WorldWideScience

Sample records for surface net shortwave

  1. Net Surface Shortwave Radiation from GOES Imagery—Product Evaluation Using Ground-Based Measurements from SURFRAD

    Directory of Open Access Journals (Sweden)

    Anand K. Inamdar

    2015-08-01

    Full Text Available The Earth’s surface net radiation controls the energy and water exchanges between the Earth’s surface and the atmosphere, and can be derived from satellite observations. The ability to monitor the net surface radiation over large areas at high spatial and temporal resolution is essential for many applications, such as weather forecasting, short-term climate prediction or water resources management. The objective of this paper is to derive the net surface radiation in the shortwave domain at high temporal (half-hourly and spatial resolution (~1 km using visible imagery from Geostationary Operational Environmental Satellite (GOES. The retrieval algorithm represents an adaptation to GOES data of a standard algorithm initially developed for the NASA-operated Clouds and Earth’s Radiant Energy System (CERES scanner. The methodology relies on: (1 the estimation of top of atmosphere shortwave radiation from GOES spectral measurements; and (2 the calculation of net surface shortwave (SW radiation accounting for atmospheric effects. Comparison of GOES-retrieved net surface shortwave radiation with ground-measurements at the National Oceanic and Atmospheric Administration’s (NOAA Surface Radiation (SURFRAD stations yields very good agreement with average bias lower than 5 W·m−2 and root mean square difference around 70 W·m−2. The algorithm performance is usually higher over areas characterized by low spatial variability in term of land cover type and surface biophysical properties. The technique does not involve retrieval and assessment of cloud properties and can be easily adapted to other meteorological satellites around the globe.

  2. Incoming Shortwave Fluxes at the Surface--A Comparison of GCM Results with Observations.

    Science.gov (United States)

    Garratt, J. R.

    1994-01-01

    Evidence is presented that the exam surface net radiation calculated in general circulation models at continental surfaces is mostly due to excess incoming shortwave fluxes. Based on long-term observations from 22 worldwide inland stations and results from four general circulation models the overestimate in models of 20% (11 W m2) in net radiation on an annual basis compares with 6% (9 W m2) for shortwave fluxes for the same 22 locations, or 9% (18 W m2) for a larger set of 93 stations (71 having shortwave fluxes only). For annual fluxes, these differences appear to be significant.

  3. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 1991-present, Net Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Net Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  5. Estimating net short-wave radiation with the Bellani pyranometer

    International Nuclear Information System (INIS)

    Bernier, Y.; Plamondon, A.P.

    1983-01-01

    Two methods were developed by which daily net short-wave radiation (K∗) can be evaluated from Bellani pyranometer readings. The first method involves a simple regression equation. The second method uses a physical approach taking into account the effect of the Bellani's geometry on its response to direct and diffuse radiation throughout the day. Both methods, when tested on experimental data, tended to underestimate the measured K∗, the regression approach exhibiting a higher variance of the error [fr

  6. Estimating net surface shortwave radiation from Chinese geostationary meteorological satellite FengYun-2D (FY-2D) data under clear sky.

    Science.gov (United States)

    Zhang, Xiaoyu; Li, Lingling

    2016-03-21

    Net surface shortwave radiation (NSSR) significantly affects regional and global climate change, and is an important aspect of research on surface radiation budget balance. Many previous studies have proposed methods for estimating NSSR. This study proposes a method to calculate NSSR using FY-2D short-wave channel data. Firstly, a linear regression model is established between the top-of-atmosphere (TOA) broadband albedo (r) and the narrowband reflectivity (ρ1), based on data simulated with MODTRAN 4.2. Secondly, the relationship between surface absorption coefficient (as) and broadband albedo (r) is determined by dividing the surface type into land, sea, or snow&ice, and NSSR can then be calculated. Thirdly, sensitivity analysis is performed for errors associated with sensor noise, vertically integrated atmospheric water content, view zenith angle and solar zenith angle. Finally, validation using ground measurements is performed. Results show that the root mean square error (RMSE) between the estimated and actual r is less than 0.011 for all conditions, and the RMSEs between estimated and real NSSR are 26.60 W/m2, 9.99 W/m2, and 23.40 W/m2, using simulated data for land, sea, and snow&ice surfaces, respectively. This indicates that the proposed method can be used to adequately estimate NSSR. Additionally, we compare field measurements from TaiYuan and ChangWu ecological stations with estimates using corresponding FY-2D data acquired from January to April 2012, on cloud-free days. Results show that the RMSE between the estimated and actual NSSR is 48.56W/m2, with a mean error of -2.23W/m2. Causes of errors also include measurement accuracy and estimations of atmospheric water vertical contents. This method is only suitable for cloudless conditions.

  7. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Science.gov (United States)

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  8. Spatial variability of shortwave radiative fluxes in the context of snowmelt

    Science.gov (United States)

    Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica

    2014-05-01

    Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.

  9. ENSO surface shortwave radiation forcing over the tropical Pacific

    Directory of Open Access Journals (Sweden)

    K. G. Pavlakis

    2008-09-01

    Full Text Available We have studied the spatial and temporal variation of the downward shortwave radiation (DSR at the surface of the Earth during ENSO events for a 21-year period over the tropical and subtropical Pacific Ocean (40° S–40° N, 90° E–75° W. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database, reanalysis data from NCEP/NCAR for the key atmospheric and surface input parameters, and aerosol parameters from GADS (acronyms explained in main text. A clear anti-correlation was found between the downward shortwave radiation anomaly (DSR-A time-series, in the region 7° S–5° N 160° E–160° W located west of the Niño-3.4 region, and the Niño-3.4 index time-series. In this region where the highest in absolute value DSR anomalies are observed, the mean DSR anomaly values range from −45 Wm−2 during El Niño episodes to +40 Wm−2 during La Niña events. Within the Niño-3.4 region no significant DSR anomalies are observed during the cold ENSO phase in contrast to the warm ENSO phase. A high correlation was also found over the western Pacific (10° S–5° N, 120–140° E, where the mean DSR anomaly values range from +20 Wm−2 to −20 Wm−2 during El Niño and La Niña episodes, respectively. There is also convincing evidence that the time series of the mean downward shortwave radiation anomaly in the off-equatorial western Pacific region 7–15° N 150–170° E, precedes the Niño-3.4 index time-series by about 7 months and the pattern of this anomaly is indicative of ENSO operating through the mechanism of the western Pacific oscillator. Thus, the downward shortwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to assess whether or not El Niño or La Niña conditions prevail.

  10. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    Science.gov (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  11. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    Science.gov (United States)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  12. Quantifying the Contributions of Environmental Parameters to Ceres Surface Net Radiation Error in China

    Science.gov (United States)

    Pan, X.; Yang, Y.; Liu, Y.; Fan, X.; Shan, L.; Zhang, X.

    2018-04-01

    Error source analyses are critical for the satellite-retrieved surface net radiation (Rn) products. In this study, we evaluate the Rn error sources in the Clouds and the Earth's Radiant Energy System (CERES) project at 43 sites from July in 2007 to December in 2007 in China. The results show that cloud fraction (CF), land surface temperature (LST), atmospheric temperature (AT) and algorithm error dominate the Rn error, with error contributions of -20, 15, 10 and 10 W/m2 (net shortwave (NSW)/longwave (NLW) radiation), respectively. For NSW, the dominant error source is algorithm error (more than 10 W/m2), particularly in spring and summer with abundant cloud. For NLW, due to the high sensitivity of algorithm and large LST/CF error, LST and CF are the largest error sources, especially in northern China. The AT influences the NLW error large in southern China because of the large AT error in there. The total precipitable water has weak influence on Rn error even with the high sensitivity of algorithm. In order to improve Rn quality, CF and LST (AT) error in northern (southern) China should be decreased.

  13. Observed Screen (Air) and GCM Surface/Screen Temperatures: Implications for Outgoing Longwave Fluxes at the Surface.

    Science.gov (United States)

    Garratt, J. R.

    1995-05-01

    There is direct evidence that excess net radiation calculated in general circulation models at continental surfaces [of about 11-17 W m2 (20%-27%) on an annual ~1 is not only due to overestimates in annual incoming shortwave fluxes [of 9-18 W m2 (6%-9%)], but also to underestimates in outgoing longwave fluxes. The bias in the outgoing longwave flux is deduced from a comparison of screen-air temperature observations, available as a global climatology of mean monthly values, and model-calculated surface and screen-air temperatures. An underestimate in the screen temperature computed in general circulation models over continents, of about 3 K on an annual basis, implies an underestimate in the outgoing longwave flux, averaged in six models under study, of 11-15 W m2 (3%-4%). For a set of 22 inland stations studied previously, the residual bias on an annual basis (the residual is the net radiation minus incoming shortwave plus outgoing longwave) varies between 18 and 23 W m2 for the models considered. Additional biases in one or both of the reflected shortwave and incoming longwave components cannot be ruled out.

  14. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    Science.gov (United States)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, palbedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, palbedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  15. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  16. The Validation of the GEWEX SRB Surface Shortwave Flux Data Products Using BSRN Measurements: A Systematic Quality Control, Production and Application Approach

    Science.gov (United States)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Cox, Stephen J.; Mikovitz, J. Colleen; Hinkelman, Laura M.

    2013-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project has produced a 24.5-year continuous record of global shortwave and longwave radiation fluxes at TOA and the Earth's surface from satellite measurements. The time span of the data is from July 1983 to December 2007, and the spatial resolution is 11 latitude11 longitude. The inputs of the latest version (Release 3.0) include the GEOS Version 4.0.3 meteorological information and cloud properties derived from ISCCP DX data. The SRB products are available on 3-hourly, 3-hourly-monthly, daily and monthly time scales. To assess the quality of the product, we extensively validated the SRB data against 5969 site-months of groundbased measurements from 52 Baseline Surface Radiation Network (BSRN) stations. This paper describes first the characteristics of the BSRN data and the GEWEX SRB data, the methodology for quality control and processing of the shortwave BSRN data, and then the systematic SRB-BSRN comparisons. It is found that, except for occasional extreme outliers as seen in scatter plots, the satellite-based surface radiation data generally agree very well with BSRN measurements. Specifically, the bias/RMS for the daily and monthly mean shortwave fluxes are, respectively, -3.6/35.5 and -5.2/23.3W1 m2 under all-sky conditions.

  17. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  18. The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux

    Science.gov (United States)

    Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.

    2018-01-01

    Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.

  19. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    Science.gov (United States)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  20. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...... Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations...

  1. Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan

    2012-07-01

    Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

  2. Shortwave and longwave radiative contributions to global warming under increasing CO2

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  3. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  4. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  5. Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet

    Science.gov (United States)

    Sedlar, J.

    2017-12-01

    Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.

  6. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  7. Global Surface Net-Radiation at 5 km from MODIS Terra

    Directory of Open Access Journals (Sweden)

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  8. Simple simulation training system for short-wave radio station

    Science.gov (United States)

    Tan, Xianglin; Shao, Zhichao; Tu, Jianhua; Qu, Fuqi

    2018-04-01

    The short-wave radio station is a most important transmission equipment of our signal corps, but in the actual teaching process, which exist the phenomenon of fewer equipment and more students, making the students' short-wave radio operation and practice time is very limited. In order to solve the above problems, to carry out shortwave radio simple simulation training system development is very necessary. This project is developed by combining hardware and software to simulate the voice communication operation and signal principle of shortwave radio station, and can test the signal flow of shortwave radio station. The test results indicate that this system is simple operation, human-machine interface friendly and can improve teaching more efficiency.

  9. Decadal changes in shortwave irradiance at the surface in the period from 1960 to 2000 estimated from Global Energy Balance Archive Data

    Science.gov (United States)

    Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.

    2009-05-01

    Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.

  10. Impact of Aerosols on Shortwave and Photosynthetically Active Radiation Balance over Sub-tropical Region in South Asia: Observational and Modeling Approach

    Science.gov (United States)

    Subba, T.; Pathak, B.

    2016-12-01

    The North-East Indian Region (NER) (22-30ºN, 89-98ºE) in south Asia sandwiched between two global biodiversity hotspots namely, Himalaya and Indo-Burma, assumes significance owing to its unique topography with mountains in the north, east and south and densely populated Indo Gangetic plains (IGP) towards the west resulting in complex aerosol system. Multi-year (2010-2014) concurrent measurements of aerosol properties and the shortwave radiation budget are examined over four geographically distinct stations of NER operational under Indian Space Research organization's ARFINET (Aerosol Radiative Forcing over India NETwork). An attempt has been made to lessen the ambiguity of forcing estimation by validating the radiative transfer modelled ARF with the CNR4 net radiometer measured values (r2 0.98). The Normalized Difference Vegetation Index and its dependence on the extinction of the photosynthetically active radiation (PAR) due to aerosol are assessed. The spring time enhancement of aerosols in the column has shown significant surface cooling (ARF = -48 ± 5 Wm-2) over the region, while the very high Black Carbon (BC) mass concentrations near the surface (SSA > 0.8) leads to significant atmospheric warming (ARF = +41 ± 7 Wm-2) in the shortwave range. Radiative forcing estimates reveal that the atmospheric forcing by BC could be as high as +30Wm-2 over the western part, which are significantly higher than the eastern part with a consequent heating rate of 1.5 K day-1 revealing an east-west asymmetry over NER. The impact of BC aerosols on the photosynthetic rate varies among different locations ranging from -5±2 Wm-2 to -25±3 Wm-2. Almost 70% of the total atmospheric shortwave radiative absorption is attributed to just 10% contribution of Black Carbon (BC) to total mass concentration and causes a reduction of more than 30% of PAR reaching the surface over Brahmaputra valley due to direct radiative effect. Comparison of previous and the present study shows highest

  11. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  12. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    Science.gov (United States)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame

  13. Short-wave albedo of a pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A.

    1985-06-01

    In this paper nine years of continuous records of the short-wave albedo above a Scotch pine forest in middle Europe were analysed. Special emphasis was given to the dependencies of the albedo on its diurnal variation, its annual variation, the solar altitude, the structure of the stand, the cloud cover, the soil moisture and the spectral reflectance. A long-termed trend of the albedo could not be found, e.g. caused by the stand growth. Finally the annual variation of the albedo of the Scotch pine forest was compared with measurements above different surface types in middle Europe.

  14. The Surface Radiation Budget over Oceans and Continents.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.

    1998-08-01

    An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

  15. GEWEX SRB Shortwave Release 4

    Science.gov (United States)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  16. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    International Nuclear Information System (INIS)

    Smirnov, A; Alekseev, G; Korablev, A; Esau, I

    2010-01-01

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  17. Temporal and spatial changes in mixed layer properties and atmospheric net heat flux in the Nordic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A; Alekseev, G [SI ' Arctic and Antarctic Research Institute' , St. Petersburg (Russian Federation); Korablev, A; Esau, I, E-mail: avsmir@aari.nw.r [Nansen Environmental and Remote Sensing Centre, Bergen (Norway)

    2010-08-15

    The Nordic Seas are an important area of the World Ocean where warm Atlantic waters penetrate far north forming the mild climate of Northern Europe. These waters represent the northern rim of the global thermohaline circulation. Estimates of the relationships between the net heat flux and mixed layer properties in the Nordic Seas are examined. Oceanographic data are derived from the Oceanographic Data Base (ODB) compiled in the Arctic and Antarctic Research Institute. Ocean weather ship 'Mike' (OWS) data are used to calculate radiative and turbulent components of the net heat flux. The net shortwave flux was calculated using a satellite albedo dataset and the EPA model. The net longwave flux was estimated by Southampton Oceanography Centre (SOC) method. Turbulent fluxes at the air-sea interface were calculated using the COARE 3.0 algorithm. The net heat flux was calculated by using oceanographic and meteorological data of the OWS 'Mike'. The mixed layer depth was estimated for the period since 2002 until 2009 by the 'Mike' data as well. A good correlation between these two parameters has been found. Sensible and latent heat fluxes controlled by surface air temperature/sea surface temperature gradient are the main contributors into net heat flux. Significant correlation was found between heat fluxes variations at the OWS 'Mike' location and sea ice export from the Arctic Ocean.

  18. UV sensitivity of planktonic net community production in ocean surface waters

    Science.gov (United States)

    Regaudie-de-Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-05-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we test the sensitivity of net community production (NCP) to UVB of planktonic communities in surface waters across contrasting regions of the ocean. We observed here that UVB radiation affects net plankton community production at the ocean surface, imposing a shift in NCP by, on average, 50% relative to the values measured when excluding partly UVB. Our results show that under full solar radiation, the metabolic balance shows the prevalence of net heterotrophic community production. The demonstration of an important effect of UVB radiation on NCP in surface waters presented here is of particular relevance in relation to the increased UVB radiation derived from the erosion of the stratospheric ozone layer. Our results encourage design future research to further our understanding of UVB effects on the metabolic balance of plankton communities.

  19. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  20. The Surface Energy Balance at Local and Regional Scales-A Comparison of General Circulation Model Results with Observations.

    Science.gov (United States)

    Garratt, J. R.; Krummel, P. B.; Kowalczyk, E. A.

    1993-06-01

    Aspects of the mean monthly energy balance at continental surfaces are examined by appeal to the results of general circulation model (GCM) simulations, climatological maps of surface fluxes, and direct observations. Emphasis is placed on net radiation and evaporation for (i) five continental regions (each approximately 20°×150°) within Africa, Australia, Eurasia, South America, and the United States; (ii) a number of continental sites in both hemispheres. Both the mean monthly values of the local and regional fluxes and the mean monthly diurnal cycles of the local fluxes are described. Mostly, GCMs tend to overestimate the mean monthly levels of net radiation by about 15% -20% on an annual basis, for observed annual values in the range 50 to 100 Wm2. This is probably the result of several deficiencies, including (i) continental surface albedos being undervalued in a number of the models, resulting in overestimates of the net shortwave flux at the surface (though this deficiency is steadily being addressed by modelers); (ii) incoming shortwave fluxes being overestimated due to uncertainties in cloud schemes and clear-sky absorption; (iii) land-surface temperatures being under-estimated resulting in an underestimate of the outgoing longwave flux. In contrast, and even allowing for the poor observational base for evaporation, there is no obvious overall bias in mean monthly levels of evaporation determined in GCMS, with one or two exceptions. Rather, and far more so than with net radiation, there is a wide range in values of evaporation for all regions investigated. For continental regions and at times of the year of low to moderate rainfall, there is a tendency for the simulated evaporation to be closely related to the precipitation-this is not surprising. In contrast, for regions where there is sufficient or excessive rainfall, the evaporation tends to follow the behavior of the net radiation. Again, this is not surprising given the close relation between

  1. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    Science.gov (United States)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  2. Energy and carbon balances in cheatgrass, an essay in autecology. [Shortwave radiation, radiowave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, W.T.

    1975-01-01

    An experiment to determine the fates of energy and carbon in cheatgrass (Bromus tectorum L.) was carried out on steep (40/sup 0/) north- and south-facing slopes on a small earth mound, using many small lysimeters to emulate swards of cheatgrass. Meteorological conditions and energy fluxes that were measured included air and soil temperatures, relative humidity, wind speed, incoming shortwave radiation, net all-wave radiation, heat flux to the soil, and evaporation and transpiration separately. The fate of photosynthetically fixed carbon during spring growth was determined by analysis of the plant tissues into mineral nutrients, crude protein, crude fat, crude fiber, and nitrogen-free extract (NFE) for roots, shoots, and seeds separately. (auth)

  3. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  4. Updated thermal model using simplified short-wave radiosity calculations

    International Nuclear Information System (INIS)

    Smith, J.A.; Goltz, S.M.

    1994-01-01

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  5. Updated thermal model using simplified short-wave radiosity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. A.; Goltz, S. M.

    1994-02-15

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  6. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Science.gov (United States)

    Lange, Stefan

    2018-05-01

    Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  7. Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset

    Directory of Open Access Journals (Sweden)

    S. Lange

    2018-05-01

    Full Text Available Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds. Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016 rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011 data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016. This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.

  8. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  9. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

    Science.gov (United States)

    Huang, Shengli; Dahal, Devendra; Liu, Heping; Jin, Suming; Young, Claudia J.; Liu, Shuang; Liu, Shu-Guang

    2015-01-01

    The albedo change caused by both fires and subsequent succession is spatially heterogeneous, leading to the need to assess the spatiotemporal variation of surface shortwave forcing (SSF) as a component to quantify the climate impacts of high-latitude fires. We used an image reconstruction approach to compare postfire albedo with the albedo assuming fires had not occurred. Combining the fire-caused albedo change from the 2001-2010 fires in interior Alaska and the monthly surface incoming solar radiation, we examined the spatiotemporal variation of SSF in the early successional stage of around 10 years. Our results showed that while postfire albedo generally increased in fall, winter, and spring, some burned areas could show an albedo decrease during these seasons. In summer, the albedo increased for several years and then declined again. The spring SSF distribution did not show a latitudinal decrease from south to north as previously reported. The results also indicated that although the SSF is usually largely negative in the early successional years, it may not be significant during the first postfire year. The annual 2005-2010 SSF for the 2004 fire scars was -1.30, -4.40, -3.31, -4.00, -3.42, and -2.47 Wm-2. The integrated annual SSF map showed significant spatial variation with a mean of -3.15 Wm-2 and a standard deviation of 3.26 Wm-2, 16% of burned areas having positive SSF. Our results suggest that boreal deciduous fires would be less positive for climate change than boreal evergreen fires. Future research is needed to comprehensively investigate the spatiotemporal radiative and non-radiative forcings to determine the effect of boreal fires on climate.

  10. Surface net solar radiation estimated from satellite measurements - Comparisons with tower observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  11. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    International Nuclear Information System (INIS)

    Zhou Jun; Xie Li

    2011-01-01

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  12. Effect of net surface charge on particle sizing and material recognition by using phase Doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Xie Li

    2011-01-20

    By taking net surface charge into consideration, the scattering field of particles illuminated by dual laser beams of phase Doppler anemometry (PDA) is computed based on Mie's theory, and the effect of net surface charge on the phase-diameter relationship and the phase ratio is studied. It is found that the phase-diameter relationship and the relationship between the phase ratio and the refractive index of charged particles could be significantly different from those of uncharged particles, which would lead to errors in particle sizing and the measurement of refractive indices. A method of recognizing charged particles and determining the value of their surface conductivity, which is related to net surface charge, is proposed by utilizing the effect of net surface charge on the measurement of refractive indices using PDA.

  13. Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study

    Directory of Open Access Journals (Sweden)

    S. Gruber

    2018-05-01

    Full Text Available A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  14. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  15. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  16. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  17. Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations

    Science.gov (United States)

    Li, Zhanqing; Leighton, H. G.; Cess, Robert D.

    1993-01-01

    A parameterization that relates the reflected solar flux at the top of the atmosphere to the net solar flux at the surface in terms of only the column water vapor amount and the solar zenith angle was tested against surface observations. Net surface fluxes deduced from coincidental collocated satellite-measured radiances and from measurements from towers in Boulder during summer and near Saskatoon in winter have mean differences of about 2 W/sq m, regardless of whether the sky is clear or cloudy. Furthermore, comparisons between the net fluxes deduced from the parameterization and from surface measurements showed equally good agreement when the data were partitioned into morning and afternoon observations. This is in contrast to results from an empirical clear-sky algorithm that is unable to account adequately for the effects of clouds and that shows, at Boulder, a distinct morning to afternoon variation, which is presumably due to the predominance of different cloud types throughout the day. It is also demonstrated that the parameterization may be applied to irradiances at the top of the atmosphere that have been temporally averaged by using the temporally averaged column water vapor amount and the temporally averaged cosine of the solar zenith angle. The good agreement between the results of the parameterization and surface measurements suggests that the algorithm is a useful tool for a variety of climate studies.

  18. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  19. ARM Enhanced Shortwave Experiment (ARESE) Solar Radiation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The ARM Enhanced Shortwave Experiment (ARESE) was conducted at the Department of Energy's ARM Southern Great Plains (SGP) Central Facility between September 22, 1995...

  20. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic plains: Model results and ground measurement

    Science.gov (United States)

    Bibi, Humera; Alam, Khan; Bibi, Samina

    2017-08-01

    This study provides observational results of aerosol optical and radiative characteristics over four locations in IGP. Spectral variation of Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA) and Asymmetry Parameter (AP) were analysed using AErosol RObotic NETwork (AERONET) data. The analysis revealed that coarse particles were dominant in summer and pre-monsoon, while fine particles were more pronounced in winter and post-monsoon. Furthermore, the spatio-temporal variations of Shortwave Direct Aerosol Radiative Forcing (SDARF) and Shortwave Direct Aerosol Radiative Forcing Efficiency (SDARFE) at the Top Of Atmosphere (TOA), SURface (SUR) and within ATMosphere (ATM) were calculated using SBDART model. The atmospheric Heating Rate (HR) associated with SDARFATM were also computed. It was observed that the monthly averaged SDARFTOA and SDARFSUR were found to be negative leading to positive SDARFATM during all the months over all sites. The increments in net atmospheric forcing lead to maximum HR in November-December and May. The seasonal analysis of SDARF revealed that SDARFTOA and SDARFSUR were negative during all seasons. The SW atmospheric absorption translates to highest atmospheric HR during summer over Karachi and during pre-monsoon over Lahore, Jaipur and Kanpur. Like SDARF, the monthly and seasonal variations of SDARFETOA and SDARFESUR were found to be negative, resulting in positive atmospheric forcing. Additionally, to compare the model estimated forcing against AERONET derived forcing, the regression analysis of AERONET-SBDART forcing were carried out. It was observed that SDARF at SUR and TOA showed relatively higher correlation over Lahore, moderate over Jaipur and Kanpur and lower over Karachi. Finally, the analysis of National Oceanic and Atmospheric Administration Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that air masses were arriving from multiple source locations.

  1. Does shortwave absorption by methane influence its effectiveness?

    Science.gov (United States)

    Modak, Angshuman; Bala, Govindasamy; Caldeira, Ken; Cao, Long

    2018-01-01

    In this study, using idealized step-forcing simulations, we examine the effective radiative forcing of CH4 relative to that of CO2 and compare the effects of CH4 and CO2 forcing on the climate system. A tenfold increase in CH4 concentration in the NCAR CAM5 climate model produces similar long term global mean surface warming ( 1.7 K) as a one-third increase in CO2 concentration. However, the radiative forcing estimated for CO2 using the prescribed-SST method is 81% that of CH4, indicating that the efficacy of CH4 forcing is 0.81. This estimate is nearly unchanged when the CO2 physiological effect is included in our simulations. Further, for the same long-term global mean surface warming, we simulate a smaller precipitation increase in the CH4 case compared to the CO2 case. This is because of the fast adjustment processes—precipitation reduction in the CH4 case is larger than that of the CO2 case. This is associated with a relatively more stable atmosphere and larger atmospheric radiative forcing in the CH4 case which occurs because of near-infrared absorption by CH4 in the upper troposphere and lower stratosphere. Within a month after an increase in CH4, this shortwave heating results in a temperature increase of 0.8 K in the lower stratosphere and upper troposphere. In contrast, within a month after a CO2 increase, longwave cooling results in a temperature decrease of 3 K in the stratosphere and a small change in the upper troposphere. These fast adjustments in the lower stratospheric and upper tropospheric temperature, along with the adjustments in clouds in the troposphere, influence the effective radiative forcing and the fast precipitation response. These differences in fast climate adjustments also produce differences in the climate states from which the slow response begins to evolve and hence they are likely associated with differing feedbacks. We also find that the tropics and subtropics are relatively warmer in the CH4 case for the same global mean

  2. UV sensitivity of planktonic net community production in ocean surface waters

    OpenAIRE

    Regaudie de Gioux, Aurore; Agustí, Susana; Duarte, Carlos M.

    2014-01-01

    The net plankton community metabolism of oceanic surface waters is particularly important as it more directly affects the partial pressure of CO2 in surface waters and thus the air-sea fluxes of CO2. Plankton communities in surface waters are exposed to high irradiance that includes significant ultraviolet blue (UVB, 280-315 nm) radiation. UVB radiation affects both photosynthetic and respiration rates, increase plankton mortality rates, and other metabolic and chemical processes. Here we tes...

  3. Regional scale net radiation estimation by means of Landsat and TERRA/AQUA imagery and GIS modeling

    Science.gov (United States)

    Cristóbal, J.; Ninyerola, M.; Pons, X.; Llorens, P.; Poyatos, R.

    2009-04-01

    balance among the net shortwave radiation Rn and the net longwave radiation. In addition, two types of approaches have been carried out for its determination: the estimation of the variables implied in the calculation of Rn at daily level (Rndl); and the calculation of the Rn at the time of satellite pass (Rni) and its subsequent conversion to daily Rn by means of the Rn ratio. Net shortwave radiation has been computed by means of albedo and a solar radiation model obtained through a DEM following the methodology of Pons and Ninyerola (2008).This methodology takes into account the position of the Sun, the angles of incidence, the projected shadows and the distance from the Earth to the Sun at one hour intervals. The diffuse radiation is estimated from the direct radiaton and the exoatmospheric direct solar irradiance is estimated with the Page equation (1986) and fitted by Baldasano et al. (1994). Net longwave radiation has been calculated through land surface temperature and emissivity, atmospheric water vapour and air temperature. Air temperature has been modeled by means of multiple regression analysis and GIS interpolation using ground meteorological stations. Finally, air emissivity has been computed using air temperature models and atmospheric water vapour following the methodology developed by Dilley and O'Brien (1998). Finally, models have been validated through a set of 13 ground meteorological standard stations and an experimental station placed in a Mediterranean mountain area over a Pinus sylvestris stand. Obtained results show a mean RMSE of 20 W m-2 in the case of Landsat and a mean RMSE of 22 W m-2 in the case of TERRA/AQUA MODIS, being these results in agreement with other published results, but also offering better RMSE in some cases. Keywords: Net radiation, Landsat, TERRA/AQUA MODIS, GIS modeling, regional scale.

  4. Cloud effects on the SW radiation at the surface at a mid-latitude site in southwestern Europe

    Science.gov (United States)

    Salgueiro, Vanda; João Costa, Maria; Silva, Ana Maria; Lanconelli, Christian; Bortoli, Daniele

    2017-04-01

    This work presents a study of cloud radiative effects on shortwave (CRESW) radiation at the surface in Évora region (southwestern Europe) during 2015 and a case study is analyzed. CRESW (in Wm-2) is defined as the difference between the net shortwave irradiance (downward minus upward shortwave irradiance) in cloudy and clear sky conditions. This measure is usually used to translate changes in the SW radiation that reaches the surface due to changes in clouds (type and/or cover). The CRESW is obtained using measured SW irradiance recorded with a Kipp&Zonen CM 6B pyranometer (broadband 305 - 2800 nm) during the period from January to December 2015, and is related with the cloud liquid water path (LWP) and with cloud ice water path (IWP) showing the importance of the different type of clouds in attenuating the SW radiation at the surface. The cloud modification factor, also a measure of the cloud radiative effects (CMF; ratio between the measured SW irradiance under cloudy conditions and the estimated SW irradiance in clear-sky conditions) is related with the cloud optical thickness (COT; obtained from satellite data). This relation between CMF and COT is shown for different cloud fractions revealing an exponential decreasing of CMF as COT increases. Reductions in the SW radiation of the order of 80% (CMF = 0.2) as well enhancements in the SW radiation larger than 30% (CMF = 1.3) were found for small COT values and for different cloud fractions. A case study to analyse the enhancement events in a cloudy day was considered and the cloud properties, COT and LWP (from satellite and surface measurements), were related with the CRESW.

  5. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  6. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations

    Directory of Open Access Journals (Sweden)

    Xiaotong Zhang

    2016-03-01

    Full Text Available Solar radiation incident at the Earth’s surface (Rs is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55 using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total and the Earth’s Radiant Energy System (CERES EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from −2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.

