WorldWideScience

Sample records for surface moisture flux

  1. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  2. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  3. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  4. The practical application of scintillometers in determining the surface fluxes of heat, moisture and momentum

    NARCIS (Netherlands)

    Green, A.E.

    2001-01-01

    This thesis has collated one review chapter and five experiments concerned with addressing the question, 'how successful is the scintillometer method in determining the surface fluxes of heat, moisture and momentum and under what circumstances does it appear to fail?'

  5. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Science.gov (United States)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  6. Potential feedbacks between snow cover, soil moisture and surface energy fluxes in Southern Norway

    Science.gov (United States)

    Brox Nilsen, Irene; Tallaksen, Lena M.; Stordal, Frode

    2017-04-01

    At high latitudes, the snow season has become shorter during the past decades because snowmelt is highly sensitive to a warmer climate. Snowmelt influences the energy balance by changing the albedo and the partitioning between latent and sensible heat fluxes. It further influences the water balance by changing the runoff and soil moisture. In a previous study, we identified southern Norway as a region where significant temperature changes in summer could potentially be explained by land-atmosphere interactions. In this study we hypothesise that changes in snow cover would influence the summer surface fluxes in the succeeding weeks or months. The exceptionally warm summer of 2014 was chosen as a test bed. In Norway, evapotranspiration is not soil moisture limited, but energy limited, under normal conditions. During warm summers, however, such as in 2014, evapotranspiration can be restricted by the available soil moisture. Using the Weather Research and Forecasting (WRF) model we replace the initial ground conditions for 2014 with conditions representative of a snow-poor spring and a snow-rich spring. WRF was coupled to Noah-MP at 3 km horizontal resolution in the inner domain, and the simulations covered mid-May through September 2014. Boundary conditions used to force WRF were taken from the Era-Interim reanalysis. Snow, runoff, soil moisture and soil temperature observational data were provided by the Norwegian Water Resources and Energy Directorate for validation. The validation shows generally good agreement with observations. Preliminary results show that the reduced snowpack, hereafter "sim1" increased the air temperature by up to 5 K and the surface temperature by up to 10 K in areas affected by snow changes. The increased snowpack, hereafter "sim2", decreased the air and surface temperature by the same amount. These are weekly mean values for the first eight simulation weeks from mid May. Because of the higher net energy available ( 100 Wm-2) in sim 1, both

  7. Estimating surface turbulent heat fluxes from land surface temperature and soil moisture using the particle batch smoother

    Science.gov (United States)

    Lu, Yang; Dong, Jianzhi; Steele-Dunne, Susan; van de Giesen, Nick

    2016-04-01

    This study is focused on estimating surface sensible and latent heat fluxes from land surface temperature (LST) time series and soil moisture observations. Surface turbulent heat fluxes interact with the overlying atmosphere and play a crucial role in meteorology, hydrology and other climate-related fields, but in-situ measurements are costly and difficult. It has been demonstrated that the time series of LST contains information of energy partitioning and that surface turbulent heat fluxes can be determined from assimilation of LST. These studies are mainly based on two assumptions: (1) a monthly value of bulk heat transfer coefficient under neutral conditions (CHN) which scales the sum of the fluxes, and (2) an evaporation fraction (EF) which stays constant during the near-peak hours of the day. Previous studies have applied variational and ensemble approaches to this problem. Here the newly developed particle batch smoother (PBS) algorithm is adopted to test its capability in this application. The PBS can be seen as an extension of the standard particle filter (PF) in which the states and parameters within a fix window are updated in a batch using all observations in the window. The aim of this study is two-fold. First, the PBS is used to assimilate only LST time series into the force-restore model to estimate fluxes. Second, a simple soil water transfer scheme is introduced to evaluate the benefit of assimilating soil moisture observations simultaneously. The experiments are implemented using the First ISLSCP (International Satellite Land Surface Climatology Project) (FIFE) data. It is shown that the restored LST time series using PBS agrees very well with observations, and that assimilating LST significantly improved the flux estimation at both daily and half-hourly time scales. When soil moisture is introduced to further constrain EF, the accuracy of estimated EF is greatly improved. Furthermore, the RMSEs of retrieved fluxes are effectively reduced at both

  8. A COUPLED LAND-SURFACE AND DRY DEPOSITION MODEL AND COMPARISON TO FIELD MEASUREMENTS OF SURFACE HEAT, MOISTURE, AND OZONE FLUXES

    Science.gov (United States)

    We have developed a coupled land-surface and dry deposition model for realistic treatment of surface fluxes of heat, moisture, and chemical dry deposition within a comprehensive air quality modeling system. A new land-surface model (LSM) with explicit treatment of soil moisture...

  9. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  10. Heat and moisture flux profiles in a region with inhomogeneous surface evaporation

    NARCIS (Netherlands)

    Michels, B.I.; Jochum, A.M.

    1995-01-01

    Results from a case study of heat and moisture transport in the atmospheric boundary layer during the European Field Experiment in a Desertification-threatened Area (EFEDA) are presented. The experimental area is heterogeneous in respect of soil moisture and vegetation on scales of several tens of

  11. The Impact of Moisture Intrusions from Lower Latitudes on Arctic Net Surface Radiative Fluxes and Sea Ice Growth in Fall and Winter

    Science.gov (United States)

    Hegyi, B. M.; Taylor, P. C.

    2017-12-01

    The fall and winter seasons mark an important period in the evolution of Arctic sea ice, where energy is transferred away from the surface to facilitate the cooling of the surface and the growth of Arctic sea ice extent and thickness. Climatologically, these seasons are characterized by distinct periods of increased and reduced surface cooling and sea ice growth. Periods of reduced sea ice growth and surface cooling are associated with cloudy conditions and the transport of warm and moist air from lower latitudes, termed moisture intrusions. In the research presented, we explore the regional and Arctic-wide impact of moisture intrusions on the surface net radiative fluxes and sea ice growth for each fall and winter season from 2000/01-2015/16, utilizing MERRA2 reanalysis data, PIOMAS sea ice thickness data, and daily CERES radiative flux data. Consistent with previous studies, we find that positive anomalies in downwelling longwave surface flux are associated with increased temperature and water vapor content in the atmospheric column contained within the moisture intrusions. Interestingly, there are periods of increased downwelling LW flux anomalies that persist for one week or longer (i.e. longer than synoptic timescales) that are associated with persistent poleward flux of warm, moist air from lower latitudes. These persistent anomalies significantly reduce the regional growth of Arctic sea ice, and may in part explain the interannual variability of fall and winter Arctic sea ice growth.

  12. Landscape-scale soil moisture heterogeneity and its influence on surface fluxes at the Jornada LTER site: Evaluating a new model parameterization for subgrid-scale soil moisture variability

    Science.gov (United States)

    Baker, I. T.; Prihodko, L.; Vivoni, E. R.; Denning, A. S.

    2017-12-01

    Arid and semiarid regions represent a large fraction of global land, with attendant importance of surface energy and trace gas flux to global totals. These regions are characterized by strong seasonality, especially in precipitation, that defines the level of ecosystem stress. Individual plants have been observed to respond non-linearly to increasing soil moisture stress, where plant function is generally maintained as soils dry down to a threshold at which rapid closure of stomates occurs. Incorporating this nonlinear mechanism into landscape-scale models can result in unrealistic binary "on-off" behavior that is especially problematic in arid landscapes. Subsequently, models have `relaxed' their simulation of soil moisture stress on evapotranspiration (ET). Unfortunately, these relaxations are not physically based, but are imposed upon model physics as a means to force a more realistic response. Previously, we have introduced a new method to represent soil moisture regulation of ET, whereby the landscape is partitioned into `BINS' of soil moisture wetness, each associated with a fractional area of the landscape or grid cell. A physically- and observationally-based nonlinear soil moisture stress function is applied, but when convolved with the relative area distribution represented by wetness BINS the system has the emergent property of `smoothing' the landscape-scale response without the need for non-physical impositions on model physics. In this research we confront BINS simulations of Bowen ratio, soil moisture variability and trace gas flux with soil moisture and eddy covariance observations taken at the Jornada LTER dryland site in southern New Mexico. We calculate the mean annual wetting cycle and associated variability about the mean state and evaluate model performance against this variability and time series of land surface fluxes from the highly instrumented Tromble Weir watershed. The BINS simulations capture the relatively rapid reaction to wetting

  13. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. Part 1; Overview

    Science.gov (United States)

    Crosson, William L.; Laymon, Charles A.; Inguva, Ramarao; Schamschula, Marius; Caulfield, John

    1998-01-01

    ' soil moisture under such conditions and even more difficult to apply such a value. Because of the non-linear relationships between near-surface soil moisture and other variables of interest, such as surface energy fluxes and runoff, mean soil moisture has little applicability at such large scales. It is for these reasons that the use of remote sensing in conjunction with a hydrologic model appears to be of benefit in capturing the complete spatial and temporal structure of soil moisture. This paper is Part I of a four-part series describing a method for intermittently assimilating remotely-sensed soil moisture information to improve performance of a distributed land surface hydrology model. The method, summarized in section II, involves the following components, each of which is detailed in the indicated section of the paper or subsequent papers in this series: Forward radiative transfer model methods (section II and Part IV); Use of a Kalman filter to assimilate remotely-sensed soil moisture estimates with the model profile (section II and Part IV); Application of a soil hydrology model to capture the continuous evolution of the soil moisture profile within and below the root zone (section III); Statistical aggregation techniques (section IV and Part II); Disaggregation techniques using a neural network approach (section IV and Part III); and Maximum likelihood and Bayesian algorithms for inversely solving for the soil moisture profile in the upper few cm (Part IV).

