Optoelectronic Properties of PFO-Based Light Emitting Diode

    Directory of Open Access Journals (Sweden)

    Bandar Ali Al-Asbahi

    2013-01-01

    Full Text Available Improvement on optoelectronic properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl- (PFO- based light emitting diode upon incorporation of TiO2 nanoparticles (NPs is demonstrated. The PFO/TiO2 nanocomposites with different weight ratios between 5 and 35 wt.% were prepared using solution blending method before they were spin coated onto Indium Tin Oxide substrate. Then a thin Al layer was deposited onto the nanocomposite layer to act as top electrode. The nanocomposites were tested as emissive layer in organic light emitting diodes (OLEDs. The TiO2 NPs played the most crucial role in facilitating charge transport and electrical injection and thus improved device performance in terms of turn-on voltage, electroluminescence spectra (EL, luminance, and luminance efficiency. The best composition was OLED with 5 wt.% TiO2 NPs content having moderate surface roughness and well distribution of NPs. The device performance was reduced at higher TiO2 NPs content due to higher surface roughness and agglomeration of TiO2 NPs. This work demonstrated the importance of optimum TiO2 NPs content with uniform distribution and controlled surface roughness of the emissive layer for better device performance.

  17. Optoelectronic Properties and Structural Characterization of GaN Thick Films on Different Substrates through Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Wei-Kai Wang

    2017-01-01

    Full Text Available Approximately 4-μm-thick GaN epitaxial films were directly grown onto a GaN/sapphire template, sapphire, Si(111, and Si(100 substrates by high-temperature pulsed laser deposition (PLD. The influence of the substrate type on the crystalline quality, surface morphology, microstructure, and stress states was investigated by X-ray diffraction (XRD, photoluminescence (PL, atomic force microscopy (AFM, transmission electron microscopy (TEM, and Raman spectroscopy. Raman scattering spectral analysis showed a compressive film stress of −0.468 GPa for the GaN/sapphire template, whereas the GaN films on sapphire, Si(111, and Si(100 exhibited a tensile stress of 0.21, 0.177, and 0.081 GPa, respectively. Comparative analysis indicated the growth of very close to stress-free GaN on the Si(100 substrate due to the highly directional energetic precursor migration on the substrate’s surface and the release of stress in the nucleation of GaN films during growth by the high-temperature (1000 °C operation of PLD. Moreover, TEM images revealed that no significant GaN meltback (Ga–Si etching process was found in the GaN/Si sample surface. These results indicate that PLD has great potential for developing stress-free GaN templates on different substrates and using them for further application in optoelectronic devices.

  18. MOVPE growth and characterisation of ZnO properties for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Oleynik, N.

    2007-03-07

    In this work a new Metalorganic Vapor Phase Epitaxy (MOVPE) method was developed for the growth and doping of high-quality ZnO films. ZnO is a unique optoelectronic material for the effective light generation in the green to the UV spectral range. Optoelectronic applications of ZnO require impurity-free monocrystalline films with smooth surfaces and low concentration of the defects in the crystal lattice. At the beginning of this work only few reports on MOVPE growth of polycrystalline ZnO existed. The low quality of ZnO is attributed to the lack of an epitaxially matched substrate, and gas-phase prereactions between the Zn- and O-precursors. To achieve control over the ZnO quality, several O-precursors were tested for the growth on GaN/Si(111) or GaN/Sapphire substrates at different reactor temperatures and pressures. ZnO layers with XRD rocking curve FWHMs of the (0002) reflection of 180'' and narrow cathodoluminescence of 1.3 meV of the dominant I{sub 8} emission were synthesized using a two-step growth procedure. In this procedure, ZnO is homoepitaxially grown at high temperature using N{sub 2}O as O-precursor on a low temperature grown ZnO buffer layer using tertiary-butanol as O-precursor. p-Type doping of ZnO, which usually exhibits n-type behaviour, is very difficult. This doping asymmetry represents an issue for ZnO-based devices. Beginning from 1992, a growing number of reports have been claiming a fabrication of p-type ZnO, but, due to the missing reproducibilty, they are still questionable. Native defects, non-stoichiometry, and hydrogen are sources of n-type conductivity of ZnO. Together with a low solubility of the potential p-type dopants and deep position of impurity levels, these factors partly explain p-type doping difficulties in ZnO. However, there is no fully described mechanism of the ZnO doping asymmetry yet. In this work, NH{sub 3}, unsymmetrical dimethylhydrazine (UDMHy), diisobutylamine, and NO nitrogen precursors were studied

  19. High-resolution biosensor based on localized surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Šípová, Hana; Kvasnička, Pavel; Galler, N.; Krenn, J. R.; Homola, Jiří

    2012-01-01

    Roč. 20, č. 1 (2012), s. 672-680 ISSN 1094-4087 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * surface plasmon resonance * localized surface plasmon Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  20. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Science.gov (United States)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  1. Performance and calibration of the CHORUS scintillating fiber tracker and opto-electronics readout system

    International Nuclear Information System (INIS)

    Annis, P.; Aoki, S.; Brunner, J.; De Jong, M.; Fabre, J.P.; Ferreira, R.; Flegel, W.; Frekers, D.; Gregoire, G.; Herin, J.; Kobayashi, M.; Konijn, J.; Lemaitre, V.; Macina, D.; Meijer Drees, R.; Meinhard, H.; Michel, L.; Mommaert, C.; Nakamura, K.; Nakamura, M.; Nakano, T.; Niwa, K.; Niu, E.; Panman, J.; Riccardi, F.; Rondeshagen, D.; Sato, O.; Stefanini, G.; Vander Donckt, M.; Vilain, P.; Wilquet, G.; Winter, K.; Wong, H.T.

    1995-01-01

    An essential component of the CERN WA95/CHORUS experiment is a scintillating fiber tracker system for precise track reconstruction of particles. The tracker design, its opto-electronics readout and calibration system are discussed. Performances of the detector are presented. (orig.)

  2. Enhancing electronic and optoelectronic performances of tungsten diselenide by plasma treatment.

    Science.gov (United States)

    Xie, Yuan; Wu, Enxiu; Hu, Ruixue; Qian, Shuangbei; Feng, Zhihong; Chen, Xuejiao; Zhang, Hao; Xu, Linyan; Hu, Xiaodong; Liu, Jing; Zhang, Daihua

    2018-06-21

    Transition metal dichalcogenides (TMDCs) have recently become spotlighted as nanomaterials for future electronic and optoelectronic devices. In this work, we develop an effective approach to enhance the electronic and optoelectronic performances of WSe2-based devices by N2O plasma treatment. The hole mobility and sheet density increase by 2 and 5 orders of magnitude, reaching 110 cm2 V-1 s-1 and 2.2 × 1012 cm-2, respectively, after the treatment. At the same time, the contact resistance (Rc) between WSe2 and its metal electrode drop by 5 orders of magnitude from 1.0 GΩ μm to 28.4 kΩ μm. The WSe2 photoconductor exhibits superior performance with high responsivity (1.5 × 105 A W-1), short response time (106). We have also built a lateral p-n junction on a single piece of WSe2 flake by selective plasma exposure. The junction reaches an exceedingly high rectifying ratio of 106, an excellent photoresponsivity of 2.49 A W-1 and a fast response of 8 ms. The enhanced optoelectronic performance is attributed to band-engineering through the N2O plasma treatment, which can potentially serve as an effective and versatile approach for device engineering and optimization in a wide range of electronic and optoelectronic devices based on 2D materials.

  3. Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ko-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, Liang-Da [Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China); Chang, Li-Wei [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China)

    2013-05-15

    Indium oxide (In{sub 2}O{sub 3}) nanorods, nanotowers and tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods have been fabricated by thermal evaporation. The morphology, microstructure and chemical composition of these three nanoproducts are characterized by FE-SEM, HRTEM and XPS. To further investigate the optoelectronic properties, the I–V curves and cathodoluminescence (CL) spectra are measured. The electrical resistivity of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods are 1.32 kΩ, 0.65 kΩ and 0.063 kΩ, respectively. CL spectra of these three nanoproducts clearly indicate that tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt ITO nanorods obtain the highest performance among these three nanoproducts, and this also means that Sn-doped In{sub 2}O{sub 3} nanostructures would be the best way to enhance the optoelectronic properties. Additionally, the growing mechanism and the optoelectronic properties of these three nanostructures are discussed. This study is beneficial to the applications of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices.

  4. OSA Trends in Optics and Photonics Series. Volume 13: Ultrafast Electronics and Optoelectronics

    Science.gov (United States)

    1997-01-01

    tomography. Many materials such as plastics, cardboard, wood and rubber have good transparency in the terahertz frequency range. Hence, this new...Ultrafast processes in semiconductors. Introduction Nonlinear Bragg reflector ( NBR ) consists of periodically distributed optical nonlinearity coexisting...with multiple reflection and group-delay dispersion. Recent theoretical analyses showed the potential of NBR in ultrafast optoelectronics such as all

  5. 78 FR 77166 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Science.gov (United States)

    2013-12-20

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-860] Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products Containing the Same; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY...

  6. Optoelectronic properties of higher acenes, their BN analogue and substituted derivatives

    International Nuclear Information System (INIS)

    Armaković, Stevan; Armaković, Sanja J.; Holodkov, Vladimir; Pelemiš, Svetlana

    2016-01-01

    We have investigated optoelectronic properties of higher acenes: pentacene, hexacene, heptacene, octacene, nonacene, decacene and their boron-nitride (BN) analogues, within the framework of density functional theory (DFT). We have also investigated the optoelectronic properties of acenes modified by BN substitution. Calculated optoelectronic properties encompasses: oxidation and reduction potentials, electron and hole reorganization energies and energy difference between excited first singlet and triplet states ΔE(S_1−T_1). Oxidation and reduction potentials indicate significantly better stability of BN analogues, comparing with their all-carbon relatives. Although higher acenes possess lower electron and hole reorganization energies, with both best values much lower than 0.1 eV, their BN analogues also have competitive values of reorganization energies, especially for holes for which reorganization energy is also lower than 0.1 eV. On the other hand ΔE(S_1−T_1) is much better for BN analogues, having values that indicate that BN analogues are possible applicable for thermally activated delayed fluorescence. - Highlights: • Optoelectronic properties of structures based on higher acenes have been investigated. • Oxidation and reduction potentials together with reorganization energies are calculated. • TADF is analyzed through calculation of ΔE(S_1−T_1), which is much better for BN analogues. • Reorganization energies of acenes improve with the increase of number of benzene rings.

  7. Optoelectronic properties of higher acenes, their BN analogue and substituted derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Armaković, Stevan, E-mail: stevan.armakovic@df.uns.ac.rs [University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000, Novi Sad (Serbia); Armaković, Sanja J. [University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad (Serbia); Holodkov, Vladimir [Educons University, Faculty of Sport and Tourism - TIMS, Radnička 30a, 21000, Novi Sad (Serbia); Pelemiš, Svetlana [University of East Sarajevo, Faculty of Technology, Karakaj bb, 75400, Zvornik, Republic of Srpska, Bosnia and Herzegovina (Bosnia and Herzegovina)

    2016-02-15

    We have investigated optoelectronic properties of higher acenes: pentacene, hexacene, heptacene, octacene, nonacene, decacene and their boron-nitride (BN) analogues, within the framework of density functional theory (DFT). We have also investigated the optoelectronic properties of acenes modified by BN substitution. Calculated optoelectronic properties encompasses: oxidation and reduction potentials, electron and hole reorganization energies and energy difference between excited first singlet and triplet states ΔE(S{sub 1}−T{sub 1}). Oxidation and reduction potentials indicate significantly better stability of BN analogues, comparing with their all-carbon relatives. Although higher acenes possess lower electron and hole reorganization energies, with both best values much lower than 0.1 eV, their BN analogues also have competitive values of reorganization energies, especially for holes for which reorganization energy is also lower than 0.1 eV. On the other hand ΔE(S{sub 1}−T{sub 1}) is much better for BN analogues, having values that indicate that BN analogues are possible applicable for thermally activated delayed fluorescence. - Highlights: • Optoelectronic properties of structures based on higher acenes have been investigated. • Oxidation and reduction potentials together with reorganization energies are calculated. • TADF is analyzed through calculation of ΔE(S{sub 1}−T{sub 1}), which is much better for BN analogues. • Reorganization energies of acenes improve with the increase of number of benzene rings.