  7. Shortwave Array Spectroradiometer–Zenith (SASZe) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Shortwave Array Spectroradiometer – Zenith (SASZe) provides measurements of zenith spectral shortwave radiance at 1Hz over a continuous spectral range from approximately 300 nm to 1700 nm. The SASZe design connects an optical collector located outdoors to a pair of spectrometers and data collections system located indoors within a climate-controlled building via an umbilical cable of fiber optic and electrical cables. The light collector incorporates a collimator yielding a 1-degree Full Width at Half Maximum (FWHM) field of view. The data-acquisition electronics and spectrometers include an in-line fiber optic shutter and two Avantes fiber-coupled grating spectroradiometers within a temperature-controlled container. The Avantes Avaspec ULS 2048 charge-coupled device (CCD) spectrometer covers the wavelength range from about 300-1100 nm with a pixel spacing of less than 0.6 nm and a spectral resolution of about 2.4 nm FWHM. The Avantes Avaspec NIR256-1.7 spectrometer covers the wavelength range from about 950 nm to 1700 nm with a pixel spacing of less than 4 nm and a spectral resolution of about 6 nm FWHM.

  8. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    Science.gov (United States)

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  9. Estimating Surface Downward Shortwave Radiation over China Based on the Gradient Boosting Decision Tree Method

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2018-01-01

    Full Text Available Downward shortwave radiation (DSR is an essential parameter in the terrestrial radiation budget and a necessary input for models of land-surface processes. Although several radiation products using satellite observations have been released, coarse spatial resolution and low accuracy limited their application. It is important to develop robust and accurate retrieval methods with higher spatial resolution. Machine learning methods may be powerful candidates for estimating the DSR from remotely sensed data because of their ability to perform adaptive, nonlinear data fitting. In this study, the gradient boosting regression tree (GBRT was employed to retrieve DSR measurements with the ground observation data in China collected from the China Meteorological Administration (CMA Meteorological Information Center and the satellite observations from the Advanced Very High Resolution Radiometer (AVHRR at a spatial resolution of 5 km. The validation results of the DSR estimates based on the GBRT method in China at a daily time scale for clear sky conditions show an R2 value of 0.82 and a root mean square error (RMSE value of 27.71 W·m−2 (38.38%. These values are 0.64 and 42.97 W·m−2 (34.57%, respectively, for cloudy sky conditions. The monthly DSR estimates were also evaluated using ground measurements. The monthly DSR estimates have an overall R2 value of 0.92 and an RMSE of 15.40 W·m−2 (12.93%. Comparison of the DSR estimates with the reanalyzed and retrieved DSR measurements from satellite observations showed that the estimated DSR is reasonably accurate but has a higher spatial resolution. Moreover, the proposed GBRT method has good scalability and is easy to apply to other parameter inversion problems by changing the parameters and training data.

  10. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  11. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  12. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of

  13. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  14. [A method of recognizing biology surface spectrum using cascade-connection artificial neural nets].

    Science.gov (United States)

    Shi, Wei-Jie; Yao, Yong; Zhang, Tie-Qiang; Meng, Xian-Jiang

    2008-05-01

    A method of recognizing the visible spectrum of micro-areas on the biological surface with cascade-connection artificial neural nets is presented in the present paper. The visible spectra of spots on apples' pericarp, ranging from 500 to 730 nm, were obtained with a fiber-probe spectrometer, and a new spectrum recognition system consisting of three-level cascade-connection neural nets was set up. The experiments show that the spectra of rotten, scar and bumped spot on an apple's pericarp can be recognized by the spectrum recognition system, and the recognition accuracy is higher than 85% even when noise level is 15%. The new recognition system overcomes the disadvantages of poor accuracy and poor anti-noise with the traditional system based on single cascade neural nets. Finally, a new method of expression of recognition results was proved. The method is based on the conception of degree of membership in fuzzing mathematics, and through it the recognition results can be expressed exactly and objectively.

  15. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1991-present, Downgoing Shortwave Radiation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Downgoing Shortwave Radiation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  16. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2016-01-01

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  17. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  18. Some observations on stray magnetic fields and power outputs from short-wave diathermy equipment

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R.W.M.; Dunscombe, P.B.

    1984-04-01

    Recent years have seen increasing interest in the possible hazards arising from the use of nonionizing electromagnetic radiation. Relatively large and potentially hazardous fields are to be found in the vicinity of short-wave and microwave equipment used in physiotherapy departments to produce therapeutic temperature rises. This note reports the results of measurements of the stray magnetic field and power output of a conventional short-wave diathermy unit when applied to tissue-equivalent phantoms. The dependence of these quantities on the variables, i.e. power setting of the unit, capacitor plate size, phantom size and phantom-capacitor plate separation, are discussed.

  19. A practical approach to compute short-wave irradiance interacting with subgrid-scale buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Uwe; Frueh, Barbara [Deutscher Wetterdienst, Offenbach am Main (Germany)

    2012-08-15

    A numerical approach for the calculation of short-wave irradiances at the ground as well as the walls and roofs of buildings in an environment with unresolved built-up is presented. In this radiative parameterization scheme the properties of the unresolved built-up are assigned to settlement types which are characterized by mean values of the volume density of the buildings and their wall area density. Therefore it is named wall area approach. In the vertical direction the range of building heights may be subdivided into several layers. In the case of non-uniform building heights the shadowing of the lower roofs by the taller buildings is taken into account. The method includes the approximate calculation of sky view and sun view factors. For an idealized building arrangement it is shown that the obtained approximate factors are in good agreement with exact calculations just as for the comparison of the calculated and measured effective albedo values. For arrangements with isolated single buildings the presented wall area approach yields a better agreement with the observations than similar methods where the unresolved built-up is characterized by the aspect ratio of a representative street canyon (aspect ratio approach). In the limiting case where the built-up is well represented by an ensemble of idealized street canyons both approaches become equivalent. The presented short-wave radiation scheme is part of the microscale atmospheric model MUKLIMO 3 where it contributes to the calculation of surface temperatures on the basis of energy-flux equilibrium conditions. (orig.)

  20. Radiophysical methods of diagnostics the Earth's ionosphere and the underlying earth's surface by remote sensing in the short-wave range of radio waves

    Science.gov (United States)

    Belov, S. Yu.; Belova, I. N.

    2017-11-01

    Monitoring of the earth's surface by remote sensing in the short-wave band can provide quick identification of some characteristics of natural systems. This band range allows one to diagnose subsurface aspects of the earth, as the scattering parameter is affected by irregularities in the dielectric permittivity of subsurface structures. This method based on the organization of the monitoring probe may detect changes in these environments, for example, to assess seismic hazard, hazardous natural phenomena such as earthquakes, as well as some man-made hazards and etc. The problem of measuring and accounting for the scattering power of the earth's surface in the short-range of radio waves is important for a number of purposes, such as diagnosing properties of the medium, which is of interest for geological, environmental studies. In this paper, we propose a new method for estimating the parameters of incoherent signal/noise ratio. The paper presents the results of comparison of the measurement method from the point of view of their admissible relative analytical errors. The new method is suggested. Analysis of analytical error of estimation of this parameter allowed to recommend new method instead of standard method. A comparative analysis and shows that the analytical (relative) accuracy of the determination of this parameter new method on the order exceeds the widely-used standard method.

  1. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  2. Improving representation of canopy temperatures for modeling subcanopy incoming longwave radiation to the snow surface

    Science.gov (United States)

    Webster, Clare; Rutter, Nick; Jonas, Tobias

    2017-09-01

    A comprehensive analysis of canopy surface temperatures was conducted around a small and large gap at a forested alpine site in the Swiss Alps during the 2015 and 2016 snowmelt seasons (March-April). Canopy surface temperatures within the small gap were within 2-3°C of measured reference air temperature. Vertical and horizontal variations in canopy surface temperatures were greatest around the large gap, varying up to 18°C above measured reference air temperature during clear-sky days. Nighttime canopy surface temperatures around the study site were up to 3°C cooler than reference air temperature. These measurements were used to develop a simple parameterization for correcting reference air temperature for elevated canopy surface temperatures during (1) nighttime conditions (subcanopy shortwave radiation is 0 W m-2) and (2) periods of increased subcanopy shortwave radiation >400 W m-2 representing penetration of shortwave radiation through the canopy. Subcanopy shortwave and longwave radiation collected at a single point in the subcanopy over a 24 h clear-sky period was used to calculate a nighttime bulk offset of 3°C for scenario 1 and develop a multiple linear regression model for scenario 2 using reference air temperature and subcanopy shortwave radiation to predict canopy surface temperature with a root-mean-square error (RMSE) of 0.7°C. Outside of these two scenarios, reference air temperature was used to predict subcanopy incoming longwave radiation. Modeling at 20 radiometer locations throughout two snowmelt seasons using these parameterizations reduced the mean bias and RMSE to below 10 W m s-2 at all locations.

  3. ASTER L2 Surface Reflectance SWIR and ASTER L2 Surface Reflectance VNIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Reflectance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave...

  4. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  5. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  6. Meteorological data for four sites at surface-disruption features in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1985--1986

    International Nuclear Information System (INIS)

    Carman, R.L.

    1994-01-01

    Surface-disruption features, or craters, resulting from underground nuclear testing at the Nevada Test Site may increase the potential for ground-water recharge in an area that would normally produce little, if any, recharge. This report presents selected meteorological data resulting from a study of two surface-disruption features during May 1985 through June 1986. The data were collected at four adjacent sites in Yucca Flat, about 56 kilometers north of Mercury, Nevada. Three sites (one in each of two craters and one at an undisturbed site at the original land surface) were instrumented to collect meteorological data for calculating bare-soil evaporation. These data include (1) long-wave radiation, (2) short-wave radiation, (3) net radiation, (4) air temperature, and (5) soil surface temperature. Meteorological data also were collected at a weather station at an undisturbed site near the study craters. Data collected at this site include (1) air temperature, (2) relative humidity, (3) wind velocity, and (4) wind direction

  7. Impact of an improved shortwave radiation scheme in the MAECHAM5 General Circulation Model

    Directory of Open Access Journals (Sweden)

    J. J. Morcrette

    2007-05-01

    Full Text Available In order to improve the representation of ozone absorption in the stratosphere of the MAECHAM5 general circulation model, the spectral resolution of the shortwave radiation parameterization used in the model has been increased from 4 to 6 bands. Two 20-years simulations with the general circulation model have been performed, one with the standard and the other with the newly introduced parameterization respectively, to evaluate the temperature and dynamical changes arising from the two different representations of the shortwave radiative transfer. In the simulation with the increased spectral resolution in the radiation parameterization, a significant warming of almost the entire model domain is reported. At the summer stratopause the temperature increase is about 6 K and alleviates the cold bias present in the model when the standard radiation scheme is used. These general circulation model results are consistent both with previous validation of the radiation scheme and with the offline clear-sky comparison performed in the current work with a discrete ordinate 4 stream scattering line by line radiative transfer model. The offline validation shows a substantial reduction of the daily averaged shortwave heating rate bias (1–2 K/day cooling that occurs for the standard radiation parameterization in the upper stratosphere, present under a range of atmospheric conditions. Therefore, the 6 band shortwave radiation parameterization is considered to be better suited for the representation of the ozone absorption in the stratosphere than the 4 band parameterization. Concerning the dynamical response in the general circulation model, it is found that the reported warming at the summer stratopause induces stronger zonal mean zonal winds in the middle atmosphere. These stronger zonal mean zonal winds thereafter appear to produce a dynamical feedback that results in a dynamical warming (cooling of the polar winter (summer mesosphere, caused by an

  8. Spatiotemporal variability of Canadian High Arctic glacier surface albedo from MODIS data, 2001-2016

    Science.gov (United States)

    Mortimer, Colleen A.; Sharp, Martin

    2018-02-01

    Inter-annual variations and longer-term trends in the annual mass balance of glaciers in Canada's Queen Elizabeth Islands (QEI) are largely attributable to changes in summer melt. The largest source of melt energy in the QEI in summer is net shortwave radiation, which is modulated by changes in glacier surface albedo. We used measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to investigate large-scale spatial patterns, temporal trends, and variability in the summer surface albedo of QEI glaciers from 2001 to 2016. Mean summer black-sky shortwave broadband albedo (BSA) decreased at a rate of 0.029±0.025 decade-1 over that period. Larger reductions in BSA occurred in July (-0.050±0.031 decade-1). No change in BSA was observed in either June or August. Most of the decrease in BSA, which was greatest at lower elevations around the margins of the ice masses, occurred between 2007 and 2012, when mean summer BSA was anomalously low. The first principal component of the 16-year record of mean summer BSA was well correlated with the mean summer North Atlantic Oscillation index, except in 2006, 2010, and 2016, when the mean summer BSA appears to have been dominated by the August BSA. During the period 2001-2016, the mean summer land surface temperature (LST) over the QEI glaciers and ice caps increased by 0.049±0.038 °C yr-1, and the BSA record was negatively correlated (r: -0.86) with the LST record, indicative of a positive ice-albedo feedback that would increase rates of mass loss from the QEI glaciers.

  9. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy L.

    2015-01-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL's High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  10. CLARREO shortwave observing system simulation experiments of the twenty-first century: Simulator design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.R.; Algieri, C.A.; Ong, J.R.; Collins, W.D.

    2011-04-01

    Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensively validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.

  11. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.; Tornero, M.T.T.

    1999-01-01

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (R g ) and solar reflected radiation (R r ) were used to estimate the albedo through the ratio between R r and R g . The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (R g ) and net short-waves radiation (R c ) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author) [pt

  12. Application of deconvolution interferometry with both Hi-net and KiK-net data

    Science.gov (United States)

    Nakata, N.

    2013-12-01

    Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.

  13. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  14. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    Science.gov (United States)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  15. Characterizing the information content of cloud thermodynamic phase retrievals from the notional PACE OCI shortwave reflectance measurements

    Science.gov (United States)

    Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.

    2017-08-01

    We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.

  16. Background estimation in short-wave region during determination of total sample composition by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Simakov, V.A.; Kordyukov, S.V.; Petrov, E.N.

    1988-01-01

    Method of background estimation in short-wave spectral region during determination of total sample composition by X-ray fluorescence method is described. 13 types of different rocks with considerable variations of base composition and Zr, Nb, Th, U content below 7x10 -3 % are investigated. The suggested method of background accounting provides for a less statistical error of the background estimation than direct isolated measurement and reliability of its determination in a short-wave region independent on the sample base. Possibilities of suggested method for artificial mixtures conforming by the content of main component to technological concemtrates - niobium, zirconium, tantalum are estimated

  17. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  18. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  19. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.

    2016-01-01

    Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016

  20. Climatic responses to the shortwave and longwave direct radiative effects of sea salt aerosol in present day and the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xu [Chinese Academy of Sciences (CAS), Climate Change Research Center (CCRC), Beijing (China); Chinese Academy of Sciences (CAS), Nansen-Zhu International Research Center, Institute of Atmospheric Physics (IAP), Beijing (China); Harvard University, School of Engineering and Applied Sciences, Cambridge, MA (United States); Liao, Hong [Chinese Academy of Sciences (CAS), State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), P.O. Box 9804, Beijing (China)

    2012-12-15

    We examine the climatic responses to the shortwave (SW) and longwave (LW) direct radiative effects (RE) of sea salt aerosol in present day and the last glacial maximum (LGM) using a general circulation model with online simulation of sea salt cycle. The 30-year control simulation predicts a present-day annual emission of sea salt of 4,253 Tg and a global burden of 8.1 Tg for the particles with dry radii smaller than 10 {mu}m. Predicted annual and global mean SW and LW REs of sea salt are, respectively, -1.06 and +0.14 W m{sup -2} at the top of atmosphere (TOA), and -1.10 and +0.54 W m{sup -2} at the surface. The LW warming of sea salt is found to decrease with altitude, which leads to a stronger net sea salt cooling in the upper troposphere. The changes in global mean air temperature by the present-day sea salt are simulated to be -0.55, -0.63, -0.86, and -0.91 K at the surface, 850, 500a, and 200 hPa, respectively. The emission of sea salt at the LGM is estimated to be 4,075 Tg year{sup -1}. Relative to present day, the LGM sea salt emission is higher by about 18% over the tropical and subtropical oceans, and is lower by about 35% in the mid- and high-latitudes in both hemispheres because of the expansion of sea ice. As a result of the weakened LGM water cycle, the LGM annual and global mean burden of sea salt is predicted to be higher by 4% as compared to the present-day value. Compared with the climatic effect of sea salt in present day, the sea-salt-induced reductions in surface air temperature at the LGM have similar magnitude in the tropics but are weakened by about 0.18 and 0.14 K in the high latitudes of the Southern and Northern Hemispheres, respectively. We also perform a sensitivity study to explore the upper limit of the climatic effect of the LGM sea salt. We assume an across-the-board 30% increase in the glacial wind speed and consider sea salt emissions over sea ice, so that the model can reproduce the ratio of sea salt deposition between the LGM and

  1. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  2. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  3. Simulated Effects of Land Cover Conversion on the Surface Energy Budget in the Southwest of China

    Directory of Open Access Journals (Sweden)

    Jiangbo Gao

    2014-03-01

    Full Text Available In this paper, the coupled WRF/SSiB model, accompanied by a Karst Rocky Desertification (KRD map of the Guizhou Karst Plateau (GKP of China, was applied to detect how the changed vegetation and soil characteristics over the GKP modify the energy balance at the land surface. The results indicated that land degradation led to reduced net radiation by inducing more upward shortwave and longwave radiation, which were associated with increasing surface albedo and temperature, respectively. The KRD also resulted in changed surface energy partitioning into sensible and latent heat fluxes. The latent heat flux at land surface was reduced substantially due to the higher surface albedo and stomatal resistance, the lower Leaf Area Index (LAI and roughness length in the degradation experiment, while the sensible heat flux increased, mainly because of the higher surface temperature. Furthermore, the moisture flux convergence was reduced, owing to the lower atmospheric heating and the relative subsidence. However, compared with the reduced evaporation, the decrease in moisture flux convergence contributed much less to the reduced precipitation. Precipitation strongly affects soil moisture, vegetation growth and phenology, and thus evaporation and convective latent heating, so when precipitation was changed, a feedback loop was created.

  4. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    Science.gov (United States)

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  6. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 1. Bibliography on solar radiation; 1974 nendo taiyo hosha ni kansuru bunken mokuroku. 1. Taiyo energy system no kenkyu kaihatsu (kisho chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report is the 1st one among 3 reports 'Bibliography on solar radiation', 'Guideline for using weather data' and 'Observation data on global solar radiation and sunshine duration'. This report is composed of the part 1 'Present state and view of researches on solar radiation' including (1) view of researches on short-wave radiation, (2) atmospheric radiation, (3) scattering of solar radiation, (4) global net radiation and (5) radiometer, and the part 2 including the bibliography and its commentary. (1) describes researches on incident short-wave radiation (solar radiation) and some current issues, (2) describes the basis for quantitative measurement of atmospheric radiation transfer, based on the premise that atmospheric radiation is infrared radiation between the ground surface and atmospheric system. (3) describes scattering of solar radiation in the air, and its effect. (4) describes that the global profile of net radiation of the air-earth system and its seasonal change can be observed directly from the weather satellite roughly, and research on global net radiation is approaching a new era. (NEDO)

  7. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  8. Noncontact Surface Roughness Estimation Using 2D Complex Wavelet Enhanced ResNet for Intelligent Evaluation of Milled Metal Surface Quality

    Directory of Open Access Journals (Sweden)

    Weifang Sun

    2018-03-01

    Full Text Available Machined surfaces are rough from a microscopic perspective no matter how finely they are finished. Surface roughness is an important factor to consider during production quality control. Using modern techniques, surface roughness measurements are beneficial for improving machining quality. With optical imaging of machined surfaces as input, a convolutional neural network (CNN can be utilized as an effective way to characterize hierarchical features without prior knowledge. In this paper, a novel method based on CNN is proposed for making intelligent surface roughness identifications. The technical scheme incorporates there elements: texture skew correction, image filtering, and intelligent neural network learning. Firstly, a texture skew correction algorithm, based on an improved Sobel operator and Hough transform, is applied such that surface texture directions can be adjusted. Secondly, two-dimensional (2D dual tree complex wavelet transform (DTCWT is employed to retrieve surface topology information, which is more effective for feature classifications. In addition, residual network (ResNet is utilized to ensure automatic recognition of the filtered texture features. The proposed method has verified its feasibility as well as its effectiveness in actual surface roughness estimation experiments using the material of spheroidal graphite cast iron 500-7 in an agricultural machinery manufacturing company. Testing results demonstrate the proposed method has achieved high-precision surface roughness estimation.

  9. A net decrease in the Earth's cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011

    Directory of Open Access Journals (Sweden)

    J. Herman

    2013-08-01

    Full Text Available Measured upwelling radiances from Nimbus-7 SBUV (Solar Backscatter Ultraviolet and seven NOAA SBUV/2 instruments have been used to calculate the 340 nm Lambertian equivalent reflectivity (LER of the Earth from 1979 to 2011 after applying a common calibration. The 340 nm LER is highly correlated with cloud and aerosol cover because of the low surface reflectivity of the land and oceans (typically 2 to 6 RU, reflectivity units, where 1 RU = 0.01 = 1.0% relative to the much higher reflectivity of clouds plus nonabsorbing aerosols (typically 10 to 90 RU. Because of the nearly constant seasonal and long-term 340 nm surface reflectivity in areas without snow and ice, the 340 nm LER can be used to estimate changes in cloud plus aerosol amount associated with seasonal and interannual variability and decadal climate change. The annual motion of the Intertropical Convergence Zone (ITCZ, episodic El Niño Southern Oscillation (ENSO, and latitude-dependent seasonal cycles are apparent in the LER time series. LER trend estimates from 5° zonal average and from 2° × 5° , latitude × longitude, time series show that there has been a global net decrease in 340 nm cloud plus aerosol reflectivity. The decrease in cos2(latitude weighted average LER from 60° S to 60° N is 0.79 ± 0.03 RU over 33 yr, corresponding to a 3.6 ± 0.2% decrease in LER. Applying a 3.6% cloud reflectivity perturbation to the shortwave energy balance partitioning given by Trenberth et al. (2009 corresponds to an increase of 2.7 W m−2 of solar energy reaching the Earth's surface and an increase of 1.4% or 2.3 W m−2 absorbed by the surface, which is partially offset by increased longwave cooling to space. Most of the decreases in LER occur over land, with the largest decreases occurring over the US (−0.97 RU decade−1, Brazil (−0.9 RU decade−1, and central Europe (−1.35 RU decade−1. There are reflectivity increases near the west coast of Peru and Chile (0.8 ± 0.1 RU

  10. ASTER L2 Surface Radiance VNIR and SWIR V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The ASTER L2 Surface Radiance is a multi-file product that contains atmospherically corrected data for both the Visible Near-Infrared (VNIR) and Shortwave Infrared...

  11. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  12. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  13. CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared

    Science.gov (United States)

    Guerin, François; Dantes, Didier; Savaria, Eric; Selingardi, Mario Luis; Montes, Amauri Silva

    2018-04-01

    This paper, "CIMEX: a prototype Instrument to observe from space the amazon forest In the near and shortwave infrared," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  14. Integrable discretizations for the short-wave model of the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.

  15. A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets

    International Nuclear Information System (INIS)

    Ito, Akihiko; Sasai, Takahiro

    2006-01-01

    This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982-2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%-43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies

  16. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  17. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    Science.gov (United States)

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  18. Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007

    Energy Technology Data Exchange (ETDEWEB)

    Graversen, Rune G.; Drijfhout, Sybren [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Mauritsen, Thorsten [Max-Planck Institute for Meteorology, Hamburg (Germany); Tjernstroem, Michael; Maartensson, Sebastian [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2011-06-15

    During summer 2007 the Arctic sea-ice shrank to the lowest extent ever observed. The role of the atmospheric energy transport in this extreme melt event is explored using the state-of-the-art ERA-Interim reanalysis data. We find that in summer 2007 there was an anomalous atmospheric flow of warm and humid air into the region that suffered severe melt. This anomaly was larger than during any other year in the data (1989-2008). Convergence of the atmospheric energy transport over this area led to positive anomalies of the downward longwave radiation and turbulent fluxes. In the region that experienced unusual ice melt, the net anomaly of the surface fluxes provided enough extra energy to melt roughly one meter of ice during the melting season. When the ocean successively became ice-free, the surface-albedo decreased causing additional absorption of shortwave radiation, despite the fact that the downwelling solar radiation was smaller than average. We argue that the positive anomalies of net downward longwave radiation and turbulent fluxes played a key role in initiating the 2007 extreme ice melt, whereas the shortwave-radiation changes acted as an amplifying feedback mechanism in response to the melt. (orig.)

  19. MetNet Network Mission for Martian Atmospheric Investigations

    Science.gov (United States)

    Harri, A.-M.; Alexashkin, S.; Arrugeo, I.; Schmidt, W.; Vazquez, L.; Genzer, M.; Haukka, H.

    2014-07-01

    A new kind of planetary exploration mission for Mars called MetNet is being developed for martian atmospheric investigations. The eventual scope of the MetNet Mission is to deploy tens of small landers on the martian surface.

  20. Reassessing the effect of cloud type on Earth's energy balance

    Science.gov (United States)

    Hang, A.; L'Ecuyer, T.

    2017-12-01

    Cloud feedbacks depend critically on the characteristics of the clouds that change, their location and their environment. As a result, accurately predicting the impact of clouds on future climate requires a better understanding of individual cloud types and their spatial and temporal variability. This work revisits the problem of documenting the effects of distinct cloud regimes on Earth's radiation budget distinguishing cloud types according to their signatures in spaceborne active observations. Using CloudSat's multi-sensor radiative fluxes product that leverages high-resolution vertical cloud information from CloudSat, CALIPSO, and MODIS observations to provide the most accurate estimates of vertically-resolved radiative fluxes available to date, we estimate the global annual mean net cloud radiative effect at the top of the atmosphere to be -17.1 W m-2 (-44.2 W m-2 in the shortwave and 27.1 W m-2 in the longwave), slightly weaker than previous estimates from passive sensor observations. Multi-layered cloud systems, that are often misclassified using passive techniques but are ubiquitous in both hemispheres, contribute about -6.2 W m-2 of the net cooling effect, particularly at ITCZ and higher latitudes. Another unique aspect of this work is the ability of CloudSat and CALIPSO to detect cloud boundary information providing an improved capability to accurately discern the impact of cloud-type variations on surface radiation balance, a critical factor in modulating the disposition of excess energy in the climate system. The global annual net cloud radiative effect at the surface is estimated to be -24.8 W m-2 (-51.1 W m-2 in the shortwave and 26.3 W m-2 in the longwave), dominated by shortwave heating in multi-layered and stratocumulus clouds. Corresponding estimates of the effects of clouds on atmospheric heating suggest that clouds redistribute heat from poles to equator enhancing the general circulation.

  1. Analytic Approximations for Soliton Solutions of Short-Wave Models for Camassa-Holm and Degasperis-Procesi Equations

    International Nuclear Information System (INIS)

    Yang Pei; Li Zhibin; Chen Yong

    2010-01-01

    In this paper, the short-wave model equations are investigated, which are associated with the Camassa-Holm (CH) and Degasperis-Procesi (DP) shallow-water wave equations. Firstly, by means of the transformation of the independent variables and the travelling wave transformation, the partial differential equation is reduced to an ordinary differential equation. Secondly, the equation is solved by homotopy analysis method. Lastly, by the transformations back to the original independent variables, the solution of the original partial differential equation is obtained. The two types of solutions of the short-wave models are obtained in parametric form, one is one-cusp soliton for the CH equation while the other one is one-loop soliton for the DP equation. The approximate analytic solutions expressed by a series of exponential functions agree well with the exact solutions. It demonstrates the validity and great potential of homotopy analysis method for complicated nonlinear solitary wave problems. (general)

  2. Variety identification of brown sugar using short-wave near infrared spectroscopy and multivariate calibration

    Science.gov (United States)

    Yang, Haiqing; Wu, Di; He, Yong

    2007-11-01

    Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.

  3. Satellite observed impacts of wildfires on regional atmosphere composition and shortwave radiative forcing: multiple cases study

    Science.gov (United States)

    Fu, Y.; Li, R.; Huang, J.; Bergeron, Y.; Fu, Y.

    2017-12-01

    Emissions of aerosols and trace gases from wildfires and the direct shortwave radiative forcing were studied using multi-satellite/sensor observations from Aqua Moderate-Resolution Imaging Spectroradiometer (MODIS), Aqua Atmospheric Infrared Sounder (AIRS), Aura Ozone Monitoring Instrument (OMI), and Aqua Cloud's and the Earth's Radiant Energy System (CERES). The selected cases occurred in Northeast of China (NEC), Siberia of Russia, California of America have dominant fuel types of cropland, mixed forest and needleleaf forest, respectively. The Fire radiative power (FRP) based emission coefficients (Ce) of aerosol, NOx (NO2+NO), formaldehyde (HCHO), and carbon monoxide (CO) showed significant differences from case to case. 1) the FRP of the cropland case in NEC is strongest, however, the Ce of aerosol is the lowest (20.51 ± 2.55 g MJ-1). The highest Ce of aerosol is 71.34 ± 13.24 g MJ-1 in the needleleaf fire case in California. 2) For NOx, the highest Ce existed in the cropland case in NEC (2.76 ± 0.25 g MJ-1), which is more than three times of those in the forest fires in Siberia and California. 3) The Ce of CO is 70.21±10.97 and 88.38±46.16 g MJ-1 in the forest fires in Western Siberia and California, which are about four times of that in cropland fire. 4) The variation of Ce of HCHO are relatively small among cases. Strong spatial correlations are found among aerosol optical depth (AOD), NOx, HCHO, and CO. The ratios of NOx to AOD, HCHO, and CO in the cropland case in NEC show much higher values than those in other cases. Although huge differences of emissions and composition ratios exist among cases, the direct shortwave (SW) radiative forcing efficiency (SWARFE) of smoke at the top of the atmosphere (TOA) are in good agreement, with the shortwave radiative forcing efficiencies values of 20.09 to 22.93 per unit AOD. Results in this study reveal noteworthy variations of the FRP-based emissions coefficient and relative chemical composition in the smoke

  4. Dynamic response of the thermometric net radiometer

    Science.gov (United States)

    J. D. Wilson; W. J. Massman; G. E. Swaters

    2009-01-01

    We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...

  5. Interannual variability of sea surface temperature and circulation in ...

    African Journals Online (AJOL)

    Local surface heat flux exchanges driven by the anomalous shortwave radiation dominated the interannual SST variability in the Tanzanian shelf region, with some contribution by the advection of heat anomalies from the North-East Madagascar Current. Farther offshore, the interannual variability of the SST was dominated ...

  6. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    Full Text Available Intra-seasonal variability of smoke aerosol optical depth (AOD and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracers Transport model with the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS. Measurements of total and fine mode fraction (FMF AOD from the AErosol RObotic NETwork (AERONET and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon basin the model systematically underestimated total AOD, as expected, since smoke contribution is not dominant as it is in the southern portion and emissions other than smoke were not considered in the simulation. Better agreement was obtained comparing the model results with observed FMF AOD, which pointed out the relevance of coarse mode aerosol emission in that region. Likewise, major discrepancies over cerrado during high AOD events were found to be associated with coarse mode aerosol omission in our model. The issue of high aerosol loading events in the southern part of the Amazon was related to difficulties in predicting the smoke AOD field, which was discussed in the context of emissions shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable for both total and FMF AOD. Thus, lower quality data were used. Root-mean-square error (RMSE between the model and observed FMF AOD decreased from 0.34 to 0.19 when extreme AOD events (FMF AOD550 nm ≥ 1.0 and Cuiabá were excluded from the analysis. Downward surface solar irradiance comparisons also followed similar trends when extreme AOD were excluded

  7. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  8. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  9. The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties

    NARCIS (Netherlands)

    Bunnik, N.J.J.

    1978-01-01

    Relations between morphological properties of uniform canopies. optical properties of the leaves and reflection of shortwave radiation, in the visible light region and the near infrared, by crops are the subject of this thesis.

    The aim of the study was a further investigation of

  10. Stationary spectra of short-wave convective and magnetostatic fluctuations in a finite-pressure plasma and anomalous heat conductivity

    International Nuclear Information System (INIS)

    Vakulenko, M.O.