  14. Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in the West Siberian Lowland

    Directory of Open Access Journals (Sweden)

    T. J. Bohn

    2013-10-01

    Full Text Available We used a process-based model to examine the role of spatial heterogeneity of surface and sub-surface water on the carbon budget of the wetlands of the West Siberian Lowland over the period 1948–2010. We found that, while surface heterogeneity (fractional saturated area had little overall effect on estimates of the region's carbon fluxes, sub-surface heterogeneity (spatial variations in water table depth played an important role in both the overall magnitude and spatial distribution of estimates of the region's carbon fluxes. In particular, to reproduce the spatial pattern of CH4 emissions recorded by intensive in situ observations across the domain, in which very little CH4 is emitted north of 60° N, it was necessary to (a account for CH4 emissions from unsaturated wetlands and (b use spatially varying methane model parameters that reduced estimated CH4 emissions in the northern (permafrost half of the domain (and/or account for lower CH4 emissions under inundated conditions. Our results suggest that previous estimates of the response of these wetlands to thawing permafrost may have overestimated future increases in methane emissions in the permafrost zone.

  15. The micrometeorological investigation of heat flux and moisture ...

    African Journals Online (AJOL)

    The diurnal and seasonal variations of heat flux and the moisture content in the soil at a site for the Nigeria Mesoscale Experiment (NIMEX) in the University of Ibadan, Nigeria (7.380 N and 3.930 E), had been investigated. The study also investigated effects of the atmospheric phenomena on magnitudes of the surface layer ...

  16. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  17. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  18. Vertically integrated moisture flux convergence as a predictor of thunderstorms

    NARCIS (Netherlands)

    van Zomeren, J.; van Delden, A.J.

    2007-01-01

    Vertically Integrated Moisture Flux Convergence (VIMFC) alone and in combination with the lifted stability index of the most unstable layer (SMUL) is evaluated as a thunderstorm predictor. By using six-hourly standard pressure weather analysis data from the European Centre for Medium-range Weather

  19. Predicting root zone soil moisture with satellite near-surface moisture data in semiarid environments

    Science.gov (United States)

    Manfreda, S.; Baldwin, D. C.; Keller, K.; Smithwick, E. A. H.; Caylor, K. K.

    2015-12-01

    One of the most critical variables in semiarid environment is the soil water content that represents a controlling factor for both ecological and hydrological processes. Soil moisture monitoring over large scales may be extremely useful, but it is limited by the fact that most of the available tools provides only surface measurements not representative of the effective amount of water stored in the subsurface. Therefore, a methodology able to infer root-zone soil moisture starting from surface measurements is highly desirable. Recently a new simplified formulation has been introduced to provide a formal description of the mathematical relationship between surface measurements and root-zone soil moisture (Manfreda et al., HESS 2014). This is a physically based approach derived from the soil water balance equation, where different soil water loss functions have been explored in order to take into account for the non-linear processes governing soil water fluxes. The study highlighted that the soil loss function is the key for such relationship that is therefore strongly influenced by soil type and physiological plant types. The new formulation has been tested on soil moisture based on measurements taken from the African Monsoon Multidisciplinary Analysis (AMMA) and the Soil Climate Analysis Network (SCAN) databases. The method sheds lights on the physical controls for soil moisture dynamics and on the possibility to use such a simplified method for the description of root-zone soil moisture. Furthermore, the method has been also couple with an Enasamble Kalman Filter (EnKF) in order to optimize its performances for the large scale monitoring based the new satellite near-surface moisture data (SMAP). The optimized SMAR-EnKF model does well in both wet and dry climates and across many different soil types (51 SCAN locations) providing a strategy for real-time soil moisture monitoring.

  20. An Analysis of Moisture Fluxes into the Gulf of California

    Science.gov (United States)

    Wu, Man-Li C.; Schubert, Siegfried D.; Suarez, Max J.; Huang, Norden E.

    2009-01-01

    This study examines the nature of episodes of enhanced warm-season moisture flux into the Gulf of California. Both spatial structure and primary time scales of the fluxes are examined using the 40-yr ECMWF Re-Analysis data for the period 1980-2001. The analysis approach consists of a compositing technique that is keyed on the low-level moisture fluxes into the Gulf of California. The results show that the fluxes have a rich spectrum of temporal variability, with periods of enhanced transport over the gulf linked to African easterly waves on subweekly (3-8 day) time scales, the Madden-Julian oscillation (MJO) at intraseasonal time scales (20-90 day), and intermediate (10-15 day) time-scale disturbances that appear to originate primarily in the Caribbean Sea-western Atlantic Ocean. In the case of the MJO, enhanced low-level westerlies and large-scale rising motion provide an environment that favors large-scale cyclonic development near the west coast of Central America that, over the course of about 2 weeks, expands northward along the coast eventually reaching the mouth of the Gulf of California where it acts to enhance the southerly moisture flux in that region. On a larger scale, the development includes a northward shift in the eastern Pacific ITCZ, enhanced precipitation over much of Mexico and the southwestern United States, and enhanced southerly/southeasterly fluxes from the Gulf of Mexico into Mexico and the southwestern and central United States. In the case of the easterly waves, the systems that reach Mexico appear to redevelop/reorganize on the Pacific coast and then move rapidly to the northwest to contribute to the moisture flux into the Gulf of California. The most intense fluxes into the gulf on these time scales appear to be synchronized with a midlatitude short-wave trough over the U.S. West Coast and enhanced low-level southerly fluxes over the U.S. Great Plains. The intermediate (10-15 day) time-scale systems have zonal wavelengths roughly twice

  1. A Conceptual Approach to Assimilating Remote Sensing Data to Improve Soil Moisture Profile Estimates in a Surface Flux/Hydrology Model. 2; Aggregation

    Science.gov (United States)

    Schamschula, Marius; Crosson, William L.; Inguva, Ramarao; Yates, Thomas; Laymen, Charles A.; Caulfield, John

    1998-01-01

    This is a follow up on the preceding presentation by Crosson. The grid size for remote microwave measurements is much coarser than the hydrological model computational grids. To validate the hydrological models with measurements we propose mechanisms to aggregate the hydrological model outputs for soil moisture to allow comparison with measurements. Weighted neighborhood averaging methods are proposed to facilitate the comparison. We will also discuss such complications as misalignment, rotation and other distortions introduced by a generalized sensor image.

  2. The role of rock moisture on regulating hydrologic and solute fluxes in the critical zone

    Science.gov (United States)

    Rempe, D. M.; Druhan, J. L.; Hahm, W. J.; Wang, J.; Murphy, C.; Cargill, S.; Dietrich, W. E.; Tune, A. K.

    2017-12-01

    In environments where the vadose zone extends below the soil layer into underlying weathered bedrock, the water held in the weathering -generated pores can be an important source of moisture to vegetation. The heterogeneous distribution of pore space in weathered bedrock, furthermore, controls the subsurface water flowpaths that dictate how water is partitioned in the critical zone (CZ) and evolves geochemically. Here, we present the results of direct monitoring of the fluxes of water and solutes through the deep CZ using a novel vadose zone monitoring system (VMS) as well as geophysical logging and sampling in a network of deep wells across a steep hillslope in Northern California. At our study site (Eel River CZO), multi-year monitoring reveals that a significant fraction of incoming rainfall (up to 30%) is seasonally stored in the fractures and matrix of the upper 12 m of weathered bedrock as rock moisture. Intensive geochemical and geophysical observations distributed from the surface to the depth of unweathered bedrock indicate that the seasonal addition and depletion of rock moisture has key implications for hydrologic and geochemical processes. First, rock moisture storage provides an annually consistent water storage reservoir for use by vegetation during the summer, which buffers transpiration fluxes against variability in seasonal precipitation. Second, because the timing and magnitude of groundwater recharge and streamflow are controlled by the annual filling and drainage of the rock moisture, rock moisture regulates the partitioning of hydrologic fluxes. Third, we find that rock moisture dynamics—which influence the myriad geochemical and microbial processes that weather bedrock—strongly correspond with the observed vertical weathering profile. As a result of the coupling between chemical weathering reactions and hydrologic fluxes, the geochemical composition of groundwater and streamflow is influenced by the temporal dynamics of rock moisture. Our

  3. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  4. Shallow soil moisture - ground thaw interactions and controls - Part 2: Influences of water and energy fluxes

    Science.gov (United States)

    Guan, X. J.; Spence, C.; Westbrook, C. J.

    2010-07-01

    The companion paper (Guan et al., 2010) demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  5. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    30 N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with sur- face albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a.

  6. Testing of a conceptualisation of catchment scale surface soil moisture in a hydrologic model

    Science.gov (United States)

    Komma, J.; Parajka, J.; Naeimi, V.; Blöschl, G.; Wagner, W.

    2009-04-01

    In this study the simulated surface soil moisture of a dual layer conceptual hydrologic model is tested against ERS scatterometer top soil moisture observations. The study catchment at the Kamp river with a size of 1550 km² is located in north-eastern Austria. The hydrologic simulations in this study are based on a well calibrated hydrologic model. The model consists of a spatially distributed soil moisture accounting scheme and a flood routing component. The spatial and temporal resolutions of the model are 1 x 1 km² and 15 minutes. The soil moisture accounting scheme simulates the mean moisture state over the entire vertical soil column. To get additional information about moisture states in a thin surface soil layer from the continuous rainfall-runoff model, the soil moisture accounting scheme is extended by a thin skin soil storage sitting at the top of the main soil reservoir. The skin soil storage is filled by rain and snow melt. The skin soil reservoir and the main soil reservoir are connected by a bidirectional moisture flux which is assumed to be a linear function of the vertical soil moisture gradient. The calibration of the additional dual layer component is based on hydrologic reasoning and the incorporation of measured soil water contents close to the study catchment. The comparison of the simulated surface soil moisture with the ERS scatterometer top soil moisture observations is performed in the period 1993-2005. On average, about 3 scatterometer images per month with a mean spatial coverage of about 82% are available at the Kamp catchment. The correlation between the catchment mean values of the two top soil moisture estimates changes with the season. The differences tend to be smaller due the summer month from July to October. The results indicate a good agreement between the modelled and remote sensed spatial moisture patterns in the study area.

  7. Moisture and solute flux along preferred pathways characterized by fissured sediments in desert soils

    Science.gov (United States)

    Scanlon, Bridget R.