  8. Concept of Quantum Geometry in Optoelectronic Processes in Solids: Application to Solar Cells.

    Science.gov (United States)

    Nagaosa, Naoto; Morimoto, Takahiro

    2017-07-01

    The concept of topology is becoming more and more relevant to the properties and functions of electronic materials including various transport phenomena and optical responses. A pedagogical introduction is given here to the basic ideas and their applications to optoelectronic processes in solids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. How phase composition influences optoelectronic and photocatalytic properties of TiO2

    NARCIS (Netherlands)

    Carneiro, J.T.; Carneiro, Joana T.; Savenije, Tom J.; Moulijn, Jacob A.; Mul, Guido

    2011-01-01

    In the present study the ratio of rutile and anatase phases in sol−gel-synthe-sized TiO2 was varied by calcination at temperatures ranging from 500 to 900 °C. Changes in opto-electronic properties were analyzed by time-resolved microwave conductance measurements (TRMC) and evaluated by comparison of

  10. Study of Optoelectronics Properties of Anisotropic Semiconductor Compounds with Ordered Stochiometric Vacancy

    National Research Council Canada - National Science Library

    Roud, Iouri

    2004-01-01

    This report results from a contract tasking loffe Institute as follows: The main aim of the project is to carry out basic research on optoelectronic properties of CdGeAs2 and (Zn,Cd,Hg)(Ga,Al,ln)2(S,Se,Te...

  11. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism

    NARCIS (Netherlands)

    Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, Arunesh; Stallinga, P; Zamboni, R.; Rost, C.; Karg, S.F.; Muccini, M.

    2004-01-01

    Optoelectronic properties of light-emitting field-effect transistors (LETs) fabricated on bottom-contact transistor structures using a tetracene film as charge-transport and light-emitting material are investigated. Electroluminescence generation and transistor current are correlated, and the bias

  12. Tuning Optoelectronic Properties of Ambipolar Organic Light-Emitting Transistors Using a Bulk-Heterojunction Approach

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Rost-Bietsch, Constance; Murgia, Mauro; Karg, Siegfried; Riess, Walter; Muccini, Michele

    2006-01-01

    Bulk-heterojunction engineering is demonstrated as an approach to producing ambipolar organic light-emitting field-effect transistors with tunable electrical and optoelectronic characteristics. The electron and hole mobilities, as well as the electroluminescence intensity, can be tuned over a large

  13. Precision Controlled Carbon Materials for Next-Generation Optoelectronic and Photonic Devices

    Science.gov (United States)

    2018-01-08

    engineer next-generation carbon-based optoelectronic and photonic devices with superior performance and capabilities. These devices include carbon...electronics; (4) nanostructured graphene plasmonics; and (5) polymer-nanotube conjugate chemistry . (1) Semiconducting carbon nanotube-based...applications (In Preparation, 2018). (5) Polymer-nanotube conjugate chemistry Conjugated polymers can be exploited as agents for selectively wrapping and

  14. Combined experimental–theoretical study of the optoelectronic properties of non-stoichiometric pyrochlore bismuth titanate

    KAUST Repository

    Noureldine, Dalal; Lardhi, Sheikha F.; Ziani, Ahmed; Harb, Moussab; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-01-01

    A combination of experimental and computational methods was applied to investigate the crystal structure and optoelectronic properties of the non-stoichiometric pyrochlore Bi2−xTi2O7−1.5x. The detailed experimental protocol for both powder and thin

  15. Probing Local Heterogeneity in the Optoelectronic Properties of Organic-Inorganic Perovskites Using Fluorescence Microscopy

    Science.gov (United States)

    De Quilettes, Dane W.

    -of-magnitude reduction in trap state density. Next, we studied the effects of a series of post-deposition ligand treatments on the PL of polycrystalline methylammonium lead triiodide perovskite thin films. Using glow discharge optical emission spectroscopy (GDOES) and nuclear magnetic resonance (NMR) spectroscopy, we showed that the ligands are incorporated primarily at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry. Finally, we further characterized these TOPO treated films to show, with respect to material bandgap, these passivated films could demonstrate quasi-Fermi level splittings comparable to the highest performing GaAs solar cells, reaching 96% of the Shockley-Queisser limit. Importantly, we reported internal photoluminescence quantum efficiency values of 92% under one sun illumination intensity, which are the highest values achieved to date. These results suggest that the material optoelectronic quality has been nearly optimized and further increases in voltage and device efficiency will be obtained by integrating these types of surface passivation schemes into charge carrier selective interfaces. (Abstract shortened by ProQuest.).

  16. Enhanced Optoelectronic Performance of a Passivated Nanowire-Based Device: Key Information from Real-Space Imaging Using 4D Electron Microscopy

    KAUST Repository

    Khan, Jafar Iqbal

    2016-03-03

    Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials\\' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low-Dimensional Materials for Optoelectronic and Bioelectronic Applications

    Science.gov (United States)

    Hong, Tu

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  18. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics

    Science.gov (United States)

    Kumar, K. Deva Arun; Valanarasu, S.; Rosario, S. Rex; Ganesh, V.; Shkir, Mohd.; Sreelatha, C. J.; AlFaify, S.

    2018-04-01

    Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10-3(Ω cm) and 3.53 × 1018 cm-3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10-3(Ω/sq)- 1 is suggested for an optoelectronic device.

  19. Optoelectronical properties of InGaN quantum well light emitting diodes on semipolar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rass, Jens; Stascheit, Marcus; Ploch, Simon; Wernicke, Tim; Vogt, Patrick; Kneissl, Michael [Technische Universitaet Berlin, Institute of Solid State Physics, Secretariat EW6-1, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2011-07-01

    The performance of GaN-based light emitting diodes (LEDs) is strongly affected by polarization fields along the c-axis of the crystal. Due to the resulting quantum-confined Stark effect the radiative transition rate is reduced and the emission wavelength is blue-shifted when carriers are injected. By growing the structures on semipolar or nonpolar planes the polarization fields can be significantly reduced or even eliminated. In this work, InGaN single quantum well LEDs have been grown by metal-organic vapor phase epitaxy on different semipolar surfaces such as the (10 anti 11) and (20 anti 21) plane. The optoelectronic properties such as the light output power, the emission wavelength and its shift with injection current as well as the operating voltage have been studied. By employing capacitance-voltage- and current-voltage measurements, the size of the depletion region, the build-in potential, the saturation current and the doping concentrations have been determined. LEDs with emission wavelengths ranging from the violet to the blue and green region are presented and their performance characteristics are compared to LEDs grown on the polar c-plane surface.

  20. High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

    Science.gov (United States)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-03-01

    Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol-gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10-3 to 8.725 × 10-4 Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.

  1. Free-standing optoelectronic graphene-CdS-graphene oxide composite paper produced by vacuum-assisted self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong-Feng [Chinese Academy of Sciences, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Taiyuan (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Liu, Yan-Zhen; Shen, Wen-Zhong; Yang, Yong-Gang; Wang, Mao-Zhang [Chinese Academy of Sciences, Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Taiyuan (China); Wen, Yue-Fang [Zhejiang University, Department of Chemical and Biological Engineering, Hangzhou (China)

    2012-03-15

    Free-standing optoelectronic graphene-CdS-graphene oxide (G-CdS-GO) composite papers were prepared by vacuum-assisted self-assembly. G-CdS hybrids were first prepared by a hydrothermal method and GO acts as a dispersant which makes it easier to disperse them to form relatively stable aqueous suspensions for fabricating paper. Transmission electron microscopy shows that CdS quantum dots (QDs) with an average size of approximately 1-2 nm were distributed uniformly on the graphene sheets. Photoluminescence measurements for the as-prepared G-CdS-GO composite paper showed that the surface defect related emissions of attached CdS QDs decrease and blue shift obviously due to the change in particle size and the interaction of the surface of the CdS QDs with both the GO and the graphene sheets. The resulting paper holds great potential for applications in thin film solar cells, sensors, diodes, and so on. (orig.)

  2. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications

    Institute of Scientific and Technical Information of China (English)

    Yiliu Wang; Xun Guan; Dehui Li; Hung-Chieh Cheng; Xidong Duan; Zhaoyang Lin; Xiangfeng Duan

    2017-01-01

    Orgaruc-inorganic hybrid halide perovskites,such as CH3NH3PbI3,have emerged as an exciting class of materials for solar photovoltaic applications;however,they are currently plagued by insufficient environmental stability.To solve this issue,all-inorganic halide perovskites have been developed and shown to exhibit significantly improved stability.Here,we report a single-step chemical vapor deposition growth of cesium lead halide (CsPbX3) microcrystals.Optical microscopy studies show that the resulting perovskite crystals predominantly adopt a square-platelet morphology.Powder X-ray diffraction (PXRD) studies of the resulting crystals demonstrate a highly crystalline nature,with CsPbC13,CsPbBr3,and CsPbI3 showing tetragonal,monoclinic,and orthorhombic phases,respectively.Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies show that the resulting platelets exhibit well-faceted structures with lateral dimensions of the order of 10-50 μm,thickness around 1 μm,and ultra-smooth surface,suggesting the absence of obvious grain boundaries and the single-crystalline nature of the individual microplatelets.Photoluminescence (PL) images and spectroscopic studies show a uniform and intense emission consistent with the expected band edge transition.Additionally,PL images show brighter emission around the edge of the platelets,demonstrating a wave-guiding effect in high-quality crystals.With a well-defined geometry and ultra-smooth surface,the square platelet structure can function as a whispering gallery mode cavity with a quality factor up to 2,863 to support laser emission at room temperature.Finally,we demonstrate that such microplatelets can be readily grown on a variety of substrates,including silicon,graphene,and other two-dimensional materials such as molybdenum disulfide,which can readily allow the construction of heterostructure optoelectronic devices,including a graphene/perovskite/ graphene vertically-stacked photodetector with

  3. THE METHOD OF GEOMETRIC CALIBRATION OF OPTOELECTRONIC SYSTEMS BASED ON ELECTRONIC TEST OBJECT

    Directory of Open Access Journals (Sweden)

    D. A. Kozhevnikov

    2017-01-01

    Full Text Available Designing remote sensing of the Earth devices is requires a lot of attention to evaluation lens distortion level and providing the required accuracy values of geometric calibration of optoelectronic systems at all. Test- objects known as most common tools for optical systems geometric calibration. The purpose of the research was creating an automatically method of distortion correction coefficients calculating with a 3 μm precision in the measurement process. The method of geometric calibration of the internal orientation elements of the optical system based on the electronic test object is proposed. The calculation of the test string brightness image from its multispectral image and filtered signal extrema position determination are presented. Ratio of magnitude of the distortion and interval center is given. Three variants of electronic test-objects with different step and element size are considered. Оptimal size of calibration element was defined as 3×3 pixels due to shape of the subpixels with the aspect ratio of the radiating areas about 1 : 3. It is advisable to use IPS as an electronic test object template. An experimental test and measurement stand functional diagram based on the collimator and optical bench «OSK-2CL» is showed. It was determined that test objects with a grid spacing of 4 and 8 pixels can’t provide tolerable image because of non-collimated emission of active sites and scattering on optical surfaces – the shape of the elements is substantially disrupted. Test-object with a 12 pixels grid spacing was used to distortion level analyzing as most suitable.Ratio of coordinate increment and element number graphs for two photographic lenses (Canon EF-S 17-85 f/4-5.6 IS USM and EF-S 18-55 f/3.5-5.6 IS II are presented. A calculation of the distortion values in edge zones was held, which were respectively 43 μm and 51.6 μm. The technique and algorithm of software implementation is described. Possible directions of the