    1992-01-01

    Within the general renormalized statistical approach, the low-frequency short-wave stationary spectra of potential and magnetic perturbations in a finite-pressure plasma, are obtained. Anomalous heat conductivity considerably enhances due to non-linear interaction between magnetic excitations. 11 refs. (author)

  11. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Science.gov (United States)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  12. A strategy for testing the impact of clouds on the shortwave radiation budge of general circulation models: A prototype for the Atmospheric Radiation Measurement Program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1994-01-01

    Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs), and this study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budgets of two GCMs. Concentration is initially on SW rather than longwave (LW) radiation because, in one of the GCMs used in this study an SW radiation inconsistency causes a LW inconsistency. The surface data consist of near-surface insolation measured by the upward facing pyranometer at the Boulder Atmospheric Observatory tower. The satellite data consist of top of the atmosphere (TOA) albedo data, collocated with the tower location, as determined from the GOES SW spin-scan radiometer. Measurements are made every half hour, with hourly means taken by averaging successive measurements. The combined data are for a 21-day period encompassing 28 June through 18 July 1987 and consist of 202 combined albedo/insolation measurements

  13. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  14. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  15. Sensitivity of surface radiation budget to clouds over the Asian ...

    Indian Academy of Sciences (India)

    National Climate Centre, India Meteorological Department, Pune 400 005. ... down on the earth surface–atmosphere system also as an imbalance between surface netcloud ... the clouds produce more cooling effect in short-wave band than the warming effect in long-wave .... In the present study, we use the analysis method.

  16. Seasonal variation of solar radiation and underwater irradiance in the Seto inland sea

    International Nuclear Information System (INIS)

    Endo, T.; Matsuda, O.; Imabayashi, H.

    1983-01-01

    The recent rapid eutrophication of the coastal seas of Japan has had a remarkable effect on the turbidity and transparency of the sea water, hence on the attenuation of underwater irradiance, which in turn influences the phytoplankton communities and primary productivity of the area. The present study deals with the continuous three years observation of the total short-wave radiation, direct short-wave radiation, diffused short-wave radiation and photosynthetically active radiation of tlle Seto Inland Sea. Along with these observations, reflected short-wave radiation from the sea and transmitted short-wave radiation into the sea were determined. The availability of solar radiation for primary production, vertical distribution of spectral irradiance and attenuation coefficient were also discussed in relation to the optical water type of the region. 1. A typical seasonal variation in the monthly mean daily solar radiation (total short-wave radiation) was observed, with a maximal value of 17.0 MJ 2 in July and minimal values of 7.4 to 7.5 MJ 2 through November to January. 2. Seasonal variation of direct short-wave radiation was nearly identical to that of total short-wave radiation, with 9.3 MJ 2 at maximum and 4.1MJ 2 at minimum. Diffused short-wave radiation increased in June and decreased in January. The ratio of diffused short-wave radiation to total short-wave radiation ranged from 394000 62% with an average of 49%.0 3. Seasonal variation of photosynthetically active radiation was very similar to that of direct short-wave radiation, with values of 7.3 MJ 2 in July and of 3.3 MJ 2 in December 4. The albedo at the sea surface changed according to the incidence angle and surface conditions. Average daily values ranged from 2.9% on a fine summer day to 10% on an overcasted day in winter. 5. Underwater irradiance at a depth of 50cm varied widely according to such parameters as turbidity and the surface condition of the water. Observation revealed a remarkable decrease

  17. Winter Radiation Extinction and Reflection in a Boreal Pine Canopy: Measurements and Modelling

    Science.gov (United States)

    Pomeroy, J. W.; Dion, K.

    1996-12-01

    Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50̂, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the

  18. Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    Directory of Open Access Journals (Sweden)

    K. J. Sanchez

    2017-08-01

    Full Text Available Top-down and bottom-up aerosol–cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding European collaborative project, with the goal of understanding key processes affecting aerosol–cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN concentration were used to initiate a 1-D microphysical aerosol–cloud parcel model (ACPM. UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF by between 25 and 60 W m−2. After

  19. Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere-ocean regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, C.; Somot, S.; Deque, M.; Sevault, F. [CNRM-GAME, Meteo-France, CNRS, Toulouse (France); Calmanti, S.; Carillo, A.; Dell' Aquilla, A.; Sannino, G. [ENEA, Rome (Italy); Elizalde, A.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Gualdi, S.; Oddo, P.; Scoccimarro, E. [INGV, Bologna (Italy); L' Heveder, B.; Li, L. [Laboratoire de Meteorologie Dynamique, Paris (France)

    2012-10-15

    Within the CIRCE project ''Climate change and Impact Research: the Mediterranean Environment'', an ensemble of high resolution coupled atmosphere-ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950-2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021-2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961-1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021-2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961-1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing

  20. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  1. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  2. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  3. A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres

    International Nuclear Information System (INIS)

    Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu

    2013-01-01

    A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude. -- Highlights: ► An efficient radiative transfer model is developed for cloud remote sensing. ► Multi-layered clouds and a non-Lambertian surface can be fully considered.

  4. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  5. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    Directory of Open Access Journals (Sweden)

    O. E. García

    2012-06-01

    Full Text Available The shortwave radiative forcing (ΔF and the radiative forcing efficiency (ΔFeff of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA and at the Bottom Of Atmosphere (BOA modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere in similar observational conditions (i.e., for solar zenith angles between 55° and 65° in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from −122 ± 37 Wm−2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45 at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and −42 ± 22 Wm−2 (AOD = 0.9 ± 0.5 at the TOA for the pure mineral dust also in this region up to −6 ± 3 Wm−2 and −4 ± 2 Wm−2 (AOD = 0.03 ± 0.02 at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  6. Changes in the Albedo of the Pegasus and Phoenix Runways, 2000-2017

    Science.gov (United States)

    2017-07-18

    by the net heat transfer into the runway surface during the brief but intense peak of austral summer. The flux of downwelling shortwave solar energy...snow; and as ERDC/CRREL TR-17-10 2 mentioned above, the presence of melt water in the snow further reduces albedo and increases heating of the snow...interpolating over all possible angles, end member albedo cases (“white sky” and “black sky”) can be modeled . The actual albedo or “blue sky” albedo falls

  7. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  8. Winter radiation extinction and reflection in a boreal pine canopy: measurements and modelling

    International Nuclear Information System (INIS)

    Pomeroy, J.W.; Dion, K.

    1996-01-01

    Predicting the rate of snow melt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at

  9. Rates of convergence of Brezier net over triangles

    International Nuclear Information System (INIS)

    Feng Yuyu.

    1986-12-01

    It is well known (Farin, 1979) that the sequence of Bezier nets f-circumflex n (x) associated with Bernstein-Bezier surface over a triangle converges to the surface uniformly as n goes to infinity. In this paper the precise rates of convergence are given. The pointwise convergence result and saturation theorem are presented. (author). 7 refs

  10. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    Science.gov (United States)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  11. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  12. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  13. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes

  14. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  15. MetBaro - Pressure Device for Mars MetNet Lander

    Science.gov (United States)

    Haukka, Harri; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Genzer, Maria; Mäkinen, Teemu

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure sensor of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitive type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 4 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  16. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  17. Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment

    International Nuclear Information System (INIS)

    Kustas, W.P.; Prueger, J.H.; Hipps, L.E.; Hatfield, J.L.; Meek, D.

    1998-01-01

    Studies of surface energy and water balance generally require an accurate estimate of net radiation and its spatial distribution. A project quantifying both short term and seasonal water use of shrub and grass vegetation in the Jornada Experimental Range in New Mexico prompted a study to compare net radiation observations using two types of net radiometers currently being used in research. A set of 12 REBS net radiometers were compared with each other and one Swissteco, over wet and dry surfaces in an arid landscape under clear skies. The set of REBS exhibited significant differences in output over both surfaces. However, they could be cross calibrated to yield values within 10 W m −2 , on average. There was also a significant bias between the REBS and Swissteco over a dry surface, but not over a wet one. The two makes of instrument could be made to agree under the dry conditions by using regression or autoregression techniques. However, the resulting equations would induce bias for the wet surface condition. Thus, it is not possible to cross calibrate these two makes of radiometer over the range of environmental conditions observed. This result indicates that determination of spatial distribution of net radiation over a variable surface should be made with identical instruments which have been cross calibrated. The need still exists for development of a radiometer and calibration procedures which will produce accurate and consistent measurements over a range of surface conditions. (author)

  18. Validation of solar radiation surfaces from MODIS and reanalysis data over topographically complex terrain

    Science.gov (United States)

    Todd A. Schroeder; Robbie Hember; Nicholas C. Coops; Shunlin Liang

    2009-01-01

    The magnitude and distribution of incoming shortwave solar radiation (SW) has significant influence on the productive capacity of forest vegetation. Models that estimate forest productivity require accurate and spatially explicit radiation surfaces that resolve both long- and short-term temporal climatic patterns and that account for topographic variability of the land...

  19. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  20. Long-term changes in net radiation and its components above a pine forest and a grass surface in Germany

    International Nuclear Information System (INIS)

    Kessler, A.; Jaeger, L.

    1999-01-01

    Long-term measurements (1974–1993 and 1996, respectively) of the net radiation (Q), global radiation (G), reflected global radiation (R), long-wave atmospheric radiation (A) and thermal radiation (E) of a pine forest in Southern Germany (index p) and of a grass surface in Northern Germany (index g) are compared. The influence of changes in surface properties is discussed. There are, in the case of the pine stand, forest growth and forest management and in the case of the grass surface, the shifting of the site from a climatic garden to a horizontal roof. Both series of radiant fluxes are analyzed with respect to the influences of the weather (cloudiness, heat advection). To eliminate the different influence of the solar radiation of the two sites, it is necessary to normalize by means of the global radiation G, yielding the radiation efficiency Q/G, the albedo R/G=α and the normalized long-wave net radiation (A+E)/G. Furthermore, the long-term mean values and the long-term trend of yearly mean values are discussed and, moreover, a comparison is made of individual monthly values. Q p is twice as large as Q g . The reason for this is the higher values of G and A above the pine forest and half values of α p compared to α g . E p is only a little greater than E g . The time series of the radiation fluxes show the following trends: Q p declines continuously despite a slight increase of G p . This is mainly due to the long-wave radiation fluxes. The net radiation of the grass surface Q g shows noticeably lower values after the merging of the site. This phenomenon is also dominated by the long-wave radiation processes. Although the properties of both site surfaces alter, E p and E g remain relatively stable. A p and A g show a remarkable decrease however. The reason for this is to be found in a modification of the heat advection, showing a more pronounced impact on the more continentally exposed site (pine forest). Compared to α g , α p shows only a small

  1. Analysis and research on thermal infrared properties and adaptability of the camouflage net

    Science.gov (United States)

    Cui, Guangzhen; Hu, Jianghua; Jian, Chaochao; Yang, Juntang

    2016-10-01

    As camouflage equipment, camouflage net which covers or obstruct the enemy reconnaissance and attack, have the compatibility such as optics, infrared, radar wave band performance. To improve the adaptive between the camouflage net with background in infrared wavelengths, the heat shield and heat integration requirements on the surface of the camouflage net was analyzed. The condition that satisfied the heat shield was when the average thermal infrared transmittance was less than 25.38% on camouflage screen surface. Studies have shown that camouflage nets and the background field fused together when infrared radiation temperature difference control is within the scope of ± 4K . Experiment on temperature contrast was tested in situ background, thermal camouflage spots and camouflage net with sponge material, the infrared heat maps was recorded in the period of experiment through the thermal imager. Results showed that the thermal inertia of camouflage net was markedly lower than the background and the exposed signs were obvious. It was difficult to reach camouflage thermal infrared fusion requirements by relying on camouflage spot emissivity, but sponge which mix with polymer resin can reduce target significance in the context of mottled and realize the fusion effect.

  2. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  3. Surface radiation fluxes in transient climate simulations

    Science.gov (United States)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  4. The influence of scrotonin on survival of Candida guillermondii, irradiated by short-wave ultraviolet

    International Nuclear Information System (INIS)

    Strakhovskaya, M.G.; Frajkin, G.Ya.; Goncharenko, E.N.

    1982-01-01

    A study was made on the influence of serotonin on survival of Candida quilliermondu yeast irradiated by 254 nm short-wave ultraviolet. It was established that incubation with serotonin, leading to its penetration inside cells causes two opposite effects - protection from ultraviolet inactivation in preliminary incubation and intensification of cells death in postradiation incubation. Serotonin action is similar to the effects induced in C. guillermondii yeast by 334 nm long-wave ultraviolet light, that is serotonin possesses photomimetic effect. The data obtained are considered as conformaition of participation of serotonin photoinduced synthesis in manifestation of effects of long-wave ultraviolet light action on yeast

  5. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  6. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  7. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  8. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model

    OpenAIRE

    Angelen, J. H.; Lenaerts, J. T. M.; Lhermitte, S.; Fettweis, X.; Kuipers Munneke, P.; Broeke, M. R.; Meijgaard, E.; Smeets, C. J. P. P.

    2012-01-01

    We present a sensitivity study of the surface mass balance (SMB) of the Greenland Ice Sheet, as modeled using a regional atmospheric climate model, to various parameter settings in the albedo scheme. The snow albedo scheme uses grain size as a prognostic variable and further depends on cloud cover, solar zenith angle and black carbon concentration. For the control experiment the overestimation of absorbed shortwave radiation (+6%) at the K-transect (west Greenland) for the period 2004–2009 is...

  9. Evaluation of the shortwave cloud radiative effect over the ocean by use of ship and satellite observations

    Directory of Open Access Journals (Sweden)

    T. Hanschmann

    2012-12-01

    Full Text Available In this study the shortwave cloud radiative effect (SWCRE over ocean calculated by the ECHAM 5 climate model is evaluated for the cloud property input derived from ship based measurements and satellite based estimates and compared to ship based radiation measurements. The ship observations yield cloud fraction, liquid water path from a microwave radiometer, cloud bottom height as well as temperature and humidity profiles from radiosonde ascents. Level-2 products of the Satellite Application Facility on Climate Monitoring (CM~SAF from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI have been used to characterize clouds. Within a closure study six different experiments have been defined to find the optimal set of measurements to calculate downward shortwave radiation (DSR and the SWCRE from the model, and their results have been evaluated under seven different synoptic situations. Four of these experiments are defined to investigate the advantage of including the satellite-based cloud droplet effective radius as additional cloud property. The modeled SWCRE based on satellite retrieved cloud properties has a comparable accuracy to the modeled SWCRE based on ship data. For several cases, an improvement through introducing the satellite-based estimate of effective radius as additional information to the ship based data was found. Due to their different measuring characteristics, however, each dataset shows best results for different atmospheric conditions.

  10. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  11. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  12. Spectral composition of shortwave radiation reflected and deep penetrating into snow near the Barentsburg settlement (Svalbard

    Directory of Open Access Journals (Sweden)

    P. N. Svyashchennikov

    2015-01-01

    Full Text Available Data on spectral composition of shortwave radiation that is reflected from snow and penetrates deep into the snow cover obtained near the Barentsburg settlement (Svalbard are discussed in the paper. Measurements were made by the use of the spectral radiometer TriOS Ramses within the wavelength range of 280–950 nm. The results will allow more proper taking account of the anthropogenic pollution effects on the radiative properties of snow cover under conditions of industrial activity related to the coal extraction and burning in Barentsburg.

  13. Solar and Net Radiation for Estimating Potential Evaporation from Three Vegetation Canopies

    Science.gov (United States)

    D.M. Amatya; R.W. Skaggs; G.W. Cheschier; G.P. Fernandez

    2000-01-01

    Solar and net radiation data are frequent/y used in estimating potential evaporation (PE) from various vegetative surfaces needed for water balance and hydrologic modeling studies. Weather parameters such as air temperature, relative humidity, wind speed, solar radiation, and net radiation have been continuously monitored using automated sensors to estimate PE for...

  14. Thermal Properties and Energy Fluxes in Pre-monsoon Season of 2016 at the Ponkar Debris-Covered Glacier, Manang, Nepal Himalaya

    Science.gov (United States)

    Chand, M. B.; Kayastha, R. B.; Armstrong, R. L.

    2016-12-01

    Himalayan glaciers are characterized by the presence of extensive debris cover in ablation areas. It is essential to understand the thermal properties and assess the effect of debris in glacier ice melt rate in debris-covered glaciers. Meteorological conditions are recorded on the lower ablation zone of the debris-covered Ponkar Glacier, Bhimthang, Manang, Nepal during pre-monsoon season of 2016. Debris temperature at different depths is monitored for winter and pre-monsoon season to estimate the effective heat conduction. Similarly, melt under the debris is also measured for pre-monsoon season. The incoming and outgoing shortwave radiations are measured at 2 m above the surface and other variables including air temperature, humidity, wind speed, and precipitation are used to estimate surface energy balance. Energy flux is dominated by net shortwave radiation as the foremost source of melting, where contribution of net longwave radiation, sensible, latent, and conductive heat flux is low. The daily average temperature gradients of the debris layer from surface to 30 cm below for winter and pre-monsoon seasons are 0.04 oC cm-1 and 0.23 oC cm-1, respectively. Debris thermal conductivities are 0.30 W m-1 K-1 and 1.69 W m-1 K-1 for the winter and pre-monsoon season, respectively. The higher value of conductivity during pre-monsoon season is due to the higher air temperature and increased precipitation compared to the winter months. The daily mean measured ice melt under a debris layer of 11-20 cm ranges from 0.6 to 1.1 cm. Estimation of melt at a few points can be used to estimate the general melting pattern for the glacier surface, which can be improved by using the spatial distribution of debris thickness and surface temperature.

  15. Shortwave surface radiation network for observing small-scale cloud inhomogeneity fields

    Science.gov (United States)

    Lakshmi Madhavan, Bomidi; Kalisch, John; Macke, Andreas

    2016-03-01

    As part of the High Definition Clouds and Precipitation for advancing Climate Prediction Observational Prototype Experiment (HOPE), a high-density network of 99 silicon photodiode pyranometers was set up around Jülich (10 km × 12 km area) from April to July 2013 to capture the small-scale variability of cloud-induced radiation fields at the surface. In this paper, we provide the details of this unique setup of the pyranometer network, data processing, quality control, and uncertainty assessment under variable conditions. Some exemplary days with clear, broken cloudy, and overcast skies were explored to assess the spatiotemporal observations from the network along with other collocated radiation and sky imager measurements available during the HOPE period.

  16. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  17. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  18. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  19. Estimation of Net Radiation in Three Different Plant Functional Types in Korea

    International Nuclear Information System (INIS)

    Kwon, H.J.

    2009-01-01

    Net Radiation (R N ) is the major driving force for biophysical and biogeochemical processes in the terrestrial ecosystems, which is one of the most critical variables in both measurement and modeling. Despite its importance, there are only 10 weather stations conducting R N measurements among the 544 stations operated by Korea Meteorological Administration (KMA; KMA, 2008). The measurement of incoming shortwave radiation (R S ↓) is, however, conducted at 22 stations while that of sunshine duration is conducted at all the manned stations. In this context, the recent research for estimating R N using R S ↓ in Korean peninsula by Kwon (2009) is of great worth. The author used a linear regression and the radiation balance methods. We generally agree with the author that, in terms of simplicity and practicality, both methods show reliable applicability for estimating R N . We noted, however, that the author’s experimental method and analysis need some clarification and improvement, that are addressed in the following perspectives: (1) the use of daily integrated data for regression, (2) the use of measured albedo, (3) the use of linear coefficients for whole year data, (4) methodological improvement, (5) the use of sunshine duration, and (6) the error assessment. (author)

  20. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  1. Developments of sausages in a z-pinch with short-wave perturbation of a boundary

    International Nuclear Information System (INIS)

    Vikhrev, V.V.; Ivanov, V.V.; Rozanova, G.A.

    1989-01-01

    A numeric simulation of sausage evolution in z-pinch during short-wave excitation of the boundary of plasma column pinch is carried out. The simulation has shown that due to nonlinear development of sausages in a pinch plasma colomn the cavities filled with a magnetic field in a rarefied pinch plasma are formed. Simultaneously compact column of tense plasma whose temperature is much higher than the average temperature of pinch plasma column are formed on the pinch axis. In the region of inlet in the cavity plasma is radially directed due to ponderomotoric force 1/2 x jB up to velocities greatly increasing the thermal velocity of ions in a plasma column

  2. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.O.G. [University of Colorado, Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO (United States); National Oceanic and Atmospheric Administration/Earth Systems Research Laboratory, Physical Sciences Division (NOAA/ESRL/PSD), Boulder, CO (United States)

    2012-09-15

    Various measurements from the Surface Heat Flux of the Arctic Ocean (SHEBA) experiment have been combined to study structures and processes producing the onset and end of summer melt over Arctic sea ice. The analysis links the surface energy budget to free-troposphere synoptic variables, clouds, precipitation, and in-ice temperatures. The key results are (1) SHEBA melt-season transitions are associated with atmospheric synoptic events (2) onset of melt clearly occurs on May 28, while the end of melt is produced by a sequence of three atmospheric storm events over a 28-day period producing step-like reductions in the net surface energy flux. The last one occurs on August 22.; (3) melt onset is primarily due to large increases in the downwelling longwave radiation and modest decreases in the surface albedo; (4) decreases in the downwelling longwave radiation occur for all end-of-melt transition steps, while increases in surface albedo occur for the first two; (5) decreases in downwelling shortwave radiation contribute only to the first end-of-melt transition step; (6) springtime free-tropospheric warming preconditions the atmosphere-ice system for the subsequent melt onset; and (7) melt-season transitions also mark transitions in system responses to radiative energy flux changes because of invariant melt-season surface temperatures. The extensive SHEBA observations enable an understanding of the complex processes not available from other field program data. The analysis provides a basis for future testing of the generality of the results, and contributes to better physical understanding of multi-year analyses of melt-season trends from less extensive data sets. (orig.)

  3. SchNet - A deep learning architecture for molecules and materials

    Science.gov (United States)

    Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.; Müller, K.-R.

    2018-06-01

    Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.

  4. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  5. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-shaping

    Energy Technology Data Exchange (ETDEWEB)

    Sarac, Baran, E-mail: b.sarac@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Bera, Supriya [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Balakin, Sascha [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); ETH Zurich, Department of Materials, Metal physics und Technology, Vladimir-Prelog-Weg 4, HCI J 492, 8093 Zürich (Switzerland); Stoica, Mihai [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Politehnica University of Timisoara, P-ta Victoriei 2, RO-300006 Timisoara (Romania); Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstrasse 28, 01277, Dresden (Germany); Calin, Mariana, E-mail: m.calin@ifw-dresden.de [IFW Dresden, Institute for Complex Materials, Helmholtzstrasse 20, D-01069 Dresden (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences (ÖAW), Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstrasse 12, A-8700 Leoben (Austria)

    2017-04-01

    In order to establish a strong cell-material interaction, the surface topography of the implant material plays an important role. This contribution aims to analyze the formation kinetics of nickel and beryllium-free Ti- and Zr-based Bulk Metallic Glasses (BMGs) with potential biomedical applications. The surface patterning of the BMGs is achieved by thermoplastic net-shaping (TPN) into anisotropically etched cavities of silicon chips. The forming kinetics of the BMG alloys is assessed by thermal and mechanical measurements to determine the most suitable processing temperature and time, and load applied. Array of pyramidal micropatterns with a tip resolution down to 50 nm is achievable for the Zr-BMG, where the generated hierarchical features are crucial for surface functionalization, acting as topographic cues for cell attachment. The unique processability and intrinsic properties of this new class of amorphous alloys make them competitive with the conventional biomaterials. - Highlights: • Micro to nano-scale hierarchical surface patterns achieved by TPN of BMGs • Ni- and Be-free Zr-/Ti-BMGs with different GFA compared in terms of flow kinetics • Correlation between filling depths of Zr- and Ti-BMGs best described by formability • Multi-scale hierarchical patterning envisaged to facilitate BMG-cell interaction.

  6. Establishing BRDF calibration capabilities through shortwave infrared

    Science.gov (United States)

    Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo

    2017-09-01

    Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon*, a common material for laboratory and onorbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45° . Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

  7. Insecticide-treated bed nets reduce plasma antibody levels and limit the repertoire of antibodies to Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Askjaer, N; Maxwell, C; Chambo, W

    2001-01-01

    The use of insecticide-treated bed nets (ITN) has been documented to reduce malaria morbidity and mortality in areas with endemic malaria, but concerns have been raised that ITN usage could affect the acquisition of malaria immunity. Several lines of evidence have indicated that antibodies against...... variant surface antigens (VSA) are important in the development of naturally acquired immunity to Plasmodium falciparum malaria and may thus be good indicators of immune status. We have compared the levels of VSA antibodies in plasma from children who have used ITN for 4 years to levels in plasma from...

  8. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  9. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  10. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  11. Artisanal fishing net float loss and a proposal for a float design solution

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Chaves

    2016-03-01

    Full Text Available Abstract Plastic floats from fishing nets are commonly found washed up on beaches in southern Brazil. They are usually broken and show signs of having been repaired. Characteristics of floats and interviews with fishermen suggest two main causes of float loss. First, collisions between active gear, bottom trawl nets for shrimp, and passive gear, drift nets for fish, destroy nets and release fragments of them, including floats. Second, the difficulty with which floats are inserted on the float rope of the nets when they are used near the surface. Floats are inserted to replace damaged or lost floats, or they may be removed if it is desired that the nets be used in deeper waters. Floats may thus be poorly fixed to the cables and lost. Here a new float design that offers greater safety in use and for the replacement of floats is described and tested.

  12. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  13. Radiation balance of an alfalfa crop in Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Yemeni, M.N.; Grace, J.

    1995-01-01

    Short-wave reflectivity or albedo is an important component of net radiation which represents the major determinant of radiation balance of crop surface. This study was conducted on an irrigated alfalfa crop field at Al-Kharj agricultural area in Saudi Arabia, grown according to normal agricultural practices. Data on radiation balance and crop cover were collected over a number of days from March to October 1986, crop albedo varying from 0–4 in early morning to 0–20 at noon, the overall mean value of the crop albedo being estimated at 0–26. The relation between the individual components of radiation balance was studied, and a significant correlation between incident radiation and net radiation was found. Possible causes responsible for changes in crop albedo were discussed. (author)

  14. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  15. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  16. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  17. MPL-net at ARM Sites

    Science.gov (United States)

    Spinhirne, J. D.; Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA MPL-net project goal is consistent data products of the vertical distribution of clouds and aerosol from globally distributed lidar observation sites. The four ARM micro pulse lidars are a basis of the network to consist of over twelve sites. The science objective is ground truth for global satellite retrievals and accurate vertical distribution information in combination with surface radiation measurements for aerosol and cloud models. The project involves improvement in instruments and data processing and cooperation with ARM and other partners.

  18. Data error effects on net radiation and evapotranspiration estimation

    International Nuclear Information System (INIS)

    Llasat, M.C.; Snyder, R.L.

    1998-01-01

    The objective of this paper is to evaluate the potential error in estimating the net radiation and reference evapotranspiration resulting from errors in the measurement or estimation of weather parameters. A methodology for estimating the net radiation using hourly weather variables measured at a typical agrometeorological station (e.g., solar radiation, temperature and relative humidity) is presented. Then the error propagation analysis is made for net radiation and for reference evapotranspiration. Data from the Raimat weather station, which is located in the Catalonia region of Spain, are used to illustrate the error relationships. The results show that temperature, relative humidity and cloud cover errors have little effect on the net radiation or reference evapotranspiration. A 5°C error in estimating surface temperature leads to errors as big as 30 W m −2 at high temperature. A 4% solar radiation (R s ) error can cause a net radiation error as big as 26 W m −2 when R s ≈ 1000 W m −2 . However, the error is less when cloud cover is calculated as a function of the solar radiation. The absolute error in reference evapotranspiration (ET o ) equals the product of the net radiation error and the radiation term weighting factor [W = Δ(Δ1+γ)] in the ET o equation. Therefore, the ET o error varies between 65 and 85% of the R n error as air temperature increases from about 20° to 40°C. (author)

  19. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  20. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño

    Science.gov (United States)

    Ma, Jinfeng; Zhan, Haigang; Du, Yan

    2011-04-01

    Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.

  1. SIMULATION OF NET INFILTRATION FOR MODERN AND POTENTIAL FUTURE CLIMATES

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Heveal

    2000-06-16

    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M&O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M&O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide spatially

  2. SIMULATION OF NET INFILTRATION FOR MODERN AND POTENTIAL FUTURE CLIMATES

    International Nuclear Information System (INIS)

    J.A. Heveal

    2000-01-01

    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M and O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M and O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide

  3. Aerosol Direct Radiative Forcing and Forcing Efficiencies at Surface from the shortwave Irradiance Measurements in Abu Dhabi, UAE

    Science.gov (United States)

    Beegum S, N.; Ben Romdhane, H.; Ghedira, H.

    2013-12-01

    Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol

  4. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  5. Net radiative forcing and air quality responses to regional CO emission reductions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-05-01

    Full Text Available Carbon monoxide (CO emissions influence global and regional air quality and global climate change by affecting atmospheric oxidants and secondary species. We simulate the influence of halving anthropogenic CO emissions globally and individually from 10 regions on surface and tropospheric ozone, methane, and aerosol concentrations using a global chemical transport model (MOZART-4 for the year 2005. Net radiative forcing (RF is then estimated using the GFDL (Geophysical Fluid Dynamics Laboratory standalone radiative transfer model. We estimate that halving global CO emissions decreases global annual average concentrations of surface ozone by 0.45 ppbv, tropospheric methane by 73 ppbv, and global annual net RF by 36.1 mW m−2, nearly equal to the sum of changes from the 10 regional reductions. Global annual net RF per unit change in emissions and the 100 yr global warming potential (GWP100 are estimated as −0.124 mW m−2 (Tg CO−1 and 1.34, respectively, for the global CO reduction, and ranging from −0.115 to −0.131 mW m−2 (Tg CO−1 and 1.26 to 1.44 across 10 regions, with the greatest sensitivities for regions in the tropics. The net RF distributions show widespread cooling corresponding to the O3 and CH4 decreases, and localized positive and negative net RFs due to changes in aerosols. The strongest annual net RF impacts occur within the tropics (28° S–28° N followed by the northern midlatitudes (28° N–60° N, independent of reduction region, while the greatest changes in surface CO and ozone concentrations occur within the reduction region. Some regional reductions strongly influence the air quality in other regions, such as East Asia, which has an impact on US surface ozone that is 93% of that from North America. Changes in the transport of CO and downwind ozone production clearly exceed the direct export of ozone from each reduction region. The small variation in CO GWPs among world regions suggests that future international

  6. Multiobjective Shape Optimization for Deployment and Adjustment Properties of Cable-Net of Deployable Antenna

    Directory of Open Access Journals (Sweden)

    Guoqiang You

    2015-01-01

    Full Text Available Based on structural features of cable-net of deployable antenna, a multiobjective shape optimization method is proposed to help to engineer antenna’s cable-net structure that has better deployment and adjustment properties. In this method, the multiobjective optimum mathematical model is built with lower nodes’ locations of cable-net as variables, the average stress ratio of cable elements and strain energy as objectives, and surface precision and natural frequency of cable-net as constraints. Sequential quadratic programming method is used to solve this nonlinear mathematical model in conditions with different weighting coefficients, and the results show the validity and effectiveness of the proposed method and model.

  7. The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.; Or, Dani; Best, Martin J.; Johnson, Helen R.; Balsamo, Gianpaolo; Boone, Aaron; Cuntz, Matthais; Decharme, Bertrand; hide

    2016-01-01

    The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) illustrated the value of prescribing a priori performance targets in model intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave, surface air temperature and relative humidity. These results are explored here in greater detail and possible causes are investigated. We examine whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation and whether a lack of energy conservation in fluxtower data gives the empirical models an unfair advantage in the intercomparison. We demonstrate that energy conservation in the observational data is not responsible for these results. We also show that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, we present evidence suggesting that the nature of this partitioning problem is likely shared among all contributing LSMs. While we do not find a single candidate explanation forwhy land surface models perform poorly relative to empirical benchmarks in PLUMBER, we do exclude multiple possible explanations and provide guidance on where future research should focus.

  8. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  9. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011

    KAUST Repository

    Banks, Jamie R.