    1992-06-01

    Evaluation of preferred flow pathways is critical for waste disposal. These pathways reduce the effectiveness of thick desert soils in attenuating contaminants by short-circuiting flow through the unsaturated zone. Unsaturated flow in fissured sediments in the Chihuahuan Desert of Texas, U.S.A., was examined to determine if these sediments act as preferred pathways for water and solute transport. Fissures are surface features, or gulleys, that are underlain by fractures filled with loose sediment washed in from surrounding areas. Hydraulic and chemical approaches were used to investigate unsaturated flow processes beneath and adjacent to fissures, and the results were compared with data from surrounding geomorphic systems such as arroyos, ephemeral streams and interstreams. Typically, high water potentials in surficial sediments result from infiltration of recent precipitation. Below this surficial zone of high water potentials lies a zone of low water potentials that is much thinner beneath the fissure than in adjacent sediments or in sediments beneath ephemeral streams and interstreams. Maximum chloride concentrations in profiles in the fissured sediments (80-105 gm -3) were much lower than those measured in all other geomorphic systems (2000-6000 gm -3) because chloride is leached in the vicinity of the fissures. Minimum estimates of the moisture flux from chloride data ranged from 1 to 8 mm yr -1 in the fissured sediments and were up to 350 times greater than those calculated for ephemeral stream and interstream settings. The corresponding moisture velocities in the fissured sediments ranged from 10 to 70 mm yr -1. A tracer experiment demonstrated higher downward water and solute transport in the fracture fill beneath the fissure relative to adjacent sediments. Numerical simulations of the tracer experiment with the computer code TRACR3D reproduced the overall shape of the tracer plume. Sensitivity analyses demonstrated that the tracer plume is most sensitive

  8. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  9. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    Science.gov (United States)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  10. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Directory of Open Access Journals (Sweden)

    C. Draper

    2011-12-01

    Full Text Available This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%, this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  11. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  12. Surface fluxes over natural landscapes using scintillometry

    NARCIS (Netherlands)

    Meijninger, W.M.L.

    2003-01-01

    Motivated by the demand for reliable area-averaged fluxes associated with natural landscapes this thesis investigates a relative new measurement technique known as the scintillation method. For homogeneous areas the surface fluxes can be derived with reasonable accuracy. However, fluxes

  13. Radar Mapping of Surface Soil Moisture

    Science.gov (United States)

    Ulaby, F. T.; Dubois, P. C.; van Zyl, J.

    1997-01-01

    Intended as an overview aimed at potential users of remotely sensed spatial distributions and temporal variations of soil moisture, this paper begins with an introductory section on the fundamentals of radar imaging and associated attributes.

  14. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  15. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  16. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  17. Land surface model performance using cosmic-ray and point-scale soil moisture measurements for calibration

    Directory of Open Access Journals (Sweden)

    J. Iwema

    2017-06-01

    Full Text Available At very high resolution scale (i.e. grid cells of 1 km2, land surface model parameters can be calibrated with eddy-covariance flux data and point-scale soil moisture data. However, measurement scales of eddy-covariance and point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-Ray Neutron Sensors (CRNSs made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land Environment Simulator (JULES were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data separately. We calibrated the model for 12 sites in the USA representing a range of climatic, soil, and vegetation conditions. The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparison to eddy-covariance flux data and to JULES simulations with default parameter values. Calibrations against the two soil moisture products alone did show an advantage for the cosmic-ray technique. However, further analyses of two-objective calibrations with soil moisture and latent heat flux showed no substantial differences between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied by soil moisture spatio-temporal stability, and data quality issues.

  18. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  19. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  20. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    Science.gov (United States)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the

  1. Synopsis of recent moisture flux analyses relevant to the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1998-03-01

    This report summarizes selected recent analyses relevant to the assessment of the site performance for disposal facilities at Los Alamos (Area G) regarding unsaturated zone transport of moisture in liquid and vapor phases and the surface water balance. Much of the analyses methods have been reported previously but in several separate and detailed reports. These do not always reflect the overview possible with hindsight. The present report is an attempt to integrate the author's previous results into a cohesive whole. Due to project time constraints, this report is incomplete in some area. This report first reviews the basis for the Darcy flux analyses and its inherent uncertainties, as detailed in previous reports. Results from the previous works are then reviewed and discussed and in some cases, elaborated in an attempt for clarification. New results of the Darcy Flux Analyses are presented and discussed for Area G mesa top locations, nearby canyon locations and a second mesa top location (TA46 west of Area G). Select evapotranspiration and precipitation data from TA6 are presented and discussed. The conclusions section draws a picture of the hydrology which unifies the study results reported here and in previous reports for the undisturbed and disturbed site locations

  2. Mapping surface soil moisture with L-band radiometric measurements

    Science.gov (United States)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  3. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 4. Variability of soil moisture and its relationship with surface albedo and soil thermal ... The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends ...

  4. Association between anomalies of moisture flux and extreme runoff events in the south-eastern Alps

    Czech Academy of Sciences Publication Activity Database

    Müller, Miloslav; Kašpar, Marek

    2011-01-01

    Roč. 11, č. 3 (2011), s. 915-920 ISSN 1561-8633 Institutional research plan: CEZ:AV0Z30420517 Keywords : moisture flux * extreme precipitation * seasonality of heavy rains Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.983, year: 2011 http://www.nat-hazards-earth-syst-sci.net/11/915/2011/

  5. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  6. Soil moisture storage estimation based on steady vertical fluxes under equilibrium

    Science.gov (United States)

    Amvrosiadi, Nino; Bishop, Kevin; Seibert, Jan

    2017-10-01

    Soil moisture is an important variable for hillslope and catchment hydrology. There are various computational methods to estimate soil moisture and their complexity varies greatly: from one box with vertically constant volumetric soil water content to fully saturated-unsaturated coupled physically-based models. Different complexity levels are applicable depending on the simulation scale, computational time limitations, input data and knowledge about the parameters. The Vertical Equilibrium Model (VEM) is a simple approach to estimate the catchment-wide soil water storage at a daily time-scale on the basis of water table level observations, soil properties and an assumption of hydrological equilibrium without vertical fluxes above the water table. In this study VEM was extended by considering vertical fluxes, which allows conditions with evaporation and infiltration to be represented. The aim was to test the hypothesis that the simulated volumetric soil water content significantly depends on vertical fluxes. The water content difference between the no-flux, equilibrium approach and the new constant-flux approach greatly depended on the soil textural class, ranging between ∼1% for silty clay and ∼44% for sand at an evapotranspiration rate of 5 mm·d-1. The two approaches gave a mean volumetric soil water content difference of ∼1 mm for two case studies (sandy loam and organic rich soils). The results showed that for many soil types the differences in estimated storage between the no-flux and the constant flux approaches were relatively small.

  7. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  8. Atmospheric moisture's influence on fire behavior: surface moisture and plume dynamics.

    Science.gov (United States)

    Brian E. Potter; Joseph J. Charney; Lesley A. Fusina

    2006-01-01

    Nine measures of atmospheric surface moisture are tested for statistical relationships with fire size and number of fires using data from the Great Lakes region of the United States. The measures include relative humidity, water vapor mixing ratio, mixing ratio deficit, vapor pressure, vapor pressure deficit, dew point temperature, dew point depression, wet bulb...

  9. Satellite estimation of the surface energy balance, moisture availability and thermal inertia

    Science.gov (United States)

    Carlson, T. N.; Dodd, J. K.; Benjamin, S. G.; Cooper, J. N.

    1981-01-01

    A method for inferring the distribution of surface heat and evaporative fluxes and the ground moisture availability and thermal inertia (ground conductive capacity) is used to analyze two urbanized areas, Los Angeles and St. Louis. The technique employs infrared satellite temperature measurements in conjunction with a one-dimensional boundary-layer model. Results show that there is a marked reduction of evaporation and moisture availability and a corresponding elevation of sensible heat flux over urbanized areas and over cropped areas with low vegetative cover. Conversely, low heat flux and high evaporation characterize vegetated and, especially, forested areas. Warm urban centers appear directly related to a reduction in vegetation, which normally allows for a greater fraction of available radiant energy to be converted into latent heat flux. The distribution of thermal inertia was surprisingly ill-defined and its variation between urban and rural areas was quite small. Thus, the increased heat storage within the urban fabric, which has been proposed as the underlying cause of the nocturnal heat island, may be caused mainly by enhanced daytime surface heating which occurs because of surface dryness, rather than by large spatial variations in the conductivity of the surface.

  10. Comparison of Heat and Moisture Fluxes from a Modified Soil-plant-atmosphere Model with Observations from BOREAS. Chapter 3

    Science.gov (United States)

    Lee, Young-Hee; Mahrt, L.

    2005-01-01

    This study evaluates the prediction of heat and moisture fluxes from a new land surface scheme with eddy correlation data collected at the old aspen site during the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. The model used in this study couples a multilayer vegetation model with a soil model. Inclusion of organic material in the upper soil layer is required to adequately simulate exchange between the soil and subcanopy air. Comparisons between the model and observations are discussed to reveal model misrepresentation of some aspects of the diurnal variation of subcanopy processes. Evapotranspiration

  11. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    Science.gov (United States)

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi; Neale, Christopher M.U; Cosh, Michael H.

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  12. Quantitative aspect in circulation type classifications – An example based on evaluation of moisture flux anomalies

    Czech Academy of Sciences Publication Activity Database

    Müller, Miloslav; Kašpar, Marek

    2010-01-01

    Roč. 35, 9-12 (2010), s. 484-490 ISSN 1474-7065 R&D Projects: GA AV ČR KJB300420701; GA AV ČR KJB300420802 Institutional research plan: CEZ:AV0Z30420517 Keywords : Circulation type classification * moisture flux * extreme precipitation * extremeness of meteorological variables, seasonality of heavy rains * seasonality of heavy rains Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.917, year: 2010

  13. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  14. Annual Cycles of Surface Shortwave Radiative Fluxes

    Science.gov (United States)

    Wilber, Anne C.; Smith, G. Louis; Gupta, Shashi K.; Stackhouse, Paul W.