  4. Spectroscopic investigation of the chemical and electronic properties of chalcogenide materials for thin-film optoelectronic devices

    Science.gov (United States)

    Horsley, Kimberly Anne

    Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials. For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe 2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These techniques enabled the investigation of the chemical and electronic structure of the materials, both at the surface and towards the bulk. CdS/Cu(In,Ga)Se2 thin-films produced from the roll-to-roll, ambient pressure, Nanosolar industrial line were studied. While record-breaking efficiency cells are usually prepared in high-vacuum (HV) or ultra-high vacuum (UHV) environments, these samples demonstrate competitive mass-production efficiency without the high-cost deposition environment. We found relatively low levels of C contaminants, limited Na and Se oxidation, and a S-Se intermixing at the CdS/CIGSe interface. The surface band gap compared closely to previously investigated CIGSe thin-films deposited under vacuum, illustrating that roll-to-roll processing is a promising and less-expensive alternative for solar cell production. An alternative deposition process for CuInSe2 was also studied, in collaboration with the University of Luxembourg. CuInSe2 absorbers were prepared with varying Cu content and surface treatments to investigate the potential to produce an absorber with a Cu-rich bulk and Cu-poor surface. This is desired to combine the bulk characteristics of reduced defects and larger grains in Cu-rich films, while maintaining

  5. A whole-process progressive training mode to foster optoelectronic students' innovative practical ability

    Science.gov (United States)

    Zhong, Hairong; Xu, Wei; Hu, Haojun; Duan, Chengfang

    2017-08-01

    This article analyzes the features of fostering optoelectronic students' innovative practical ability based on the knowledge structure of optoelectronic disciplines, which not only reveals the common law of cultivating students' innovative practical ability, but also considers the characteristics of the major: (1) The basic theory is difficult, and the close combination of science and technology is obvious; (2)With the integration of optics, mechanics, electronics and computer, the system technology is comprehensive; (3) It has both leading-edge theory and practical applications, so the benefit of cultivating optoelectronic students is high ; (4) The equipment is precise and the practice is costly. Considering the concept and structural characteristics of innovative and practical ability, and adhering to the idea of running practice through the whole process, we put forward the construction of three-dimensional innovation and practice platform which consists of "Synthetically Teaching Laboratory + Innovation Practice Base + Scientific Research Laboratory + Major Practice Base + Joint Teaching and Training Base", and meanwhile build a whole-process progressive training mode to foster optoelectronic students' innovative practical ability, following the process of "basic experimental skills training - professional experimental skills training - system design - innovative practice - scientific research project training - expanded training - graduation project": (1) To create an in - class practical ability cultivation environment that has distinctive characteristics of the major, with the teaching laboratory as the basic platform; (2) To create an extra-curricular innovation practice activities cultivation environment that is closely linked to the practical application, with the innovation practice base as a platform for improvement; (3) To create an innovation practice training cultivation environment that leads the development of cutting-edge, with the scientific

  6. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  7. Study optoelectronic properties for polymer composite thick film

    Science.gov (United States)

    Jobayr, Mahmood Radhi; Al Razak, Ali Hussein Abd; Mahdi, Shatha H.; Fadhil, Rihab Nassr

    2018-05-01

    Coupling the epoxy with cadmium oxide particles are important for optical properties that may be affected by various mixing proportions. The aim of this experimental study was to evaluate the effect of different mixing proportions on these properties of reinforced epoxy with cadmium oxide particles. The ultrasonic techniques were used to mix and prepared samples of composites. The surfaces topographic of the 50 µm thick reinforced epoxy films were studied using atomic force microscopy (AFM) and microscopy technique (FTIR) Spectroscopy. AFM imaging and quantitative characterization of the films showed that for all samples the root mean square of the surface roughness increases monotonically with increasing the CdO concentrations (from 0% to 15%). The observed effects of CdO concentrations on surface roughness can be explained by two things: the first reason is that the atoms of additives are combined with the original material to form a new compound that is smoother, more homogeneity and smaller in particle size. The second reason is due to high mixing due to ultrasonic mixing. It is clear also, AFM examination of the prepared samples of reinforced epoxy resin shown that topographical contrast and the identification of small structural details critically depend on hardness of epoxy resin, which in turn depended on the ratio of material (CdO) added. We show that the AFM imaging of the films showed that the mean diameter (104.8nm) of films for all of the samples decreased from 135.50 nm to 83.20 nm with the increase of CdO concentrations.

  8. Measure of horizontal and vertical displacement of the acromioclavicular joint after cutting ligament using X-ray and opto-electronic system.

    Science.gov (United States)

    Rochcongar, Goulven; Emily, Sébastien; Lebel, Benoit; Pineau, Vincent; Burdin, Gilles; Hulet, Christophe

    2012-09-01

    Surgical versus orthopedic treatments of acromioclavicular disjunction are still debated. The aim of this study was to measure horizontal and vertical acromion's displacement after cutting the ligament using standard X-ray and an opto-electronic system on cadaver. Ten cadaveric shoulders were studied. A sequential ligament's section was operated by arthroscopy. The sequence of cutting was chosen to fit with Rockwood's grade. The displacement of the acromion was measured on standard X-ray and with an opto-electronic system allowing measuring of the horizontal displacement. Statistical comparisons were performed using a paired Student's t test with significance set at p acromioclavicular ligament. The contact surface between the acromion and the clavicle decreases statistically after sectioning the acromioclavicular ligament and the coracoclavicular ligament with no effect of sectioning the delto-trapezius muscles. Those results are superposing with those dealing with the anterior translation. The measure concerning the acromioclavicular distance and the coracoclavicular distance are superposing with those of Rockwood. However, there is a significant horizontal translation after cutting the acromioclavicular ligament. Taking into account this displacement, it may be interesting to choose either surgical or orthopedic treatment. There is a correlation between anatomical damage and importance of instability. Horizontal instability is misevaluated in clinical practice.

  9. Design of a dual-axis optoelectronic level for precision angle measurements

    International Nuclear Information System (INIS)

    Fan, Kuang-Chao; Wang, Tsung-Han; Lin, Sheng-Yi; Liu, Yen-Chih

    2011-01-01

    The accuracy of machine tools is mainly determined by angular errors during linear motion according to the well-known Abbe principle. Precision angle measurement is important to precision machines. This paper presents the theory and experiments of a new dual-axis optoelectronic level with low cost and high precision. The system adopts a commercial DVD pickup head as the angle sensor in association with the double-layer pendulum mechanism for two-axis swings, respectively. In data processing with a microprocessor, the measured angles of both axes can be displayed on an LCD or exported to an external PC. Calibrated by a triple-beam laser angular interferometer, the error of the dual-axis optoelectronic level is better than ±0.7 arcsec in the measuring range of ±30 arcsec, and the settling time is within 0.5 s. Experiments show the applicability to the inspection of precision machines

  10. Problems of systems dataware using optoelectronic measuring means of linear displacement

    Science.gov (United States)

    Bazykin, S. N.; Bazykina, N. A.; Samohina, K. S.

    2017-10-01

    Problems of the dataware of the systems with the use of optoelectronic means of the linear displacement are considered in the article. The classification of the known physical effects, realized by the means of information-measuring systems, is given. The organized analysis of information flows in technical systems from the standpoint of determination of inaccuracies of measurement and management was conducted. In spite of achieved successes in automation of machine-building and instruments-building equipment in the field of dataware of the technical systems, there are unresolved problems, concerning the qualitative aspect of the production process. It was shown that the given problem can be solved using optoelectronic lazer information-measuring systems. Such information-measuring systems are capable of not only executing the measuring functions, but also solving the problems of management and control during processing, thereby guaranteeing the quality of final products.

  11. Graphene and Carbon-Nanotube Nanohybrids Covalently Functionalized by Porphyrins and Phthalocyanines for Optoelectronic Properties.

    Science.gov (United States)

    Wang, Aijian; Ye, Jun; Humphrey, Mark G; Zhang, Chi

    2018-04-01

    In recent years, there has been a rapid growth in studies of the optoelectronic properties of graphene, carbon nanotubes (CNTs), and their derivatives. The chemical functionalization of graphene and CNTs is a key requirement for the development of this field, but it remains a significant challenge. The focus here is on recent advances in constructing nanohybrids of graphene or CNTs covalently linked to porphyrins or phthalocyanines, as well as their application in nonlinear optics. Following a summary of the syntheses of nanohybrids constructed from graphene or CNTs and porphyrins or phthalocyanines, explicit intraconjugate electronic interactions between photoexcited porphyrins/phthalocyanines and graphene/CNTs are introduced classified by energy transfer, electron transfer, and charge transfer, and their optoelectronic applications are also highlighted. The major current challenges for the development of covalently linked nanohybrids of porphyrins or phthalocyanines and carbon nanostructures are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength

    Directory of Open Access Journals (Sweden)

    Eng Png Ching

    2015-01-01

    Full Text Available Photodetectors hold a critical position in optoelectronic integrated circuits, and they convert light into electricity. Over the past decades, high-performance photodetectors (PDs have been aggressively pursued to enable high-speed, large-bandwidth, and low-noise communication applications. Various material systems have been explored and different structures designed to improve photodetection capability as well as compatibility with CMOS circuits. In this paper, we review state-of-theart photodetection technologies in the telecommunications spectrum based on different material systems, including traditional semiconductors such as InGaAs, Si, Ge and HgCdTe, as well as recently developed systems such as low-dimensional materials (e.g. graphene, carbon nanotube, etc. and noble metal plasmons. The corresponding material properties, fundamental mechanisms, fabrication, theoretical modelling and performance of the typical PDs are presented, including the emerging directions and perspectives of the PDs for optoelectronic integration applications are discussed.

  13. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System

    Directory of Open Access Journals (Sweden)

    Ruihong Xie

    2017-05-01

    Full Text Available This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  14. Effect of methyl substitution on optoelectronic properties of 1,3,6,8-tetraphenyl pyrenes

    Directory of Open Access Journals (Sweden)

    LIU Yanling

    2014-06-01

    Full Text Available Geometric structures of the ground states and excited states,frontier molecular orbitals,ionization potentials,electron affinities,reorganization energies,and absorption and emission spectra of three novel methyl-substituted 1,3,6,8-tetra-phenylpyrenes were studied theoretically by quantum-chemical methods,such as density functional theory (DFT.The results show that the position of methyl substituent on benzene ring has much effect on the optoelectronic properties of methyl-substituted 1,3,6,8-tetra-phenylpyrenes.Interestingly,the geometric structures and optoelectronic properties of the designed compound 1,3,6,8-tetra-p-tolylpyrene (TPPy are similar to those of 1,3,6,8-tetrakis(3,5-dimethylphenylpyrene (TDMPPy,which is worthy of being further researched.

  15. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.

    Science.gov (United States)

    Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei

    2013-10-13

    Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.

  16. Optical modeling based on mean free path calculations for quantum dot phosphors applied to optoelectronic devices.

    Science.gov (United States)

    Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo

    2017-02-20

    We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

  17. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  18. The relationship between past caries experience and tooth color determined by an opto-electronic method.

    Science.gov (United States)

    Kerosuo, E; Kolehmainen, L

    1982-01-01

    The susceptibility of a tooth to dental caries has been proposed to depend on tooth color. So far there has, however, been no reliable method for tooth color determination. The aims of this study were to evaluate the reliability of an opto-electronic method and to examine the relationship between tooth color and past caries experience. The color of upper right central incisors of 64 school-children was determined using an opto-electronic tri-stimulus color comparator. The intra- and interexaminer reliability of the method was evaluated in vitro and in vivo being 85% and 83%, respectively. To assess the past caries experience the DMFS-index was calculated. Oral hygiene and dietary habits were also assessed. No significant difference in DMFS scores was obtained between the 'white teeth' group and the 'yellow teeth' group. The conclusion is, that the practical importance of possible colorrelated differences in caries resistance is negligible due to the multifaceted nature of dental caries.