    2014-12-16

    © 2014. American Geophysical Union. All Rights Reserved. The direct clear-sky radiative effect (DRE) of atmospheric mineral dust is diagnosed over the Bordj Badji Mokhtar (BBM) supersite in the central Sahara during the Fennec campaign in June 2011. During this period, thick dust events were observed, with aerosol optical depth values peaking at 3.5. Satellite observations from Meteosat-9 are combined with ground-based radiative flux measurements to obtain estimates of DRE at the surface, top-of-atmosphere (TOA), and within the atmosphere. At TOA, there is a distinct daytime cycle in net DRE. Both shortwave (SW) and longwave (LW) DRE peak around noon and induce a warming of the Earth-atmosphere system. Toward dusk and dawn, the LW DRE reduces while the SW effect can switch sign triggering net radiative cooling. The net TOA DRE mean values range from -9 Wm-2 in the morning to heating of +59 Wm-2 near midday. At the surface, the SW dust impact is larger than at TOA: SW scattering and absorption by dust results in a mean surface radiative cooling of 145Wm-2. The corresponding mean surface heating caused by increased downward LW emission from the dust layer is a factor of 6 smaller. The dust impact on the magnitude and variability of the atmospheric radiative divergence is dominated by the SW cooling of the surface, modified by the smaller SW and LW effects at TOA. Consequently, dust has a mean daytime net radiative warming effect on the atmosphere of 153Wm-2.

  10. A curvature theory for discrete surfaces based on mesh parallelity

    KAUST Repository

    Bobenko, Alexander Ivanovich

    2009-12-18

    We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces\\' areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards. © 2009 Springer-Verlag.

  11. Analysis of solar radiation transfer: A method to estimate the porosity of a plastic shading net

    International Nuclear Information System (INIS)

    Abdel-Ghany, A.M.; Al-Helal, I.M.

    2011-01-01

    Plastic nets with opaque threads are frequently used for shading agricultural structures under high solar radiation conditions. A parameter that is often used to define a net is the net porosity (Π). Value of Π is usually estimated by one of three methods: image processing, direct beam transmittance, or solar radiation balance (hereafter radiation balance). Image processing is a rather slow process because it requires scanning the net sample at high resolution. The direct beam transmittance and radiation balance methods greatly overestimate Π because some of the solar radiation incident on the thread surfaces is forward scattered and add a considerable amount of radiation to that transmitted from the net pores directly. In this study, the radiation balance method was modified to estimate Π precisely. The amount of solar radiation scattered forward on the thread surfaces was estimated separately. Thus, the un-scattered solar radiation transmitted from the net pores directly, which describes the net porosity, Π could be estimated. This method, in addition to the image processing and the direct beam transmittance methods were used to estimate Π for different types of nets that are commonly used for shading structures in summer. Values of Π estimated by using the proposed method were in good accordance with those measured by the image processing method at a resolution of 4800 dpi. The direct beam transmittance and the radiation balance methods resulted in overestimation errors in the values of Π. This error strongly depends on the color of the net. The estimated errors were +14% for a green net and +37% for a white net when using the radiation balance method, and were +16% and +38%, respectively, when using the direct beam transmittance method. In the image processing method, a resolution of 2400 dpi is sufficient to estimate Π precisely and the higher resolutions showed no significant effect on the value of Π.

  12. Pro-Nets versus No-Nets: Differences in Urban Older Adults' Predilections for Internet Use

    Science.gov (United States)

    Cresci, M. Kay; Yarandi, Hossein N.; Morrell, Roger W.

    2010-01-01

    Enthusiasm for information technology (IT) is growing among older adults. Many older adults enjoy IT and the Internet (Pro-Nets), but others have no desire to use it (No-Nets). This study found that Pro-Nets and No-Nets were different on a number of variables that might predict IT use. No-Nets were older, had less education and income, were…

  13. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  14. Thermodynamics and Cloud Radiative Effect from the First Year of GoAmazon

    Science.gov (United States)

    Collow, Allie Marquardt; Miller, Mark; Trabachino, Lynne

    2015-01-01

    Deforestation is an ongoing concern for the Amazon Rainforest of Brazil and associated changes to the land surface have been hypothesized to alter the climate in the region. A comprehensive set of meteorological observations at the surface and within the lower troposphere above Manacapuru, Brazil and data from the Modern Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) are used to evaluate the seasonal cycle of cloudiness, thermodynamics, and the radiation budget. While ample moisture is present in the Amazon Rainforest year round, the northward progression of the Hadley circulation during the dry season contributes to a drying of the middle troposphere and inhibits the formation of deep convection. This results in a reduction in cloudiness and precipitation as well as an increase in the height of the lifting condensation level, which is shown to have a negative correlation to the fraction of low clouds. Frequent cloudiness prevents solar radiation from reaching the surface and clouds are often reflective with high values of shortwave cloud radiative effect at the surface and top of the atmosphere. Cloud radiative effect is reduced during the dry season however the dry season surface shortwave cloud radiative effect is still double what is observed during the wet season in other tropical locations. Within the column, the impact of clouds on the radiation budget is more prevalent in the longwave part of the spectrum, with a net warming in the wet season.

  15. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  16. Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα

    Directory of Open Access Journals (Sweden)

    Syed Muhammad Hassan Raza

    2018-05-01

    Full Text Available Net primary production (NPP is an important indicator of the supply of food and wood. We used a hierarchy model and real time field observations to estimate NPP using satellite imagery. Net radiation received by rice crop canopies was estimated as 27,428 Wm−2 (215.4 Wm−2 as averaged throughout the rice cultivation period (RCP, including 23,168 Wm−2 (118.3 Wm−2 as averaged as shortwave and 4260 Wm−2 (34.63 Wm−2 as averaged as longwave radiation. Soil, sensible and latent heat fluxes were approximated as 3324 Wm−2, 16,549 Wm−2, and 7554 Wm−2, respectively. Water stress on rice crops varied between 0.5838 and 0.1218 from the start until the end of the RCP. Biomass generation declined from 6.09–1.03 g/m2 in the tillering and ripening stages, respectively. We added a soil suitability constant (ħα into the Carnegie-Ames-Stanford Approach (CASA model to achieve a more precise estimate of yield. Classification results suggest that the total area under rice cultivation was 8861 km2. The spatial distribution of rice cultivation as per suitability zone was: 1674 km2 was not suitable (NS, 592 km2 was less suitable (LS, 2210 km2 was moderately suitable (MS and 4385 km2 was highly suitable (HS soil type with ħα ranges of 0.05–0.25, 0.4–0.6, 0.7–0.75 and 0.85–0.95 of the CASA based yield, respectively. We estimated net production as 1.63 million tons, as per 0.46 ton/ha, 1.2 ton/ha 1.9 ton/ha and 2.4 ton/ha from NS, LS, MS and HS soil types, respectively. The results obtained through this improved CASA model, by addition of the constant ħα, are likely to be useful for agronomists by providing more accurate estimates of NPP.

  17. Modeling of the radiative energy balance within a crop canopy for estimating evapotranspiration: Studies on a row planted soybean canopy

    International Nuclear Information System (INIS)

    Nakano, Y.; Hirota, O.

    1990-01-01

    The spatial distribution and density of the leaf area within a crop canopy were used to estimate the radiational environment and evapotranspiration. Morphological measurements were pursued on the soybean stands in the early stage of growth when the two-dimensional foliage distribution pattern existed. The rectangular tube model was used to calculate the light absorption by parallel row of crops both short-wave radiation (direct and diffuse solar radiation, and scattered radiation by plant elements) and long-wave radiation (emanated radiation from the sky, ground and leaves). The simulated profiles are in close agreement with the experimentally measured short-wave and net radiation data. The evapotranspiration of a row was calcuated using a simulated net radiation. The model calculation also agreed well with the evapotranspiration estimated by the Bowen ratio method

  18. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  19. Tropical Dynamics Process Studies and Numerical Methods

    Science.gov (United States)

    2011-06-16

    model. Model input and output arc defined in the Table below. Variable Description Ih Latent heat flux (W/ mA2 ) sh Sensible heat flux (W/ mA2 ) lwo...Net longwave flux (W/ mA2 ) swo Net shortwave flux (W/ mA2 ) 11 Wind speed (m/s) us Atmospheric friction velocity tb Bulk temperature (deg C) dtwo Warm

  20. ROOT.NET: Using ROOT from .NET languages like C# and F#

    Science.gov (United States)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  1. ROOT.NET: Using ROOT from .NET languages like C and F

    International Nuclear Information System (INIS)

    Watts, G

    2012-01-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  2. Multiyear Statistics of 2-D Shortwave Radiative Effects at Three ARM Sites

    Science.gov (United States)

    Varnai, Tamas

    2010-01-01

    This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.

  3. Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization

    Science.gov (United States)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-08-01

    Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by

  4. Variability of the contrail radiative forcing due to crystal shape

    Science.gov (United States)

    Markowicz, K. M.; Witek, M. L.

    2011-12-01

    The aim of this study is to examine the influence of particles' shape and particles' optical properties on the contrail radiative forcing. Contrail optical properties in the shortwave and longwave range are derived using a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods present good correspondence of the single scattering albedo and the asymmetry parameter in a transition range (3-7μm). We compare optical properties defined following simple 10 crystals habits randomly oriented: hexagonal plates, hexagonal columns with different aspect ratio, and spherical. There are substantial differences in single scattering properties between ten crystal models investigated here (e.g. hexagonal columns and plates with different aspect ratios, spherical particles). The single scattering albedo and the asymmetry parameter both vary up to 0.1 between various crystal shapes. Radiative forcing calculations were performed using a model which includes an interface between the state-of-the-art radiative transfer model Fu-Liou and databases containing optical properties of the atmosphere and surface reflectance and emissivity. This interface allows to determine radiative fluxes in the atmosphere and to estimate the contrail radiative forcing for clear- and all-sky (including natural clouds) conditions for various crystal shapes. The Fu-Liou code is fast and therefore it is suitable for computing radiative forcing on a global scale. At the same time it has sufficiently good accuracy for such global applications. A noticeable weakness of the Fu-Liou code is that it does not take into account the 3D radiative effects, e.g. cloud shading and horizontal. Radiative transfer model calculations were performed at horizontal resolution of 5x5 degree and time resolution of 20 min during day and 3 h during night. In order to calculate a geographic distribution of the global and annual mean contrail radiative forcing, the contrail cover must be

  5. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    situ observed forcing data that drive a Land Surface Model to simulate surface hydrologic variables of value to water and emergency managers. It clearly shows the limitations of coarse resolution observations and models especially during flash flood events. Snow water equivalent and soil moisture estimates for water and drought management purposes appear to have some value at the coarser resolutions of 1/4 degree; however, higher resolution information at the 1 to 5 km scale is desirable. In conclusion, this paper invites interested water-cycle researchers and decision-makers to join our WaterNet Community of Practice to exchange information and share the latest emerging technologies of value to decision-makers.

  6. INMARSAT-C SafetyNET

    Science.gov (United States)

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts INMARSAT-C SafetyNET Marine Forecast Offices greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA INMARSAT-C SafetyNET Inmarsat-C SafetyNET is an internationally adopted, automated satellite system for promulgating

  7. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    Science.gov (United States)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  8. Figure4

    Data.gov (United States)

    U.S. Environmental Protection Agency — NetCDF files of PBL height (m), Shortwave Radiation, 10 m wind speed from WRF and Ozone from CMAQ. The data is the standard deviation of these variables for each...

  9. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  10. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  11. 21 CFR 201.62 - Declaration of net quantity of contents.

    Science.gov (United States)

    2010-04-01

    ..., 250 milligrams each”: Provided, That: (1) In the case of a firmly established, general consumer usage... firmly established, general consumer usage and trade custom of employing different common fractions in... a declaration of net quantity blown, embossed, or molded on a glass or plastic surface is...

  12. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.

    2000-01-01

    between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  13. Estimation of seismic velocity changes at different depths associated with the 2014 Northern Nagano Prefecture earthquake, Japan ( M W 6.2) by joint interferometric analysis of NIED Hi-net and KiK-net records

    Science.gov (United States)

    Sawazaki, Kaoru; Saito, Tatsuhiko; Ueno, Tomotake; Shiomi, Katsuhiko

    2016-12-01

    To estimate the seismic velocity changes at different depths associated with a large earthquake, we apply passive image interferometry to two types of seismograms: KiK-net vertical pairs of earthquake records and Hi-net continuous borehole data. We compute the surface/borehole deconvolution waveform (DCW) of seismograms recorded by a KiK-net station and the autocorrelation function (ACF) of ambient noise recorded by a collocated Hi-net station, 26 km from the epicenter of the 2014 Northern Nagano Prefecture earthquake, Japan ( M W 6.2). Because the deeper KiK-net sensor and the Hi-net sensor are collocated at 150 m depth, and another KiK-net sensor is located at the surface directly above the borehole sensors, we can measure shallow (150 m depth) velocity changes separately. The sensitivity of the ACF to the velocity changes in the deeper zone is evaluated by a numerical wave propagation simulation. We detect relative velocity changes of -3.1 and -1.4% in the shallow and deep zones, respectively, within 1 week of the mainshock. The relative velocity changes recover to -1.9 and -1.1%, respectively, during the period between 1 week and 4 months after the mainshock. The observed relative velocity reductions can be attributed to dynamic strain changes due to the strong ground motion, rather than static strain changes due to coseismic deformation by the mainshock. The speed of velocity recovery may be faster in the shallow zone than in the deep zone because the recovery speed is controlled by initial damage in the medium. This recovery feature is analogous to the behavior of slow dynamics observed in rock experiments.

  14. Relations between radiation fluxes of a greenhouse in semi-arid conditions

    International Nuclear Information System (INIS)

    Al-Riahi, M.; Al-Karaghouli, A.; Hasson, A.M.; Al-Kayssi, A.W.

    1989-01-01

    Measurements of global radiation, reflected radiation and net total radiation inside and outside the greenhouse were conducted in Fudhiliyah Agrometeorological Research Station during the period from 1 January to 30 April, 1987. From these measurements, several relationships were established. Linear regressions of hourly values of global radiation inside the greenhouse on hourly global radiation outside the greenhouse were fitted for each month of the recording period. The degree of fit was generally good (r > 0.95). Net short-wave radiation inside the greenhouse showed strong dependence on the global inside radiation (r = 0.998), also the net total radiation and global radiation inside the greenhouse correlate very strongly. From the above-mentioned relationships, it was found that the global, net short-wave and net total radiation could be successfully predicted when only global outside radiation is available. Using the linear regression equations correlating the above radiation parameters, albedo and heating coefficient were derived. Albedo showed strong dependence on solar altitude angle and period of day (forenoon and afternoon). Heating coefficients were consistently positive and their values varied between 0.10 and 0.393. Monthly average values of mean hourly night-time net long-wave radiation inside the greenhouse were −31, −32, −38 and −42 W m −2 for the months of January, February, March and April, respectively

  15. Comparison and evaluation of gridded radiation products across northern Eurasia

    International Nuclear Information System (INIS)

    Troy, T J; Wood, E F

    2009-01-01

    Northern Eurasia is a region experiencing documented changes in temperature and large-scale streamflow, yet little attention has been focused on the large-scale energy budgets over the region. We compare station data and gridded radiation products from reanalysis and remote sensing to evaluate the radiative fluxes across northern Eurasia. On annual timescales, we find that the downward shortwave radiation products, with the exception of those of the NCEP/NCAR reanalysis, compare well with long-term station observations, but that this agreement breaks down with smaller timescales and for downward longwave and upward shortwave and longwave radiation. Of the six gridded products, the Surface Radiation Budget data set performs the best as compared to observations. Differences in radiative fluxes are on the order of 15-20 W m -2 on seasonal timescales, averaged across the region, with larger variations spatially and at smaller timescales. The resulting uncertainty in net radiation has implications for climate and hydrologic analyses that seek to understand changes in northern Eurasia climate and its hydrologic cycle.

  16. Net accumulation of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Kiilsholm, Sissi; Christensen, Jens Hesselbjerg; Dethloff, Klaus

    2003-01-01

    High-resolution (50 km) climate change simulations for an area covering the entire Arctic have been conducted with the regional climate model (RCM) HIRHAM. The experiments were forced at the lateral boundary by large-scale atmospheric conditions from transient climate change scenario simulations...... with HIRHAM for periods representing present-day (1961-1990) and the future (2071-2100) in the two scenarios. We find that due to a much better representation of the surface topography in the RCM, the geographical distribution of present-day accumulation rates simulated by the RCM represents a substantial...... improvement compared to the driving OAGCM. Estimates of the regional net balance are also better represented by the RCM. In the future climate the net balance for the Greenland Ice Sheet is reduced in all the simulation, but discrepancies between the amounts when based on ECHAM4/OPYC3 and HIRHAM are found...

  17. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  18. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  19. An Alternative Quality Control Technique for Mineral Chemistry Analysis of Portland Cement-Grade Limestone Using Shortwave Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nasrullah Zaini

    2016-11-01

    Full Text Available Shortwave infrared (SWIR spectroscopy can be applied directly to analyze the mineral chemistry of raw or geologic materials. It provides diagnostic spectral characteristics of the chemical composition of minerals, information that is invaluable for the identification and quality control of such materials. The present study aims to investigate the potential of SWIR spectroscopy as an alternative quality control technique for the mineral chemistry analysis of Portland cement-grade limestone. We used the spectroscopic (wavelength position and depth of absorption feature and geochemical characteristics of limestone samples to estimate the abundance and composition of carbonate and clay minerals on rock surfaces. The depth of the carbonate (CO3 and Al-OH absorption features are linearly correlated with the contents of CaO and Al2O3 in the samples, respectively, as determined by portable X-ray fluorescence (PXRF measurements. Variations in the wavelength position of CO3 and Al-OH absorption features are related to changes in the chemical compositions of the samples. The results showed that the dark gray and light gray limestone samples are better suited for manufacturing Portland cement clinker than the dolomitic limestone samples. This finding is based on the CaO, MgO, Al2O3, and SiO2 concentrations and compositions. The results indicate that SWIR spectroscopy is an appropriate approach for the chemical quality control of cement raw materials.

  20. Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors

    Directory of Open Access Journals (Sweden)

    Dugassa Sisay

    2012-11-01

    Full Text Available Abstract Background Little is known about how malaria mosquitoes locate oviposition sites in nature. Such knowledge is important to help devise monitoring and control measures that could be used to target gravid females. This study set out to develop a suite of tools that can be used to study the attraction of gravid Anopheles gambiae s.s. towards visual or olfactory cues associated with aquatic habitats. Methods Firstly, the study developed and assessed methods for using electrocuting nets to analyse the orientation of gravid females towards an aquatic habitat. Electric nets (1m high × 0.5m wide were powered by a 12V battery via a spark box. High and low energy settings were compared for mosquito electrocution and a collection device developed to retain electrocuted mosquitoes when falling to the ground. Secondly, a range of sticky materials and a detergent were tested to quantify if and where gravid females land to lay their eggs, by treating the edge of the ponds and the water surface. A randomized complete block design was used for all experiments with 200 mosquitoes released each day. Experiments were conducted in screened semi-field systems using insectary-reared An. gambiae s.s. Data were analysed by generalized estimating equations. Results An electric net operated at the highest spark box energy of a 400 volt direct current made the net spark, creating a crackling sound, a burst of light and a burning smell. This setting caught 64% less mosquitoes than a net powered by reduced voltage output that could neither be heard nor seen (odds ratio (OR 0.46; 95% confidence interval (CI 0.40-0.53, p Conclusion A square of four e-nets with yellow sticky boards as a collection device can be used for quantifying the numbers of mosquitoes approaching a small oviposition site. Shiny sticky surfaces attract gravid females possibly because they are visually mistaken as aquatic habitats. These materials might be developed further as gravid traps

  1. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  2. Short-Wave Near-Infrared Spectrometer for Alcohol Determination and Temperature Correction

    Directory of Open Access Journals (Sweden)

    Qingbo Fu

    2012-01-01

    Full Text Available A multichannel short-wave near-infrared (SW-NIR spectrometer module based on charge-coupled device (CCD detection was designed. The design relied on a tungsten lamp enhanced by light emitting diodes, a fixed grating monochromator and a linear CCD array. The main advantages were high optical resolution and an optimized signal-to-noise ratio (0.24 nm and 500, resp. in the whole wavelength range of 650 to 1100 nm. An application to alcohol determination using partial least squares calibration and the temperature correction was presented. It was found that the direct transfer method had significant systematic prediction errors due to temperature effect. Generalized least squares weighting (GLSW method was utilized for temperature correction. After recalibration, the RMSEP found for the 25°C model was 0.53% v/v and errors of the same order of magnitude were obtained at other temperatures (15, 35 and 40°C. And an 2 better than 0.99 was achieved for each validation set. The possibility and accuracy of using the miniature SW-NIR spectrometer and GLSW transfer calibration method for alcohol determination at different temperatures were proven. And the analysis procedure was simple and fast, allowing a strict control of alcohol content in the wine industry.

  3. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  4. Adjoint-Based Climate Model Tuning: Application to the Planet Simulator

    Science.gov (United States)

    Lyu, Guokun; Köhl, Armin; Matei, Ion; Stammer, Detlef

    2018-01-01

    The adjoint method is used to calibrate the medium complexity climate model "Planet Simulator" through parameter estimation. Identical twin experiments demonstrate that this method can retrieve default values of the control parameters when using a long assimilation window of the order of 2 months. Chaos synchronization through nudging, required to overcome limits in the temporal assimilation window in the adjoint method, is employed successfully to reach this assimilation window length. When assimilating ERA-Interim reanalysis data, the observations of air temperature and the radiative fluxes are the most important data for adjusting the control parameters. The global mean net longwave fluxes at the surface and at the top of the atmosphere are significantly improved by tuning two model parameters controlling the absorption of clouds and water vapor. The global mean net shortwave radiation at the surface is improved by optimizing three model parameters controlling cloud optical properties. The optimized parameters improve the free model (without nudging terms) simulation in a way similar to that in the assimilation experiments. Results suggest a promising way for tuning uncertain parameters in nonlinear coupled climate models.

  5. Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications

    Science.gov (United States)

    Nyeki, Stephan; Wacker, Stefan; Gröbner, Julian; Finsterle, Wolfgang; Wild, Martin

    2017-08-01

    A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006-2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m-2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.

  6. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  7. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  8. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  9. Net Rotation of the Lithosphere in Mantle Convection Models with Self-consistent Plate Generation

    Science.gov (United States)

    Gerault, M.; Coltice, N.

    2017-12-01

    Lateral variations in the viscosity structure of the lithosphere and the mantle give rise to a discordant motion between the two. In a deep mantle reference frame, this motion is called the net rotation of the lithosphere. Plate motion reconstructions, mantle flow computations, and inferences from seismic anisotropy all indicate some amount of net rotation using different mantle reference frames. While the direction of rotation is somewhat consistent across studies, the predicted amplitudes range from 0.1 deg/Myr to 0.3 deg/Myr at the present-day. How net rotation rates could have differed in the past is also a subject of debate and strong geodynamic arguments are missing from the discussion. This study provides the first net rotation calculations in 3-D spherical mantle convection models with self-consistent plate generation. We run the computations for billions of years of numerical integration. We look into how sensitive the net rotation is to major tectonic events, such as subduction initiation, continental breakup and plate reorganisations, and whether some governing principles from the models could guide plate motion reconstructions. The mantle convection problem is solved with the finite volume code StagYY using a visco-pseudo-plastic rheology. Mantle flow velocities are solely driven by buoyancy forces internal to the system, with free slip upper and lower boundary conditions. We investigate how the yield stress, the mantle viscosity structure and the properties of continents affect the net rotation over time. Models with large lateral viscosity variations from continents predict net rotations that are at least threefold faster than those without continents. Models where continents cover a third of the surface produce net rotation rates that vary from nearly zero to over 0.3 deg/Myr with rapide increase during continental breakup. The pole of rotation appears to migrate along no particular path. For all models, regardless of the yield stress and the

  10. Towards new information resources for public health--from WordNet to MedicalWordNet.

    Science.gov (United States)

    Fellbaum, Christiane; Hahn, Udo; Smith, Barry

    2006-06-01

    In the last two decades, WordNet has evolved as the most comprehensive computational lexicon of general English. In this article, we discuss its potential for supporting the creation of an entirely new kind of information resource for public health, viz. MedicalWordNet. This resource is not to be conceived merely as a lexical extension of the original WordNet to medical terminology; indeed, there is already a considerable degree of overlap between WordNet and the vocabulary of medicine. Instead, we propose a new type of repository, consisting of three large collections of (1) medically relevant word forms, structured along the lines of the existing Princeton WordNet; (2) medically validated propositions, referred to here as medical facts, which will constitute what we shall call MedicalFactNet; and (3) propositions reflecting laypersons' medical beliefs, which will constitute what we shall call the MedicalBeliefNet. We introduce a methodology for setting up the MedicalWordNet. We then turn to the discussion of research challenges that have to be met to build this new type of information resource. We build a database of sentences relevant to the medical domain. The sentences are generated from WordNet via its relations as well as from medical statements broken down into elementary propositions. Two subcorpora of sentences are distinguished, MedicalBeliefNet and MedicalFactNet. The former is rated for assent by laypersons; the latter for correctness by medical experts. The sentence corpora will be valuable for a variety of applications in information retrieval as well as in research in linguistics and psychology with respect to the study of expert and non-expert beliefs and their linguistic expressions. Our work has to meet several considerable challenges. These include accounting for the distinction between medical experts and laypersons, the social issues of expert-layperson communication in different media, the linguistic aspects of encoding medical knowledge, and

  11. Multiflavor string-net models

    Science.gov (United States)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  12. Rare, but challenging tumors: NET

    International Nuclear Information System (INIS)

    Ivanova, D.; Balev, B.

    2013-01-01

    Full text: Introduction: Gastroenteropancreatic Neuroendocrine Tumors (GEP - NET) are a heterogeneous group of tumors with different locations and many different clinical, histological, and imaging performance. In a part of them a secretion of various organic substances is present. The morbidity of GEP - NET in the EU is growing, and this leads to increase the attention to them. What you will learn: Imaging methods used for localization and staging of GEP - NET, characteristics of the study’s protocols; Classification of GEP - NET; Demonstration of typical and atypical imaging features of GEP - NET in patients registered at the NET Center at University Hospital ‘St. Marina’, Varna; Features of metastatic NET, The role of imaging in the evaluation of treatment response and follow-up of the patients. Discussion: The image semiotics analysis is based on 19 cases of GEP - NET registered NET Center at University Hospital ‘St. Marina’. The main imaging method is multidetector CT (MDCT), and magnetic resonance imaging (MRI ) has advantages in the evaluation of liver lesions and the local prevalence of anorectal tumors. In patients with advanced disease and liver lesions the assessment of skeletal involvement (MRI/ nuclear medical method) is mandatory. The majority of GEP - NET have not any specific imaging findings. Therefore it is extremely important proper planning and conducting of the study (MDCT and MR enterography; accurate assessment phase of scanning, positive and negative contrast). Conclusion: GEP - NET is a major diagnostic challenge due to the absence of typical imaging characteristics and often an overlap with those of the tumors of different origin can be observed. Therefore, a good knowledge of clinical and imaging changes occurring at different locations is needed. MDCT is the basis for the diagnosis, staging and follow-up of these neoplasms

  13. Penetrating Shortwave Radiation and Sea Ice Algae feedbacks using the Community Earth System Model

    Science.gov (United States)

    Arntsen, A. E.; Perovich, D. K.; Bailey, D. A.; Holland, M. M.

    2017-12-01

    Transmittance of solar radiation through the sea ice cover determines energy transfer to the upper ocean in the form of heat as well as photosynthetically active radiation (PAR) available for the growth of under ice phytoplankton and bottom ice algal communities. A thinning ice cover, increased pond coverage, and earlier melt onset has increased light availability to the upper ocean in contemporary Arctic ice-covered waters. To investigate seasonal and spatial variability of solar shortwave irradiance penetrating the ice cover in the Beaufort and Chukchi Sea regions, we use the fully coupled Community Earth System Model (CESM) in conjunction with a multistream radiative transfer model constrained and initiated by in situ observations. Results inform the importance of light attenuation by ice-based algal pigments within large scale global climate models. We demonstrate the presence of bio-optical feedbacks related to a younger ice cover and examine how these relationships are impacting the trajectory of under ice blooms and the energy budget of the ice-ocean system.

  14. Improved Correction of IR Loss in Diffuse Shortwave Measurements: An ARM Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Younkin, K; Long, CN

    2003-11-01

    Simple single black detector pyranometers, such as the Eppley Precision Spectral Pyranometer (PSP) used by the Atmospheric Radiation Measurement (ARM) Program, are known to lose energy via infrared (IR) emission to the sky. This is especially a problem when making clear-sky diffuse shortwave (SW) measurements, which are inherently of low magnitude and suffer the greatest IR loss. Dutton et al. (2001) proposed a technique using information from collocated pyrgeometers to help compensate for this IR loss. The technique uses an empirically derived relationship between the pyrgeometer detector data (and alternatively the detector data plus the difference between the pyrgeometer case and dome temperatures) and the nighttime pyranometer IR loss data. This relationship is then used to apply a correction to the diffuse SW data during daylight hours. We developed an ARM value-added product (VAP) called the SW DIFF CORR 1DUTT VAP to apply the Dutton et al. correction technique to ARM PSP diffuse SW measurements.

  15. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Translocalisation over the Net: Digitalisation, Information Technology and Local Cultures in Melanesia

    Science.gov (United States)

    Kupiainen, Jari

    2006-01-01

    In the Western Pacific, the People First Network project has since 2001 been building a growing network of rural email stations across the conflict-ridden Solomon Islands. These stations are based on robust technology and consist of solar panels, short-wave radios and compatible modems, laptop computers and printers to provide email communication…

  17.  NET and NETosis – new phenomenon in immunology

    Directory of Open Access Journals (Sweden)

    Natalia Matoszka

    2012-06-01

    Full Text Available  Neutrophils are one of the first cells of the immune system recruited to the site of infection, representing the host’s most effective and numerous front-line defenders. Recently, a novel antimicrobial mechanism of neutrophils has been described: upon activation, they release DNA and a subset of their granule content, forming neutrophil extracellular traps (NETs. These extracellular, chromatin structures, which contain histones and neutrophil granule proteins, can trap and kill a broad spectrum of microbes, including Gram-positive and Gram-negative bacteria, fungi, protozoa and viruses. Some of the pathogens, which are trapped and exposed to high local concentrations of antimicrobial compounds, employ strategies against NET binding, including surface modification and/or degradation of NET by DNases. It has been suggested that NETs are formed during active cell death, recently named NETosis. New data indicate that this novel mechanism of cell death requires interaction between three processes – reactive oxygen species generation, histone citrullination and autophagy – and significantly differs from previously known types of cell death, including apoptosis and necrosis. Moreover, the release of nuclear chromatin was also described for other types of cells – mast cells and eosinophils. Mast cells, like neutrophils, under certain conditions release nuclear chromatin and may undergo a similar active cell death program, while eosinophils release only mitochondrial chromatin, and its release does not lead to the death of these cells.

  18. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  19. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting

    Science.gov (United States)

    Tang, Hao; Hu, Fuxiang; Xu, Liuxiong; Dong, Shuchuang; Zhou, Cheng; Wang, Xuefang

    2017-10-01

    Knotless polyethylene (PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0° (parallel to flow) to 90° (perpendicular to flow) and current speeds from 40 cm s-1 to 130 cm s-1. It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50° and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.

  20. Use of bed nets and factors that influence bed net use among Jinuo Ethnic Minority in southern China.

    Science.gov (United States)

    Xu, Jian-wei; Liao, Yuan-mei; Liu, Hui; Nie, Ren-hua; Havumaki, Joshua

    2014-01-01

    Insecticide-treated nets (ITNs) are an integral part of vector control recommendations for malaria elimination in China. This study investigated the extent to which bed nets were used and which factors influence bed net use among Jinuo Ethnic Minority in China-Myanmar-Laos border areas. This study combined a quantitative household questionnaire survey and qualitative semi-structured in-depth interviews (SDI). Questionnaires were administered to 352 heads of households. SDIs were given to 20 key informants. The bed net to person ratio was 1∶2.1 (i.e., nearly one net for every two people), however only 169 (48.0%) households owned at least one net and 623 (47.2%) residents slept under bed nets the prior night. The percentages of residents who regularly slept under nets (RSUN) and slept under nets the prior night (SUNPN) were similar (48.0% vs. 47.2%, P>0.05), however the percentage correct use of nets (CUN) was significantly lower (34.5%, Pcash income per person (ACIP) was an independent factor that influenced bed net use (PHigh bed net availability does not necessarily mean higher coverage or bed net use. Household income, house type and knowledge of the ability of bed nets to prevent malaria are all independent factors that influence bed net use among Jinuo Ethnic Minority.