    2006-01-01

    The annual cycles of surface shortwave flux are investigated using the 8-yr dataset of the surface radiation budget (SRB) components for the period July 1983-June 1991. These components include the downward, upward, and net shortwave radiant fluxes at the earth's surface. The seasonal cycles are quantified in terms of principal components that describe the temporal variations and empirical orthogonal functions (EOFs) that describe the spatial patterns. The major part of the variation is simply due to the variation of the insolation at the top of the atmosphere, especially for the first term, which describes 92.4% of the variance for the downward shortwave flux. However, for the second term, which describes 4.1% of the variance, the effect of clouds is quite important and the effect of clouds dominates the third term, which describes 2.4% of the variance. To a large degree the second and third terms are due to the response of clouds to the annual cycle of solar forcing. For net shortwave flux at the surface, similar variances are described by each term. The regional values of the EOFs are related to climate classes, thereby defining the range of annual cycles of shortwave radiation for each climate class.

  15. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  16. System design description for surface moisture measurement system (SMMS)

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F.

    1996-09-23

    The SMMS has been developed to measure moisture in the top few centimeters of tank waste. The SMMS development was initiated by the preliminary findings of SAR-033, and does not necessarily fulfill any established DQO. After the SAR-033 is released, if no significant changes are made, moisture measurements in the organic waste tanks will rapidly become a DQO. The SMMS was designed to be installed in any 4 inch or larger riser, and to allow maximum adjustability for riser lengths, and is used to deploy a sensor package on the waste surface within a 6 foot radius about the azimuth. The first sensor package will be a neutron probe.

  17. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  18. Multivariate assimilation of coarse scale soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index in CLM4.5

    Science.gov (United States)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Schalge, Bernd; Baroni, Gabriele; Rihani, Jehan; Kollet, Stefan; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    The land surface plays a central role in the atmosphere - land surface - subsurface continuum. Surface soil moisture for instance impacts the partitioning of absorbed radiation in heating ground and atmosphere and thus impacts resulting evapotranspiration. The land surface also drives partitioning of rainfall between infiltration which ends up as groundwater recharge and surface runoff contributing to stream discharge. It is therefore expected that the use of observations for characterizing and predicting the land surface state also leads to improved state estimations and predictions in all the other sub-compartments of the system we consider: groundwater, stream discharge and atmosphere. To test this hypothesis requires efficient data assimilation schemes that are capable to take up specific requirements of different compartments, such as different time windows of observations. In this study we will derive such data assimilation methods and quantify the improvement of predictions in the different compartments due to assimilation of multiple observations, and evaluate to what extent assimilation of land surface observations will also improve predictions of land surface states and fluxes for atmosphere and groundwater. We argue that improvements can be achieved by implementing a data assimilation methodology that is capable of simultaneous assimilation of many data sources (remote sensing soil moisture, cosmic-ray measurement for soil moisture, land surface temperature and leaf area index) at different spatial scales ranging from 102 m to 104 m. The multivariate data assimilation system for the land-surface component will be developed and extended to assimilate the coarse scale remote sensing soil moisture, cosmic-ray soil moisture, land surface temperature and leaf area index, and their different combinations using the local ensemble transform Kalman filter. The multivariate data assimilation will be evaluated using a synthetic study which mimics the Neckar

  19. Atmospheric moisture supersaturatons in the near-surface atmosphere of Dome C, Antarctic Plateau

    Science.gov (United States)

    Genthon, Christophe; Piard, Luc; Vignon, Etienne; Madeleine, Jean-Baptiste; Casado, Mathieu; Gallée, Hubert

    2017-04-01

    Moisture supersaturations occur at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high antarctic plateau. This study presents one year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic plateau. The measurements are obtained using commercial hygrometry sensors adapted to allow air sampling without affecting the moisture content even in case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the antarctic plateau are thus likely biased low. The measurements are compared with results from 2 models with cold microphysics parametrizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the 2 models, leaving much room for model improvement. The representation of supersaturations is not critical for the estimations of surface sublimation since they are more frequent as temperature is lower i.e. as moisture quantities and water fluxes are small. However, ignoring near-surface supersaturation may be a more serious issue for the modeling of fog and when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high altitude cirrus clouds in

  20. Spatiotemporal Interaction of Near-Surface Soil Moisture Content and Frost Table Depth in a Discontinuous Permafrost Environment

    Science.gov (United States)

    Guan, X.; Spence, C.; Westbrook, C. J.

    2009-05-01

    The ubiquitous presence of frozen ground in cold regions creates a unique dynamic boundary issue for subsurface water movement and storage. We examined the relationship between ground thaw and spatiotemporal soil moisture patterns at three sites (peatland, wetland and valley) near Yellowknife NT. Thaw depth and near-surface soil moisture were measured along a systematic grid at each site. Energy and water budgets were computed for each site to explain the soil moisture patterns. At the peatland, overall soil moisture decreased through the summer and became more spatially homogeneous with deepened thaw, increased subsurface storage capacity, and drying from evapotranspiration. In the peatland and wetland, accumulated water in depressions maintained soils at higher soil moistures for a longer duration than the hummock tops. The depressions had deeper frost tables than the drier hummock tops because the organic mats covering the hummocks insulated the ground and retarded ground thaw. The wettest soils were often locations of deepest thaw depth due to surface ponding and the transfer of latent heat accompanying surface runoff from upslopes. For example, the 3.3 ha wetland received 3.08x105 m3 of surface inflow from a lake with 2.32 kJm-2 of convective heat available to be transferred into the frozen ground over the study period. Soil moisture patterns also revealed preferential surface and subsurface flow routes. The findings indicate that the presence of frozen ground and differential thawing have a diverse and dynamic relationship with near-surface soil moisture content. When the impermeable boundary is dynamic, and controlled by water and energy fluxes, thicker soil layers are associated with higher moisture. This contrasts findings from temperate regions with a fixed impermeable boundary which show that surface soil moisture content can be lower in areas with thick soil.

  1. Observations of Near-Surface Heat-Flux and Temperature Profiles Through the Early Evening Transition over Contrasting Surfaces

    Science.gov (United States)

    Jensen, Derek D.; Nadeau, Daniel F.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    Near-surface turbulence data from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program are used to study countergradient heat fluxes through the early evening transition. Two sites, subjected to similar large-scale forcing, but with vastly different surface and sub-surface characteristics, are considered. The Playa site is situated at the interior of a large dry lakebed desert with high sub-surface soil moisture, shallow water table, and devoid of vegetation. The Sagebrush site is located in a desert steppe region with sparse vegetation and little soil moisture. Countergradient sensible heat fluxes are observed during the transition at both sites. The transition process is both site and height dependent. At the Sagebrush site, the countergradient flux at 5 m and below occurs when the sign change of the sensible heat flux precedes the local temperature gradient sign change. For 10 m and above, the countergradient flux occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. At the Playa site, the countergradient flux at all tower levels occurs when the sign change of the sensible heat flux follows the local temperature gradient sign change. The phenomenon is explained in terms of the mean temperature and heat-flux evolution. The temperature gradient sign reversal is a top-down process while the flux reversal occurs nearly simultaneously at all heights. The differing countergradient behaviour is primarily due to the different subsurface thermal characteristics at the two sites. The combined high volumetric heat capacity and high thermal conductivity at the Playa site lead to small vertical temperature gradients that affect the relative magnitude of terms in the heat-flux tendency equation. A critical ratio of the gradient production to buoyant production of sensible heat flux is suggested so as to predict the countergradient behaviour.

  2. Comparing Evapotranspiration Rates Estimated from Atmospheric Flux and TDR Soil Moisture Measurements

    DEFF Research Database (Denmark)

    Schelde, Kirsten; Ringgaard, Rasmus; Herbst, Mathias

    2011-01-01

    Measurements of water vapor fluxes using eddy covariance (EC) and measurements of root zone soil moisture depletion using time domain reflectometry (TDR) represent two independent approaches to estimating evapotranspiration. This study investigated the possibility of using TDR to provide a lower...... limit estimate (disregarding dew evaporation) of evapotranspiration on dry days. During a period of 7 wk, the two independent measuring techniques were applied in a barley (Hordeum vulgare L.) field, and six dry periods were identified. Measurements of daily root zone soil moisture depletion were...... compared with daily estimates of water vapor loss. During the first dry periods, agreement between the two approaches was good, with average daily deviation between estimates below 1.0 mm d-1 Toward the end of the measurement period, the estimates of the two techniques tended to deviate due to different...

  3. Hazards and operability study for the surface moisture monitoring system

    International Nuclear Information System (INIS)

    Board, B.D.

    1996-01-01

    The Hanford Nuclear Reservation Tank Farms' underground waste tanks have been used to store liquid radioactive waste from defense materials production since the 1940's. Waste in certain of the tanks may contain material in the form of ferrocyanide or various organic compounds which could potentially be susceptible to condensed phase chemical reactions. Because of the presence of oxidizing materials (nitrate compounds) and heat sources (radioactive decay and chemical reactions), the ferrocyanide or organic material could potentially fuel a propagating exothermic reaction with undesirable consequences. Analysis and experiments indicate that the reaction propagation and/or initiation may be prevented by the presence of sufficient moisture in the waste. Because the reaction would probably be initiated at the surface of the waste, evidence of sufficient moisture concentration would help provide evidence that the tank waste can continue to be safely stored. The Surface Moisture Measurement System (SMMS) was developed to collect data on the surface moisture in the waste by inserting two types of probes (singly) into a waste tank-a neutron probe and an electromagnetic inductance (EMI) probe. The sensor probes will be placed on the surface of the waste utilizing a moveable deployment arm to lower them through an available riser. The movement of the SMMS within the tank will be monitored by a camera lowered through an adjacent riser. The SMMS equipment is the subject of this study. Hazards and Operability Analysis (HAZOP) is a systematic technique for assessing potential hazards and/or operability problems for a new activity. It utilizes a multidiscipline team of knowledgeable individuals in a systematic brainstorming effort. The results of this study will be used as input to an Unreviewed Safety Question determination

  4. Surface renewal analysis for estimating turbulent surface fluxes

    International Nuclear Information System (INIS)

    Castellvi, F.