  19. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    Science.gov (United States)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  20. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH 3 NH 3 ) 3 Bi 2 I 9

    KAUST Repository

    Abulikemu, Mutalifu; Ould-Chikh, Samy; Miao, Xiaohe; Alarousu, Erkki; Banavoth, Murali; Ngongang Ndjawa, Guy Olivier; Barbe, Jeremy; El Labban, Abdulrahman; Amassian, Aram; Del Gobbo, Silvano

    2016-01-01

    Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate

  1. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  2. Normal foot and ankle

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The foot may be thought of as a bag of bones tied tightly together and functioning as a unit. The bones re expected to maintain their alignment without causing symptomatology to the patient. The author discusses a normal radiograph. The bones must have normal shape and normal alignment. The density of the soft tissues should be normal and there should be no fractures, tumors, or foreign bodies

  3. Design and test of optoelectronic system of alignment control based on CCD camera

    Science.gov (United States)

    Anisimov, A. G.; Gorbachyov, A. A.; Krasnyashchikh, A. V.; Pantushin, A. N.; Timofeev, A. N.

    2008-10-01

    In this work, design, implementation and test of a system intended for positioning of the elements of turbine units relative to the line of shaft with high precision, are discussed. A procedure of the conversion of coordinates from the instrument system into the system connected with the practical position of the axis of turbine has been devised. It is shown that optoelectronic systems of aligment built by autoreflexive scheme can be used for high precision measurements.

  4. OMNI: An optoelectronic multichannel network interface based on hybrid CMOS-SEED technology

    Science.gov (United States)

    Pinkston, Timothy M.

    1996-11-01

    This paper presents a hybrid CMOS-SEED multiprocessor network interface smart pixel design that implements a reservation-based channel control protocol for collisionless concurrent access to multiple optical interprocessor communication channels. An asynchronous optical token is used as the arbitration mechanism for reservation control instead of slotted access. This work demonstrates that complex network protocol functions can be implemented using optoelectronic smart pixel technology.

  5. An optoelectronic integrated device including a laser and its driving circuit

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Nakano, H.; Tanaka, T.P.

    1984-10-01

    A monolithic optoelectronic integrated circuit (OEIC) including a laser diode, photomonitor and driving and detecting circuits has been fabricated on a semi-insulating GaAs substrate. The OEIC has a horizontal integrating structure which is suitable for realising high-density multifunctional devices. The fabricating process and the static and dynamic characteristics of the optical and electronic elements are described. The preliminary results of the co-operative operation of the laser and its driving circuit are also presented.

  6. Direct olefination of fluorinated benzothiadiazoles: a new entry to optoelectronic materials.

    Science.gov (United States)

    Xiao, Yu-Lan; Zhang, Bo; He, Chun-Yang; Zhang, Xingang

    2014-04-14

    Fluorinated olefin-containing benzothiadiazoles have important applications in optoelectronic materials. Herein, we reported the direct olefination of fluorinated benzothiadiazoles, as catalyzed by palladium. The reaction proceeds under mild reaction conditions and shows high functional-group compatibility. A preliminary study of the properties of the resulting symmetrical and unsymmetrical olefin-containing fluorinated benzothiadiazoles in red-light-emitting dyes has also been conducted. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    KAUST Repository

    Wan, Shanhong

    2015-01-01

    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices. This journal is

  8. Optoelectronic link for analog signals from solid state detectors in high energy physics

    International Nuclear Information System (INIS)

    Manfredi, P.F.; Speziali, V.

    1983-01-01

    An optoelectric link has been made to transmit analog signals over a long distance between the beam area and the remote-end data acquisition instrumentation in high energy experiments. The optoelectronic link is intended for silicon target applications and it is designed to work on the signals at the output of a low noise amplifier system. Its advantages over a conventional galvanic connection as well as its limitations are discussed. (orig.)

  9. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...... is devoted to a quasi-phase-matching adhered-ridge-waveguide periodically poled lithium niobate (PPLN) device, which shows a sufficient high temporal resolution to resolve a 640 Gbits OTDM signal....

  10. Proceedings of the thirty fifth international conference on contemporary trends in optics and optoelectronics: conference digest - extended abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    Optics and optoelectronics are indispensable in all spheres of human activity, ranging from day to day needs to advanced scientific and technological pursuits and their applications for the benefit of the society. This conference covers the following topics: adaptive optics, biomedical optics and imaging, classical and quantum optics, fibre optics, optics for space applications, optical metrology and NDT, optical information processing, optical and optoelectronic materials. Papers relevant to INIS are indexed separately

  11. Transferable, conductive TiO{sub 2} nanotube membranes for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohua [School of Energy and Environment, Anhui University of Technology, Maanshan 243002 (China); Department of Micro and Nano Systems Technology, Vestfold University College, Horten 3184 (Norway); Chen, Ting [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Sun, Yunlan; Chen, Guang [School of Energy and Environment, Anhui University of Technology, Maanshan 243002 (China); Wang, Kaiying, E-mail: Kaiying.Wang@hbv.no [Department of Micro and Nano Systems Technology, Vestfold University College, Horten 3184 (Norway)

    2014-08-30

    Graphical abstract: An optoelectronic device with vertical architecture offers straight conducting filaments for electron transportation. - Highlights: • Highly porous TiO{sub 2} nanotube membranes are prepared by two-step anodization. • An optoelectronic device is integrated with photocurrent transportation along the nanotube axial. • Straight conducting nano-filaments are beneficial for electron transportation. • Photoconductive performances are demonstrated under front/back-illumination. - Abstract: We report a facile approach for preparing free-standing and crystalline TiO{sub 2} nanotube membranes (TNMs) by taking advantage of differential mechanical stress between two anodic layers. The membrane exhibits visible light transmittance (∼40%) and UV absorption (∼99%) with good flexibility, which is favorable to integrate with substrates in optoelectronics. A sandwich-type device is assembled through stacking the membrane and substrates. The dependence of current-perpendicular-to-membrane vs applied voltage shows a remarkable photoconductive performance for both front and back illumination. The photocurrent value increases ∼2 or 3 orders magnitude under UV light radiation as compared to that in darkness. The photoresponse is arisen from high internal gain caused by hole trapping along the nanotube walls. This work is crucial for understanding intrinsic optical properties of nanostructured membranes.

  12. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    Science.gov (United States)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  13. Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application.

    Science.gov (United States)

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

  14. Noninvasive Optoelectronic Assessment of Induced Sagittal Imbalance Using the Vicon System.

    Science.gov (United States)

    Ould-Slimane, Mourad; Latrobe, Charles; Michelin, Paul; Chastan, Nathalie; Dujardin, Franck; Roussignol, Xavier; Gauthé, Rémi

    2017-06-01

    Spinal diseases often induce gait disorders with multifactorial origins such as lumbar pain, radicular pain, neurologic complications, or spinal deformities. However, radiography does not permit an analysis of spinal dynamics; therefore, sagittal balance dynamics during gait remain largely unexplored. This prospective and controlled pilot study assessed the Vicon system for detecting sagittal spinopelvic imbalance, to determine the correlations between optoelectronic and radiographic parameters. Reversible anterior sagittal imbalance was induced in 24 healthy men using a thoracolumbar corset. Radiographic, optoelectronic, and comparative analyses were conducted. Corset wearing induced significant variations in radiographic parameters indicative of imbalance; the mean C7-tilt and d/D ratio increased by 15° ± 7.4° and 359%, respectively, whereas the mean spinosacral angle decreased by 16.8° ± 8° (all P imbalance; the mean spinal angle increased by 15.4° ± 5.6° (P imbalance detected using the Vicon system. Optoelectronic C7'S1' correlated with radiographic C7-tilt and d/D ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope.

    Science.gov (United States)

    Fernando, Joseph F S; Zhang, Chao; Firestein, Konstantin L; Golberg, Dmitri

    2017-12-01

    In situ transmission electron microscopy (TEM) allows one to investigate nanostructures at high spatial resolution in response to external stimuli, such as heat, electrical current, mechanical force and light. This review exclusively focuses on the optical, optoelectronic and photocatalytic studies inside TEM. With the development of TEMs and specialized TEM holders that include in situ illumination and light collection optics, it is possible to perform optical spectroscopies and diverse optoelectronic experiments inside TEM with simultaneous high resolution imaging of nanostructures. Optical TEM holders combining the capability of a scanning tunneling microscopy probe have enabled nanomaterial bending/stretching and electrical measurements in tandem with illumination. Hence, deep insights into the optoelectronic property versus true structure and its dynamics could be established at the nanometer-range precision thus evaluating the suitability of a nanostructure for advanced light driven technologies. This report highlights systems for in situ illumination of TEM samples and recent research work based on the relevant methods, including nanomaterial cathodoluminescence, photoluminescence, photocatalysis, photodeposition, photoconductivity and piezophototronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  17. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires.

    Science.gov (United States)

    Yang, Qing; Wu, Yuanpeng; Liu, Ying; Pan, Caofeng; Wang, Zhong Lin

    2014-02-21

    The piezo-phototronic effect, a three way coupling effect of piezoelectric, semiconductor and photonic properties in non-central symmetric semiconductor materials, utilizing the piezo-potential as a "gate" voltage to tune the charge transport/generation/recombination and modulate the performance of optoelectronic devices, has formed a new field and attracted lots of interest recently. The mechanism was verified in various optoelectronic devices such as light emitting diodes (LEDs), photodetectors and solar cells etc. The fast development and dramatic increasing interest in the piezo-phototronic field not only demonstrate the way the piezo-phototronic effects work, but also indicate the strong need for further research in the physical mechanism and potential applications. Furthermore, it is important to distinguish the contribution of the piezo-phototronic effect from other factors induced by external strain such as piezoresistance, band shifting or contact area change, which also affect the carrier behaviour and device performance. In this perspective, we review our recent progress on piezo-phototronics and especially focus on pointing out the features of piezo-phototronic effect in four aspects: I-V characteristics; c-axis orientation; influence of illumination; and modulation of carrier behaviour. Finally we proposed several criteria for describing the contribution made by the piezo-phototronic effect to the performance of optoelectronic devices. This systematic analysis and comparison will not only help give an in-depth understanding of the piezo-phototronic effect, but also work as guide for the design of devices in related areas.

  18. Cultivation of students' engineering designing ability based on optoelectronic system course project

    Science.gov (United States)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  19. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types.

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alzahrani, Abdullah; Alharbi, Samah; Blanos, Panagiotis

    2017-06-21

    Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG) signals, a multi-wavelength opto-electronic patch sensor (OEPS) together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR). A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan's chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference ( p: 0.09, F = 3.0) in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  20. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types

    Directory of Open Access Journals (Sweden)

    Liangwen Yan

    2017-06-01

    Full Text Available Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG signals, a multi-wavelength opto-electronic patch sensor (OEPS together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR. A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan’s chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference (p: 0.09, F = 3.0 in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  1. Chemical synthesis and characterization of CdSe thin films deposited by SILAR technique for optoelectronic applications

    Directory of Open Access Journals (Sweden)

    K.B. Chaudhari

    2016-12-01

    Full Text Available CdSe thin films were deposited on the glass substrate by successive ionic layer adsorption and reaction (SILAR method. Different sets of the film are prepared by changing the number of immersion cycles as 30, 40, 50 and 60. Further the effect of a number of immersion cycles on the characteristic structural, morphological, optical and electrical properties of the films are studied. The XRD studies revealed that the deposited films showed hexagonal structure with most prominent reflection along (1 0 1 plane. Moreover, the peak intensity of (1 0 1 plane is found to be increased as the number of immersion cycles is increased. All the thin films look relatively smooth and homogeneous covering the entire surface area in FESEM image. Optical properties of the CdSe thin films for a different number of immersion cycles were studied, which indicates that the absorbance increases with the increase in the immersion cycles. Furthermore, the optical band-gap in conjunction with the electrical resistivity was found to get decreased with increase in the immersion cycles. A good correlation between the number of immersion cycles and the physical properties indicates a simple method to manipulate the CdSe material properties for optoelectronic applications.