  1. Processes controlling the surface temperature signature of the Madden-Julian oscillation in the thermocline ridge of the Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, A.; Gnanaseelan, C. [Indian Institute of Tropical Meteorology, Pune (India); Vialard, Jerome; Lengaigne, M. [CNRS, UPMC, IRD, Case 100, Universite P. et M. Curie, Laboratoire d' Oceanographie Experimentation et Approches Numeriques, LOCEAN, Paris Cedex 05 (France); National Institute of Oceanography, Goa (India); McCreary, Julian P. [University of Hawaii, International Pacific Research Centre, Hawaii (United States); Praveen Kumar, B. [National Institute of Oceanography, Goa (India)

    2011-12-15

    During boreal winter, there is a prominent maximum of intraseasonal sea-surface temperature (SST) variability associated with the Madden-Julian Oscillation (MJO) along a Thermocline Ridge located in the southwestern Indian Ocean (5 S-10 S, 60 E-90 E; TRIO region). There is an ongoing debate about the relative importance of air-sea heat fluxes and oceanic processes in driving this intraseasonal SST variability. Furthermore, various studies have suggested that interannual variability of the oceanic structure in the TRIO region could modulate the amplitude of the MJO-driven SST response. In this study, we use observations and ocean general circulation model (OGCM) experiments to quantify these two effects over the 1997-2006 period. Observational analysis indicates that Ekman pumping does not contribute significantly (on average) to intraseasonal SST variability. It is, however, difficult to quantify the relative contribution of net heat fluxes and entrainment to SST intraseasonal variability from observations alone. We therefore use a suite of OGCM experiments to isolate the impacts of each process. During 1997-2006, wind stress contributed on average only about 20% of the intraseasonal SST variability (averaged over the TRIO region), while heat fluxes contributed about 70%, with forcing by shortwave radiation (75%) dominating the other flux components (25%). This estimate is consistent with an independent air-sea flux product, which indicates that shortwave radiation contributes 68% of intraseasonal heat flux variability. The time scale of the heat-flux perturbation, in addition to its amplitude, is also important in controlling the intraseasonal SST signature, with longer periods favouring a larger response. There are also strong year-to-year variations in the respective role of heat fluxes and wind stress. Of the five strong cooling events identified in both observations and the model (two in 1999 and one in 2000, 2001 and 2002), intraseasonal-wind stress dominates

  2. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  3. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  4. Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania.

    Science.gov (United States)

    Kweka, Eliningaya J; Lyaruu, Lucile J; Mahande, Aneth M

    2017-01-18

    Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.

  5. PODATKOVNE STORITVE ADO.NET IN ADO.NET ENTITY FRAMEWORK

    OpenAIRE

    Volavc, Franc

    2012-01-01

    V diplomskem delu smo predstavili Microsoftovi ogrodji ADO.NET in ADO.NET Entity Framework. Preučili in analizirali smo metode za dostop do podatkovnih virov, ki jih ponujata ogrodji, ter nato te ugotovitve preslikati v odločitveno drevo, katero bo programerjem in razvijalcem informacijskih sistemov pomagalo pri odločanju glede pristopa za dostop do podatkovnih virov. Ker bomo v diplomskem delu predstavili Microsoftovi ogrodji, bomo posledično omejeni zgolj na Microsoftovo tehnologijo, se pra...

  6. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  7. Estimating Trends and Variation of Net Biome Productivity in India for 1980-2012 Using a Land Surface Model

    Science.gov (United States)

    Gahlot, Shilpa; Shu, Shijie; Jain, Atul K.; Baidya Roy, Somnath

    2017-11-01

    In this paper we explore the trend in net biome productivity (NBP) over India for the period 1980-2012 and quantify the impact of different environmental factors, including atmospheric CO2 concentrations ([CO2]), land use and land cover change, climate, and nitrogen deposition on carbon fluxes using a land surface model, Integrated Science Assessment Model. Results show that terrestrial ecosystems of India have been a carbon sink for this period. Driven by a strong CO2 fertilization effect, magnitude of NBP increased from 27.17 TgC/yr in the 1980s to 34.39 TgC/yr in the 1990s but decreased to 23.70 TgC/yr in the 2000s due to change in climate. Adoption of forest conservation, management, and reforestation policies in the past decade has promoted carbon sequestration in the ecosystems, but this effect has been offset by loss of carbon from ecosystems due to rising temperatures and decrease in precipitation.

  8. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    Science.gov (United States)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  9. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  10. Current Status and Future Prospect of K-NET and KiK-net

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Nakamura, H.; Fujiwara, H.

    2014-12-01

    During 18 years since the deployment of K-NET following the Kobe earthquake, our attention has mainly focused on rapidity of the data collection and an unfailing and reliable observation. In this presentation, we review three generations of the instruments employed by K-NET and KiK-net from these two points of view.At beginning of the 2000's, we newly developed the second generation instruments (K-NET02, K-NET02A, KiK-net06) to replace the first generation instruments (K-NET95, SMAC-MDK) employed when the networks were constructed in the 1990's. These instruments have an automatic dial-out function. It takes typically 2-5 s to establish communication and a few seconds to send the pre-trigger data. After that, data is available typically within a 1.5 s delay. Not only waveform data but also strong motion indexes such as real-time intensity, PGA, PGV, PGD, and response spectra are continuously sent once a second.After the 2011 Tohoku earthquake, we have developed the third generation instruments (K-NET11, KiK-net11) and have replaced almost half of the all stations country wide. Main improvement of this instrument is more unfailing and reliable observation. Because we have often experienced very large ground motions (e.g. 45 records exceeding gravity), the maximum measureable range was expanded from 2000 gal to 4000 gal for the second generation instrument, and to 8000 gal for the third. For the third generation instrument, in case of power failure, observation (including transmission of data) works for seven days thanks to the backup battery, while for the second generation instruments it works only for one day. By adding an oblique component to the three-component accelerometers, we could automatically distinguish shaking data from noise such as electric pulses which may cause a false alarm in EEW. Implementation to guarantee the continuity of observation under severe conditions such as during the Tohoku earthquake is very important, as well as a highly efficient

  11. Simulation of Net Infiltration for Present-Day and Potential Future Climates

    Energy Technology Data Exchange (ETDEWEB)

    D. Levitt

    2004-11-09

    The purpose of this model report is to document the infiltration model used to estimate upper-bound, mean, and lower-bound spatially-distributed average annual net infiltration rates for present-day and potential future climates at Yucca Mountain, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone. The estimates of net infiltration are primarily used for defining the upper boundary condition for the site-scale three-dimensional unsaturated zone (UZ) model. The UZ flow model is one of several process models abstracted by the total system performance assessment (TSPA) model used to evaluate performance of the repository at Yucca Mountain, Nevada. The net-infiltration model is important for assessing repository-system performance because output from this model provides the upper boundary condition for the UZ flow model used to generate flow fields; water percolating downward from the UZ will be the principal means by which radionuclides are potentially released to the saturated zone (SZ). The SZ is the principal pathway to the biosphere where the reasonably maximally exposed individual (RMEI) is exposed to radionuclides.

  12. Simulation of Net Infiltration for Present-Day and Potential Future Climates

    International Nuclear Information System (INIS)

    Levitt, D.

    2004-01-01

    The purpose of this model report is to document the infiltration model used to estimate upper-bound, mean, and lower-bound spatially-distributed average annual net infiltration rates for present-day and potential future climates at Yucca Mountain, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone. The estimates of net infiltration are primarily used for defining the upper boundary condition for the site-scale three-dimensional unsaturated zone (UZ) model. The UZ flow model is one of several process models abstracted by the total system performance assessment (TSPA) model used to evaluate performance of the repository at Yucca Mountain, Nevada. The net-infiltration model is important for assessing repository-system performance because output from this model provides the upper boundary condition for the UZ flow model used to generate flow fields; water percolating downward from the UZ will be the principal means by which radionuclides are potentially released to the saturated zone (SZ). The SZ is the principal pathway to the biosphere where the reasonably maximally exposed individual (RMEI) is exposed to radionuclides

  13. Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Gerrets Rene PM

    2008-06-01

    Full Text Available Abstract Background Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. Methods Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. Findings Net use was 62.7% overall, 87.2% amongst infants (0 to1 year, 81.8% amongst young children (>1 to 5 years, 54.5% amongst older children (6 to 15 years and 59.6% amongst adults (>15 years. 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%. Half of nets used by young children (50.0% and over a third of those used by older children (37.2% were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use and was the primary means for protecting adults (60.2% use. All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. Conclusion All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily

  14. Initial CAD investigations for NET

    International Nuclear Information System (INIS)

    Katz, F.; Leinemann, K.; Ludwig, A.; Marek, U.; Olbrich, W.; Schlechtendahl, E.G.

    1985-11-01

    This report summarizes the work done under contract no. 164/84-7/FU-D-/NET between the Commission of the European Communities and KfK during the period from June 1, 1984, through May 31, 1985. The following topics are covered in this report: Initial modelling of NET version NET2A, CAD system extension for remote handling studies, analysis of the CAD information structure, work related to the transfer of CAD information between KfK and the NET team. (orig.) [de

  15. A new divertor plates design concept for the double null NET configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Renda, V.; Federici, G.; Papa, L.

    1986-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper. (author)

  16. A new divertor plates design concept for the double null net configuration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Iop, O.; Renda, V.; Federici, G.; Papa, L.

    1987-01-01

    A new divertor plate design concept for the Double Null NET configuration (NET-DN) is presented in this paper. This concept applies to the plasma configuration of NET and takes advantage by the maintenance scheme of the internal components adopted in NET. According to this maintenance approach, which uses the top loading of the internal segments, 48 inboard removable segments, 3 for each of the 16 reactor sectors, act as simple protective panels, gathering together in only one piece the plates of both the upper and lower divertor regions and the intermediate portion of the inboard first wall. They are cooled by water flowing inside a set of hairpin-shaped, stainless steel tubes, arranged in poloidal direction inside a copper heat sink, and fed by supply lines at the top of the reactor. The surface facing the plasma is covered by a tungsten alloy layer. In such a way, the maintenance of the two divertor regions and of the inboard first wall can be easily achieved by removing the inboard panels from the top of the reactor. The layout of the cooling system and preliminary thermohydraulics and thermomechanical calculations, carried out for assessing the feasibility of the proposed system for the NET reference configuration, are reported in this paper

  17. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David

    2014-01-01

    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  18. The Net Advance of Physics

    Science.gov (United States)

    THE NET ADVANCE OF PHYSICS Review Articles and Tutorials in an Encyclopædic Format Established 1995 [Link to MIT] Computer support for The Net Advance of Physics is furnished by The Massachusetts Newest Additions SPECIAL FEATURES: Net Advance RETRO: Nineteenth Century Physics History of Science

  19. Evaluation of reproductive function of female rats exposed to radiofrequency fields (27. 12 MHz) near a shortwave diathermy device

    Energy Technology Data Exchange (ETDEWEB)

    Brown-Woodman, P.D.; Hadley, J.A.; Richardson, L.; Bright, D.; Porter, D.

    1989-04-01

    In recent years, there has been increased concern regarding effects of operator exposure to the electromagnetic (EM) field associated with shortwave diathermy devices. The present study was designed to investigate the effects, on rats, of repeated exposure to such an EM field. Following repeated exposure for 5 wk, a reduction in fertility occurred as indicated by a reduced number of matings in exposed rats compared to sham-irradiated rats and a reduction in the number of rats that conceived after mating. The data suggest that female operators could experience reduced fertility, if they remained close to the console for prolonged periods. This has particular significant for the physiotherapy profession.

  20. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  1. Net alkalinity and net acidity 1: Theoretical considerations

    International Nuclear Information System (INIS)

    Kirby, Carl S.; Cravotta, Charles A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO 2 , and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined 'CO 2 -acidity' is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO 2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass-action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mgL -1 as CaCO 3 (based on pH and analytical concentrations of dissolved Fe II , Fe III , Mn, and Al in mgL -1 ):acidity calculated =50{1000(10 -pH )+[2(Fe II )+3(Fe III )]/56+2(Mn) /55+3(Al)/27}underestimates contributions from HSO 4 - and H + , but overestimates the acidity due to Fe 3+ and Al 3+ . However, these errors tend to approximately cancel each other. It is demonstrated that 'net alkalinity' is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the

  2. Net alkalinity and net acidity 1: Theoretical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  3. Proof Nets for Lambek Calculus

    NARCIS (Netherlands)

    Roorda, Dirk

    1992-01-01

    The proof nets of linear logic are adapted to the non-commutative Lambek calculus. A different criterion for soundness of proof nets is given, which gives rise to new algorithms for proof search. The order sensitiveness of the Lambek calculus is reflected by the planarity condition on proof nets;

  4. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  5. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  6. [Determination of fat, protein and DM in raw milk by portable short-wave near infrared spectrometer].

    Science.gov (United States)

    Li, Xiao-yun; Wang, Jia-hua; Huang, Ya-wei; Han, Dong-hai

    2011-03-01

    Near infrared diffuse reflectance spectroscopy calibrations of fat, protein and DM in raw milk were studied with partial least-squares (PLS) regression using portable short-wave near infrared spectrometer. The results indicated that good calibrations of fat and DM were found, the correlation coefficients were all 0.98, the RMSEC were 0.187 and 0.217, RMSEP were 0.187 and 0.296, the RPDs were 5.02 and 3.20 respectively; the calibration of protein needed to be improved but can be used for practice, the correlation coefficient was 0.95, RMSEC was 0.105, RMSEP was 0.120, and RPD was 2.60. Furthermore, the measuring accuracy was improved by analyzing the correction relation of fat and DM in raw milk This study will probably provide a new on-site method for nondestructive and rapid measurement of milk.

  7. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  8. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  9. History-dependent stochastic Petri nets

    NARCIS (Netherlands)

    Schonenberg, H.; Sidorova, N.; Aalst, van der W.M.P.; Hee, van K.M.; Pnueli, A.; Virbitskaite, I.; Voronkov, A.

    2010-01-01

    Stochastic Petri Nets are a useful and well-known tool for performance analysis. However, an implicit assumption in the different types of Stochastic Petri Nets is the Markov property. It is assumed that a choice in the Petri net only depends on the current state and not on earlier choices. For many

  10. Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters

    Science.gov (United States)

    Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong

    2017-01-01

    The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).

  11. Pro ASP.NET 4 in VB 2010

    CERN Document Server

    MacDonald, Matthew; Freeman, Adam; Szpuszta, Mario; Agarwal, Vidya Vrat

    2010-01-01

    ASP.NET 4 is the latest version of Microsoft's revolutionary ASP.NET technology. It is the principal standard for creating dynamic web pages on the Windows platform. Pro ASP.NET 4 in VB 2010 raises the bar for high-quality, practical advice on learning and deploying Microsoft's dynamic web solution. This new edition is updated with everything you need to come to grips with the latest version of ASP.NET, including coverage of ASP.NET MVC, ASP.NET AJAX 4, ASP.NET Dynamic Data, and Silverlight 3. Seasoned .NET professionals Matthew MacDonald and Mario Szpuszta explain how you can get the most fro

  12. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  13. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  14. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  15. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  16. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  17. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  18. ASP.NET web API build RESTful web applications and services on the .NET framework

    CERN Document Server

    Kanjilal, Joydip

    2013-01-01

    This book is a step-by-step, practical tutorial with a simple approach to help you build RESTful web applications and services on the .NET framework quickly and efficiently.This book is for ASP.NET web developers who want to explore REST-based services with C# 5. This book contains many real-world code examples with explanations whenever necessary. Some experience with C# and ASP.NET 4 is expected.

  19. Translating Colored Control Flow Nets into Readable Java via Annotated Java Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; Tjell, Simon

    2007-01-01

    In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system, and the ......In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system......, and the interface between the system and the environment. Our translation maps CCFNs into Anno- tated Java Workflow Nets (AJWNs) as an intermediate step, and these AJWNs are finally mapped to Java. CCFN is intended to enforce the modeler to describe the system in an imperative manner which makes the subsequent...... translation to Java easier to define. The translation to Java preserves data dependencies and control-flow aspects of the source CCFN. This paper contributes to the model-driven software development paradigm, by showing how to model a system, environment, and their interface, as a CCFN and presenting a fully...

  20. Prediction of disease causing non-synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Directory of Open Access Journals (Sweden)

    Morten Bo Johansen

    Full Text Available We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP.

  1. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  2. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  3. Greenhouse Observations of the Stratosphere and Troposphere (GHOST): a novel shortwave infrared spectrometer developed for the Global Hawk unmanned aerial vehicle

    Science.gov (United States)

    Humpage, Neil; Boesch, Hartmut; Palmer, Paul; Parr-Burman, Phil; Vick, Andy; Bezawada, Naidu; Black, Martin; Born, Andy; Pearson, David; Strachan, Jonathan; Wells, Martyn

    2014-05-01

    The tropospheric distribution of greenhouse gases (GHGs) is dependent on surface flux variations, atmospheric chemistry and transport processes over a wide range of spatial and temporal scales. Errors in assumed atmospheric transport can adversely affect surface flux estimates inferred from surface, aircraft or satellite observations of greenhouse gas concentrations using inverse models. We present a novel, compact shortwave infrared spectrometer (GHOST) for installation on the NASA Global Hawk unmanned aerial vehicle to provide tropospheric column observations of CO2, CO, CH4, H2O and HDO over the ocean to address the need for large-scale, simultaneous, finely resolved measurements of key GHGs. These species cover a range of lifetimes and source processes, and measurements of their tropospheric columns will reflect the vertically integrated signal of their vertical and horizontal transport within the troposphere. The primary science objectives of GHOST are to: 1) provide observations which can be used to test atmospheric transport models; 2) validate satellite observations of GHG column observations over oceans, thus filling a critical gap in current validation capabilities; and 3) complement in-situ tropopause transition layer tracer observations from other instrumentation on board the Global Hawk to provide a link between upper and lower troposphere concentration measurements. The GHOST spectrometer system comprises a target acquisition module (TAM), a fibre slicer and feed system, and a multiple order spectrograph. The TAM design utilises a gimbal behind an optical dome, which is programmed to direct solar radiation reflected by the ocean surface into a fibre optic bundle. The fibre slicer and feed system then splits the light into the four spectral bands using order sorting filters. The fibres corresponding to each band are arranged with a small sideways offset to correctly centre each spectrum on the detector array. The spectrograph design is unique in that a

  4. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  5. Diffuse solar radiation and associated meteorological parameters in India

    Directory of Open Access Journals (Sweden)

    A. B. Bhattacharya

    Full Text Available Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.

  6. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  7. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    Science.gov (United States)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  8. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  9. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies

    International Nuclear Information System (INIS)

    Blackmer, T.M.; Schepers, J.S.; Varvel, G.E.; Walter-Shea, E.A.

    1996-01-01

    Techniques that measure the N status of corn (Zea mays L.) can aid in management decisions that have economic and environmental implications. This study was conducted to identify reflected electromagnetic wavelengths most sensitive to detecting N deficiencies in a corn canopy with the possibility for use as a management tool. Reflected shortwave radiation was measured from an irrigated corn N response trial with four hybrids and five N rates at 0, 40, 80, 120, and 160 kg N ha -1 in 1992 and 0, 50, 100, 150, and 200 kg N ha -1 in 1993. A portable spectroradiometer was used to measure reflected radiation (400-1100 nm in 1992, 350-1050 nm in 1993) from corn canopies at approximately the R5 growth stage. Regression analyses revealed that reflected radiation near 550 and 710 nm was superior to reflected radiation near 450 or 650 nm for detecting N deficiencies. The ratio of light reflectance between 550 and 600 nm to light reflectance between 800 and 900 nm also provided sensitive detection of N stress. In 1993, an inexpensive photometric cell, which has peak sensitivity to light centered at 550 nm, was also used to measure reflected radiation from a corn canopy. Photometric cell readings correlated with relative grain yield (P < 0.001, r 2 = 0.74), but more research will be required to develop procedures to account for varying daylight conditions. These results provide information needed for the development of variable-rate fertilizer N application technology. (author)

  10. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  11. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  12. Compositional Variations in Sands of the Bagnold Dunes, Gale Crater, Mars, from Visible-Shortwave Infrared Spectroscopy and Comparison to Ground-Truth from the Curiosity Rover

    OpenAIRE

    Lapotre, M. G. A.; Ehlmann, B. L.; Minson, S. E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.

    2017-01-01

    During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single-scattering albedo spectra and a Markov chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity ...

  13. Mapping of the seasonal dynamic properties of building walls in actual periodic conditions and effects produced by solar radiation incident on the outer and inner surfaces of the wall

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic thermal behaviour of building walls subjected to actual periodic loadings. • Dynamic parameters of wall in terms of energy and of heat flux are defined. • Different solar absorption coefficients and orientations of wall are considered. • On the internal surface is present or absent a shortwave radiant field. • Seasonal thermal characteristics for different plant operating regime are provided. - Abstract: In this work, the dynamic characteristics of the external walls of air-conditioned buildings subject to the joint action of periodic non-sinusoidal external and internal loadings are determined. The dynamic parameters used are the energy decrement factor, which is evaluated by means of the fluctuating heat flux in a semi-period exiting and entering the wall, the decrement factor of the maximum peak and minimum peak of the heat flux in a period and the relative time lags. The fluctuating heat flux in the wall in steady periodic regime conditions is determined with an analytical model obtained by resolving the equivalent electrical circuit. The preceding parameters are used for a study of the influence of solar radiation on the dynamic characteristics of the walls in summer and winter air-conditioning. Solar radiation is considered as operating on the external surface and on the internal surface due to the presence in the indoor environments of a shortwave radiant field. The absorbed solar heat flux by the external surface varies, modifying the solar absorption coefficient and wall orientation. Indoors, we considered a continuous operating regime of the plant and a regime with nocturnal attenuation. The results obtained, relating to 1152 different boundary conditions, were used for the construction of maps of dynamic characteristics, different on variation of the plant functioning regime and of the shortwave radiant load on the internal surface. The maps show the dependence of the decrement factors and of the time lags on variation of

  14. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  15. Incorporation of a Cuban radiological station to the global net of isotopes in precipitations

    International Nuclear Information System (INIS)

    Dominguez L, O.; Ramos V, E.O.; Prendes A, M.; Alonso A, D.; Caveda R, C.A.

    2006-01-01

    From March, 2002 the West station of the National Net of Environmental Radiological Surveillance located in the Center of Protection and Hygiene of the Radiations, belongs to the Global Net of Isotopes in Precipitations. The obtained isotopic information of the analysis of the samples of monthly monitored precipitations (oxygen-18, deuterium and tritium) its are stored in a database, which is available through Internet. For the acceptance in the Global Net, it was necessary the incorporation to the monitoring of the station the meteorological surface variables. Also it was developed a software for the calculation of the tension of the water steam starting from the values of humidity and temperature. The obtained results in 2002 and published recently, its are inside the range of values reported for these isotopes in the Caribbean area. (Author)

  16. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  17. The K-NET - A year after

    International Nuclear Information System (INIS)

    Kinoshita, S.; Ohtani, K.; Katayama, T.

    2001-01-01

    We started to release the K-NET strong-motion data from June 1996 and about one year passed. In this article, we report the development of K-NET and some applications using the K-NET information released on the Internet. (author)

  18. Net erosion measurements on plasma facing components of Tore Supra

    International Nuclear Information System (INIS)

    Tsitrone, E.; Chappuis, P.; Corre, Y.; Gauthier, E.; Grosman, A.; Pascal, J.Y.

    2001-01-01

    Erosion of the plasma facing components is a crucial point of investigation in long pulse operation of future fusion devices. Therefore erosion measurements have been undertaken in the Tore Supra tokamak. After each experimental campaign, different plasma facing components have been monitored in situ by non-destructive means, in order to evaluate their net erosion following a long plasma exposure. This paper presents the results obtained over three experimental campaigns on the Tore Supra ergodic divertor B 4 C-coated neutralisers and CFC Langmuir probes. The erosion on the Langmuir probes after one year of plasma exposure can reach 100 μm, leading to an effective erosion coefficient of around 5x10 -3 to 10 -2 , in reasonable agreement with values found on other tokamaks. The erosion of the ergodic divertor neutraliser plates is lower (10 μm). This is coherent with the attenuated particle flux due to a lower incidence angle, and might also be due to some surface temperature effect, since the neutralisers are actively cooled while the Langmuir probes are not. Moreover, the profile along the neutraliser shows net erosion in zones wetted by the plasma and net redeposition in shadowed zones

  19. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  20. NET SALARY ADJUSTMENT

    CERN Multimedia

    Finance Division

    2001-01-01

    On 15 June 2001 the Council approved the correction of the discrepancy identified in the net salary adjustment implemented on 1st January 2001 by retroactively increasing the scale of basic salaries to achieve the 2.8% average net salary adjustment approved in December 2000. We should like to inform you that the corresponding adjustment will be made to your July salary. Full details of the retroactive adjustments will consequently be shown on your pay slip.

  1. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  2. Downwelling radiation at the sea surface in the central Mediterranean: one year of shortwave and longwave irradiance measurements on the Lampedusa buoy

    Science.gov (United States)

    di Sarra, Alcide; Bommarito, Carlo; Anello, Fabrizio; Di Iorio, Tatiana; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano

    2017-04-01

    An oceanographic buoy has been developed and deployed in August 2015 about 3.3 miles South West of the island of Lampedusa, at 35.49°N, 12.47°E, in the central Mediterranean Sea. The buoy was developed within the Italian RITMARE flagship project, and contributes to the Italian fixed-point oceanographic observation network. The buoy is an elastic beacon type and is intended to study air-sea interactions, propagation of radiation underwater, and oceanographic properties. The buoy measurements complement the atmospheric observations carried out at the long-term Station for Climate Observations on the island of Lampedusa (www.lampedusa.enea.it; 35.52°N, 12.63°E), which is located about 15 km E-NE of the buoy. Underwater instruments and part of the atmospheric sensors are presently being installed on the buoy. Measurements of downwelling shortwave, SW, and longwave, LW, irradiance, have been made since September 2015 with a Kipp and Zonen CMP21 pyranometer and a Kipp and Zonen CGR4 pyrgeometer, respectively. The radiometers are mounted on a small platform at about 7 m above sea level, on an arm protruding southward of the buoy. High time resolution data, at 1 Hz, have been acquired since December 2015, together with the sensors' attitude. Data from the period December 2015-December 2016 are analyzed and compared with measurements made on land at the Station for Climate Observations at 50 m above mean sea level. This study aims at deriving high quality determinations of the downwelling radiation over sea in the central Mediterranean. The following aspects will be discussed: - representativeness of time averaging of irradiance measurements over moving platforms; - comparison of downwelling irradiance measurements made over land and over ocean, and identification of possible correction strategies to infer irradiances over the ocean from close by measurements made over land; - influence of dome cleaning on the quality of measurements; - envisaging possible corrections

  3. 21 CFR 501.105 - Declaration of net quantity of contents when exempt.

    Science.gov (United States)

    2010-04-01

    ... established general consumer usage and trade custom of declaring the contents of a liquid by weight, or a... usage and trade custom of employing different common fractions in the net quantity declaration of a... molded on a glass or plastic surface is permissible when all label information is so formed on the...

  4. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  5. An Algorithm for the Retrieval of 30-m Snow-Free Albedo from Landsat Surface Reflectance and MODIS BRDF

    Science.gov (United States)

    Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.

    2011-01-01

    We present a new methodology to generate 30-m resolution land surface albedo using Landsat surface reflectance and anisotropy information from concurrent MODIS 500-m observations. Albedo information at fine spatial resolution is particularly useful for quantifying climate impacts associated with land use change and ecosystem disturbance. The derived white-sky and black-sky spectral albedos maybe used to estimate actual spectral albedos by taking into account the proportion of direct and diffuse solar radiation arriving at the ground. A further spectral-to-broadband conversion based on extensive radiative transfer simulations is applied to produce the broadband albedos at visible, near infrared, and shortwave regimes. The accuracy of this approach has been evaluated using 270 Landsat scenes covering six field stations supported by the SURFace RADiation Budget Network (SURFRAD) and Atmospheric Radiation Measurement Southern Great Plains (ARM/SGP) network. Comparison with field measurements shows that Landsat 30-m snow-free shortwave albedos from all seasons generally achieve an absolute accuracy of +/-0.02 - 0.05 for these validation sites during available clear days in 2003-2005,with a root mean square error less than 0.03 and a bias less than 0.02. This level of accuracy has been regarded as sufficient for driving global and regional climate models. The Landsat-based retrievals have also been compared to the operational 16-day MODIS albedo produced every 8-days from MODIS on Terra and Aqua (MCD43A). The Landsat albedo provides more detailed landscape texture, and achieves better agreement (correlation and dynamic range) with in-situ data at the validation stations, particularly when the stations include a heterogeneous mix of surface covers.

  6. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    OpenAIRE

    G. E. Kim; M.-A. Pradal; A. Gnanadesikan

    2015-01-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attribut...

  7. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  8. Evaluating Surface Radiation Fluxes Observed From Satellites in the Southeastern Pacific Ocean

    Science.gov (United States)

    Pinker, R. T.; Zhang, B.; Weller, R. A.; Chen, W.

    2018-03-01

    This study is focused on evaluation of current satellite and reanalysis estimates of surface radiative fluxes in a climatically important region. It uses unique observations from the STRATUS Ocean Reference Station buoy in a region of persistent marine stratus clouds 1,500 km off northern Chile during 2000-2012. The study shows that current satellite estimates are in better agreement with buoy observations than model outputs at a daily time scale and that satellite data depict well the observed annual cycle in both shortwave and longwave surface radiative fluxes. Also, buoy and satellite estimates do not show any significant trend over the period of overlap or any interannual variability. This verifies the stability and reliability of the satellite data and should make them useful to examine El Niño-Southern Oscillation variability influences on surface radiative fluxes at the STRATUS site for longer periods for which satellite record is available.

  9. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  10. The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Marika M. [National Center for Atmospheric Research, Boulder, CO (United States); Serreze, Mark C.; Stroeve, Julienne [University of Colorado, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States)

    2010-02-15

    Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions. (orig.)

  11. Bed net ownership in Kenya: the impact of 3.4 million free bed nets

    Directory of Open Access Journals (Sweden)

    Vulule John

    2010-06-01

    Full Text Available Abstract Background In July and September 2006, 3.4 million long-lasting insecticide-treated bed nets (LLINs were distributed free in a campaign targeting children 0-59 months old (CU5s in the 46 districts with malaria in Kenya. A survey was conducted one month after the distribution to evaluate who received campaign LLINs, who owned insecticide-treated bed nets and other bed nets received through other channels, and how these nets were being used. The feasibility of a distribution strategy aimed at a high-risk target group to meet bed net ownership and usage targets is evaluated. Methods A stratified, two-stage cluster survey sampled districts and enumeration areas with probability proportional to size. Handheld computers (PDAs with attached global positioning systems (GPS were used to develop the sampling frame, guide interviewers back to chosen households, and collect survey data. Results In targeted areas, 67.5% (95% CI: 64.6, 70.3% of all households with CU5s received campaign LLINs. Including previously owned nets, 74.4% (95% CI: 71.8, 77.0% of all households with CU5s had an ITN. Over half of CU5s (51.7%, 95% CI: 48.8, 54.7% slept under an ITN during the previous evening. Nearly forty percent (39.1% of all households received a campaign net, elevating overall household ownership of ITNs to 50.7% (95% CI: 48.4, 52.9%. Conclusions The campaign was successful in reaching the target population, families with CU5s, the risk group most vulnerable to malaria. Targeted distribution strategies will help Kenya approach indicator targets, but will need to be combined with other strategies to achieve desired population coverage levels.