    2009-01-01

    A decade ago, the need for a long-term surface monitoring was recognized to better understand the soil-vegetation-atmosphere scalar exchange and interaction processes. the AmeriFlux concept emerged in the IGBP workshop (La Thuile, IT, 1995). Continuous acquisition of surface fluxes for different species such as temperature, water vapour, CO x , halocarbon, ozone, etc.,) and momentum allows determination of the influence of local (canopy) exchanges, fossil fuel emission, large-scale biotic exchange on ambient concentrations which are crucial to take decisions for protecting natural environments and water resources, to develop new perspective for modern agriculture and forest management and to better understand the global climate change. (Author)

  5. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements

    Science.gov (United States)

    Carlson, T. N.

    1986-01-01

    A review is presented of numerical models which were developed to interpret thermal IR data and to identify the governing parameters and surface energy fluxes recorded in the images. Analytic, predictive, diagnostic and empirical models are described. The limitations of each type of modeling approach are explored in terms of the error sources and inherent constraints due to theoretical or measurement limitations. Sample results of regional-scale soil moisture or evaporation patterns derived from the Heat Capacity Mapping Mission and GOES satellite data through application of the predictive model devised by Carlson (1981) are discussed. The analysis indicates that pattern recognition will probably be highest when data are collected over flat, arid, sparsely vegetated terrain. The soil moisture data then obtained may be accurate to within 10-20 percent.

  6. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    OpenAIRE

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-01-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare ...

  7. Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau

    Science.gov (United States)

    Genthon, Christophe; Piard, Luc; Vignon, Etienne; Madeleine, Jean-Baptiste; Casado, Mathieu; Gallée, Hubert

    2017-01-01

    Supersaturation often occurs at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high Antarctic Plateau. One year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic Plateau is presented. The measurements are obtained using commercial hygrometry sensors modified to allow air sampling without affecting the moisture content, even in the case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the Antarctic Plateau are thus likely biased low. The measurements are compared with results from two models implementing cold microphysics parameterizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the two models, leaving much room for model improvement. This is unlikely to strongly affect estimations of surface sublimation because supersaturation is more frequent as temperature is lower, and moisture quantities and thus water fluxes are small anyway. Ignoring supersaturation may be a more serious issue when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high-altitude cirrus clouds in meteorological and climate models.

  8. Monthly Sea Surface Salinity and Freshwater Flux Monitoring

    Science.gov (United States)

    Ren, L.; Xie, P.; Wu, S.

    2017-12-01

    Taking advantages of the complementary nature of the Sea Surface Salinity (SSS) measurements from the in-situ (CTDs, shipboard, Argo floats, etc.) and satellite retrievals from Soil Moisture Ocean Salinity (SMOS) satellite of the European Space Agency (ESA), the Aquarius of a joint venture between US and Argentina, and the Soil Moisture Active Passive (SMAP) of national Aeronautics and Space Administration (NASA), a technique is developed at NOAA/NCEP/CPC to construct an analysis of monthly SSS, called the NOAA Blended Analysis of Sea-Surface Salinity (BASS). The algorithm is a two-steps approach, i.e. to remove the bias in the satellite data through Probability Density Function (PDF) matching against co-located in situ measurements; and then to combine the bias-corrected satellite data with the in situ measurements through the Optimal Interpolation (OI) method. The BASS SSS product is on a 1° by 1° grid over the global ocean for a 7-year period from 2010. Combined with the NOAA/NCEP/CPC CMORPH satellite precipitation (P) estimates and the Climate Forecast System Reanalysis (CFSR) evaporation (E) fields, a suite of monthly package of the SSS and oceanic freshwater flux (E and P) was developed to monitor the global oceanic water cycle and SSS on a monthly basis. The SSS in BASS product is a suite of long-term SSS and fresh water flux data sets with temporal homogeneity and inter-component consistency better suited for the examination of the long-term changes and monitoring. It presents complete spatial coverage and improved resolution and accuracy, which facilitates the diagnostic analysis of the relationship and co-variability among SSS, freshwater flux, mixed layer processes, oceanic circulation, and assimilation of SSS into global models. At the AGU meeting, we will provide more details on the CPC salinity and fresh water flux data package and its applications in the monitoring and analysis of SSS variations in association with the ENSO and other major climate

  9. Surface-Atmosphere Moisture Coupling in Eurasian Frozen Ground Regions

    Science.gov (United States)

    Frauenfeld, O. W.; Ford, T.

    2014-12-01

    Permafrost represents an impermeable barrier to moisture, resulting in a saturated or near-saturated surface layer during the warm season in many continuous and discontinuous permafrost zones. These surface conditions could lead to enhanced convection and precipitation during the warm season, and significant local recycling of moisture. In areas underlain by sporadic or isolated permafrost, or in seasonally frozen areas, the moisture can drain away more readily, resulting in much drier soil conditions. As climate change causes frozen ground degradation, this will thus also alter the patterns of atmospheric convection, moisture recycling, and the hydrologic cycle in high-latitude land areas. In this study, we analyze evaporative fraction (EF) as a proxy for evapotranspiration, and precipitation from the Modern-Era Retrospective analysis for Research and Applications (MERRA-land) reanalysis dataset. We focus on 1979-2012 and document patterns and changes in EF over the Eurasian high latitudes. We find strong, positive April EF trends over the study period, particularly in the Lena River Basin, 80% of which is underlain by continuous permafrost. In fact, these significant positive trends in spring EF are strongest over continuous permafrost across the Eurasian high latitudes, but negative for sporadic and isolated permafrost. In addition, we find a strong, statistically significant relationship between EF anomalies and the probability of subsequent precipitation over the Lena Basin during April. This association therefore suggests a potential land-atmosphere coupling between frozen ground and precipitation. As the permafrost and seasonally frozen ground distribution changes in the future, this will likely have repercussions for the Arctic hydrologic cycle.

  10. Surface renewal method for estimating sensible heat flux | Mengistu ...

    African Journals Online (AJOL)

    For short canopies, latent energy flux may be estimated using a shortened surface energy balance from measurements of sensible and soil heat flux and the net irradiance at the surface. The surface renewal (SR) method for estimating sensible heat, latent energy, and other scalar fluxes has the advantage over other ...

  11. Reconciling Isotopic Partitioning Estimates of Moisture Fluxes in Semi-arid Landscapes Through a New Modeling Approach for Evaporation

    Science.gov (United States)

    Kaushik, A.; Berkelhammer, M. B.; O'Neill, M.; Noone, D.

    2017-12-01

    The partitioning of land surface latent heat flux into evaporation and transpiration remains a challenging problem despite a basic understanding of the underlying mechanisms. Water isotopes are useful tracers for separating evaporation and transpiration contributions because E and T have distinct isotopic ratios. Here we use the isotope-based partitioning method at a semi-arid grassland tall-tower site in Colorado. Our results suggest that under certain conditions evaporation cannot be isotopically distinguished from transpiration without modification of existing partitioning techniques. Over a 4-year period, we measured profiles of stable oxygen and hydrogen isotope ratios of water vapor from the surface to 300 m and soil water down to 1 m along with standard meteorological fluxes. Using these data, we evaluated the contributions of rainfall, equilibration, surface water vapor exchange and sub-surface vapor diffusion to the isotopic composition of evapotranspiration (ET). Applying the standard isotopic approach to find the transpiration portion of ET (i.e., T/ET), we see a significant discrepancy compared with a method to constrain T/ET based on gross primary productivity (GPP). By evaluating the kinetic fractionation associated with soil evaporation and vapor diffusion we find that a significant proportion (58-84%) of evaporation following precipitation is non-fractionating. This is possible when water from isolated soil layers is being nearly completely evaporated. Non-fractionating evaporation looks isotopically like transpiration and therefore leads to an overestimation of T/ET. Including non-fractionating evaporation reconciles the isotope-based partitioning estimates of T/ET with the GPP method, and may explain the overestimation of T/ET from isotopes compared to other methods. Finally, we examine the application of non-fractionating evaporation to other boundary layer moisture flux processes such as rain evaporation, where complete evaporation of smaller

  12. A simple interpretation of the surface tenperature/vegetation index space for assessment of soil moisture status

    DEFF Research Database (Denmark)

    Sandholt, Inge; Andersen, J.; Rasmussen, Kjeld

    2002-01-01

    Remote Sensing, soil moisture, surface temperature, vegetation index, hydrology, Africa, Senegal, semiarid......Remote Sensing, soil moisture, surface temperature, vegetation index, hydrology, Africa, Senegal, semiarid...

  13. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects

    Science.gov (United States)

    Jacobson, Mark Z.

    2014-07-01

    This paper examines the effects on climate and air pollution of open biomass burning (BB) when heat and moisture fluxes, gases and aerosols (including black and brown carbon, tar balls, and reflective particles), cloud absorption effects (CAEs) I and II, and aerosol semidirect and indirect effects on clouds are treated. It also examines the climate impacts of most anthropogenic heat and moisture fluxes (AHFs and AMFs). Transient 20 year simulations indicate BB may cause a net global warming of 0.4 K because CAE I ( 32% of BB warming), CAE II, semidirect effects, AHFs ( 7%), AMFs, and aerosol absorption outweigh direct aerosol cooling and indirect effects, contrary to previous BB studies that did not treat CAEs, AHFs, AMFs, or brown carbon. Some BB warming can be understood in terms of the anticorrelation between instantaneous direct radiative forcing (DRF) changes and surface temperature changes in clouds containing absorbing aerosols. BB may cause 250,000 (73,000-435,000) premature mortalities/yr, with >90% from particles. AHFs from all sources and AMFs + AHFs from power plants and electricity use each may cause a statistically significant +0.03 K global warming. Solar plus thermal-IR DRFs were +0.033 (+0.027) W/m2 for all AHFs globally without (with) evaporating cooling water, +0.009 W/m2 for AMFs globally, +0.52 W/m2 (94.3% solar) for all-source BC outside of clouds plus interstitially between cloud drops at the cloud relative humidity, and +0.06 W/m2 (99.7% solar) for BC inclusions in cloud hydrometeor particles. Modeled post-1850 biomass, biofuel, and fossil fuel burning, AHFs, AMFs, and urban surfaces accounted for most observed global warming.

  14. Near-surface turbulence as a missing link in modeling evapotranspiration-soil moisture relationships

    Science.gov (United States)

    Haghighi, Erfan; Kirchner, James W.