  2. Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.

    Science.gov (United States)

    Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin

    2018-05-10

    Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

  3. Growth and Characterisation of GaAs/AlGaAs Core-shell Nanowires for Optoelectronic Device Applications

    Science.gov (United States)

    Jiang, Nian

    III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).

  4. Pseudo--Normals for Signed Distance Computation

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Bærentzen, Jakob Andreas

    2003-01-01

    the relation of a point to a mesh. At the vertices and edges of a triangle mesh, the surface is not \\$C\\^1\\$ continuous. Hence, the normal is undefined at these loci. Thürmer and Wüthrich proposed the \\$\\backslash\\$emph{angle weighted pseudo--normal} as a way to deal with this problem. In this paper, we...

  5. Precaval retropancreatic space: Normal anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Hee; Kim, Ki Whang; Kim, Myung Jin; Yoo, Hyung Sik; Lee, Jong Tae [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1992-07-15

    The authors defined precaval retropancreatic space as the space between pancreatic head with portal vein and IVC and analyzed the CT findings of this space to know the normal structures and size in this space. We evaluated 100 cases of normal abdominal CT scan to find out normal anatomic structures of precaval retropancreatic space retrospectively. We also measured the distance between these structures and calculated the minimum, maximum and mean values. At the splenoportal confluence level, normal structures between portal vein and IVC were vessel (21%), lymph node (19%), and caudate lobe of liver (2%) in order of frequency. The maximum AP diameter of portocaval lymph node was 4 mm. Common bile duct (CBD) was seen in 44% and the diameter was mean 3 mm and maximum 11 mm. CBD was located in extrapancreatic (75%) and lateral (60.6%) to pancreatic head. At IVC-left renal vein level, the maximum distance between CBD and IVC was 5 mm and the structure between posterior pancreatic surface and IVC was only fat tissue. Knowledge of these normal structures and measurement will be helpful in differentiating pancreatic mass with retropancreatic mass such as lymphadenopathy.

  6. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    Science.gov (United States)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  7. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    access holes) on the NM were made and an increase of 35% in the strain to at which crack first formed was found on NMs that lack etchant access holes. Ge NMs were used as a platform to investigate the relationships between surface passivation / functionalization and the physical properties of the material.

  8. Optical and opto-electronic characterization of semiconducting nanostructures

    International Nuclear Information System (INIS)

    Offer, Matthias

    2011-01-01

    In the present thesis, the photoluminescence (PL) of cadmium selenide nanoparticles and doped gallium arsenide nanowires are investigated. Furthermore, in GaAs nanowires, with a distinct pn-junction in the direction of growth, electroluminescence (EL) is demonstrated and analyzed for the fist time. Using PL spectroscopy, the excitonic states of individual CdSe nanoparticles are studied. Sharp emission lines, which can be assigned to different excitonic transitions, can be observed. At a sample temperature of T≅10 K, line widths of ΔE FWHM ≤8 meV are found. Additionally, it is demonstrated that, apart from the main line, phonon replica of the LO and 2LO-phonon can be observed. An exciton in an ionized nanoparticle has the electronic structure of a trion. In silicon, the recombination of a trion in CdSe nanoparticles, while optically allowed, will not be detected visually because faster non-radiative Auger processes dominate (off-state). However, this work shows that, on a coated aluminium alloy substrate, the trions of single CdSe nanoparticles are observable. This observation is due to the reduction of the optical lifetime and is caused by surface plasmons. Instead of the commonly occurring off-state, a jump-like and discrete red shift of the emission energy of ΔE ∼24 meV is observed. This emission line can also be attributed to a negative trion. In addition, p- and n-doped GaAs nanowires are characterized using spatially resolved PL spectroscopy. The intrinsic stump of the nanowire shows the typical PL of GaAs. Through doping of the GaAs nanowire, there is a recognizable shift in the emission energy. This shift can be attributed to increasing dopant concentration. By analyzing the line shape, information regarding the distribution and concentration of the dopant can be found. Using these findings, the PL of a single GaAs nanowire with a distinct pn-junction in the direction of growth is examined. This observation shows that a compensated region develops

  9. Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

    KAUST Repository

    Alshehri, Bandar

    2016-06-07

    In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

  10. Synthesis of In0.1Ga0.9N/GaN structures grown by MOCVD and MBE for high speed optoelectronics

    KAUST Repository

    Alshehri, Bandar; Dogheche, Karim; Belahsene, Sofiane; Janjua, Bilal; Ramdane, Abderrahim; Patriarche, Gilles; Ng, Tien Khee; S-Ooi, Boon; Decoster, Didier; Dogheche, Elhadj

    2016-01-01

    In this work, we report a comparative investigation of InxGa1-xN (SL) and InxGa1-xN/GaN (MQW) structures with an indium content equivalent to x=10%. Both structures are grown on (0001) sapphire substrates using MOCVD and MBE growth techniques. Optical properties are evaluated for samples using PL characteristics. Critical differences between the resulting epitaxy are observed. Microstructures have been assessed in terms of crystalline quality, density of dislocations and surface morphology. We have focused our study towards the fabrication of vertical PIN photodiodes. The technological process has been optimized as a function of the material structure. From the optical and electrical characteristics, this study demonstrates the benefit of InGaN/GaN MQW grown by MOCVD in comparison with MBE for high speed optoelectronic applications.

  11. Numerical modelling of surface plasmonic polaritons

    Science.gov (United States)

    Mansoor, Riyadh; AL-Khursan, Amin Habbeb

    2018-06-01

    Extending optoelectronics into the nano-regime seems problematic due to the relatively long wavelengths of light. The conversion of light into plasmons is a possible way to overcome this problem. Plasmon's wavelengths are much shorter than that of light which enables the propagation of signals in small size components. In this paper, a 3D simulation of surface plasmon polariton (SPP) excitation is performed. The Finite integration technique was used to solve Maxwell's equations in the dielectric-metal interface. The results show how the surface plasmon polariton was generated at the grating assisted dielectric-metal interface. SPP is a good candidate for signal confinement in small size optoelectronics which allow high density optical integrated circuits in all optical networks.

  12. Excitations Élémentaires au Voisinage de la Surface de Séparation d'un Métal Normal et d'un Métal Supraconducteur

    Science.gov (United States)

    Saint-James, Par D.

    On étudie le spectre d'excitation pour une couche de métal normal déposée sur un supraconducteur. On montre que si l'interaction attractive électron-électron est négligeable dans le métal normal, il n'y a pas de gap d'énergie dans le spectre d'excitation, même si l'épaisseur de la couche normale est petite. Une étude analogue, conduisant à une conclusion similaire, est menée pour deux supraconducteurs accolés et pour des sphères de métal normal baignant dans un supraconducteur. L'effet prévu pourrait expliquer quelques résultats particuliers observés dans des mesures d'effet tunnel dans des supraconducteurs durs. The excitation spectrum of a layer of normal metal (N) deposited on a superconducting substrate (S) is discussed. It is shown that if the electron-electron attractive interaction is negligibly small in (N) there is no energy gap in the excitation spectrum even if the thickness of the layer (N) is small. A similar study, with equivalent conclusions, has been carried out for two superconductors and for normal metal spheres embedded in a superconductor. The effect may possibly explain some peculiar results of tunnelling experiments on hard superconductors.

  13. Baby Poop: What's Normal?

    Science.gov (United States)

    ... I'm breast-feeding my newborn and her bowel movements are yellow and mushy. Is this normal for baby poop? Answers from Jay L. Hoecker, M.D. Yellow, mushy bowel movements are perfectly normal for breast-fed babies. Still, ...

  14. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  15. Visual Memories Bypass Normalization.

    Science.gov (United States)

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  16. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  17. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    Science.gov (United States)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  18. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  19. Making nuclear 'normal'

    International Nuclear Information System (INIS)

    Haehlen, Peter; Elmiger, Bruno

    2000-01-01

    The mechanics of the Swiss NPPs' 'come and see' programme 1995-1999 were illustrated in our contributions to all PIME workshops since 1996. Now, after four annual 'waves', all the country has been covered by the NPPs' invitation to dialogue. This makes PIME 2000 the right time to shed some light on one particular objective of this initiative: making nuclear 'normal'. The principal aim of the 'come and see' programme, namely to give the Swiss NPPs 'a voice of their own' by the end of the nuclear moratorium 1990-2000, has clearly been attained and was commented on during earlier PIMEs. It is, however, equally important that Swiss nuclear energy not only made progress in terms of public 'presence', but also in terms of being perceived as a normal part of industry, as a normal branch of the economy. The message that Swiss nuclear energy is nothing but a normal business involving normal people, was stressed by several components of the multi-prong campaign: - The speakers in the TV ads were real - 'normal' - visitors' guides and not actors; - The testimonials in the print ads were all real NPP visitors - 'normal' people - and not models; - The mailings inviting a very large number of associations to 'come and see' activated a typical channel of 'normal' Swiss social life; - Spending money on ads (a new activity for Swiss NPPs) appears to have resulted in being perceived by the media as a normal branch of the economy. Today we feel that the 'normality' message has well been received by the media. In the controversy dealing with antinuclear arguments brought forward by environmental organisations journalists nowadays as a rule give nuclear energy a voice - a normal right to be heard. As in a 'normal' controversy, the media again actively ask themselves questions about specific antinuclear claims, much more than before 1990 when the moratorium started. The result is that in many cases such arguments are discarded by journalists, because they are, e.g., found to be

  20. Biomimetic hairy surfaces as superhydrophobic highly transmissive films for optical applications (Conference Presentation)

    Science.gov (United States)

    Vuellers, Felix; Gomard, Guillaume; Preinfalk, Jan B.; Klampaftis, Efthymios; Worgull, Matthias; Richards, Bryce S.; Hölscher, Hendrik; Kavalenka, Maryna N.

    2017-02-01

    Combining high optical transmission, water-repellency and self-cleaning is of great interest for optoelectronic devices operating in outdoor conditions, such as photovoltaics where shading can significantly reduce the power output. The surface of water plant Pistia stratiotes combines these functionalities through a dense layer of transparent microhairs. It renders the surface superhydrophobic without affecting absorption of sunlight necessary for photosynthesis. Inspired by this surface, we fabricated a superhydrophobic flexible thin nanofur film made from optical grade polycarbonate using a scalable combination of hot embossing and hot pulling techniques. During fabrication, heated sandblasted steel plates locally elongate softened polymer, thus covering its surface in microcavities surrounded by high aspect ratio micro- and nanohairs. The superhydrophobic nanofur exhibits contact angles of (166+/-6°), low sliding angles (drops below 4% when coated on a polymeric substrate, which can enhance light extraction in organic light emitting diodes (OLEDs). We report an increase of more than 10% in luminous efficacy for a nanofur coated OLED compared to a bare device. Finally, the nanofur film can be used for enhancing the incoupling of light to solar cells, while additionally providing self-cleaning properties. Optical coupling of the nanofur to a multi-crystalline silicon solar cell results in a 5.8% gain in photocurrent compared to a bare device under normal incidence.