  12. The role of clouds in the surface energy balance over the Amazon forest

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    Deforestation in the Amazon region will initially impact the energy balance at the land surface through changes in land cover and surface hydrology. However, continuation of this human activity will eventually lead to atmospheric feedbacks, including changes in cloudiness which may play an important role in the final equilibrium of solar and terrestrial radiation at the surface. In this study, the different components of surface radiation over an undisturbed forest in the Amazon region are computed using data from the Amazon region micrometerological experiment (ARME). Several measures of cloudiness are defined: two estimated from the terrestrial radiation measurements, and one from the solar radiation measurements. The sensitivity of the surface fluxes of solar and terrestrial radiation to natural variability in cloudiness is investigated to infer the potential role of the cloudiness feedback in the surface energy balance. The results of this analysis indicate that a 1% decrease in cloudiness would increase net solar radiation by ca. 1.6 W/m 2 . However, the overall magnitude of this feedback, due to total deforestation of the Amazon forest, is likely to be of the same order as the magnitude of the decrease in net solar radiation due to the observed increase in surface albedo following deforestation. Hence, the total change in net solar radiation is likely to have a negligible magnitude. In contrast to this conclusion, we find that terrestrial radiation is likely to be more strongly affected; reduced cloudiness will decrease net terrestrial radiation; a 1% decrease in cloudiness induces a reduction in net terrestrial radiation of ca. 0.7 W/m 2 ; this process augments the similar effects of the predicted warming and drying in the boundary layer. Due to the cloudiness feedback, the most significant effect of large-scale deforestation on the surface energy balance is likely to be in the modification of the terrestrial radiation field rather than the classical albedo

  13. 47 CFR 65.450 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  14. Epistemic Uncertainty in Evalustion of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    B. Faybishenko

    2006-09-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  15. Epistemic Uncertainty in Evaluation of Evapotranspiration and Net Infiltration Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    Uncertainty is typically defined as a potential deficiency in the modeling of a physical process, owing to a lack of knowledge. Uncertainty can be categorized as aleatoric (inherent uncertainty caused by the intrinsic randomness of the system) or epistemic (uncertainty caused by using various model simplifications and their parameters). One of the main reasons for model simplifications is a limited amount of meteorological data. This paper is devoted to the epistemic uncertainty quantification involved in two components of the hydrologic balance-evapotranspiration and net infiltration for interglacial (present day), and future monsoon, glacial transition, and glacial climates at Yucca Mountain, using the data from analogue meteorological stations. In particular, the author analyzes semi-empirical models used for evaluating (1) reference-surface potential evapotranspiration, including temperature-based models (Hargreaves-Samani, Thornthwaite, Hamon, Jensen-Haise, and Turc) and radiation-based models (Priestly-Taylor and Penman), and (2) surface-dependent potential evapotranspiration (Penman-Monteith and Shuttleworth-Wallace models). Evapotranspiration predictions are then used as inputs for the evaluation of net infiltration using the semi-empirical models of Budyko, Fu, Milly, Turc-Pike, and Zhang. Results show that net infiltration ranges are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The propagation of uncertainties through model predictions for different climates is characterized using statistical measures. Predicted evapotranspiration ranges are reasonably corroborated against the data from Class A pan evaporometers (taking into account evaporation-pan adjustment coefficients), and ranges of net infiltration predictions are corroborated against the geochemical and temperature-based estimates of groundwater recharge and percolation rates through the unsaturated

  16. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Science.gov (United States)

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  17. BrainNet Viewer: a network visualization tool for human brain connectomics.

    Directory of Open Access Journals (Sweden)

    Mingrui Xia

    Full Text Available The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI, we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/.

  18. Business Profile of Boat Lift Net and Stationary Lift Net Fishing Gear in Morodemak Waters Central Java

    Science.gov (United States)

    Hapsari, Trisnani D.; Jayanto, Bogi B.; Fitri, Aristi D. P.; Triarso, I.

    2018-02-01

    Lift net is one of the fishing gears that is used widely in the Morodemak coastal fishing port (PPP) for catching pelagic fish. The yield of fish captured by these fishing gear has high economic value, such as fish belt (Trichiurus sp), squids (Loligo sp) and anchovies (Stelophorus sp). The aims of this research were to determine the technical aspects of boat lift net and stationary lift net fishing gear in Morodemak Waters Demak Regency; to find out the financial aspect of those fishing gears and to analyze the financial feasibility by counting PP, NPV, IRR, and B/C ratio criteria. This research used case study method with descriptive analysis. The sampling method was purposive sampling with 22 fishermen as respondents. The result of the research showed that the average of boat lift net acceptance was Rp 388,580,000. The financial analysis of fisheries boat lift net with the result of NPV Rp 836,149,272, PP 2.44 years, IRR value 54%, and B/C ratio 1.73. The average of stationary lift net acceptance was Rp 27,750,000. The financial analysis lift net with the result of NPV Rp 37,937,601; PP 1.96 years, IRR value 86%, and B/C ratio 1.32. This research had a positive NPV value, B/C ratio >1, and IRR > discount rate (12 %). This study concluded that the fishery business of boat lift net and stationary lift net in Morodemak coastal fishing port (PPP) was worth running.

  19. Net neutrality and audiovisual services

    OpenAIRE

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication networks: the control over the distribution of audiovisual services constitutes a vital part of the problem. In this contribution, the phenomenon of net neutrality is described first. Next, the European a...

  20. A simple formula for the net long-wave radiation flux in the southern Baltic Sea

    Directory of Open Access Journals (Sweden)

    Tomasz Zapadka

    2001-09-01

    Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.

  1. 47 CFR 65.500 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  2. Aplicació Microsoft .Net : Hotel Spa

    OpenAIRE

    Marquès Palmer, Jordi

    2010-01-01

    Desenvolupament d'una aplicació amb Microsoft .NET, WCF, WPF, Linq2SQL, d'un Hotel Spa. Desarrollo de una aplicación con Microsoft .NET, WCF, WPF, Linq2SQL, de un Hotel Spa. Application development using Microsoft .NET, WCF, WPF, Linq2SQL, for a Spa Hotel.

  3. Rainfall and net infiltration probabilities for future climate conditions at Yucca Mountain

    International Nuclear Information System (INIS)

    Long, A.; Childs, S.W.

    1993-01-01

    Performance assessment of repository integrity is a task rendered difficult because it requires predicting the future. This challenge has occupied many scientists who realize that the best assessments are required to maximize the probability of successful repository sitting and design. As part of a performance assessment effort directed by the EPRI, the authors have used probabilistic methods to assess the magnitude and timing of net infiltration at Yucca Mountain. A mathematical model for net infiltration previously published incorporated a probabilistic treatment of climate, surface hydrologic processes and a mathematical model of the infiltration process. In this paper, we present the details of the climatological analysis. The precipitation model is event-based, simulating characteristics of modern rainfall near Yucca Mountain, then extending the model to most likely values for different degrees of pluvial climates. Next the precipitation event model is fed into a process-based infiltration model that considers spatial variability in parameters relevant to net infiltration of Yucca Mountain. The model predicts that average annual net infiltration at Yucca Mountain will range from a mean of about 1 mm under present climatic conditions to a mean of at least 2.4 mm under full glacial (pluvial) conditions. Considerable variations about these means are expected to occur from year-to-year

  4. Automatic Prompt System in the Process of Mapping plWordNet on Princeton WordNet

    Directory of Open Access Journals (Sweden)

    Paweł Kędzia

    2015-06-01

    Full Text Available Automatic Prompt System in the Process of Mapping plWordNet on Princeton WordNet The paper offers a critical evaluation of the power and usefulness of an automatic prompt system based on the extended Relaxation Labelling algorithm in the process of (manual mapping plWordNet on Princeton WordNet. To this end the results of manual mapping – that is inter-lingual relations between plWN and PWN synsets – are juxtaposed with the automatic prompts that were generated for the source language synsets to be mapped. We check the number and type of inter-lingual relations introduced on the basis of automatic prompts and the distance of the respective prompt synsets from the actual target language synsets.

  5. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  6. Traditional nets interfere with the uptake of long-lasting insecticidal nets in the Peruvian Amazon: the relevance of net preference for achieving high coverage and use.

    Directory of Open Access Journals (Sweden)

    Koen Peeters Grietens

    Full Text Available While coverage of long-lasting insecticide-treated nets (LLIN has steadily increased, a growing number of studies report gaps between net ownership and use. We conducted a mixed-methods social science study assessing the importance of net preference and use after Olyset® LLINs were distributed through a mass campaign in rural communities surrounding Iquitos, the capital city of the Amazonian region of Peru.The study was conducted in the catchment area of the Paujil and Cahuide Health Centres (San Juan district between July 2007 and November 2008. During a first qualitative phase, participant observation and in-depth interviews collected information on key determinants for net preference and use. In a second quantitative phase, a survey among recently confirmed malaria patients evaluated the acceptability and use of both LLINs and traditional nets, and a case control study assessed the association between net preference/use and housing structure (open vs. closed houses.A total of 10 communities were selected for the anthropological fieldwork and 228 households participated in the quantitative studies. In the study area, bed nets are considered part of the housing structure and are therefore required to fulfil specific architectural and social functions, such as providing privacy and shelter, which the newly distributed Olyset® LLINs ultimately did not. The LLINs' failure to meet these criteria could mainly be attributed to their large mesh size, transparency and perceived ineffectiveness to protect against mosquitoes and other insects, resulting in 63.3% of households not using any of the distributed LLINs. Notably, LLIN usage was significantly lower in houses with no interior or exterior walls (35.2% than in those with walls (73.8% (OR = 5.2, 95CI [2.2; 12.3], p<0.001.Net preference can interfere with optimal LLIN use. In order to improve the number of effective days of LLIN protection per dollar spent, appropriate quantitative and qualitative

  7. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  8. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    and the possibility of using predicates to specify state changes. In this paper a formal semantics for Delta is defined and analysed using Petri nets. Petri nets was chosen because the ideas behind Petri nets and Delta concide on several points. A number of proposals for changes in Delta, which resulted from...

  9. Coloured Petri Nets and the Invariant Method

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1981-01-01

    processes to be described by a common subnet, without losing the ability to distinguish between them. Our generalization, called coloured Petri nets, is heavily influenced by predicate transition-nets introduced by H.J. Genrich and K. Lautenbach. Moreover our paper shows how the invariant-method, introduced...... for Petri nets by K. Lautenbach, can be generalized to coloured Petri nets....

  10. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  11. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  12. Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance

    Science.gov (United States)

    Roberts, Yolanda, L.; Pilewskie, P.; Kindel, B. C.; Feldman, D. R.; Collins, W. D.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system that has been designed to monitor the Earth's climate with unprecedented absolute radiometric accuracy and SI traceability. Climate Observation System Simulation Experiments (OSSEs) have been generated to simulate CLARREO hyperspectral shortwave imager measurements to help define the measurement characteristics needed for CLARREO to achieve its objectives. To evaluate how well the OSSE-simulated reflectance spectra reproduce the Earth s climate variability at the beginning of the 21st century, we compared the variability of the OSSE reflectance spectra to that of the reflectance spectra measured by the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Principal component analysis (PCA) is a multivariate decomposition technique used to represent and study the variability of hyperspectral radiation measurements. Using PCA, between 99.7%and 99.9%of the total variance the OSSE and SCIAMACHY data sets can be explained by subspaces defined by six principal components (PCs). To quantify how much information is shared between the simulated and observed data sets, we spectrally decomposed the intersection of the two data set subspaces. The results from four cases in 2004 showed that the two data sets share eight (January and October) and seven (April and July) dimensions, which correspond to about 99.9% of the total SCIAMACHY variance for each month. The spectral nature of these shared spaces, understood by examining the transformed eigenvectors calculated from the subspace intersections, exhibit similar physical characteristics to the original PCs calculated from each data set, such as water vapor absorption, vegetation reflectance, and cloud reflectance.

  13. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  14. Modelling of current loads on aquaculture net cages

    Science.gov (United States)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  15. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  16. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  17. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott

    2011-01-01

    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a

  18. Net-infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    considered medium, and rates of more than 50 mm/yr are considered high. A comparison of estimated net-infiltration rates (determined from tritium data) to predicted rates (determined from GIS methods) at 12 sites in Sand Hollow and at Anderson Junction indicates an average difference of about 50 percent. Two of the predicted values were lower, five were higher, and five were within the estimated range. While such uncertainty is relatively small compared with the three order-of-magnitude range in predicted net-infiltration rates, the net-infiltration map is best suited for evaluating relative spatial distribution rather than for precise quantification of recharge to the Navajo aquifer at specific locations. An important potential use for this map is land-use zoning for protecting high net-infiltration parts of the aquifer from potential surface contamination.

  19. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  20. KONVERGENSI DALAM PROGRAM NET CITIZEN JOURNALISM

    Directory of Open Access Journals (Sweden)

    Rhafidilla Vebrynda

    2017-06-01

    Full Text Available Di dalam artikel ini, peneliti ingin melihat perkembangan teknologi di Indonesia sebagai sebuah peluang untuk menjalankan sebuah program berita berbasis video kiriman masyarakat. Perkembangan teknologi tersebut adalah teknologi penyiaran, teknologi sosial media dan teknologi dalam proses produksi sebuah video. Di Indonesia, jumlah televisi semakin banyak. Setiap stasiun televisi harus bersaing untuk dapat bertahan hidup. Net TV merupakan sebuah stasiun televisi baru di Indonesia yang harus memiliki berbagai program unggulan baru agar dapat bersaing dengan televisi lainnya yang sudah ada. Net TV menggunakan berbagai platform media untuk menjalankan program Net Citizen Journalism (Net CJ. Penggunaan berbagai platform media dikenal dengan istilah multiplatform dan secara teoritis dikenal dengan istilah konvergensi. Konvergensi yaitu saat meleburnya domain-domain dalam berbagai media komunikasi. Artikel ini menggunakan metode studi kasus untuk melihat bagaimana konvergensi terjadi dalam proses pengelolaan program Net CJ. Teknik pengumpulan data adalah dengan wawancara mendalam, observasi dan studi dokumen. Wawancara mendalam dilakukan dari tiga sudut pandang yaitu dari pengelola program, pengguna/audience dan pengamat media. Penelitian ini menemukan bahwa dengan menggunakan berbagai platform media yang fungsinya berbeda, memiliki satu tujuan yang sama yaitu untuk menjalankan program Net CJ. Adapun berbagai platform dalam proses produksi program yaitu tayangan TV konvensional, streaming TV, website, aplikasi Net CJ, facebook, twitter, instagram dan path. Konvergensi media dijalankan dalam dua proses, yaitu proses produksi dan proses promosi program berita.

  1. Enlisting Clustering and Graph-Traversal Methods for Cutting Pattern and Net Topology Design in Pneumatic Hybrids

    DEFF Research Database (Denmark)

    Ayres, Phil; Vestartas, Petras; Ramsgaard Thomsen, Mette

    2017-01-01

    Cutting patterns for architectural membranes are generally characterised by rational approaches to surface discretisation and minimisation of geometric deviation between discrete elements that comprise the membrane. In this paper, we present an alternative approach for cutting pattern generation...... to the cutting pattern generation method and the net topology generation method used to produce a constraint net for a given membrane. We test our computational design approach through an iterative cycle of digital and physical prototyping before realising an air-inflated cable restrained pneumatic structural...

  2. Annual and latitudinal variations of surface fluxes and meteorological variables at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2016-04-01

    This study analyzes and discusses seasonal and latitudinal variations of surface fluxes (turbulent, radiative, and soil ground heat) and other ancillary surface/snow/permafrost data based on in-situ measurements made at two long-term research observatories near the coast of the Arctic Ocean located in Canada and Russia. The hourly averaged data collected at Eureka (Canadian territory of Nunavut) and Tiksi (East Siberia) located at two quite different latitudes (80.0 N and 71.6 N respectively) are analyzed in details to describe the seasons in the Arctic. Although Eureka and Tiksi are located at the different continents and at the different latitudes, the annual course of the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil temperatures display the familiar strong seasonal trend with maximum of measured temperatures in mid-summer and minimum during winter. According to our data, variation in incoming short-wave solar radiation led the seasonal pattern of the air and soil temperatures, and the turbulent fluxes. During the dark Polar nights, air and ground temperatures are strongly controlled by long-wave radiation associated generally with cloud cover. Due to the fact that in average the higher latitudes receive less solar radiation than lower latitudes, a length of the convective atmospheric boundary layer (warm season) is shorter and middle-summer amplitude of the turbulent fluxes is generally less in Eureka than in Tiksi. However, since solar elevation angle at local midnight in the middle of Arctic summer is higher for Eureka as compared to Tiksi, stable stratification and upward turbulent flux for carbon dioxide is generally did not observed at Eureka site during summer seasons. It was found a high correlation between the turbulent fluxes of sensible and latent heat, carbon dioxide and the net solar radiation. A comprehensive evaluation of energy balance closure problem is performed based on the multi-year data sets

  3. Which family members use the best nets? An analysis of the condition of mosquito nets and their distribution within households in Tanzania

    Directory of Open Access Journals (Sweden)

    Lines Jo

    2010-07-01

    Full Text Available Abstract Background Household ownership of insecticide-treated mosquito nets (ITNs is increasing, and coverage targets have been revised to address universal coverage with ITNs. However, many households do not have enough nets to cover everyone, and the nets available vary in physical condition and insecticide treatment status. Since 2004, the Government of Tanzania has been implementing the Tanzania National Voucher Scheme (TNVS, which distributes vouchers for ITNs through antenatal clinics to target pregnant women and their infants. This analysis aimed to determine the following: (1 coverage patterns of bed nets within households according to physical condition and treatment status; (2 who might be at risk if mosquitoes were diverted from occupants of untreated nets to those not using nets? (3 the degree to which those at highest risk of malaria use the most protective nets. Methods Data from the 2006 TNVS household survey were analysed to assess within-household distribution of net use. The associations between net characteristics and net user were also evaluated. Multivariate analysis was applied to the relationship between the number of holes per net and user characteristics while adjusting for confounders. Results In households with a net:person ratio better than 1:4 (one net for every four household members, more than 80% of the people in such households reported using a net the previous night. ITNs were most likely to be used by infants, young children (1-4 y, and women of childbearing age; they were least likely to be used by older women (≥50 y, older children (5-14 y, and adult men. The nets used by infants and women of childbearing age were in better-than-average physical condition; the nets used by older women and older children were in worse-than-average condition; while young children and adult men used nets in intermediate (average condition. When adjusted for confounders, the nets used by young and older children had more holes

  4. The Definitive Guide to NetBeans Platform

    CERN Document Server

    Bock, Heiko

    2009-01-01

    The Definitive Guide to NetBeans(t) Platform is a thorough and definitive introduction to the NetBeans Platform, covering all its major APIs in detail, with relevant code examples used throughout. The original German book on which this title is based was well received. The NetBeans Platform Community has put together this English translation, which author Heiko Bock updated to cover the latest NetBeans Platform 6.5 APIs. With an introduction by known NetBeans Platform experts Jaroslav Tulach, Tim Boudreau, and Geertjan Wielenga, this is the most up-to-date book on this topic at the moment. All

  5. Visual Studio 2010 and NET 4 Six-in-One

    CERN Document Server

    Novak, Istvan; Granicz, Adam

    2010-01-01

    Complete coverage of all key .NET 4 and Visual Studio 2010 languages and technologies. .NET 4 is Microsoft's latest version of their core programming platform, and Visual Studio 2010 is the toolset that helps write .NET 4 applications. This comprehensive resource offers one-stop shopping for all you need to know to get productive with .NET 4. Experienced author and .NET guru Mitchel Sellers reviews all the important new features of .NET 4, including .NET charting and ASP.NET charting, ASP.NET dynamic data and jQuery, and the addition of F# as a supported package language. The expansive coverag

  6. Which nets are being used: factors associated with mosquito net use in Amhara, Oromia and Southern Nations, Nationalities and Peoples' Regions of Ethiopia.

    Science.gov (United States)

    Ngondi, Jeremiah M; Graves, Patricia M; Gebre, Teshome; Mosher, Aryc W; Shargie, Estifanos B; Emerson, Paul M; Richards, Frank O

    2011-04-17

    There has been recent large scale-up of malaria control interventions in Ethiopia where transmission is unstable. While household ownership of long-lasting insecticidal nets (LLIN) has increased greatly, there are concerns about inadequate net use. This study aimed to investigate factors associated with net use at two time points, before and after mass distribution of nets. Two cross sectional surveys were carried out in 2006 and 2007 in Amhara, Oromia and SNNP regions. The latter was a sub-sample of the national Malaria Indicator Survey (MIS 3R). Each survey wave used multi-stage cluster random sampling with 25 households per cluster (224 clusters with 5,730 households in Baseline 2006 and 245 clusters with 5,910 households in MIS 3R 2007). Net ownership was assessed by visual inspection while net utilization was reported as use of the net the previous night. This net level analysis was restricted to households owning at least one net of any type. Logistic regression models of association between net use and explanatory variables including net type, age, condition, cost and other household characteristics were undertaken using generalized linear latent and mixed models (GLLAMM). A total of 3,784 nets in 2,430 households were included in the baseline 2006 analysis while the MIS 3R 2007 analysis comprised 5,413 nets in 3,328 households. The proportion of nets used the previous night decreased from 85.1% to 56.0% between baseline 2006 and MIS 3R 2007, respectively. Factors independently associated with increased proportion of nets used were: LLIN net type (at baseline 2006); indoor residual spraying (at MIS 3R 2007); and increasing wealth index at both surveys. At both baseline 2006 and MIS 3R 2007, reduced proportion of nets used was independently associated with increasing net age, increasing damage of nets, increasing household net density, and increasing altitude (>2,000 m). This study identified modifiable factors affecting use of nets that were consistent

  7. Which nets are being used: factors associated with mosquito net use in Amhara, Oromia and Southern Nations, Nationalities and Peoples' Regions of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mosher Aryc W

    2011-04-01

    Full Text Available Abstract Background There has been recent large scale-up of malaria control interventions in Ethiopia where transmission is unstable. While household ownership of long-lasting insecticidal nets (LLIN has increased greatly, there are concerns about inadequate net use. This study aimed to investigate factors associated with net use at two time points, before and after mass distribution of nets. Methods Two cross sectional surveys were carried out in 2006 and 2007 in Amhara, Oromia and SNNP regions. The latter was a sub-sample of the national Malaria Indicator Survey (MIS 3R. Each survey wave used multi-stage cluster random sampling with 25 households per cluster (224 clusters with 5,730 households in Baseline 2006 and 245 clusters with 5,910 households in MIS 3R 2007. Net ownership was assessed by visual inspection while net utilization was reported as use of the net the previous night. This net level analysis was restricted to households owning at least one net of any type. Logistic regression models of association between net use and explanatory variables including net type, age, condition, cost and other household characteristics were undertaken using generalized linear latent and mixed models (GLLAMM. Results A total of 3,784 nets in 2,430 households were included in the baseline 2006 analysis while the MIS 3R 2007 analysis comprised 5,413 nets in 3,328 households. The proportion of nets used the previous night decreased from 85.1% to 56.0% between baseline 2006 and MIS 3R 2007, respectively. Factors independently associated with increased proportion of nets used were: LLIN net type (at baseline 2006; indoor residual spraying (at MIS 3R 2007; and increasing wealth index at both surveys. At both baseline 2006 and MIS 3R 2007, reduced proportion of nets used was independently associated with increasing net age, increasing damage of nets, increasing household net density, and increasing altitude (>2,000 m. Conclusion This study identified

  8. Expected Net Present Value, Expected Net Future Value, and the Ramsey Rule

    OpenAIRE

    Gollier, Christian

    2010-01-01

    Weitzman (1998) showed that when future interest rates are uncertain, using the expected net present value implies a term structure of discount rates that is decreasing to the smallest possible interest rate. On the contrary, using the expected net future value criteria implies an increasing term structure of discount rates up to the largest possible interest rate. We reconcile the two approaches by introducing risk aversion and utility maximization. We show that if the aggregate consumption ...

  9. Discrete, continuous, and hybrid petri nets

    CERN Document Server

    David, René

    2004-01-01

    Petri nets do not designate a single modeling formalism. In fact, newcomers to the field confess sometimes to be a little puzzled by the diversity of formalisms that are recognized under this "umbrella". Disregarding some extensions to the theoretical modeling capabilities, and looking at the level of abstraction of the formalisms, Condition/Event, Elementary, Place/Transition, Predicate/Transition, Colored, Object Oriented... net systems are frequently encountered in the literature. On the other side, provided with appropriate interpretative extensions, Controled Net Systems, Marking Diagrams (the Petri net generalization of State Diagrams), or the many-many variants in which time can be explicitly incorporated -Time(d), Deterministic, (Generalized) Stochastic, Fuzzy...- are defined. This represents another way to define practical formalisms that can be obtained by the "cro- product" of the two mentioned dimensions. Thus Petri nets constitute a modeling paradigm, understandable in a broad sense as "the total...

  10. Divertor plate concept with carbon based armour for NET

    International Nuclear Information System (INIS)

    Moons, F.; Howard, R.; Kneringer, G.; Stickler, R.

    1989-01-01

    A series of tests has been performed on simulated divertor elements for NET at the JET neutral beam injector test bed. The test section consisted of a water cooled main structure, the surface of which was protected with a carbon based armour in the form of tiles. The scope of these was to study the thermal behaviour of mechanically attached tiles with the use of an intermediate soft carbon layer to improve the thermal contact under divertor relevant conditions. (author). 4 refs.; 4 figs.; 1 tab

  11. NetProt: Complex-based Feature Selection.

    Science.gov (United States)

    Goh, Wilson Wen Bin; Wong, Limsoon

    2017-08-04

    Protein complex-based feature selection (PCBFS) provides unparalleled reproducibility with high phenotypic relevance on proteomics data. Currently, there are five PCBFS paradigms, but not all representative methods have been implemented or made readily available. To allow general users to take advantage of these methods, we developed the R-package NetProt, which provides implementations of representative feature-selection methods. NetProt also provides methods for generating simulated differential data and generating pseudocomplexes for complex-based performance benchmarking. The NetProt open source R package is available for download from https://github.com/gohwils/NetProt/releases/ , and online documentation is available at http://rpubs.com/gohwils/204259 .

  12. Net energy benefits of carbon nanotube applications

    International Nuclear Information System (INIS)

    Zhai, Pei; Isaacs, Jacqueline A.; Eckelman, Matthew J.

    2016-01-01

    Highlights: • Life cycle net energy benefits are examined. • CNT-enabled and the conventional technologies are compared. • Flash memory with CNT switches show significant positive net energy benefit. • Lithium-ion batteries with MWCNT cathodes show positive net energy benefit. • Lithium-ion batteries with SWCNT anodes tend to exhibit negative net energy benefit. - Abstract: Implementation of carbon nanotubes (CNTs) in various applications can reduce material and energy requirements of products, resulting in energy savings. However, processes for the production of carbon nanotubes (CNTs) are energy-intensive and can require extensive purification. In this study, we investigate the net energy benefits of three CNT-enabled technologies: multi-walled CNT (MWCNT) reinforced cement used as highway construction material, single-walled CNT (SWCNT) flash memory switches used in cell phones and CNT anodes and cathodes used in lithium-ion batteries used in electric vehicles. We explore the avoided or additional energy requirement in the manufacturing and use phases and estimate the life cycle net energy benefits for each application. Additional scenario analysis and Monte Carlo simulation of parameter uncertainties resulted in probability distributions of net energy benefits, indicating that net energy benefits are dependent on the application with confidence intervals straddling the breakeven line in some cases. Analysis of simulation results reveals that SWCNT switch flash memory and MWCNT Li-ion battery cathodes have statistically significant positive net energy benefits (α = 0.05) and SWCNT Li-ion battery anodes tend to have negative net energy benefits, while positive results for MWCNT-reinforced cement were significant only under an efficient CNT production scenario and a lower confidence level (α = 0.1).

  13. Towards a Standard for Modular Petri Nets

    DEFF Research Database (Denmark)

    Kindler, Ekkart; Petrucci, Laure

    2009-01-01

    concepts could or should be subject to import and export in high-level Petri nets. In this paper, we formalise a minimal version of modular high-level Petri nets, which is based on the concepts of modular PNML. This shows that modular PNML can be formalised once a specific version of Petri net is fixed....... Moreover, we present and discuss some more advanced features of modular Petri nets that could be included in the standard. This way, we provide a formal foundation and a basis for a discussion of features to be included in the upcoming standard of a module concept for Petri nets in general and for high-level...

  14. Petri Nets

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE ... In Part 1 of this two-part article, we have seen im- ..... mable logic controller and VLSI arrays, office automation systems, workflow management systems, ... complex discrete event and real-time systems; and Petri nets.

  15. Pro asynchronous programming with .NET

    CERN Document Server

    Blewett, Richard; Ltd, Rock Solid Knowledge

    2014-01-01

    Pro Asynchronous Programming with .NET teaches the essential skill of asynchronous programming in .NET. It answers critical questions in .NET application development, such as: how do I keep my program responding at all times to keep my users happy how do I make the most of the available hardware how can I improve performanceIn the modern world, users expect more and more from their applications and devices, and multi-core hardware has the potential to provide it. But it takes carefully crafted code to turn that potential into responsive, scalable applications.With Pro Asynchronous Programming

  16. A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments

    Science.gov (United States)

    Quigley, Patricia Allison

    Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made

  17. Linear Logic on Petri Nets

    DEFF Research Database (Denmark)

    Engberg, Uffe Henrik; Winskel, Glynn

    This article shows how individual Petri nets form models of Girard's intuitionistic linear logic. It explores questions of expressiveness and completeness of linear logic with respect to this interpretation. An aim is to use Petri nets to give an understanding of linear logic and give some apprai...

  18. First study of the negative binomial distribution applied to higher moments of net-charge and net-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Tarnowsky, Terence J.; Westfall, Gary D.

    2013-01-01

    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (κσ 2 and Sσ) of the net-charge and net-proton distributions in Au + Au collisions at √(s NN )=7.7–200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products κσ 2 and Sσ have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between κσ 2 and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus–nucleus collisions

  19. TwiddleNet: Smartphones as Personal Servers

    OpenAIRE

    Gurminder, Singh; Center for the Study of Mobile Devices and Communications

    2012-01-01

    TwiddleNet uses smartphones as personal servers to enable instant content capture and dissemination for firstresponders. It supports the information sharing needs of first responders in the early stages of an emergency response operation. In TwiddleNet, content, once captured, is automatically tagged and disseminated using one of the several networking channels available in smartphones. TwiddleNet pays special attention to minimizing the equipment, network set-up time, and content...

  20. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    Science.gov (United States)

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  1. Pro visual C++/CLI and the net 35 platform

    CERN Document Server

    Fraser, Stephen

    2008-01-01

    Pro Visual C++/CLI and the .NET 3.5 Platform is about writing .NET applications using C++/CLI. While readers are learning the ins and outs of .NET application development, they will also be learning the syntax of C++, both old and new to .NET. Readers will also gain a good understanding of the .NET architecture. This is truly a .NET book applying C++ as its development language not another C++ syntax book that happens to cover .NET.

  2. What is the role of historical anthropogenically-induced land-cover change on the surface climate of West Africa? Results from the LUCID intercomparison project

    Science.gov (United States)

    Souleymane, S.

    2015-12-01

    West Africa has been highlighted as a hot spot of land surface-atmosphere interactions. This study analyses the outputs of the project Land-Use and Climate, IDentification of Robust Impacts (LUCID) over West Africa. LUCID used seven atmosphere-land models with a common experimental design to explore the impacts of Land Use induced Land Cover Change (LULCC) that are robust and consistent across the climate models. Focusing the analysis on Sahel and Guinea, this study shows that, even though the seven climate models use the same atmospheric and land cover forcing, there are significant differences of West African Monsoon variability across the climate models. The magnitude of that variability differs significantly from model to model resulting two major "features": (1) atmosphere dynamics models; (2) how the land-surface functioning is parameterized in the Land surface Model, in particular regarding the evapotranspiration partitioning within the different land-cover types, as well as the role of leaf area index (LAI) in the flux calculations and how strongly the surface is coupled to the atmosphere. The major role that the models'sensitivity to land-cover perturbations plays in the resulting climate impacts of LULCC has been analysed in this study. The climate models show, however, significant differences in the magnitude and the seasonal partitioning of the temperature change. The LULCC induced cooling is directed by decreases in net shortwave radiation that reduced the available energy (QA) (related to changes in land-cover properties other than albedo, such as LAI and surface roughness), which decreases during most part of the year. The biophysical impacts of LULCC were compared to the impact of elevated greenhouse gases resulting changes in sea surface temperatures and sea ice extent (CO2SST). The results show that the surface cooling (related a decrease in QA) induced by the biophysical effects of LULCC are insignificant compared to surface warming (related an

  3. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  4. Elliptic net and its cryptographic application

    Science.gov (United States)

    Muslim, Norliana; Said, Mohamad Rushdan Md

    2017-11-01

    Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.