    2017-07-01

    Despite many efforts to develop evapotranspiration (ET) models with improved parametrizations of resistance terms for water vapor transfer into the atmosphere, estimates of ET and its partitioning remain prone to bias. Much of this bias could arise from inadequate representations of physical interactions near nonuniform surfaces from which localized heat and water vapor fluxes emanate. This study aims to provide a mechanistic bridge from land-surface characteristics to vertical transport predictions, and proposes a new physically based ET model that builds on a recently developed bluff-rough bare soil evaporation model incorporating coupled soil moisture-atmospheric controls. The newly developed ET model explicitly accounts for (1) near-surface turbulent interactions affecting soil drying and (2) soil-moisture-dependent stomatal responses to atmospheric evaporative demand that influence leaf (and canopy) transpiration. Model estimates of ET and its partitioning were in good agreement with available field-scale data, and highlight hidden processes not accounted for by commonly used ET schemes. One such process, nonlinear vegetation-induced turbulence (as a function of vegetation stature and cover fraction) significantly influences ET-soil moisture relationships. Our results are particularly important for water resources and land use planning of semiarid sparsely vegetated ecosystems where soil surface interactions are known to play a critical role in land-climate interactions. This study potentially facilitates a mathematically tractable description of the strength (i.e., the slope) of the ET-soil moisture relationship, which is a core component of models that seek to predict land-atmosphere coupling and its feedback to the climate system in a changing climate.

  15. Estimating surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, J.; Papakyriakou, T.; Larsen, Søren Ejling

    2015-01-01

    Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low......-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low......-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40Wm-2, |latent heat flux|> 20Wm-2 and |CO2 flux|> 100 mmolm-2 d-1/ we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5–20 %) suggesting...

  16. Decadal Changes in Surface Radiative Fluxes

    Science.gov (United States)

    Wild, M.

    2009-05-01

    Recent evidence suggests that radiative fluxes incident at the Earth surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected with the increasing greenhouse effect, but also in the solar range. Observations suggest that surface solar radiation, after decades of decline ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations. This presentation gives an update on recent investigations related to the decadal variations in these fluxes, based on both observational and modeling approaches. Updated observational data, archived at the Global Energy Balance Archive (GEBA) at ETH Zurich, suggest a continuation of surface solar brightening beyond the year 2000 at numerous locations, yet less pronounced and coherent than during the 1990s, with more regions with no clear changes or declines. Current global climate models as used in the IPCC-AR4 report typically do not reproduce the observed decadal variations to their full extent. Modeling attempts to improve this situation are under way at ETH, based on a global climate model which includes a sophisticated interactive treatment of aerosol and cloud microphysics (ECHAM5-HAM). Further the impact of the decadal changes in surface radiative forcings on different aspects of the global climate system and climate change is discussed, such as 20th century day- and nighttime warming, evapotranspiration changes and the varying intensity of the hydrological cycle as well as the terrestrial carbon cycle. Selected related references: Wild, M., and Co-authors, 2005: From dimming to brightening: Decadal changes in solar radiation at the Earth's surface. Science, 308, 847-850 Wild, M., 2007: Decadal changes in surface radiative fluxes and their importance in the context of global climate change, in: Climate Variability and Extremes during the Past 100 years, Advances

  17. Intercomparison of the JULES and CABLE land surface models through assimilation of remotely sensed soil moisture in southeast Australia

    Science.gov (United States)

    Dumedah, Gift; Walker, Jeffrey P.

    2014-12-01

    Numerous land surface models exist for predicting water and energy fluxes in the terrestrial environment. These land surface models have different conceptualizations (i.e., process or physics based), together with structural differences in representing spatial variability, alternate empirical methods, mathematical formulations and computational approach. These inherent differences in modeling approach, and associated variations in outputs make it difficult to compare and contrast land surface models in a straight-forward manner. While model intercomparison studies have been undertaken in the past, leading to significant progress on the improvement of land surface models, additional framework towards identification of model weakness is needed. Given that land surface models are increasingly being integrated with satellite based estimates to improve their prediction skill, it is practical to undertake model intercomparison on the basis of soil moisture data assimilation. Consequently, this study compares two land surface models: the Joint UK Land Environment Simulator (JULES) and the Community Atmosphere Biosphere Land Exchange (CABLE) for soil moisture estimation and associated assessment of model uncertainty. A retrieved soil moisture data set from the Soil Moisture and Ocean Salinity (SMOS) mission was assimilated into both models, with their updated estimates validated against in-situ soil moisture in the Yanco area, Australia. The findings show that the updated estimates from both models generally provided a more accurate estimate of soil moisture than the open loop estimate based on calibration alone. Moreover, the JULES output was found to provide a slightly better estimate of soil moisture than the CABLE output at both near-surface and deeper soil layers. An assessment of the updated membership in decision space also showed that the JULES model had a relatively stable, less sensitive, and more highly convergent internal dynamics than the CABLE model.

  18. Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes

    Directory of Open Access Journals (Sweden)

    M. Messmer

    2017-07-01

    Full Text Available Extratropical cyclones of type Vb, which develop over the western Mediterranean and move northeastward, are major natural hazards that are responsible for heavy precipitation over central Europe. To gain further understanding in the governing processes of these Vb cyclones, the study explores the role of soil moisture and sea surface temperature (SST and their contribution to the atmospheric moisture content. Thereby, recent Vb events identified in the ERA-Interim reanalysis are dynamically downscaled with the Weather Research and Forecasting (WRF model. Results indicate that a mean high-impact summer Vb event is mostly sensitive to an increase in the Mediterranean SSTs and rather insensitive to Atlantic SSTs and soil moisture changes. Hence, an increase of +5 K in Mediterranean SSTs leads to an average increase of 24 % in precipitation over central Europe. This increase in precipitation is mainly induced by larger mean upward moisture flux over the Mediterranean with increasing Mediterranean SSTs. This further invokes an increase in latent energy release, which leads to an increase in atmospheric instability, i.e. in convective available potential energy. Both the increased availability of atmospheric moisture and the increased instability of the atmosphere, which is able to remove extra moisture from the atmosphere due to convective processes, are responsible for the strong increase in precipitation over the entire region influenced by Vb events. Precipitation patterns further indicate that a strong increase in precipitation is found at the eastern coast of the Adriatic Sea for increased Mediterranean SSTs. This premature loss in atmospheric moisture leads to a significant decrease in atmospheric moisture transport to central Europe and the northeastern flanks of the Alpine mountain chain. This leads to a reduction in precipitation in this high-impact region of the Vb event for an increase in Mediterranean SSTs of +5 K. Furthermore, the

  19. The long term recovery of heat and moisture fluxes to the atmosphere following fire in Australia's tropical savanna

    Science.gov (United States)

    Tapper, N.; Beringer, J.; Hutley, L.; Coutts, A.

    2003-04-01

    Fire is probably the greatest natural and anthropogenic environmental disturbance in Australia's tropical savannas, with the vast area burned each year (up to 250,000 km^2) likely to increase with predicted regional climate change. Globally savanna ecosystems cover 11.5% of the global landscape (Scholes and Hall 1996). As much as 75% of this landscape burns annually (Hao et al., 1990), accounting for more than 40% of all global biomass consumed (Hao and Ward 1993). These landscape-scale fires undoubtedly have massive impacts on regional water, energy and carbon dioxide exchanges and as a result may have important feedbacks to the atmosphere and regional climate. Fire may influence climate directly through the emission of smoke and trace gases from burning, but there are other important impacts of fire that may affect the atmosphere. Fire and the subsequent fire scars are likely to radically alter the surface energy budgets of tropical savannas through reduced surface albedo, increased available energy for partitioning into the convective fluxes, and increased substrate heat flux. The aerodynamic and biological properties of the ecosystem may also change, affecting surface-atmosphere coupling. There is a clear potential to influence atmospheric motion and moist convection at a range of scales. Potential fire scar impacts such as those mentioned above have previously been largely ignored and are the focus of the Savanna Fire Experiment (SAFE). Tower measurements of radiation, heat, moisture and CO_2 fluxes above burned and unburned savanna near Darwin, Australia, were initiated in August 2001 to observe the impacts of fire and fire scarring on flux exchange with the atmosphere, along with the longer term post-fire recovery of fluxes. Intensive field campaigns were mounted in the dry (fire) seasons of both 2001 and 2002, with flux recovery observed into the each of the subsequent monsoon seasons. Results and an early analysis of the time series of heat and moisture

  20. The effect of surface sealing on soil moisture dynamics in a semiarid hillslope

    Science.gov (United States)

    Sela, S.; Svoray, T.; Assouline, S.

    2010-12-01

    Understanding the mechanisms underlying hillslope soil moisture dynamics and vegetation patchiness remains a current challenge in hydrology, especially in ungauged watersheds. In dry areas, these mechanisms include the formation of surface seals, that although directly affects infiltration and evaporation fluxes, researchers usually disregard its development when predicting soil moisture patterns. The role of these seals in shaping spatial and temporal patterns of soil moisture, considered as the primary limiting factor for dry area plant distribution, is still an open research gap. At the LTER Lehavim site, in the center of Israel (31020' N, 34045' E), a typical hillslope (0.115 Km2) was chosen offering different aspects and a classic geomorphologic banding. Annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and was interpolated to continuous maps using geostatistical techniques and physically-based models. To explore the effect of soil surface sealing, the Mualem and Assouline (1989) equations, describing the change in hydraulic parameters resulting from soil seal formation, were applied explicitly in space to the entire hillslope. Two simple indices were developed to describe local evaporation rates and the contribution of water from rock outcrops to the downslope soil patches. This spatio-temporal database was used to characterise 1187 cells serving as an input to a numeric model (Hydrus 1D) solving the flow equations to predict soil water content at the single storm and the seasonal scales. Predictions were

  1. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Surface soil moisture is critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purpo...

  2. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  3. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  4. The effect of assimilating satellite derived soil moisture in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2015-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture and carbon fluxes as compared to e.g. Europe. To better constrain our

  5. WindSat/Coriolis surface soil moisture (LPRM) L2 V001 (LPRM_WINDSAT_SOILM2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — WindSat/Coriolis surface soil moisture (LPRM) L2 V001 is a Level 2 (swath) data set. Its land surface parameters, surface soil moisture, land surface (skin)...