  1. Curriculum design and German student exchange for Sino-German Bachelor program majored in optoelectronics engineering

    Science.gov (United States)

    Zheng, Jihong; Fuhrmann, Thomas; Xu, Boqing; Schreiner, Rupert; Jia, Hongzhi; Zhang, Wei; Wang, Ning; Seebauer, Gudrun; Zhu, Jiyan

    2017-08-01

    Different higher education backgrounds in China and Germany led to challenges in the curriculum design at the beginning of our cooperative bachelor program in Optoelectronics Engineering. We see challenges in different subject requirements from both sides and in the German language requirements for Chinese students. The curriculum was optimized according to the ASIIN criteria, which makes it acceptable and understandable by both countries. German students are integrated into the Chinese class and get the same lectures like their Chinese colleagues. Intercultural and curriculum challenges are successfully solved. The results are summarized to provide an example for other similar international programs.

  2. Photon management of GaN-based optoelectronic devices via nanoscaled phenomena

    KAUST Repository

    Tsai, Yu-Lin

    2016-09-06

    Photon management is essential in improving the performances of optoelectronic devices including light emitting diodes, solar cells and photo detectors. Beyond the advances in material growth and device structure design, photon management via nanoscaled phenomena have also been demonstrated as a promising way for further modifying/improving the device performance. The accomplishments achieved by photon management via nanoscaled phenomena include strain-induced polarization field management, crystal quality improvement, light extraction/harvesting enhancement, radiation pattern control, and spectrum management. In this review, we summarize recent development, challenges and underlying physics of photon management in GaN-based light emitting diodes and solar cells. (C) 2016 Elsevier Ltd. All rights reserved.

  3. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    International Nuclear Information System (INIS)

    Yan Sen-Lin

    2014-01-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range. (general)

  4. Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices

    KAUST Repository

    Catrysse, Peter B.

    2010-08-11

    We investigate the use of nanopatterned metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics of nanopatterned electrodes, which are often optically thin metallic films, differs from that of optically thick metallic films. We analyze the optical properties when performing a geometrical transformation that maintains the electrical properties. For one-dimensional patterns of metallic wires, the analysis favors tall and narrow wires. Our design principles remain valid for oblique incidence and readily carry over to two-dimensional patterns. © 2010 American Chemical Society.

  5. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance

    KAUST Repository

    Adinolfi, Valerio

    2017-10-12

    Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given on how the material composition and morphology are tied to these properties, and how these properties ultimately affect device performance. Material attributes and techniques used to estimate them are analyzed for different perovskite materials, with a particular focus on the bandgap, mobility, diffusion length, carrier lifetime, and trap-state density.

  6. Operational parameters of an opto-electronic neural network employing fixed planar holographic interconnects

    Science.gov (United States)

    Keller, P. E.; Gmitro, A. F.

    1993-07-01

    A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.

  7. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    Science.gov (United States)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  8. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics

    KAUST Repository

    Hola, Katerina; Zhang, Yu; Wang, Yu; Giannelis, Emmanuel P.; Zboril, Radek; Rogach, Andrey L.

    2014-01-01

    © 2014 Elsevier Ltd. All rights reserved. Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics. In this review, we introduce various synthetic strategies and basic photoluminescence properties of carbon dots, and then address their advanced in vitro and in vivo bioapplications including cell imaging, photoacoustic imaging, photodynamic therapy and targeted drug delivery. We further consider the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical down-conversion, and hybrid plasmonic devices. The review concludes with an outlook towards future developments of these emerging light-emitting materials.

  9. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Directory of Open Access Journals (Sweden)

    Guillaume Ducournau

    2009-11-01

    Full Text Available A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  10. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy.

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements.

  11. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    Science.gov (United States)

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  12. Exciton confinement in organic dendrimer quantum wells for opto-electronic applications

    Science.gov (United States)

    Lupton, J. M.; Samuel, I. D. W.; Burn, P. L.; Mukamel, S.

    2002-01-01

    Organic dendrimers are a fascinating new class of materials for opto-electronic applications. We present coupled electronic oscillator calculations on novel nanoscale conjugated dendrimers for use in organic light-emitting diodes. Strong confinement of excitations at the center of the dendrimers is observed, which accounts for the dependence of intermolecular interactions and charge transport on the degree of branching of the dendrimer. The calculated absorption spectra are in excellent agreement with the measured data and show that benzene rings are shared between excitations on the linear segments of the hyperbranched molecules. The coupled electronic oscillator approach is ideally suited to treat large dendritic molecules.

  13. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics

    KAUST Repository

    Hola, Katerina

    2014-10-01

    © 2014 Elsevier Ltd. All rights reserved. Carbon dots represent an emerging class of fluorescent materials and provide a broad application potential in various fields of biomedicine and optoelectronics. In this review, we introduce various synthetic strategies and basic photoluminescence properties of carbon dots, and then address their advanced in vitro and in vivo bioapplications including cell imaging, photoacoustic imaging, photodynamic therapy and targeted drug delivery. We further consider the applicability of carbon dots as components of light emitting diodes, which include carbon dot based electroluminescence, optical down-conversion, and hybrid plasmonic devices. The review concludes with an outlook towards future developments of these emerging light-emitting materials.

  14. Novel soluble fluorene-thienothiadiazole and fluorene-carbazole copolymers for optoelectronics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Výprachtický, Drahomír

    2010-01-01

    Roč. 295, č. 1 (2010), s. 65-70 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : fluorene – thienothiadiazole copolymers * photovoltaics * fluorene-carbazole copolymers Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering

  15. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer.

    Science.gov (United States)

    Lee, Jehyun; Park, Sooyoung; Seo, Dae Han; Yim, Sin Hyuk; Yoon, Seokchan; Cho, D

    2016-09-19

    We report on measurement of small displacements with sub-nanometer precision using an optoelectronic oscillator (OEO) with an intra-loop Michelson interferometer. In comparison with conventional homodyne and heterodyne detection methods, where displacement appears as a power change or a phase shift, respectively, in the OEO detection, the displacement produces a shift in the oscillation frequency. In comparison with typical OEO sensors, where the frequency shift is proportional to the OEO oscillation frequency in radio-frequency domain, the frequency shift in our method with an intra-loop interferometer is proportional to an optical frequency. We constructed a hybrid apparatus and compared characteristics of the OEO and heterodyne detection methods.

  16. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    Science.gov (United States)

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  17. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  18. Optoelectronic vision

    Science.gov (United States)

    Ren, Chunye; Parel, Jean-Marie A.

    1993-06-01

    Scientists have searched every discipline to find effective methods of treating blindness, such as using aids based on conversion of the optical image, to auditory or tactile stimuli. However, the limited performance of such equipment and difficulties in training patients have seriously hampered practical applications. A great edification has been given by the discovery of Foerster (1929) and Krause & Schum (1931), who found that the electrical stimulation of the visual cortex evokes the perception of a small spot of light called `phosphene' in both blind and sighted subjects. According to this principle, it is possible to invite artificial vision by using stimulation with electrodes placed on the vision neural system, thereby developing a prosthesis for the blind that might be of value in reading and mobility. In fact, a number of investigators have already exploited this phenomena to produce a functional visual prosthesis, bringing about great advances in this area.

  19. Analysis of surface states in ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    Shao, Ye; Yoon, Jongwon; Kim, Hyeongnam; Lee, Takhee; Lu, Wu

    2014-01-01

    Highlights: • The electron transport in ZnO nanowire FETs is space charged limited below a trap temperature. • Metallic contacts to ZnO nanowires exhibit non-linear behavior with a Schottky barrier height of ∼0.35 eV. • The surface state density is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2 . • The trap activation energy is ∼0.26 eV. - Abstract: Nanowires (NWs) have attracted considerable interests for scaled electronic and optoelectronic device applications. However, NW based semiconductor devices normally suffer from surface states due to the existence of dangling bonds or surface reconstruction. Because of their large surface-to-volume ratio, surface states in NWs can easily affect the metallic contacts to NWs and electron transport in NW. Here, we present ZnO NW surface analysis by performing current–voltage characterization on ZnO NW Schottky barrier field effect transistors with different metal contacts (Ti, Al, Au) at both room temperature and cryogenic temperature. Our results show that three metal contacts are all Schottky contacts to ZnO NWs due to surface states. Our further study reveals: (a) the surface states related Schottky barrier height (SBH) can be extracted from a back to back Schottky diodes model and the SBH values are in the range of 0.34–0.37 eV for three metal contacts; (b) the trap activation energy determined from the Arrhenius plots of different Schottky metal contacts is in the range of 0.23–0.29 eV, which is oxygen vacancies related; and (c) based on the space-charge-limited model, the surface state density of ZnO NW is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2

  20. Normal Pressure Hydrocephalus

    Science.gov (United States)

    ... improves the chance of a good recovery. Without treatment, symptoms may worsen and cause death. What research is being done? The NINDS conducts and supports research on neurological disorders, including normal pressure hydrocephalus. Research on disorders such ...

  1. Normality in Analytical Psychology

    Science.gov (United States)

    Myers, Steve

    2013-01-01

    Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity. PMID:25379262

  2. Normal pressure hydrocephalus

    Science.gov (United States)

    Hydrocephalus - occult; Hydrocephalus - idiopathic; Hydrocephalus - adult; Hydrocephalus - communicating; Dementia - hydrocephalus; NPH ... Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. ... Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders ...

  3. Normal Functioning Family

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Español Text Size Email Print Share Normal Functioning Family Page Content Article Body Is there any way ...

  4. Normal growth and development

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002456.htm Normal growth and development To use the sharing features on this page, please enable JavaScript. A child's growth and development can be divided into four periods: ...

  5. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  6. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  7. Adaptive integral backstepping sliding mode control for opto-electronic tracking system based on modified LuGre friction model

    Science.gov (United States)

    Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin

    2017-12-01

    In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.

  8. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

  9. Analysis on the dynamic error for optoelectronic scanning coordinate measurement network

    Science.gov (United States)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Guo, Siyang; Ren, Yongjie

    2018-01-01

    Large-scale dynamic three-dimension coordinate measurement technique is eagerly demanded in equipment manufacturing. Noted for advantages of high accuracy, scale expandability and multitask parallel measurement, optoelectronic scanning measurement network has got close attention. It is widely used in large components jointing, spacecraft rendezvous and docking simulation, digital shipbuilding and automated guided vehicle navigation. At present, most research about optoelectronic scanning measurement network is focused on static measurement capacity and research about dynamic accuracy is insufficient. Limited by the measurement principle, the dynamic error is non-negligible and restricts the application. The workshop measurement and positioning system is a representative which can realize dynamic measurement function in theory. In this paper we conduct deep research on dynamic error resources and divide them two parts: phase error and synchronization error. Dynamic error model is constructed. Based on the theory above, simulation about dynamic error is carried out. Dynamic error is quantized and the rule of volatility and periodicity has been found. Dynamic error characteristics are shown in detail. The research result lays foundation for further accuracy improvement.

  10. The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers

    International Nuclear Information System (INIS)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Lo, Chao-Chun

    2009-01-01

    This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L). - The semiconductor, electronics and optoelectronic industries are the primary source of PFC contamination in downstream aqueous environments

  11. Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices.

    Science.gov (United States)

    Yao, Yifan; Zhang, Lei; Leydecker, Tim; Samorì, Paolo

    2018-05-23

    Organic crystals are generated via the bottom-up self-assembly of molecular building blocks which are held together through weak noncovalent interactions. Although they revealed extraordinary charge transport characteristics, their labile nature represents a major drawback toward their integration in optoelectronic devices when the use of sophisticated patterning techniques is required. Here we have devised a radically new method to enable the use of photolithography directly on molecular crystals, with a spatial resolution below 300 nm, thereby allowing the precise wiring up of multiple crystals on demand. Two archetypal organic crystals, i.e., p-type 2,7-diphenyl[1]benzothieno[3,2- b][1]benzothiophene (Dph-BTBT) nanoflakes and n-type N, N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires, have been exploited as active materials to realize high-performance top-contact organic field-effect transistors (OFETs), inverter and p-n heterojunction photovoltaic devices supported on plastic substrate. The compatibility of our direct photolithography technique with organic molecular crystals is key for exploiting the full potential of organic electronics for sophisticated large-area devices and logic circuitries, thus paving the way toward novel applications in plastic (opto)electronics.