  5. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  6. Inferring Phylogenetic Networks Using PhyloNet.

    Science.gov (United States)

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  7. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    Science.gov (United States)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for cloud properties over the Arctic Ocean.

  8. Net Neutrality: Media Discourses and Public Perception

    Directory of Open Access Journals (Sweden)

    Christine Quail

    2010-01-01

    Full Text Available This paper analyzes media and public discourses surrounding net neutrality, with particular attention to public utility philosophy, from a critical perspective. The article suggests that further public education about net neutrality would be beneficial. The first portion of this paper provides a survey of the existing literature surrounding net neutrality, highlighting the contentious debate between market-based and public interest perspectives. In order to contextualize the debate, an overview of public utility philosophy is provided, shedding light on how the Internet can be conceptualized as a public good. Following this discussion, an analysis of mainstream media is presented, exploring how the media represents the issue of net neutrality and whether or not the Internet is discussed through the lens of public utility. To further examine how the net neutrality debate is being addressed, and to see the potential impacts of media discourses on the general public, the results of a focus group are reported and analyzed. Finally, a discussion assesses the implications of the net neutrality debate as presented through media discourses, highlighting the future of net neutrality as an important policy issue.

  9. NET system integration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Mitchell, N.; Salpietro, E.; Buzzi, U.; Gritzmann, P.

    1985-01-01

    The NET system integration procedure is the process by which the requirements of the various Tokamak machine design areas are brought together to form a compatible machine layout. Each design area produces requirements which generally allow components to be built at minimum cost and operate with minimum technical risk, and the final machine assembly should be achieved with minimum departure from these optimum designs. This is carried out in NET by allowing flexibility in the maintenance and access methods to the machine internal components which must be regularly replaced by remote handling, in segmentation of these internal components and in the number of toroidal field coils

  10. Putting Petri nets to work in Industry

    NARCIS (Netherlands)

    Aalst, van der W.M.P.

    1994-01-01

    Petri nets exist for over 30 years. Especially in the last decade Petri nets have been put into practive extensively. Thanks to several useful extensions and the availability of computer tools, Petri nets have become a mature tool for modelling and analysing industrial systems. This paper describes

  11. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    Science.gov (United States)

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Net Gain

    International Development Research Centre (IDRC) Digital Library (Canada)

    Describing the effect of tax incentives for import, production, and sale of nets and insecticides; and ..... So far, China is the only country where a system for the routine treatment of ...... 1993), and the trials in Ecuador and Peru (Kroeger et al.

  13. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  14. SolNet

    DEFF Research Database (Denmark)

    Jordan, Ulrike; Vajen, Klaus; Bales, Chris

    2014-01-01

    -accompanying Master courses, placements of internships, and PhD scholarship projects. A new scholarship project, “SHINE”, was launched in autumn 2013 in the frame work of the Marie Curie program of the European Union (Initial Training Network, ITN). 13 PhD-scholarships on solar district heating, solar heat......SolNet, founded in 2006, is the first coordinated International PhD education program on Solar Thermal Engineering. The SolNet network is coordinated by the Institute of Thermal Engineering at Kassel University, Germany. The network offers PhD courses on solar heating and cooling, conference...... for industrial processes, as well as sorption stores and materials started in December 2013. Additionally, the project comprises a training program with five PhD courses and several workshops on solar thermal engineering that will be open also for other PhD students working in the field. The research projects...

  15. Symmetric Cryptosystem Based on Petri Net

    Directory of Open Access Journals (Sweden)

    Hussein ‎ A. Lafta

    2017-12-01

    Full Text Available In this wok, a novel approach based on ordinary Petri net is used to generate private key . The reachability marking  of petri net is used as encryption/decryption key to provide more complex key . The same ordinary Petri Nets models  are used for the sender(encryption and  the receiver(decryption.The plaintext has been permutated  using  look-up table ,and XOR-ed with key to generate cipher text

  16. Net Pay Estimator | Alaska Division of Retirement and Benefits

    Science.gov (United States)

    Benefits > Net Pay Estimator Online Counselor Scheduler Empower Retirement Account Info Online myRnB Accessibility Net Pay Estimator Click here for the Retiree Net Pay Estimator? The net pay estimator is a useful tool to estimate your net pay under different salaries, federal withholding tax exemptions, and

  17. CPN Tools-Assisted Simulation and Verification of Nested Petri Nets

    Directory of Open Access Journals (Sweden)

    L. W. Dworza´nski

    2012-01-01

    Full Text Available Nested Petri nets (NP-nets are an extension of Petri net formalism within the “netswithin-nets” approach, when tokens in a marking are Petri nets, which have an autonomous behavior and are synchronized with the system net. The formalism of NP-nets allows modeling multi-level multi-agent systems with dynamic structure in a natural way. Currently, there is no tool for supporting NP-nets simulation and analysis. The paper proposes the translation of NP-nets into Colored Petri nets and the use of CPN Tools as a virtual machine for NP-nets modeling, simulation and automatic verification.

  18. Net-section limit moments and approximate J estimates for circumferential cracks at the interface between elbows and pipes

    International Nuclear Information System (INIS)

    Song, Tae-Kwang; Kim, Yun-Jae; Oh, Chang-Kyun; Jin, Tae-Eun; Kim, Jong-Sung

    2009-01-01

    This paper firstly presents net-section limit moments for circumferential through-wall and part-through surface cracks at the interface between elbows and attached straight pipes under in-plane bending. Closed-form solutions are proposed based on fitting results from small strain FE limit analyses using elastic-perfectly plastic materials. Net-section limit moments for circumferential cracks at the interface between elbows and attached straight pipes are found to be close to those for cracks in the centre of elbows, implying that the location of the circumferential crack within an elbow has a minimal effect on the net-section limit moment. Accordingly it is also found that the assumption that the crack locates in a straight pipe could significantly overestimate the net-section limit load (and thus maximum load-carrying capacity) of the cracked component. Based on the proposed net-section limit moment, a method to estimate elastic-plastic J based on the reference stress approach is proposed for circumferential cracks at the interface between elbows and attached straight pipes under in-plane bending.

  19. Special Section on Coloured Petri Nets

    DEFF Research Database (Denmark)

    1998-01-01

    Special section on coloured Petri nets, their basic concepts, analysis methods, tool support and industrial applications.......Special section on coloured Petri nets, their basic concepts, analysis methods, tool support and industrial applications....

  20. The Petri Net Markup Language : concepts, technology, and tools

    NARCIS (Netherlands)

    Billington, J.; Christensen, S.; Hee, van K.M.; Kindler, E.; Kummer, O.; Petrucci, L.; Post, R.D.J.; Stehno, C.; Weber, M.; Aalst, van der W.M.P.; Best, E.

    2003-01-01

    The Petri Net Markup Language (PNML) is an XML-based interchange format for Petri nets. In order to support different versions of Petri nets and, in particular, future versions of Petri nets, PNML allows the definition of Petri net types.Due to this flexibility, PNML is a starting point for a

  1. Temporal variation of aerosol optical depth and associated shortwave radiative forcing over a coastal site along the west coast of India.

    Science.gov (United States)

    Menon, Harilal B; Shirodkar, Shilpa; Kedia, Sumita; S, Ramachandran; Babu, Suresh; Moorthy, K Krishna

    2014-01-15

    Optical characterization of aerosol was performed by assessing the columnar aerosol optical depth (AOD) and angstrom wavelength exponent (α) using data from the Microtops II Sunphotometer. The data were collected on cloud free days over Goa, a coastal site along the west coast of India, from January to December 2008. Along with the composite aerosol, the black carbon (BC) mass concentration from the Aethalometer was also analyzed. The AOD0.500 μm and angstrom wavelength exponent (α) were in the range of 0.26 to 0.7 and 0.52 to 1.33, respectively, indicative of a significant seasonal shift in aerosol characteristics during the study period. The monthly mean AOD0.500 μm exhibited a bi-modal distribution, with a primary peak in April (0.7) and a secondary peak in October (0.54), whereas the minimum of 0.26 was observed in May. The monthly mean BC mass concentration varied between 0.31 μg/m(3) and 4.5 μg/m(3), and the single scattering albedo (SSA), estimated using the OPAC model, ranged from 0.87 to 0.97. Modeled aerosol optical properties were used to estimate the direct aerosol shortwave radiative forcing (DASRF) in the wavelength range 0.25 μm4.0 μm. The monthly mean forcing at the surface, at the top of the atmosphere (TOA) and in the atmosphere varied between -14.1 Wm(-2) and -35.6 Wm(-2), -6.7 Wm(-2) and -13.4 Wm(-2) and 5.5 Wm(-2) to 22.5 Wm(-2), respectively. These results indicate that the annual SSA cycle in the atmosphere is regulated by BC (absorbing aerosol), resulting in a positive forcing; however, the surface forcing was governed by the natural aerosol scattering, which yielded a negative forcing. These two conditions neutralized, resulting in a negative forcing at the TOA that remains nearly constant throughout the year. © 2013.

  2. BioNet Digital Communications Framework

    Science.gov (United States)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  3. StarNet: An application of deep learning in the analysis of stellar spectra

    Science.gov (United States)

    Kielty, Collin; Bialek, Spencer; Fabbro, Sebastien; Venn, Kim; O'Briain, Teaghan; Jahandar, Farbod; Monty, Stephanie

    2018-06-01

    In an era when spectroscopic surveys are capable of collecting spectra for hundreds of thousands of stars, fast and efficient analysis methods are required to maximize scientific impact. These surveys provide a homogeneous database of stellar spectra that are ideal for machine learning applications. In this poster, we present StarNet: a convolutional neural network model applied to the analysis of both SDSS-III APOGEE DR13 and synthetic stellar spectra. When trained on synthetic spectra alone, the calculated stellar parameters (temperature, surface gravity, and metallicity) are of excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. While StarNet was developed using the APOGEE observed spectra and corresponding ASSeT synthetic grid, we suggest that this technique is applicable to other spectral resolutions, spectral surveys, and wavelength regimes. As a demonstration of this, we present a StarNet model trained on lower resolution, R=6000, IR synthetic spectra, describing the spectra delivered by Gemini/NIFS and the forthcoming Gemini/GIRMOS instrument (PI Sivanandam, UToronto). Preliminary results suggest that the stellar parameters determined from this low resolution StarNet model are comparable in precision to the high-resolution APOGEE results. The success of StarNet at lower resolution can be attributed to (1) a large training set of synthetic spectra (N ~200,000) with a priori stellar labels, and (2) the use of the entire spectrum in the solution rather than a few weighted windows, which are common methods in other spectral analysis tools (e.g. FERRE or The Cannon). Remaining challenges in our StarNet applications include rectification, continuum normalization, and wavelength coverage. Solutions to these problems could be used to guide decisions made in the development of future spectrographs, spectroscopic surveys, and data reduction pipelines, such as for the future MSE.

  4. 7 CFR 1221.17 - Net market value.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Net market value. 1221.17 Section 1221.17 Agriculture... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.17 Net market value. Net market value means: (a) Except as provided in paragraph (b)and (c) of this section, the value...

  5. NetBeans GUI Builder

    OpenAIRE

    Pusiankova, Tatsiana

    2009-01-01

    This work aims at making readers familiar with the powerful tool NetBeans IDE GUI Builder and helping them make their first steps to creation of their own graphical user interface in the Java programming language. The work includes theoretical description of NetBeans IDE GUI Builder, its most important characteristics and peculiarities and also a set of practical instructions that will help readers in creation of their first GUI. The readers will be introduced to the environment of this tool ...

  6. Application and Theory of Petri Nets

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 13th International Conference onApplication and Theory of Petri Nets, held in Sheffield, England, in June 1992. The aim of the Petri net conferences is to create a forum for discussing progress in the application and theory of Petri nets. Typically....... Balbo and W. Reisig, 18 submitted papers, and seven project papers. The submitted papers and project presentations were selectedby the programme committee and a panel of referees from a large number of submissions....

  7. Rotational KMS States and Type I Conformal Nets

    Science.gov (United States)

    Longo, Roberto; Tanimoto, Yoh

    2018-01-01

    We consider KMS states on a local conformal net on S 1 with respect to rotations. We prove that, if the conformal net is of type I, namely if it admits only type I DHR representations, then the extremal KMS states are the Gibbs states in an irreducible representation. Completely rational nets, the U(1)-current net, the Virasoro nets and their finite tensor products are shown to be of type I. In the completely rational case, we also give a direct proof that all factorial KMS states are Gibbs states.

  8. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  9. Long Term RadNet Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This RadNet Quality Data Asset includes all data since initiation and when ERAMS was expanded to become RadNet, name changed to reflect new mission. This includes...

  10. Sub-canopy light conditions only allow low annual net productivity of epiphytic algae on kelp Laminaria hyperborea

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Nejrup, Lars Brammer; Pedersen, Troels Møller

    2014-01-01

    The stipes of older Laminaria hyperborea individuals are heavily covered by epiphytic assemblages that are dominated by macroalgae, and we hypothesized that the production of these algae may contribute significantly to total primary production of the kelp forest ecosystem. The epiphytic assemblages...... through spring as surface irradiance increased. Annual net productivity was relatively low, ranging from 42 to 96 g DW m-2 seafloor depending on site. We conclude that the net productivity of these macroalgal epiphytes is insignificant relative to that of kelp itself, and that the large observed biomass...

  11. Petri Nets

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52 ... Author Affiliations. Y Narahari1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  12. Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  13. Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements

    Science.gov (United States)

    Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy

    2018-05-01

    A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The

  14. Characterizing behavioural congruences for Petri nets

    DEFF Research Database (Denmark)

    Nielsen, Mogens; Priese, Lutz; Sassone, Vladimiro

    1995-01-01

    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding...... four notions of bisimulation, viz., weak and weak step bisimulation and their maximal versions. We characterize such congruences via universal contexts and via games, providing in such a way an understanding of their discerning powers....

  15. Model and calculations for net infiltration

    International Nuclear Information System (INIS)

    Childs, S.W.; Long, A.

    1992-01-01

    In this paper a conceptual model for calculating net infiltration is developed and implemented. It incorporates the following important factors: viability of climate for the next 10,000 years, areal viability of net infiltration, and important soil/plant factors that affect the soil water budget of desert soils. Model results are expressed in terms of occurrence probabilities for time periods. In addition the variability of net infiltration is demonstrated both for change with time and differences among three soil/hydrologic units present at the site modeled

  16. Implementing NetScaler VPX

    CERN Document Server

    Sandbu, Marius

    2014-01-01

    An easy-to-follow guide with detailed step-by step-instructions on how to implement the different key components in NetScaler, with real-world examples and sample scenarios.If you are a Citrix or network administrator who needs to implement NetScaler in your virtual environment to gain an insight on its functionality, this book is ideal for you. A basic understanding of networking and familiarity with some of the different Citrix products such as XenApp or XenDesktop is a prerequisite.

  17. Professional Visual Basic 2010 and .NET 4

    CERN Document Server

    Sheldon, Bill; Sharkey, Kent

    2010-01-01

    Intermediate and advanced coverage of Visual Basic 2010 and .NET 4 for professional developers. If you've already covered the basics and want to dive deep into VB and .NET topics that professional programmers use most, this is your book. You'll find a quick review of introductory topics-always helpful-before the author team of experts moves you quickly into such topics as data access with ADO.NET, Language Integrated Query (LINQ), security, ASP.NET web programming with Visual Basic, Windows workflow, threading, and more. You'll explore all the new features of Visual Basic 2010 as well as all t

  18. AFM characterization of protein net formation on a fibrous medium

    Directory of Open Access Journals (Sweden)

    Assis O.B.G.

    2000-01-01

    Full Text Available Lysozyme protein net is set on a glass fiber support using the self-assembly technique. Enzymatic film formation is followed by surface imaging via atomic force microscopy (AFM. Change in roughness as a function of deposition time is used as an indirect indicator of film formation. The objective was to form a protein film that would have no effect on the permeability of the medium, aiming at its application as a bioactive membrane or reactor suitable for bacteria and chemical interactions in aqueous media.

  19. Net sputtering rate due to hot ions in a Ne-Xe discharge gas bombarding an MgO layer

    International Nuclear Information System (INIS)

    Ho, S.; Tamakoshi, T.; Ikeda, M.; Mikami, Y.; Suzuki, K.

    2011-01-01

    An analytical method is developed for determining net sputtering rate for an MgO layer under hot ions with low energy ( h i , above a threshold energy of sputtering, E th,i , multiplied by a yield coefficient. The threshold energy of sputtering is determined from dissociation energy required to remove an atom from MgO surface multiplied by an energy-transfer coefficient. The re-deposition rate of the sputtered atoms is calculated by a diffusion simulation using a hybridized probabilistic and analytical method. These calculation methods are combined to analyze the net sputtering rate. Maximum net sputtering rate due to the hot neon ions increases above the partial pressure of 4% xenon as E h Ne becomes higher and decreases near the partial pressure of 20% xenon as ion flux of neon decreases. The dependence due to the hot neon ions on partial pressure and applied voltage agrees well with experimental results, but the dependence due to the hot xenon ions deviates considerably. This result shows that the net sputtering rate is dominated by the hot neon ions. Maximum E h Ne (E h Ne,max = 5.3 - 10.3 eV) is lower than E th,Ne (19.5 eV) for the MgO layer; therefore, weak sputtering due to the hot neon ions takes place. One hot neon ion sputters each magnesium and each oxygen atom on the surface and distorts around a vacancy. The ratio of the maximum net sputtering rate is approximately determined by number of the ions at E h i,max multiplied by an exponential factor of -E th,i /E h i,max .

  20. Perbandingan Hasil Belajar Teknik Dasar Pukulan Pada Permainan Tenis Meja Antara Yang Langsung Mengunakan Net Dengan Tanpa Menggunakan Net Terlebih Dahulu

    Directory of Open Access Journals (Sweden)

    Indra Safari

    2016-07-01

    Full Text Available Abstrak   Tujuan penelitian ini adalah untuk mengkaji antara hasil belajar langsung menggunakan net dengan yang tanpa menggunakan net terlebih dahulu terhadap peningkatan penguasaan teknik dasar pukulan pada permainan tenis meja bagi pemula.Untuk memecahkan permasalahan tersebut penulis menggunakan metode eksperimen, sedangkan data yang diperoleh adalah melalui eksperimen lapangan. Populasi yang digunakan dalam penelitian ini adalah siswa SDN Muhammadiyah III Bandung, sedangkan untuk sampelnya yaitu siswa kelas 4 s/d 6 (putera dan yang termasuk dalam kategori umur pemula. Hasil penelitian ini menunjukkan bahwa walaupun secara perhitungan statistic kedua cara pembelajaran tersebut tidak ada perbedaan yang berarti (signifikan, tetapi secara fakta di lapangan dengan frekuensi tiga kali dalam seminggu dengan cara pembelajaran tanpa menggunakan net terlebih dahulu memberikan perbedaan dalam perbedaan mean, yaitu yang langsung menggunakan net (0 – 89,0 sedangkan yang tanpa menggunakan net terlebih dahulu (0 – 93,0 dengan taraf nyata 0,05. Kata Kunci: teknik dasar, menggunakan net dan tanpa menggunakan net

  1. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  2. Uncertainty in regional and zonal monthly mean downward surface irradiances from Edition 4.0 CERES Energy Balanced and Filled (EBAF) data product

    Science.gov (United States)

    Kato, S.; Rutan, D. A.; Rose, F. G.; Loeb, N. G.

    2017-12-01

    The surface of the Earth receives solar radiation (shortwave) and emission from the atmosphere (longwave). At a global and annual mean approximately 12% of solar radiation incident on the surface is reflected and the rest is absorbed by the surface. The surface emits radiation proportional to the forth power of the temperature. Although the uncertainty in global and annual mean surface irradiances is estimated in earlier studies (Zhang et al. 1995, 2004; L'Ecuyer et al. 2008; Stephens et al. 2012; Kato et al. 2012), only a few studies estimated the uncertainty in computed surface irradiances at smaller spatial and temporal scales (Zhang et al. 1995, 2004; Kato et al. 2012). We use surface observations at 46 buoys and 36 land sites and newly released the Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)-surface data product to estimate the uncertainty in regional and zonal monthly mean downward shortwave and longwave surface irradiances. The root-mean-square difference of monthly mean computed and observed irradiances is used for the regional uncertainty. The uncertainty is separated into bias and spatially random components. The random component decreases when irradiances are averaged over a larger area, nearly inversely proportional to the number of surface observation sites. The presentation provides the uncertainty in the regional and zonal monthly mean downward surface irradiances over ocean and land. ReferencesKato, S. and N.G.Loeb, D. A.Rutan, F. G. Rose, S. Sun-Mack,W.F.Miller, and Y. Chen, 2012. Surv. Geophys., 33, 395-412, doi:10.1007/s10712-012-9179-x. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951. Stephens, G. L. and Coauthors, 2012, Nat. Geosci., 5, 691-696, doi:10.1038/ngeo1580. Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004, J. Geophys. Res., 109, D19105, doi:10.1029/2003JD

  3. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  4. The net neutrality debate on Twitter

    Directory of Open Access Journals (Sweden)

    Wolf J. Schünemann

    2015-12-01

    Full Text Available The internet has been seen as a medium that empowers individual political actors in relation to established political elites and media gatekeepers. The present article discusses this “net empowerment hypothesis” and tests it empirically by analysing Twitter communication on the regulation of net neutrality. We extracted 503.839 tweets containing #NetNeutrality posted between January and March 2015 and analysed central developments and the network structure of the debate. The empirical results show that traditional actors from media and politics still maintain a central role.

  5. Mass distribution of free insecticide-treated nets do not interfere with continuous net distribution in Tanzania.

    Science.gov (United States)

    Eze, Ikenna C; Kramer, Karen; Msengwa, Amina; Mandike, Renata; Lengeler, Christian

    2014-05-27

    To protect the most vulnerable groups from malaria (pregnant women and infants) the Tanzanian Government introduced a subsidy (voucher) scheme in 2004, on the basis of a public-private partnership. These vouchers are provided to pregnant women at their first antenatal care visit and mothers of infants at first vaccination. The vouchers are redeemed at registered retailers for a long-lasting insecticidal net against the payment of a modest top-up price. The present work analysed a large body of data from the Tanzanian National Voucher Scheme, focusing on interactions with concurrent mass distribution campaigns of free nets. In an ecologic study involving all regions of Tanzania, voucher redemption data for the period 2007-2011, as well as data on potential determinants of voucher redemption were analysed. The four outcome variables were: pregnant woman and infant voucher redemption rates, use of treated bed nets by all household members and by under- five children. Each of the outcomes was regressed with selected determinants, using a generalized estimating equation model and accounting for regional data clustering. There was a consistent improvement in voucher redemption rates over the selected time period, with rates >80% in 2011. The major determinants of redemption rates were the top-up price paid by the voucher beneficiary, the retailer- clinic ratio, and socio-economic status. Improved redemption rates after 2009 were most likely due to reduced top-up prices (following a change in policy). Redemption rates were not affected by two major free net distribution campaigns. During this period, there was a consistent improvement in net use across all the regions, with rates of up to 75% in 2011. The key components of the National Treated Nets Programme (NATNETS) seem to work harmoniously, leading to a high level of net use in the entire population. This calls for the continuation of this effort in Tanzania and for emulation by other countries with endemic malaria.

  6. Reconfiguration of distribution nets

    International Nuclear Information System (INIS)

    Latorre Bayona, Gerardo; Angarita Marquez, Jorge Luis

    2000-01-01

    Starting of the location of the reconfiguration problem inside the context of the operation of distribution nets, of the quality indicators definition and of the presentation of the alternatives more used for reduction of technical losses, they are related diverse reconfiguration methodologies proposed in the technical literature, pointing out their three principals limitations; also are presents the results of lost obtained starting from simulation works carried out in distribution circuits of the ESSA ESP, which permitting to postulate the reconfiguration of nets like an excellent alternative to reduce technical losses

  7. Criteria for Definition of Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Sartori, Igor; Marszal, Anna Joanna; Napolitano, Assunta

    2010-01-01

    The idea of a Net Zero Energy Building (Net ZEB) is understood conceptually, as it is understood that the way a Net ZEB is defined affects significantly the way it is designed in order to achieve the goal. However, little agreement exists on a common definition; the term is used commercially...... without a clear understanding and countries are enacting policies and national targets based on the concept without a clear definition in place. This paper presents a harmonised framework for describing the relevant characteristics of Net ZEBs in a series of criteria. Evaluation of the criteria...... and selection of the related options becomes a methodology for elaborating sound Net ZEB definitions in a formal, systematic and comprehensive way, creating the basis for legislations and action plans to effectively achieve the political targets. The common denominator for the different possible Net ZEB...

  8. Professional ASP.NET 4 in C# and VB

    CERN Document Server

    Evjen, Bill; Rader, Devin

    2010-01-01

    This book was written to introduce you to the features and capabilities that ASP.NET 4 offers, as well as to give you an explanation of the foundation that ASP.NET provides. We assume you have a general understanding of Web technologies, such as previous versions of ASP.NET, Active Server Pages 2.0/3.0, or JavaServer Pages. If you understand the basics of Web programming, you should not have much trouble following along with this book's content. If you are brand new to ASP.NET, be sure to check out Beginning ASP.NET 4: In C# and VB by Imar Spaanjaars (Wiley Publishing, Inc., 2010) to help you

  9. Beginning DotNetNuke Skinning and Design

    CERN Document Server

    Hay, Andrew

    2011-01-01

    DotNetNuke is an open source framework built on top of the ASP.Net platform. While this system offers an impressive set of out-of-the-box features for public and private sites, it also includes a compelling story for folks who want to present a unique look and feel to visitors. The skinning engine inside of DotNetNuke has strengthened over the course of several years and hundreds of thousands of registered users. The success of its skin and module developer community is another key indicator of the depth and breadth of this technology. The Core Team responsible for the DotNetNuke brand has gon

  10. ASP.NET MVC 4 mobile app development

    CERN Document Server

    Meadows, Andy

    2013-01-01

    A step-by-step tutorial to get acquainted with the ASP.NET MVC4 Framework and its features in order to discover how to develop web applications using them.This book is targeted at people who are familiar with C# development on the .NET platform and are interested in web development with the ASP.NET development framework. No prior web or mobile development experience is required

  11. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.

    2010-01-01

    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  12. NetMOD Version 2.0 Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This document describes the parameters that are used to configure the NetMOD tool and the input and output parameters that make up the simulation definitions.

  13. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean

    International Nuclear Information System (INIS)

    Druffel, E.M.; Suess, H.E.

    1983-01-01

    We have made radiocarbon measurements of banded hermatypic corals from Florida, Belize, and the Galapagos Islands. Interpretation is presented here of these previously reported results. These measurements represent the 14 C/ 12 C ratios in dissolved inorganic carbon (DIOC) in the surface ocean waters of the Gulf Stream and the Peru Current at the time of coral ring formation. A depletion in radiocarbon concentration was observed incoral rings that grew from A.D. 1900--1952. It was caused by dilution of existing 14 C levels with dead CO 2 from fossil fuel burning (the Suess effect, or S/sub e/). A similar trend was observed in the distribution of bomb-produced 14 C in corals that had grown during the years following A.D. 1952. The concentration of bomb-produced radiocarbon was much higher in corals from temperate regions (Florida, Belize, Hawaiian Islands) than in corals from tropical regions (Galapagos Islands and Canton Island). The apparent radiocarbon ages of the surface waters in temperate and tropical oceans during the preanthropogenic period range from about 280 to 520 years B.P. (-40 to -69%). At all investigated locations, it is likely that waters at subsurface depths have the same apparent radiocarbon age of about 670 years B.P. From the change of oceanic δ 14 C in the surface during post-bomb times, the approximate annual rate of net input of 14 CO 2 to the ocean waters is calculated to be about 8% of the prevailing 14 C difference between atmosphere and ocean. From this input and from preanthropogenic δ 14 C values found at each location, it can be seen that vertical mixing of water in the Peru Current is about 3 times greater than that in the Gulf Stream

  14. Community Net Energy Metering: How Novel Policies Expand Benefits of Net Metering to Non-Generators

    Energy Technology Data Exchange (ETDEWEB)

    Rose, James; Varnado, Laurel

    2009-04-01

    As interest in community solutions to renewable energy grows, more states are beginning to develop policies that encourage properties with more than one meter to install shared renewable energy systems. State net metering policies are evolving to allow the aggregation of multiple meters on a customer’s property and to dissolve conventional geographical boundaries. This trend means net metering is expanding out of its traditional function as an enabling incentive to offset onsite customer load at a single facility. This paper analyzes community net energy metering (CNEM) as an emerging vehicle by which farmers, neighborhoods, and municipalities may more easily finance and reap the benefits of renewable energy. Specifically, it aims to compare and contrast the definition of geographical boundaries among different CNEM models and examine the benefits and limitations of each approach. As state policies begin to stretch the geographic boundaries of net metering, they allow inventive solutions to encourage renewable energy investment. This paper attempts to initiate the conversation on this emerging policy mechanism and offers recommendations for further development of these policies.

  15. Analysis of K-net and Kik-net data: implications for ground motion prediction - acceleration time histories, response spectra and nonlinear site response; Analyse des donnees accelerometriques de K-net et Kik-net: implications pour la prediction du mouvement sismique - accelerogrammes et spectres de reponse - et la prise en compte des effets de site non-lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Pousse, G

    2005-10-15

    This thesis intends to characterize ground motion during earthquake. This work is based on two Japanese networks. It deals with databases of shallow events, depth less than 25 km, with magnitude between 4.0 and 7.3. The analysis of K-net allows to compute a spectral ground motion prediction equation and to review the shape of the Eurocode 8 design spectra. We show the larger amplification at short period for Japanese data and bring in light the soil amplification that takes place at large period. In addition, we develop a new empirical model for simulating synthetic stochastic nonstationary acceleration time histories. By specifying magnitude, distance and site effect, this model allows to produce many time histories, that a seismic event is liable to produce at the place of interest. Furthermore, the study of near-field borehole records of the Kik-net allows to explore the validity domain of predictive equations and to explain what occurs by extrapolating ground motion predictions. Finally, we show that nonlinearity reduces the dispersion of ground motion at the surface. (author)

  16. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  17. Unlearning in feed-forward multi-nets

    NARCIS (Netherlands)

    Spaanenburg, L; Kurkova,; Steele, NC; Neruda, R; Karny, M

    2001-01-01

    Multi-nets promise an improved performance over monolithic neural networks by virtue of their distributed implementation. Modular neural networks are multi-nets based on an judicious assembly of functionally different parts. This can be viewed as again a monolithic network, but with more complex

  18. Enabling the paperless world with RosettaNet

    Energy Technology Data Exchange (ETDEWEB)

    Robson, C.

    2004-07-01

    RosettaNet implementation has grown phenomenally since 2001 when it was first used in earnest. This paper will discuss the depth and breadth of RosettaNet today as the B2B (business to business) standard of choice of the global high-technology industry. This year individual companies will be transacting billions of dollars of ''paperless'' trade using RosettaNet. As well as the basic ordering processes, the standard now supports business processes as diverse as Collaborative Forecasting, Design Win, Material Composition and Logistics. In addition, RosettaNet's formal implementation initiatives, or Milestone Programs, are in progress to develop improved capabilities in areas such as eCustoms and semi-conductor test data exchange. This paper provides a view into this paperless world from a RosettaNet vantage point. The presentation at the Electronics Goes Green Conference will include additional information from published ''benefits cases.'' (orig.)

  19. Near-Net Forging Technology Demonstration Program

    Science.gov (United States)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  20. Net-Zero Building Technologies Create Substantial Energy Savings -

    Science.gov (United States)

    only an estimated 1% of commercial buildings are built to net-zero energy criteria. One reason for this Continuum Magazine | NREL Net-Zero Building Technologies Create Substantial Energy Savings Net -Zero Building Technologies Create Substantial Energy Savings Researchers work to package and share step

  1. Facilitating the Practical Use of Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo

    This dissertation is to investigate and advance tools for practical use of CP-nets. This includes development of facilities for creating domain-specific graphical user interfaces, a proposal for facilities for including auxiliary information in a CP-net without modifying the CP-net itself...

  2. Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?