  6. Assimilating the Cosmic-Ray Soil Moisture Observing System Measurements for Land Surface Hydrologic Model Parameter Estimation Using the Ensemble Kalman Filter

    Science.gov (United States)

    Xiao, D.; Shi, Y.; Li, L.

    2015-12-01

    Parameter estimation is generally required for land surface models (LSMs) and hydrologic models to reproduce observed water and energy fluxes in different watersheds. Using soil moisture observations for parameter estimation in addition to discharge and land surface temperature observations can improve the prediction of land surface and subsurface processes. Due to their representativity, point measurements cannot capture the watershed-scale soil moisture conditions and may lead to notable bias in watershed soil moisture predictions if used for model calibration. The intermediate-scale cosmic-ray soil moisture observing system (COSMOS) provides average soil water content measurement over a footprint of 0.34 m2 and depths up to 50 cm, and may provide better calibration data for low-order watersheds. In this study, we will test using COSMOS observations for Flux-PIHM parameter and state estimation via the ensemble Kalman filter (EnKF). Flux-PIHM is a physically-based land surface hydrologic model that couples the Penn State Integrated Hydrologic Model (PIHM) with the Noah land surface model. Synthetic data experiments will be performed at the Shale Hills watershed (area: 0.08 km2, smaller than COSMOS footprint) and the Garner Run watershed (1.34 km2, larger than COSMOS footprint) in the Shale Hills Susquehanna Critical Zone Observatory in central Pennsylvania. COSMOS observations will be assimilated into Flux-PIHM using the EnKF, in addition to discharge and land surface temperature (LST) observations. The accuracy of EnKF estimated parameters and water and energy flux predictions will be evaluated. In addition, the results will be compared with assimilating point soil moisture measurement (in addition to discharge and LST), to assess the effects of using different scales of soil moisture observations for parameter estimation. The results at Shale Hills and Garner Run will be compared to test whether performance of COSMOS data assimilation is affected by the size of

  7. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  8. LPRM/WindSat/Coriolis L2 Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  9. LPRM/TMI/TRMM L2 Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  10. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    Science.gov (United States)

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-04-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions-dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing.

  11. Impact of Soil Moisture Assimilation on Land Surface Model Spin-Up and Coupled LandAtmosphere Prediction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Lawston, P.

    2016-01-01

    Advances in satellite monitoring of the terrestrial water cycle have led to a concerted effort to assimilate soil moisture observations from various platforms into offline land surface models (LSMs). One principal but still open question is that of the ability of land data assimilation (LDA) to improve LSM initial conditions for coupled short-term weather prediction. In this study, the impact of assimilating Advanced Microwave Scanning Radiometer for EOS (AMSR-E) soil moisture retrievals on coupled WRF Model forecasts is examined during the summers of dry (2006) and wet (2007) surface conditions in the southern Great Plains. LDA is carried out using NASAs Land Information System (LIS) and the Noah LSM through an ensemble Kalman filter (EnKF) approach. The impacts of LDA on the 1) soil moisture and soil temperature initial conditions for WRF, 2) land-atmosphere coupling characteristics, and 3) ambient weather of the coupled LIS-WRF simulations are then assessed. Results show that impacts of soil moisture LDA during the spin-up can significantly modify LSM states and fluxes, depending on regime and season. Results also indicate that the use of seasonal cumulative distribution functions (CDFs) is more advantageous compared to the traditional annual CDF bias correction strategies. LDA performs consistently regardless of atmospheric forcing applied, with greater improvements seen when using coarser, global forcing products. Downstream impacts on coupled simulations vary according to the strength of the LDA impact at the initialization, where significant modifications to the soil moisture flux- PBL-ambient weather process chain are observed. Overall, this study demonstrates potential for future, higher-resolution soil moisture assimilation applications in weather and climate research.

  12. Pacific climate variability and the possible impact on global surface CO2 flux

    Directory of Open Access Journals (Sweden)

    Kawamiya Michio

    2011-10-01

    Full Text Available Abstract Background Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM control run are examined. Results Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA. By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Conclusions Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  13. Pacific climate variability and the possible impact on global surface CO2 flux.

    Science.gov (United States)

    Okajima, Hideki; Kawamiya, Michio

    2011-10-08

    Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined. Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki1. Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.

  14. Moisture fluxes towards Switzerland: investigating future changes in CMIP5 climate models

    Science.gov (United States)

    Fazan, Valerie; Martius, Olivia; Martynov, Andrey; Panziera, Luca

    2017-04-01

    High integrated vapor transport (IVT) in the atmosphere directed perpendicular to the orography is an important proxy for flood related precipitation in many mountainous areas around the world. Here we focus on flood related IVT and its changes in a warmer climate in Switzerland, where most high-impact floods events in the past 30 years were connected to exceptional IVT upstream of the mountains. Our study aims at investigating how these critical IVT values are projected to evolve in the future in a changing climate. The IVT is computed from 15 CMIP5 climate models for the past (1950-2005) and the future (2006-2100) under the RCP 8.5 scenario ("business as usual"). In order to check the accuracy of the models and the effect of the varying resolution, present day IVT from the CMIP5 models is compared with the ERA-Interim reanalysis data (period 1979-2015). A quantile mapping technique is then used to correct biases. The same bias corrections are applied to the future (2006-2100) IVT data. Finally, future changes in extreme IVT are investigated. This includes an analysis of changes in the magnitude and direction of the moisture flux in the different seasons for different regions in Switzerland.

  15. Variability of soil moisture and its relationship with surface albedo

    Indian Academy of Sciences (India)

    Continuous observation data collected over the year 2008 at Astronomical Observatory, Thiruvananthapuram in south Kerala (76° 59′E longitude and 8° 30′N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed.

  16. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    system, soil moisture has a long memory (Pielke et al 1999; Wu et al 2002). The climatic anom- alies persist because the memory of soil moisture .... The colour of the soil at the experimental site varies from dark brown to dark reddish brown as we go to the deeper layers. Correspondingly the soil texture varies from grav-.

  17. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand

    NARCIS (Netherlands)

    Nolet, Corjan; Poortinga, Ate; Roosjen, Peter; Bartholomeus, Harm; Ruessink, Gerben|info:eu-repo/dai/nl/169093360

    2014-01-01

    Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure

  18. Retrieving near surface soil moisture from microwave radiometric observations: current status and future plans.

    NARCIS (Netherlands)

    Wigneron, J.P.; Calvet, J.C.; Pellarin, T.; vd Griend, A.A.; Berger, M.; Ferrazzoli, P.

    2003-01-01

    Surface soil moisture is a key variable used to describe water and energy exchanges at the land surface/atmosphere interface. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition on a daily basis and on a regional scale (∼

  19. Monitoring Multidecadal satellite earth observation of soil moisture products through land surface reanalysis

    NARCIS (Netherlands)

    Albergel, C.; Dorigo, W.; Balsamo, G.; Sabatar, J; de Rosnay, P.; Isaksen, I; Brocca, L; de Jeu, R.A.M.; Wagner, W.

    2013-01-01

    Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-Interim), is used to monitor at a global scale the consistency of a new microwave based multi-satellite surface soil moisture date set

  20. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  1. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    Science.gov (United States)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  2. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Directory of Open Access Journals (Sweden)

    R. M. Parinussa

    2011-10-01

    Full Text Available For several years passive microwave observations have been used to retrieve soil moisture from the Earth's surface. Low frequency observations have the most sensitivity to soil moisture, therefore the current Soil Moisture and Ocean Salinity (SMOS and future Soil Moisture Active and Passive (SMAP satellite missions observe the Earth's surface in the L-band frequency. In the past, several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E and WindSat have been used to retrieve surface soil moisture using multi-channel observations obtained at higher microwave frequencies. While AMSR-E and WindSat lack an L-band channel, they are able to leverage multi-channel microwave observations to estimate additional land surface parameters. In particular, the availability of Ka-band observations allows AMSR-E and WindSat to obtain coincident surface temperature estimates required for the retrieval of surface soil moisture. In contrast, SMOS and SMAP carry only a single frequency radiometer and therefore lack an instrument suited to estimate the physical temperature of the Earth. Instead, soil moisture algorithms from these new generation satellites rely on ancillary sources of surface temperature (e.g. re-analysis or near real time data from weather prediction centres. A consequence of relying on such ancillary data is the need for temporal and spatial interpolation, which may introduce uncertainties. Here, two newly-developed, large-scale soil moisture evaluation techniques, the triple collocation (TC approach and the Rvalue data assimilation approach, are applied to quantify the global-scale impact of replacing Ka-band based surface temperature retrievals with Modern Era Retrospective-analysis for Research and Applications (MERRA surface temperature output on the accuracy of WindSat and AMSR-E based surface soil moisture retrievals. Results demonstrate that under sparsely vegetated conditions, the use of

  3. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  4. Determination of Surface Fluxes Using a Bowen Ratio System

    African Journals Online (AJOL)

    USER

    Abstract. Components of the surface fluxes of the energy balance equation were determined using a Campbell Bowen ratio system. The fluxes are obtained by the energy balance Bowen ratio technique, a gradient method that uses vertical gradients of temperature and vapour pressure in combination with point ...

  5. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15

    Science.gov (United States)

    The SMAP (Soil Moisture Active Passive) mission provides global surface soil moisture product at 36 km resolution from its L-band radiometer. While the coarse resolution is satisfactory to many applications there are also a lot of applications which would benefit from a higher resolution soil moistu...

  6. Role of subsurface physics in the assimilation of surface soil moisture observations

    Science.gov (United States)

    Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...

  7. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Science.gov (United States)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  8. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    The large variability in the soil moisture content is attributed to the rainfall during all the seasons and also to the evaporation/movement of water to deeper layers. The relationship of surface albedo on soil moisture content on different time scales are studied and the influence of solar elevation angle and cloud cover are also ...

  9. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    Science.gov (United States)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  10. Material fluxes on the surface of the earth

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; Board on Earth Sciences & Resources; National Research Council; National Academy of Sciences

    ...) level of surficial fluxes and their dynamics. Leading experts in the field offer a historical perspective on geofluxes and discuss the cycles of materials on the earth's surface, from weathering processes to the movement of material...