  12. Structural phase transition and opto-electronic properties of NaZnAs

    International Nuclear Information System (INIS)

    Djied, A.; Seddik, T.; Merabiha, O.; Murtaza, G.; Khenata, R.; Ahmed, R.; Bin-Omran, S.; Uğur, Ş.; Bouhemadou, A.

    2015-01-01

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu 2 Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied

  13. Capacity-oriented curriculum system of optoelectronics in the context of large category cultivation

    Science.gov (United States)

    Luo, Yuan; Hu, Zhangfang; Zhang, Yi

    2017-08-01

    In order to cultivate the innovative talents with the comprehensive development to meet the talents demand for development of economic society, Chongqing University of Posts and Telecommunications implements cultivation based on broadening basic education and enrolment in large category of general education. Optoelectronic information science and engineering major belongs to the electronic engineering category. The "2 +2" mode is utilized for personnel training, where students are without major in the first and second year and assigned to a major within the major categories in the end of the second year. In the context of the comprehensive cultivation, for the changes in the demand for professionals in the global competitive environment with the currently rapid development, especially the demand for the professional engineering technology personnel suitable to industry and development of local economic society, the concept of CDIO engineering ability cultivation is used for reference. Thus the curriculum system for the three-node structure optoelectronic information science and engineering major is proposed, which attaches great importance to engineering practice and innovation cultivation under the background of the comprehensive cultivation. The conformity between the curriculum system and the personnel training objectives is guaranteed effectively, and the consistency between the teaching philosophy and the teaching behavior is enhanced. Therefore, the idea of major construction is clear with specific characteristics.

  14. Selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children

    Science.gov (United States)

    Landowska, A.; Karpienko, K.; Wróbel, M.; Jedrzejewska-Szczerska, M.

    2014-11-01

    In this article the procedure of selection of physiological parameters for optoelectronic system supporting behavioral therapy of autistic children is proposed. Authors designed and conducted an experiment in which a group of 30 health volunteers (16 females and 14 males) were examined. Under controlled conditions people were exposed to a stressful situation caused by the picture or sound (1kHz constant sound, which was gradually silenced and finished with a shot sound). For each of volunteers, a set of physiological parameters were recorded, including: skin conductance, heart rate, peripheral temperature, respiration rate and electromyography. The selected characteristics were measured in different locations in order to choose the most suitable one for the designed therapy supporting system. The bio-statistical analysis allowed us to discern the proper physiological parameters that are most associated to changes due to emotional state of a patient, such as: skin conductance, temperatures and respiration rate. This allowed us to design optoelectronic sensors network for supporting behavioral therapy of children with autism.

  15. An Opto-Electronic Sensor for Detecting Soil Microarthropods and Estimating Their Size in Field Conditions

    Directory of Open Access Journals (Sweden)

    Csongor I. Gedeon

    2017-08-01

    Full Text Available Methods to estimate density of soil-dwelling arthropods efficiently, accurately and continuously are critical for investigating soil biological activity and evaluating soil management practices. Soil-dwelling arthropods are currently monitored manually. This method is invasive, and time- and labor-consuming. Here we describe an infrared opto-electronic sensor for detection of soil microarthropods in the size range of 0.4–10 mm. The sensor is built in a novel microarthropod trap designed for field conditions. It allows automated, on-line, in situ detection and body length estimation of soil microarthropods. In the opto-electronic sensor the light source is an infrared LED. Two plano-convex optical lenses are placed along the virtual optical axis. One lens on the receiver side is placed between the observation space at 0.5–1 times its focal length from the sensor, and another emitter side lens is placed between the observation space and the light source in the same way. This paper describes the setup and operating mechanism of the sensor and the control unit, and through basic tests it demonstrates its potential in automated detection of soil microarthropods. The sensor may be used for monitoring activities, especially for remote observation activities in soil and insect ecology or pest control.

  16. Optoelectronic insights into the photovoltaic losses from photocurrent, voltage, and energy perspectives

    Science.gov (United States)

    Shang, Aixue; An, Yidan; Ma, Dong; Li, Xiaofeng

    2017-08-01

    Photocurrent and voltage losses are the fundamental limitations for improving the efficiency of photovoltaic devices. It is indeed that a comprehensive and quantitative differentiation of the performance degradation in solar cells will promote the understanding of photovoltaic physics as well as provide a useful guidance to design highly-efficient and cost-effective solar cells. Based on optoelectronic simulation that addresses electromagnetic and carrier-transport responses in a coupled finite-element method, we report a detailed quantitative analysis of photocurrent and voltage losses in solar cells. We not only concentrate on the wavelength-dependent photocurrent loss, but also quantify the variations of photocurrent and operating voltage under different forward electrical biases. Further, the device output power and power losses due to carrier recombination, thermalization, Joule heat, and Peltier heat are studied through the optoelectronic simulation. The deep insight into the gains and losses of the photocurrent, voltage, and energy will contribute to the accurate clarifications of the performance degradation of photovoltaic devices, enabling a better control of the photovoltaic behaviors for high performance.

  17. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  18. Optoelectronic studies on heterocyclic bases of deoxyribonucleic acid for DNA photonics.

    Science.gov (United States)

    El-Diasty, Fouad; Abdel-Wahab, Fathy

    2015-10-01

    The optoelectronics study of large molecules, particularly π-stacking molecules, such as DNA is really an extremely difficult task. We perform first electronic structure calculations on the heterocyclic bases of 2'-deoxyribonucleic acid based on Lorentz-Fresnel dispersion theory. In the UV-VIS range of spectrum, many of the optoelectronic parameters for DNA four bases namely adenine, guanine, cytosine and thymine are calculated and discussed. The results demonstrate that adenine has the highest hyperpolarizability, whereas thymine has the lowest hyperpolarizability. Cytosine has the lower average oscillator energy and the higher lattice energy. Thymine infers the most stable nucleic base with the lower phonon energy. Thymine also has the highest average oscillator energy and the lower lattice energy. Moreover, the four nucleic acid bases have large band gap energies less than 5 eV with a semiconducting behavior. Guanine shows the smallest band gap and the highest Fermi level energy, whereas adenine elucidates the highest band gap energy. Copyright © 2015. Published by Elsevier B.V.

  19. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    International Nuclear Information System (INIS)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan; Lantz, Kevin R.

    2012-01-01

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this work will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.

  20. Study on optoelectronic properties of Spiro-CN for developing an efficient OLED

    Science.gov (United States)

    Mishra, Ashok Kumar

    2018-05-01

    There are a class of organic molecules and polymers which exhibit semiconductor behavior because of nearly free conjugate π-electrons. Hopping of these electrons in molecules forms different excited singlet and triplet states named as excitons. Some of these organic molecules can be set to emit photons by triplet-singlet excitonic transition via a process called Thermally Activated Delayed Fluorescence (TADF) which is exploited for designing the Organic Light Emitting diode (OLED.) Spiro-CN (spirobifluorene skeletons) Spiro is one of these reported noble metal-free TADF molecules which offers unique optical and electronic properties arising from the efficient transition and reverse intersystem crossing between the lowest singlet (S) and triplet (T) excited states. Its ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T→S) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic device. In the present study, the Spiro-CN compounds have been taken up for the investigation of various optoelectronic properties including the thermally activated delayed fluorescence (TADF) by using the Koopmans Method and Density Functional Theory. The present study discusses the utility of the Spiro-CN organic semiconductor as a suitable TADF material essential for developing an efficient Organic Light Emitting Diode (OLED).

  1. A low noise preamplifier with optoelectronic overload protection for radioactivity measurement

    International Nuclear Information System (INIS)

    Sephton, J.P.; Williams, J.M.; Johansson, L.C.; Philips, H.C.

    2012-01-01

    Pulses from detectors used for radioactivity measurement can vary in size by several orders of magnitude. Large pulses will lead to saturation at the preamplifier output and extension of the pulse length. As a consequence, the dead time of the system increases and pulses may be lost. Electronic design techniques employed to protect against overloading tend to increase the amplifier noise level. However, an optoelectronic method of overload protection has been devised which has only a negligible effect on noise. An infrared light emitting diode interfaced to the output of the preamplifier is linked by fibre optic cable to an ultra-low leakage photodiode at the input. The conduction of the photodiode increases with the amplitude of the preamplifier output signal. Excess current is thereby prevented from entering the preamplifier and causing saturation. The preamplifier has been tested on 4π beta–gamma and gas counting systems and found to give good protection against overloading. - Highlights: ► A preamplifier for radioactivity measurements has been developed. ► Low noise. ► Current sensitive. ► Optoelectronic overload protection.

  2. Structural phase transition and opto-electronic properties of NaZnAs

    Energy Technology Data Exchange (ETDEWEB)

    Djied, A.; Seddik, T.; Merabiha, O. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Lab, Department of Physics, Islamia College University, Peshawar (Pakistan); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 (Algeria); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Uğur, Ş. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria)

    2015-02-15

    Highlights: • First competent characterizations of NaZnAs at the level of FP-LAPW+lo. • NaZnAs, a potential alternative candidate to III-V for photovoltaic applications. • NaZnAs, a cheaper and abundantly available direct band gap semiconductor. • Potential material for solar radiation absorber from infrared to ultraviolet. - Abstract: In this study, we predict the structural phase transitions as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound. Calculations employ the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme. The exchange-correlation potential is treated within the generalized gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). In addition, Tran and Blaha (TB) modified Becke-Johnson (mBJ) potential is also used to obtain more accurate optoelectronic properties. Geometry optimization is performed to obtain reliable total energies and other structural parameters for each NaZnAs phase. In our study, the sequence of the structural phase transition on compression is Cu{sub 2}Sb-type → β → α phase. NaZnAs is a direct (Γ-Γ) band gap semiconductor for all the structural phases. However, compared to PBE-GGA, the mBJ approximation reproduces better fundamental band gaps. Moreover, for insight into its potential for photovoltaic applications, different optical parameters are studied.

  3. Optoelectronic properties of transparent p-type semiconductor Cu{sub x}S thin films

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, P.; Valente, J. [ICEMS, IST-UTL, Lisboa (Portugal); Lavareda, G. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); Nunes, F.T. [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); Amaral, A. [Departamento de Fisica, IST-UTL, Lisboa (Portugal); ICEMS, IST-UTL, Lisboa (Portugal); Carvalho, C.N. de [Departamento de Ciencia dos Materiais, FCT-UNL, Caparica (Portugal); ICEMS, IST-UTL, Lisboa (Portugal)

    2010-07-15

    Nowadays, among the available transparent semiconductors for device use, the great majority (if not all) have n-type conductivity. The fabrication of a transparent p-type semiconductor with good optoelectronic properties (comparable to those of n-type: InO{sub x}, ITO, ZnO{sub x} or FTO) would significantly broaden the application field of thin films. However, until now no material has yet presented all the required properties. Cu{sub 2}S is a p-type narrow-band-gap material with an average optical transmittance of about 60% in the visible range for 50 nm thick films. However, due to its high conductivity at room temperature, 10 nm in thickness seems to be appropriate for device use. Cu{sub 2}S thin films with 10 nm in thickness have an optical visible transmittance of about 85% rendering them as very good candidates for transparent p-type semiconductors. In this work Cu{sub x}S thin films were deposited on alkali-free (AF) glass by thermal evaporation. The objective was not only the determination of its optoelectronic properties but also the feasibility of an active layer in a p-type thin film transistor. In our Cu{sub x}S thin films, p-type high conductivity with a total visible transmittance of about 50% have been achieved. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Controlling microstructure of pentacene derivatives by solution processing: impact of structural anisotropy on optoelectronic properties.