    Directory of Open Access Journals (Sweden)

    M. G. Tosca

    2010-04-01

    Full Text Available During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997 or low (La Niña, 2000 fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1±12.9 W m−2 (10% in a region that encompassed most of Sumatra and Borneo (90° E–120° E, 5° S–5° N. The reductions in net shortwave radiation cooled sea surface temperatures (SSTs and land surface temperatures by 0.5±0.3 and 0.4±0.2 °C during these months. Tropospheric heating from black carbon (BC absorption averaged 20.5±9.3 W m−2 and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9±0.6 mm d−1 (10%. The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning

  3. Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?

    Energy Technology Data Exchange (ETDEWEB)

    Tosca, M G; Randerson, J; Zender, C S; Flanner, M G; Rasch, Philip J

    2010-04-16

    During El Niño years, fires in tropical forests and peatlands in equatorial Asia create large regional smoke clouds. We characterized the sensitivity of these clouds to regional drought, and we investigated their effects on climate by using an atmospheric general circulation model. Satellite observations during 2000–2006 indicated that El Niño-induced regional drought led to increases in fire emissions and, consequently, increases in aerosol optical depths over Sumatra, Borneo and the surrounding ocean. Next, we used the Community Atmosphere Model (CAM) to investigate how climate responded to this forcing. We conducted two 30 year simulations in which monthly fire emissions were prescribed for either a high (El Niño, 1997) or low (La Niña, 2000) fire year using a satellite-derived time series of fire emissions. Our simulations included the direct and semi-direct effects of aerosols on the radiation budget within the model. We assessed the radiative and climate effects of anthropogenic fire by analyzing the differences between the high and low fire simulations. Fire aerosols reduced net shortwave radiation at the surface during August–October by 19.1±12.9 W m-2 (10%) in a region that encompassed most of Sumatra and Borneo (90° E–120° E, 5° S–5° N). The reductions in net shortwave radiation cooled sea surface temperatures (SSTs) and land surface temperatures by 0.5±0.3 and 0.4±0.2 °C during these months. Tropospheric heating from black carbon (BC) absorption averaged 20.5±9.3 W m-2 and was balanced by a reduction in latent heating. The combination of decreased SSTs and increased atmospheric heating reduced regional precipitation by 0.9±0.6 mm d-1 (10%). The vulnerability of ecosystems to fire was enhanced because the decreases in precipitation exceeded those for evapotranspiration. Together, the satellite and modeling results imply a possible positive feedback loop in which anthropogenic burning in the region

  4. 47 CFR 69.302 - Net investment.

    Science.gov (United States)

    2010-10-01

    ...) Investment in Accounts 2002, 2003 and to the extent such inclusions are allowed by this Commission, Account... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Apportionment of Net Investment § 69.302 Net investment. (a) Investment in Accounts 2001, 1220 and Class B Rural...

  5. Net Neutrality and Inflation of Traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, F.

    2015-01-01

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate different net neutrality rules. Content differs in its sensitivity to delay.

  6. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

    Energy Technology Data Exchange (ETDEWEB)

    Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A& M University; Scott W. Tyler, Ph.D., University of Nevada, Reno; Tian-Chyi Jim Yeh, Ph.D., University of Arizona -- ORISE Review Facilitators: Robert S. Turner, Ph.D., Technical Review Group Manager, Oak Ridge Institute for Science and Education; Brian R. Herndon, Project Manager, Oak Ridge Institute for Science and Education; Russ Manning, Technical Writer/Editor, Haselwood Enterprises, Inc.

    2008-08-30

    The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technically credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: • A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (i) the net infiltration estimates, (ii) the uncertainty estimates of parameters caused by their spatial variability, and (iii) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. • The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. • While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they

  7. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

    International Nuclear Information System (INIS)

    Review Panel: Soroosh Sorooshian, Jan M. H. Hendrickx; Binayak P. Mohanty, Scott W. Tyler; Tian-Chyi Jim Yeh; Robert S. Turner; Brian R. Herndon; Russ Manning

    2008-01-01

    The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is 'to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site' (p. 1-1). The expert review panel assembled by ORISE concluded that the model report does not provide a technically credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (1) the net infiltration estimates, (2) the uncertainty estimates of parameters caused by their spatial variability, and (3) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they oversimplify a complex

  8. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  9. NetMOD Version 2.0 Mathematical Framework

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Young, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chael, Eric P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).

  10. WE-NET Hydrogen Energy Symposium proceedings; WE-NET suiso energy symposium koen yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-24

    The research and development of WE-NET (World Energy Network) was started in 1993 as a NEDO (New Energy and Industrial Technology Development Organization) project in the New Sunshine Program of Agency of Industrial Science and Technology, Ministry of International Trade and Industry, and aims to contribute to the improvement of global environment and to ease the difficult energy supply/demand situation. The ultimate goal of WE-NET is the construction of a global-scale clean energy network in which hydrogen will be produced from renewable energies such as water and sunshine for distribution to energy consuming locations. Experts are invited to the Symposium from the United States, Germany, and Canada. Information is collected from the participants on hydrogen energy technology development in the three countries, the result of the Phase I program of WE-NET is presented to hydrogen energy scientists in Japan, and views and opinions on the project are collected from them. Accommodated in the above-named publication are 30 essays and three special lectures delivered at the Symposium. (NEDO)

  11. Application of Coloured Petri Nets in System Development

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Jørgensen, Jens Bæk; Jensen, Kurt

    2004-01-01

    Coloured Petri Nets (CP-nets or CPNs) and their supporting computer tools have been used in a wide range of application areas such as communication protocols, software designs, and embedded systems. The practical application of CP-nets has also covered many phases of system development ranging fr...

  12. Net neutrality and inflation of traffic

    NARCIS (Netherlands)

    Peitz, M.; Schütt, Florian

    Under strict net neutrality Internet service providers (ISPs) are required to carry data without any differentiation and at no cost to the content provider. We provide a simple framework with a monopoly ISP to evaluate the short-run effects of different net neutrality rules. Content differs in its

  13. Status of the KM3NeT project

    International Nuclear Information System (INIS)

    Katz, U.F.

    2009-01-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a cubic-kilometre scale neutrino telescope and nodes for associated sciences such as marine biology, oceanology and geophysics. The status of the KM3NeT project and the progress made in the EU-funded Design Study is reviewed. Some physics studies indicating the sensitivity of the KM3NeT neutrino telescope are highlighted and selected major technical design options to be further pursued are described. Finally, the remaining steps towards construction of KM3NeT will be discussed. This document reflects the status of the KM3NeT Conceptual Design Report (CDR), which has been presented to the public for the first time at the VLVnT08 Workshop.

  14. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors

    International Nuclear Information System (INIS)

    Zimmermann, Lars; John, Joachim; Degroote, Stefan; Borghs, Gustaaf; Hoof, Chris van; Nemeth, Stefan

    2003-01-01

    We conducted an experimental study of back-side-illuminated InGaAs photodiodes grown on GaAs and sensitive in the short-wave infrared up to 2.4 μm. Standard metamorphic InGaAs or IR-transparent InAlAs buffers were grown by molecular-beam epitaxy. We studied dark current and photocurrent as a function of buffer thickness, buffer material, and temperature. A saturation of the dark current with buffer thickness was not observed. The maximum resistance area product was ∼10 Ω cm2 at 295 K. The dark current above 200 K was dominated by generation-recombination current. A pronounced dependence of the photocurrent on the buffer thickness was observed. The peak external quantum efficiency was 46% (at 1.6 μm) without antireflective coating

  15. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that

  16. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  17. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M; Venaelaeinen, A; Tourula, T [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1997-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  18. Microclimatic models. Estimation of components of the energy balance over land surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heikinheimo, M.; Venaelaeinen, A.; Tourula, T. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Climates at regional scale are strongly dependent on the interaction between atmosphere and its lower boundary, the oceans and the land surface mosaic. Land surfaces influence climate through their albedo, and the aerodynamic roughness, the processes of the biosphere and many soil hydrological properties; all these factors vary considerably geographically. Land surfaces receive a certain portion of the solar irradiance depending on the cloudiness, atmospheric transparency and surface albedo. Short-wave solar irradiance is the source of the heat energy exchange at the earth`s surface and also regulates many biological processes, e.g. photosynthesis. Methods for estimating solar irradiance, atmospheric transparency and surface albedo were reviewed during the course of this project. The solar energy at earth`s surface is consumed for heating the soil and the lower atmosphere. Where moisture is available, evaporation is one of the key components of the surface energy balance, because the conversion of liquid water into water vapour consumes heat. The evaporation process was studied by carrying out field experiments and testing parameterisation for a cultivated agricultural surface and for lakes. The micrometeorological study over lakes was carried out as part of the international `Northern Hemisphere Climatic Processes Experiment` (NOPEX/BAHC) in Sweden. These studies have been aimed at a better understanding of the energy exchange processes of the earth`s surface-atmosphere boundary for a more accurate and realistic parameterisation of the land surface in atmospheric models

  19. .net core application lifecycle on Openshift

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    # .net core application lifecycle on Openshift I will show an example of a lifecycle of an OpenShift application with an emphasis on the continuous integration and deployment. The application compatible with [.net Standard](https://docs.microsoft.com/en-us/dotnet/standard/net-standard) can be easily deployed on OpenShift using [Source2Image](https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/builds_and_image_streams.html#source-build) functionality, which doesn't require developers to maintain docker images of the application. I will also present how to efficiently integrate this feature into GitLab pipelines with an automated deployment of the "review" environment, as one its parts.

  20. MATT: Multi Agents Testing Tool Based Nets within Nets

    Directory of Open Access Journals (Sweden)

    Sara Kerraoui

    2016-12-01

    As part of this effort, we propose a model based testing approach for multi agent systems based on such a model called Reference net, where a tool, which aims to providing a uniform and automated approach is developed. The feasibility and the advantage of the proposed approach are shown through a short case study.

  1. Tools and Methods for RTCP-Nets Modeling and Verification

    Directory of Open Access Journals (Sweden)

    Szpyrka Marcin

    2016-09-01

    Full Text Available RTCP-nets are high level Petri nets similar to timed colored Petri nets, but with different time model and some structural restrictions. The paper deals with practical aspects of using RTCP-nets for modeling and verification of real-time systems. It contains a survey of software tools developed to support RTCP-nets. Verification of RTCP-nets is based on coverability graphs which represent the set of reachable states in the form of directed graph. Two approaches to verification of RTCP-nets are considered in the paper. The former one is oriented towards states and is based on translation of a coverability graph into nuXmv (NuSMV finite state model. The later approach is oriented towards transitions and uses the CADP toolkit to check whether requirements given as μ-calculus formulae hold for a given coverability graph. All presented concepts are discussed using illustrative examples

  2. Studies on the suitability of HDPE material for gill nets

    OpenAIRE

    Subramania Pillai, N.; Boopendranath, M.R.; Kunjipalu, K.K.

    1989-01-01

    The suitability of HDPE yarn and HDPE twine in place of nylon for gill nets has been studied. As regards total catch nylon gill net is found to be better than HDPE nets. However, statistical analysis of the catch in respect of quality fishes shows that HDPE yarn nets are equally efficient as nylon nets.

  3. Reduction rules for reset/inhibitor nets

    NARCIS (Netherlands)

    Verbeek, H.M.W.; Wynn, M.T.; Aalst, van der W.M.P.; Hofstede, ter A.H.M.

    2010-01-01

    Reset/inhibitor nets are Petri nets extended with reset arcs and inhibitor arcs. These extensions can be used to model cancellation and blocking. A reset arc allows a transition to remove all tokens from a certain place when the transition fires. An inhibitor arc can stop a transition from being

  4. Verifying generalized soundness for workflow nets

    NARCIS (Netherlands)

    Hee, van K.M.; Oanea, O.I.; Sidorova, N.; Voorhoeve, M.; Virbitskaite, I.; Voronkov, A.

    2007-01-01

    We improve the decision procedure from [10] for the problem of generalized soundness of workflow nets. A workflow net is generalized sound iff every marking reachable from an initial marking with k tokens on the initial place terminates properly, i.e. it can reach a marking with k tokens on the

  5. 27 CFR 4.37 - Net contents.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Net contents. 4.37 Section 4.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF WINE Labeling Requirements for Wine § 4.37 Net...

  6. Evaluating Carbon Sequestration and Solar Forcing Feedbacks Resulting from North American Afforestation

    Science.gov (United States)

    Mykleby, P.; Snyder, P. K.; Twine, T. E.

    2013-12-01

    The planting of trees and forests has long been accepted as a practical and efficient method to sequester carbon dioxide from the atmosphere. Assertive measures are now needed to ensure that atmospheric levels of carbon dioxide (CO2) do not continue to rise and cause additional planetary warming. However, recent studies have detected inadvertent biophysical feedbacks associated with land cover changes, especially in higher northern latitudes. The changes in surface reflectivity that occur when converting a lighter, more reflective surface, such as a grassland or bare soil, into a darker conifer forest, can result in surface warming due to the forest absorbing more shortwave radiation. This warming counteracts the cooling effect resulting from a reduction in atmospheric CO2 with increased vegetation productivity. This effect is further intensified in the higher northern latitudes where snow cover is prevalent during the long winter; the planting of trees can significantly decrease the reflectivity compared with white snow. The goal of this study is to determine whether the amount of carbon sequestered exceeds the carbon equivalent of the radiative forcing due to the change in surface reflectivity. This study uses the IBIS dynamic vegetation model with modified carbon dynamics for conifer forests validated with numerous Ameriflux and Fluxnet Canada field sites with varying stand ages and species compositions. We present results of model performance based on validation of net ecosystem exchange (NEE) and net radiation observations. Results from this study will be used to assess not only the net effect of conifer forest establishment on the long term carbon storage, but also the duration of time that a given location would remain a carbon sink during the lifetime of the forest. Only then, can policymakers begin to discuss the efficacy of afforestation as a sound climate mitigation strategy.

  7. The  Practitioner's guide to Coloured Petri Nets

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Christensen, Søren; Jensen, Kurt

    1998-01-01

    four hundred commercial companies. It is available free of charge, also for commercial use. This paper provides a comprehensive road map to the practical use of CP-nets and the Design/CPN tool. We give an informal introduction to the basic concepts and ideas underliying CP-nets. The key components...... and facilities of the Design/CPN tool are presented and their use illustrated. The paper is self-contained and does not assume any prior kowledge of Petri nets and CP-nets nor any experience with the Design/CPN tool...

  8. Structures and scan strategies of software net models

    International Nuclear Information System (INIS)

    Puhr-Westerheide, P.; Sandbaek, H.

    1984-01-01

    The present paper deals with some aspects of plant control and monitoring systems as used in nuclear power plants. These aspects concern executable net models to run on computers. A short survey on the nets' environment and on some net scan strategies is given. Among the strategies are the 'topologically ordered scan' and the 'signal propagation scan'. A combined method 'topologically ordered signal propagation (TOSIP) scan' will be outlined as well as a net model data structure that allows the definition of subsystems for the use of clear structuration and dischargement to distributed systems. (author)

  9. The Uniframe .Net Web Service Discovery Service

    National Research Council Canada - National Science Library

    Berbeco, Robert W

    2003-01-01

    Microsoft .NET allows the creation of distributed systems in a seamless manner Within NET small, discrete applications, referred to as Web services, are utilized to connect to each other or larger applications...

  10. A New Light on Nets of C*-Algebras and Their Representations

    Science.gov (United States)

    Ruzzi, Giuseppe; Vasselli, Ezio

    2012-06-01

    The present paper deals with the question of representability of nets of C*-algebras whose underlying poset, indexing the net, is not upward directed. A particular class of nets, called C*-net bundles, is classified in terms of C*-dynamical systems having as group the fundamental group of the poset. Any net of C*-algebras has a canonical morphism into a C*-net bundle, the enveloping net bundle, which generalizes the notion of universal C*-algebra given by Fredenhagen to nonsimply connected posets. This allows a classification of nets; in particular, we call injective those nets such that the canonical morphism is faithful. Injectivity turns out to be equivalent to the existence of faithful representations. We further relate injectivity to a generalized Čech cocycle of the net, and this allows us to give examples of nets exhausting the above classification. Using these results we have shown, in another paper, that any conformal net over S 1 is injective.

  11. 10 CFR 436.20 - Net savings.

    Science.gov (United States)

    2010-01-01

    ... ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a...

  12. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hailong; Liu Xiangcui [State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing (China); Zhang Minghua [Institute for Terrestrial and Planetary Atmospheres, Stony Brook University, State University of New York, Stony Brook, NY (United States); Lin Wuyin, E-mail: lhl@lasg.iap.ac.cn [Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY (United States)

    2011-07-15

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents-key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific-from 5 deg. S to 10 deg. S and 170 deg. E to 150 deg. W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  13. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  14. A Restricted Boltzman Neural Net to Infer Carbon Uptake from OCO-2 Satellite Data

    Science.gov (United States)

    Halem, M.; Dorband, J. E.; Radov, A.; Barr-Dallas, M.; Gentine, P.

    2015-12-01

    For several decades, scientists have been using satellite observations to infer climate budgets of terrestrial carbon uptake employing inverse methods in conjunction with ecosystem models and coupled global climate models. This is an extremely important Big Data calculation today since the net annual photosynthetic carbon uptake changes annually over land and removes on average ~20% of the emissions from human contributions to atmospheric loading of CO2 from fossil fuels. Unfortunately, such calculations have large uncertainties validated with in-situ networks of measuring stations across the globe. One difficulty in using satellite data for these budget calculations is that the models need to assimilate surface fluxes of CO2 as well as soil moisture, vegatation cover and the eddy covariance of latent and sensible heat to calculate the carbon fixed in the soil while satellite spectral observations only provide near surface concentrations of CO2. In July 2014, NASA successfully launched OCO-2 which provides 3km surface measurements of CO2 over land and oceans. We have collected nearly one year of Level 2 XCO2 data from the OCO-2 satellite for 3 sites of ~200 km2 at equatorial, temperate and high latitudes. Each selected site was part of the Fluxnet or ARM system with tower stations for measuring and collecting CO2 fluxes on an hourly basis, in addition to eddy transports of the other parameters. We are also planning to acquire the 4km NDVI products from MODIS and registering the data to the 3km XCO2 footprints for the three sites. We have implemented a restricted Boltzman machine on the quantum annealing D-Wave computer, a novel deep learning neural net, to be used for training with station data to infer CO2 fluxes from collocated XCO2, MODIS vegetative land cover and MERRA reanalysis surface exchange products. We will present performance assessments of the D-Wave Boltzman machine for generating XCO2 fluxes from the OCO-2 satellite observations for the 3 sites by

  15. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Luo, Yiyong [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Garuba, Oluwayemi [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Wan, Xiuquan [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

    2017-09-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  16. RadNet Air Quality (Fixed Station) Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State,...

  17. CLIMATE CHANGE. Long-term climate forcing by atmospheric oxygen concentrations.

    Science.gov (United States)

    Poulsen, Christopher J; Tabor, Clay; White, Joseph D

    2015-06-12

    The percentage of oxygen in Earth's atmosphere varied between 10% and 35% throughout the Phanerozoic. These changes have been linked to the evolution, radiation, and size of animals but have not been considered to affect climate. We conducted simulations showing that modulation of the partial pressure of oxygen (pO2), as a result of its contribution to atmospheric mass and density, influences the optical depth of the atmosphere. Under low pO2 and a reduced-density atmosphere, shortwave scattering by air molecules and clouds is less frequent, leading to a substantial increase in surface shortwave forcing. Through feedbacks involving latent heat fluxes to the atmosphere and marine stratus clouds, surface shortwave forcing drives increases in atmospheric water vapor and global precipitation, enhances greenhouse forcing, and raises global surface temperature. Our results implicate pO2 as an important factor in climate forcing throughout geologic time. Copyright © 2015, American Association for the Advancement of Science.

  18. Analisis Determinan Net Ekspor Indonesia

    OpenAIRE

    Daulay, Rahmawaty

    2010-01-01

    This study is to analyzing empirically among Indonesia GDP, trade partnership GDP (Malaysia, Singapore, US and Thailand) and real exchange rate toward Indonesia Net Export. To find out which one from those three variables is significant in order to fluctuating (increasing or decreasing) Indonesia Net Export either in the short run or in the long run. Data collection is obtained using secondary data, namely Indonesia GDP, Malaysia GDP, Singapura GDP, US GDP, Thailand GDP and real exchange rate...

  19. Seasonal reversal of temperature-moisture response of net carbon exchange of biocrusted soils in a cool desert ecosystem.

    Science.gov (United States)

    Tucker, C.; Reed, S.; Howell, A.

    2017-12-01

    Carbon cycling associated with biological soil crusts, which occur in interspaces between vascular plants in drylands globally, may be an important part of the coupled climate-carbon cycle of the Earth system. A major challenge to understanding CO2 fluxes in these systems is that much of the biotic and biogeochemical activity occurs in the upper few mm of the soil surface layer (i.e., the `mantle of fertility'), which exhibits highly dynamic and difficult to measure temperature and moisture fluctuations. Here, we report data collected in a cool desert ecosystem over one year using a multi-sensor approach to simultaneously measuring temperature and moisture of the biocrust surface layer (0-2 mm), and the deeper soil profile (5-20 cm), concurrent with automated measurement of surface soil CO2 effluxes. Our results illuminate robust relationships between microclimate and field CO2 pulses that have previously been difficult to detect and explain. The temperature of the biocrust surface layer was highly variable, ranging from minimum of -9 °C in winter to maximum of 77 °C in summer with a maximum diurnal range of 61 °C. Temperature cycles were muted deeper in the soil profile. During summer, biocrust and soils were usually hot and dry and CO2 fluxes were tightly coupled to pulse wetting events experienced at the biocrust surface, which consistently resulted in net CO2 efflux (i.e., respiration). In contrast, during the winter, biocrust and soils were usually cold and moist, and there was sustained net CO2 uptake via photosynthesis by biocrust organisms, although during cold dry periods CO2 fluxes were minimal. During the milder spring and fall seasons, short wetting events drove CO2 loss, while sustained wetting events resulted in net CO2 uptake. Thus, the upper and lower bounds of net CO2 exchange at a point in time were functions of the seasonal temperature regime, while the actual flux within those bounds was determined by the magnitude and duration of biocrust

  20. The Net Neutrality Debate: The Basics

    Science.gov (United States)

    Greenfield, Rich

    2006-01-01

    Rich Greenfield examines the basics of today's net neutrality debate that is likely to be an ongoing issue for society. Greenfield states the problems inherent in the definition of "net neutrality" used by Common Cause: "Network neutrality is the principle that Internet users should be able to access any web content they choose and…

  1. WE-NET. Substask 4. Development of hydrogen production technologies; 1998 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET). 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Under the hydrogen-utilizing international clean energy system technology project WE-NET (World Energy NET Work), researches were conducted aiming at the establishment of a hydrogen production technology through electrolysis of polymer electrolyte solution. In fiscal 1998, element technologies were developed for the development of high-efficiency/large-capacity water electrolyzing plants using electrodeless deposition and hot pressing, research and investigation of optimum operating conditions were conducted, and a service plant conceptual design and a polymer electrolytic membrane were developed. In addition, literature was searched for the current state of ion exchange membranes and water electrolysis, both indispensable for the hydrogen production technology discussed in this paper. In the field of lamination of large cells (electrode surface:2500cm{sup 2}), an excellent energy efficiency level exceeding 90% set as the target for a large laminated cell performance test was achieved - 92.6% by electrodeless deposition and 94.4% by hot pressing. As for polymer membranes capable of resisting high temperatures, a membrane with an ionic conductivity of 0.066S/cm at 200 degrees C was newly developed. (NEDO)

  2. Optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme for Intel Many Integrated Core (MIC) architecture

    Science.gov (United States)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    Intel Many Integrated Core (MIC) ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our results of optimizing the updated Goddard shortwave radiation Weather Research and Forecasting (WRF) scheme on Intel Many Integrated Core Architecture (MIC) hardware. The Intel Xeon Phi coprocessor is the first product based on Intel MIC architecture, and it consists of up to 61 cores connected by a high performance on-die bidirectional interconnect. The co-processor supports all important Intel development tools. Thus, the development environment is familiar one to a vast number of CPU developers. Although, getting a maximum performance out of Xeon Phi will require using some novel optimization techniques. Those optimization techniques are discusses in this paper. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.3x.

  3. Towards Self-Managed Executable Petri Nets

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Zhang, Weishan; Ingstrup, Mads

    2008-01-01

    An issue in self-managed systems is that different abstractions and programming models are used on different architectural layers, leading to systems that are harder to build and understand. To alleviate this, we introduce a self-management approach which combines high-level Petri nets...... with the capability of distributed communication among nets. Organized in a three-layer goal management, change management, and component control architecture this allows for self-management in distributed systems. We validate the approach through the Flamenco/CPN middleware that allows for self-management of service......-oriented pervasive computing systems through the runtime interpretation of colored Petri nets. The current work focuses on the change management and component control layers....

  4. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  5. Propagation characteristic of THz wave in camouflage net material

    Science.gov (United States)

    Dong, Hailong; Wang, Jiachun; Chen, Zongsheng; Lin, Zhidan; Zhao, Dapeng; Liu, Ruihuang

    2017-10-01

    Terahertz (THz) radar system, with excellent potentials such as high-resolution and strong penetration capability, is promising in the field of anti-camouflage. Camouflage net is processed by cutting the camouflage net material, which is fabricated on pre-processing substrate by depositing coatings with camouflage abilities in different bands, such as visible, infrared and radar. In this paper, we concentrate on the propagation characteristic of THz wave in camouflage net material. Firstly, function and structure of camouflage net were analyzed. Then the advantage and appliance of terahertz time-domain spectroscopy (THz-TDS) was introduced. And the relevant experiments were conducted by utilizing THz-TDS. The results obtained indicate that THz wave has better penetration capacity in camouflage net material, which demonstrates the feasibility of using THz radar to detect those targets covered with camouflage net.

  6. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  7. The annual cycle of nitrate and net community production in surface waters of the Southern Ocean observed with SOCCOM profiling floats

    Science.gov (United States)

    Johnson, K. S.; Plant, J. N.; Sakamoto, C.; Coletti, L. J.; Sarmiento, J. L.; Riser, S.; Talley, L. D.

    2016-12-01

    Sixty profiling floats with ISUS and SUNA nitrate sensors have been deployed in the Southern Ocean (south of 30 degrees S) as part of the SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) program and earlier efforts. These floats have produced detailed records of the annual cycle of nitrate concentration throughout the region from the surface to depths near 2000 m. In surface waters, there are clear cycles in nitrate concentration that result from uptake of nitrate during austral spring and summer. These changes in nitrate concentration were used to compute the annual net community production over this region. NCP was computed using a simplified version of the approach detailed by Plant et al. (2016, Global Biogeochemical Cycles, 30, 859-879, DOI: 10.1002/2015GB005349). At the time the abstract was written 41 complete annual cycles were available from floats deployed before the austral summer of 2015/2016. After filtering the data to remove floats that crossed distinct frontal boundaries, floats with other anomalies, and floats in sub-tropical waters, 23 cycles were available. A preliminary assessment of the data yields an NCP of 2.8 +/- 0.95 (1 SD) mol C/m2/y after integrating to 100 m depth and converting nitrate uptake to carbon using the Redfield ratio. This preliminary assessment ignores vertical transport across the nitracline and is, therefore, a minimum estimate. The number of cycles available for analysis will increase rapidly, as 32 of the floats were deployed in the austral summer of 2015/2016 and have not yet been analyzed.

  8. .NET 4.5 parallel extensions

    CERN Document Server

    Freeman, Bryan

    2013-01-01

    This book contains practical recipes on everything you will need to create task-based parallel programs using C#, .NET 4.5, and Visual Studio. The book is packed with illustrated code examples to create scalable programs.This book is intended to help experienced C# developers write applications that leverage the power of modern multicore processors. It provides the necessary knowledge for an experienced C# developer to work with .NET parallelism APIs. Previous experience of writing multithreaded applications is not necessary.

  9. A Lightweight TwiddleNet Portal

    Science.gov (United States)

    2008-03-01

    dimensions of 2.8 x 0.7 x 4.6 inches make for a very good tool for TwiddleNet missions. Its Lithium -ion battery with 1200 mAh energy gives approximately...Wireless Connectivity IrDA, Bluetooth, IEEE 802.11b Battery Lithium ion Approximate Dimensions (in) 2.8 x 0.7 x 4.6 Weight (oz) 6.2 ROM 128 MB...designed to exploit the multiple networking modalities available in the current generation of smartphones . TwiddleNet enables well-organized and well

  10. NetMOD Version 2.0 User?s Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydracoustic, and infrasonic networks. Specifically, NetMOD simulates the detection capabilities of monitoring networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each of the stations. From these signal-to-noise ratios (SNR), the probability of detection can be computed given a detection threshold. This manual describes how to configure and operate NetMOD to perform detection simulations. In addition, NetMOD is distributed with simulation datasets for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) International Monitoring System (IMS) seismic, hydroacoustic, and infrasonic networks for the purpose of demonstrating NetMOD's capabilities and providing user training. The tutorial sections of this manual use this dataset when describing how to perform the steps involved when running a simulation. ACKNOWLEDGEMENTS We would like to thank the reviewers of this document for their contributions.

  11. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    Science.gov (United States)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  12. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    International Nuclear Information System (INIS)

    Johnson, W L; Frank, D J; Nast, T C; Fesmire, J E

    2015-01-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system. (paper)

  13. RadNet Air Data From Sacramento, CA

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Honolulu, HI

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Houston, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Austin, TX

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Orlando, FL

    Science.gov (United States)

    This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. Control of Eucryptorrhynchus scrobiculatus (Coleoptera: Cuculionidae), a Major Pest of Ailanthus altissima (Sapindales: Simaroubaceae), Using a Modified Square Trap Net.

    Science.gov (United States)

    Yang, Kailang; Wen, Xiaojian; Ren, Yuan; Wen, Junbao

    2018-04-19

    Eucryptorrhynchus scrobiculatus (Motschulsky) (Coleoptera: Cuculionidae) is a borer that mainly attacks the tree of heaven, Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae), and is one of the most damaging forestry pests in China. We developed a trap net for entangling and immobilizing soil-emerging weevils in order to reduce their impact. Recapture rates of weevils in the laboratory was significantly higher with nylon netting of 9, 10, or 11 mm mesh sizes than larger sizes, and these sizes were used to make trial nets for preventing weevil emergence from the soil around impacted trees in the field. Nets were 2 × 2 m with a reinforced border and Velcro-closable, radial slit which allowed the net to be arranged around the base of the tree while producing an unbroken barrier beneath the soil surface (i.e., a modified square trap net, MSTN). Recapture rates of weevils released in the soil did not differ among the MSTNs of 9, 10, or 11 mm mesh sizes. MSTN treatments significantly reduced emergence by naturally-occurring weevils from the soil surrounding trees and reduced numbers of weevils caught in population monitoring traps deployed in treated stands. The results demonstrated that MSTNs might be used to manage of E. scrobiculatus.

  19. Global reinforcement training of CrossNets

    Science.gov (United States)

    Ma, Xiaolong

    2007-10-01

    Hybrid "CMOL" integrated circuits, incorporating advanced CMOS devices for neural cell bodies, nanowires as axons and dendrites, and latching switches as synapses, may be used for the hardware implementation of extremely dense (107 cells and 1012 synapses per cm2) neuromorphic networks, operating up to 10 6 times faster than their biological prototypes. We are exploring several "Cross- Net" architectures that accommodate the limitations imposed by CMOL hardware and should allow effective training of the networks without a direct external access to individual synapses. Our studies have show that CrossNets based on simple (two-terminal) crosspoint devices can work well in at least two modes: as Hop-field networks for associative memory and multilayer perceptrons for classification tasks. For more intelligent tasks (such as robot motion control or complex games), which do not have "examples" for supervised learning, more advanced training methods such as the global reinforcement learning are necessary. For application of global reinforcement training algorithms to CrossNets, we have extended Williams's REINFORCE learning principle to a more general framework and derived several learning rules that are more suitable for CrossNet hardware implementation. The results of numerical experiments have shown that these new learning rules can work well for both classification tasks and reinforcement tasks such as the cartpole balancing control problem. Some limitations imposed by the CMOL hardware need to be carefully addressed for the the successful application of in situ reinforcement training to CrossNets.

  20. Automating Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.