    Science.gov (United States)

    James, David T; Frost, Jarvist M; Wade, Jessica; Nelson, Jenny; Kim, Ji-Seon

    2013-09-24

    The consideration of anisotropic structural properties and their impact on optoelectronic properties in small-molecule thin films is vital to understand the performance of devices incorporating crystalline organic semiconductors. Here we report on the important relationship between structural and optoelectronic anisotropy in aligned, functionalized-pentacene thin films fabricated using the solution-based zone-casting technique. The microstructure of thin films composed of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and 6,13-bis(triethylsilylethynyl)pentacene (TES-pentacene) is systematically controlled by varying the casting speed. By controlling the structural alignment, we were able to experimentally decouple, for the first time in these films, an intramolecular absorption transition dipole (at ∼440 nm) oriented close to the pentacene short axis and an intermolecular absorption transition dipole (at ∼695 nm) oriented predominantly along the conjugated pentacene-pentacene core stacking axis (crystallographic a-axis) in both films. Using the intermolecular absorption as a signature for intermolecular delocalization, much higher optical dichroism was obtained in TES-pentacene (16 ± 6) than TIPS-pentacene (3.2 ± 0.1), which was attributed to the 1D packing structure of TES-pentacene compared to the 2D packing structure of TIPS-pentacene. This result was also supported by field-effect mobility anisotropy measurements of the films, with TES-pentacene exhibiting a higher anisotropy (∼21-47, depending on the casting speed) than TIPS-pentacene (∼3-10).

  5. Bianchi surfaces: integrability in an arbitrary parametrization

    International Nuclear Information System (INIS)

    Nieszporski, Maciej; Sym, Antoni

    2009-01-01

    We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.

  6. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  7. Monitoring the normal body

    DEFF Research Database (Denmark)

    Nissen, Nina Konstantin; Holm, Lotte; Baarts, Charlotte

    2015-01-01

    of practices for monitoring their bodies based on different kinds of calculations of weight and body size, observations of body shape, and measurements of bodily firmness. Biometric measurements are familiar to them as are health authorities' recommendations. Despite not belonging to an extreme BMI category...... provides us with knowledge about how to prevent future overweight or obesity. This paper investigates body size ideals and monitoring practices among normal-weight and moderately overweight people. Methods : The study is based on in-depth interviews combined with observations. 24 participants were...... recruited by strategic sampling based on self-reported BMI 18.5-29.9 kg/m2 and socio-demographic factors. Inductive analysis was conducted. Results : Normal-weight and moderately overweight people have clear ideals for their body size. Despite being normal weight or close to this, they construct a variety...

  8. Correlation of Defect-Related Optoelectronic Properties in Zn5(OH6(CO32/ZnO Nanostructures with Their Quasi-Fractal Dimensionality

    Directory of Open Access Journals (Sweden)

    J. Antonio Paramo

    2015-01-01

    Full Text Available Hydrozincite (Zn5(OH6(CO32 is, among others, a popular precursor used to synthesize nanoscale ZnO with complex morphologies. For many existing and potential applications utilizing nanostructures, performance is determined by the surface and subsurface properties. Current understanding of the relationship between the morphology and the defect properties of nanocrystalline ZnO and hydrozincite systems is still incomplete. Specifically, for the latter nanomaterial the structure-property correlations are largely unreported in the literature despite the extensive use of hydrozincite in the synthesis applications. In our work, we addressed this issue by studying precipitated nanostructures of Zn5(OH6(CO32 with varying quasi-fractal dimensionalities containing relatively small amounts of a ZnO phase. Crystal morphology of the samples was accurately controlled by the growth time. We observed a strong correlation between the morphology of the samples and their optoelectronic properties. Our results indicate that a substantial increase of the free surface in the nanocrystal samples generates higher relative concentration of defects, consistent with the model of defect-rich surface and subsurface layers.

  9. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  10. The normal holonomy group

    International Nuclear Information System (INIS)

    Olmos, C.

    1990-05-01

    The restricted holonomy group of a Riemannian manifold is a compact Lie group and its representation on the tangent space is a product of irreducible representations and a trivial one. Each one of the non-trivial factors is either an orthogonal representation of a connected compact Lie group which acts transitively on the unit sphere or it is the isotropy representation of a single Riemannian symmetric space of rank ≥ 2. We prove that, all these properties are also true for the representation on the normal space of the restricted normal holonomy group of any submanifold of a space of constant curvature. 4 refs

  11. Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study.

    Science.gov (United States)

    Engelberger, Rolf P; Blazek, Claudia; Amsler, Felix; Keo, Hong H; Baumann, Frédéric; Blättler, Werner; Baumgartner, Iris; Willenberg, Torsten

    2011-10-05

    Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female) in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD) and whole limb (limbBF) volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW), and as intra-class correlation coefficients (ICC). A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both). At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58%) for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79%) for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P correction formula permitted further improvement of CVW. Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.

  12. Reproducibility and day time bias correction of optoelectronic leg volumetry: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Baumgartner Iris

    2011-10-01

    Full Text Available Abstract Background Leg edema is a common manifestation of various underlying pathologies. Reliable measurement tools are required to quantify edema and monitor therapeutic interventions. Aim of the present work was to investigate the reproducibility of optoelectronic leg volumetry over 3 weeks' time period and to eliminate daytime related within-individual variability. Methods Optoelectronic leg volumetry was performed in 63 hairdressers (mean age 45 ± 16 years, 85.7% female in standing position twice within a minute for each leg and repeated after 3 weeks. Both lower leg (legBD and whole limb (limbBF volumetry were analysed. Reproducibility was expressed as analytical and within-individual coefficients of variance (CVA, CVW, and as intra-class correlation coefficients (ICC. Results A total of 492 leg volume measurements were analysed. Both legBD and limbBF volumetry were highly reproducible with CVA of 0.5% and 0.7%, respectively. Within-individual reproducibility of legBD and limbBF volumetry over a three weeks' period was high (CVW 1.3% for both; ICC 0.99 for both. At both visits, the second measurement revealed a significantly higher volume compared to the first measurement with a mean increase of 7.3 ml ± 14.1 (0.33% ± 0.58% for legBD and 30.1 ml ± 48.5 ml (0.52% ± 0.79% for limbBF volume. A significant linear correlation between absolute and relative leg volume differences and the difference of exact day time of measurement between the two study visits was found (P W. Conclusions Leg volume changes can be reliably assessed by optoelectronic leg volumetry at a single time point and over a 3 weeks' time period. However, volumetry results are biased by orthostatic and daytime-related volume changes. The bias for day-time related volume changes can be minimized by a time-correction formula.

  13. Agreement between fiber optic and optoelectronic systems for quantifying sagittal plane spinal curvature in sitting.

    Science.gov (United States)

    Cloud, Beth A; Zhao, Kristin D; Breighner, Ryan; Giambini, Hugo; An, Kai-Nan

    2014-07-01

    Spinal posture affects how individuals function from a manual wheelchair. There is a need to directly quantify spinal posture in this population to ultimately improve function. A fiber optic system, comprised of an attached series of sensors, is promising for measuring large regions of the spine in individuals sitting in a wheelchair. The purpose of this study was to determine the agreement between fiber optic and optoelectronic systems for measuring spinal curvature, and describe the range of sagittal plane spinal curvatures in natural sitting. Able-bodied adults (n = 26, 13 male) participated. Each participant assumed three sitting postures: natural, slouched (accentuated kyphosis), and extension (accentuated lordosis) sitting. Fiber optic (ShapeTape) and optoelectronic (Optotrak) systems were applied to the skin over spinous processes from S1 to C7 and used to measure sagittal plane spinal curvature. Regions of kyphosis and lordosis were identified. A Cobb angle-like method was used to quantify lordosis and kyphosis. Generalized linear model and Bland-Altman analyses were used to assess agreement. A strong correlation exists between curvature values obtained with Optotrak and ShapeTape (R(2) = 0.98). The mean difference between Optotrak and ShapeTape for kyphosis in natural, extension, and slouched postures was 4.30° (95% LOA: -3.43 to 12.04°), 3.64° (95% LOA: -1.07 to 8.36°), and 4.02° (95% LOA: -2.80 to 10.84°), respectively. The mean difference for lordosis, when present, in natural and extension postures was 2.86° (95% LOA: -1.18 to 6.90°) and 2.55° (95% LOA: -3.38 to 8.48°), respectively. In natural sitting, the mean ± SD of kyphosis values was 35.07 ± 6.75°. Lordosis was detected in 8/26 participants: 11.72 ± 7.32°. The fiber optic and optoelectronic systems demonstrate acceptable agreement for measuring sagittal plane thoracolumbar spinal curvature. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Normality in Analytical Psychology

    Directory of Open Access Journals (Sweden)

    Steve Myers

    2013-11-01

    Full Text Available Although C.G. Jung’s interest in normality wavered throughout his career, it was one of the areas he identified in later life as worthy of further research. He began his career using a definition of normality which would have been the target of Foucault’s criticism, had Foucault chosen to review Jung’s work. However, Jung then evolved his thinking to a standpoint that was more aligned to Foucault’s own. Thereafter, the post Jungian concept of normality has remained relatively undeveloped by comparison with psychoanalysis and mainstream psychology. Jung’s disjecta membra on the subject suggest that, in contemporary analytical psychology, too much focus is placed on the process of individuation to the neglect of applications that consider collective processes. Also, there is potential for useful research and development into the nature of conflict between individuals and societies, and how normal people typically develop in relation to the spectrum between individuation and collectivity.

  15. Medically-enhanced normality

    DEFF Research Database (Denmark)

    Møldrup, Claus; Traulsen, Janine Morgall; Almarsdóttir, Anna Birna

    2003-01-01

    Objective: To consider public perspectives on the use of medicines for non-medical purposes, a usage called medically-enhanced normality (MEN). Method: Examples from the literature were combined with empirical data derived from two Danish research projects: a Delphi internet study and a Telebus...

  16. The Normal Fetal Pancreas.

    Science.gov (United States)

    Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon

    2017-10-01

    The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.

  17. Challenges in realizing ultraflat materials surfaces

    Directory of Open Access Journals (Sweden)

    Takashi Yatsui

    2013-12-01

    Full Text Available Ultraflat surface substrates are required to achieve an optimal performance of future optical, electronic, or optoelectronic devices for various applications, because such surfaces reduce the scattering loss of photons, electrons, or both at the surfaces and interfaces. In this paper, we review recent progress toward the realization of ultraflat materials surfaces. First, we review the development of surface-flattening techniques. Second, we briefly review the dressed photon–phonon (DPP, a nanometric quasiparticle that describes the coupled state of a photon, an electron, and a multimode-coherent phonon. Then, we review several recent developments based on DPP-photochemical etching and desorption processes, which have resulted in angstrom-scale flat surfaces. To confirm that the superior flatness of these surfaces that originated from the DPP process, we also review a simplified mathematical model that describes the scale-dependent effects of optical near-fields. Finally, we present the future outlook for these technologies.

  18. A 2-10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators

    DEFF Research Database (Denmark)

    Bruun, Marlene; Gliese, Ulrik Bo; Petersen, Anders Kongstad

    1994-01-01

    Optical transmission of microwave signals becomes increasingly important. Techniques using beat between optical carriers of semiconductor lasers are promising if efficient optical phase locked loops are realized. A highly efficient GaAs MMIC optoelectronic phase detector for a 2-10 GHz OPLL...

  19. Probing individal subcells of fully printed and coated polymer tandem solar cells using multichromatic opto-electronic characterization methods

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Andersen, Thomas Rieks; Dam, Henrik Friis

    2015-01-01

    In this study, a method to opto-electronically probe the individual junctions and carrier transport across interfaces in fully printed and coated tandem polymer solar cells is described, enabling the identification of efficiency limiting printing/coating defects. The methods used are light beam...

  20. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...