  11. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  12. Plasma-surface interactions under high heat and particle fluxes

    NARCIS (Netherlands)

    De Temmerman, G.; Bystrov, K.; Liu, F.; Liu, W.; Morgan, T.; Tanyeli, I.; van den Berg, M.; Xu, H.; Zielinski, J.

    2013-01-01

    The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface

  13. Using a terrestrial laser scanner to measure spatiotemporal surface moisture dynamics

    Science.gov (United States)

    Smit, Y.; Donker, J.; Ruessink, G.

    2017-12-01

    A terrestrial laser scanner (TLS) is an active remote sensing technique that utilizes the round trip time of an emitted laser beam to provide the range between the laser scanner and the backscattering object. It is routinely used for topographic mapping, forest measurements or 3D city models since it derives useful object representations by means of a dense three-dimensional (3D) point cloud. Here, we present a novel application using the returned intensity of the emitted beam to detect surface moisture with the RIEGL VZ-400. Because this TLS operates at a wavelength near a water absorption band (1550 nm), reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Concurrent gravimetric surface moisture samples were collected to calibrate the relation between reflectance and surface moisture. Results reveal the reflectance output is a robust parameter to measure surface moisture from the thin upper layer over its full range from 0% to 25%. The obtained calibration curve of the presented TLS, describing the relationship between reflectance and surface moisture, has a root-mean-square error of 2.7% and a correlation coefficient squared of 0.85. This relation holds to about 60 m from the TLS. Within this distance the TLS typically produces O(10^6-10^7) data points, which we averaged into surface moisture maps with a 1 x 1 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. Concluding, TLS (RIEGL-VZ 400) is a highly suited technique to accurately and robustly measure spatiotemporal surface moisture variations on a coastal beach with high spatial ( 1 x 1 m) and temporal ( 15-30min.) resolution.

  14. In-situ soil composition and moisture measurement by surface neutron activation analysis

    Science.gov (United States)

    Waring, C.; Smith, C.; Marks, A.

    2009-04-01

    Neutron activation analysis is widely known as a laboratory technique dependent upon a nuclear reactor to provide the neutron flux and capable of precise elemental analysis. Less well known in-situ geochemical analysis is possible with isotopic (252Cf & 241Am) or compact accelerator (D-T, D-D fusion reaction) neutron sources. Prompt gamma neutron activation analysis (PGNAA) geophysical borehole logging has been applied to mining issues for >15 years (CSIRO) using isotopic neutron sources and more recently to environmental and hydro-geological applications by ANSTO. Similarly, sophisticated geophysical borehole logging equipment based on inelastic neutron scattering (INS) has been applied in the oil and gas industry by large oilfield services companies to measure oil saturation indices (carbon/oxygen) using accelerator neutron sources. Recent advances in scintillation detector spectral performance has enabled improved precision and detection limits for elements likely to be present in soil profiles (H, Si, Al, Fe, Cl) and possible detection of many minor to trace elements if sufficiently abundant (Na, K, Mg, Ca, S, N, + ). To measure carbon an accelerator neutron source is required to provide fast neutrons above 4.8 MeV. CSIRO and ANSTO propose building a soil geochemical analysis system based on experience gained from building and applying PGNA borehole logging equipment. A soil geochemical analysis system could effectively map the 2D geochemical composition of the top 50cm of soil by dragging the 1D logging equipment across the ground surface. Substituting an isotopic neutron source for a D-T accelerator neutron source would enable the additional measurement of elemental carbon. Many potential ambiguities with other geophysical proxies for soil moisture may be resolved by direct geochemical measurement of H. Many other applications may be possible including time series in-situ measurements of soil moisture for differential drainage, hydrology, land surface

  15. A new approach of surface flux measurements using DTS

    Science.gov (United States)

    van Emmerik, T. H. M.; Wenker, K. J. R.; Rimmer, A.; de Jong, S. A. P.; Lechinsky, Y.; van de Giesen, N. C.

    2012-04-01

    Estimation of surface fluxes is a difficult task, especially over lakes. Determining latent heat flux (evaporation), sensible heat flux and ground heat flux involves measurements and (or calculations) of net radiation, air temperature, water temperature, wind speed and relative humidity. This research presents a new method to measure surface fluxes by means of Distributed Temperature Sensing (DTS). From 0.5 m above lake level to 1.5 m under lake level DTS was applied to measure temperature. Using a PVC hyperboloid construction, a floating standalone measuring device was developed. This new setup distinguished itself by the open construction, so it is almost insensitive to direct radiation. While most of the lake ground heat changes occur very close to the lake surface, most measuring methods only obtain rough results. With this construction it was possible to create a spiral shaped fiber-optic cable setup, with which a vertical spatial resolution of 0.02 m and a temporal resolution of 1 min was obtained. The new method was tested in the deep Lake Kinneret (Israel) from 6 October, 2011 to 11 October, 2011and in the shallow Lake Binaba (Ghana) from 24 October, 2011 to 28 October, 2011. This study shows that with the developed method it is possible to capture the energy fluxes within the top water layer with a high resolution. When the old low resolution method was compared with the new high resolution method, it could be concluded that the impact of the surface fluxes in the upper layer is high on the energy balance on a daily scale. During the measuring period it was possible to use the temperature measured by the DTS to determine the sensible heat flux, the latent heat flux and the ground heat flux of both lakes.

  16. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  17. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  18. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  19. Soil CO2 Flux, Moisture, Temperature, and Litterfall, La Selva, Costa Rica, 2003-2010

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of soil carbon dioxide (CO2) emission rates, soil moisture, relative humidity (RH), temperature, and litterfall from six types of...

  20. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  1. Circumpolar freeze/thaw surface status and surface soil moisture from Metop ASCAT

    Science.gov (United States)

    Bartsch, Annett; Paulik, Christoph; Melzer, Thomas; Hahn, Sebastian; Wagner, Wolfgang

    2013-04-01

    Circumpolar surface soil moisture and freeze/thaw surface status has been derived from Metop ASCAT within the framework of the ESA DUE Permafrost and STSE ALANIS-Methane projects. The dataset is available via Pangaea (doi:10.1594/PANGAEA.775959) and can be vizualized with the WebGIS of the DUE Permafrost data portal (www.ipf.tuwien.ac.at/permafrost). MetOp ASCAT data have been used for both the near surface soil moisture (SSM) product and determination of freeze/thaw status at panboreal/ arctic scale. Metop-A, launched in October 2006 by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), is the first of three satellites within EUMETSAT's Polar System (EPS). The ASCAT SSM DUE Permafrost product is the result of an improved SSM retrieval algorithm developed at the Institute for Photogrammetry and Remote Sensing (IPF) of the Vienna University of Technology. The SSM Product is delivered with a weekly temporal resolution and 25 km spatial resolution. The soil moisture product also includes a quality flag which contains the number of used measurements. Data are masked for frozen ground conditions also based on MetOp ASCAT. The daily SSF is available as separate flag. The SSM product is provided as weekly averaged images north of 50°N in GeoTIFF/NetCDF format and EASE Grid projection Further, complementary regional scale (1km) freeze/thaw information is available at selected sites based on ENVISAT ASAR GM (PANGAEA http://doi.pangaea.de/10.1594/PANGAEA.779658).

  2. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    Science.gov (United States)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; hide

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  3. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    Science.gov (United States)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  4. Obtaining evapotranspiration and surface energy fluxes with ...

    African Journals Online (AJOL)

    In this study, SEBAL (Surface Energy Balance Algorithm for Land), a remote sensing based evapotranspiration model, has been applied with Landsat ETM+ sensor for the estimation of actual ... The land uses in this study area consists of irrigated agriculture, rain-fed agriculture and livestock grazing. The obtained results ...

  5. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.

    1987-01-01

    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  6. Modeling surface energy fluxes from a patchwork of fields with different soils and crops

    Science.gov (United States)

    Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart

    2017-04-01

    Agroecosystems are a dominant terrestrial land-use on planet earth and cover about 36% of the ice-free surface (12% pasture, 26% agriculture) [Foley2011]. Within this land use type, management practices vary strongly due to climate, cultural preferences, degree of industrialization, soil properties, crop rotations, field sizes, degree of land use sustainability, water availability, sowing and harvest dates, tillage, etc. These management practices influence abiotic environmental factors like water flow and heat transport within the ecosystem leading to changes of land surface fluxes. The relevance of vegetation (e.g. crops), ground cover, and soil properties to the moisture and energy exchanges between the land surface and the atmosphere is well known [McPherson 2007], but the impact of vegetation growth dynamics on energy fluxes is only partly understood [Gayler et al. 2014]. Thus, the structure of turbulence and the albedo evolve during the cropping period and large variations of heat can be measured on the field scale [Aubinet2012]. One issue of local distributed mixture of different land use is the measurement process which makes it challenging to evaluate simulations. Unfortunately, for meteorological flux-measurements like the Flux-Gradient or the Eddy Covariance (EC) method, comparability with simulations only exists in the ideal case, where fields have to be completely uniform in land use and flat within the reach of the footprint. Then a model with one specific land use would have the same underlying source area as the measurement. An elegant method to avoid the shortcoming of grid cell resolution is the so called mixed approach, which was recently implemented into the ecosystem model framework Expert-N [Biernath et al. 2013]. The aim of this study was to analyze the impact of the characteristics of five managed field plots, planted with winter wheat, potato and maize on the near surface soil moistures and on the near surface energy flux exchanges of the

  7. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  8. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  9. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  10. Water movement in building walls: interfaces influence on the moisture flux

    Science.gov (United States)

    Delgado, J. M. P. Q.; de Freitas, V. P.; Guimarães, A. S.

    2016-11-01

    Most building elements are a composite of different material layers; however the majority of the works presented in literature were developed for multi-layered elements with perfect contact interface, without resistance. Experimental results presented in literature showed that a considerable hydraulic resistance could be created by the imperfect contact between two porous building materials. Moisture transport in multi-layered building elements can deviate from the moisture transport found for the combination of the single material elements, so the assumption of perfect hydraulic contact could lead to significant errors in predicting the moisture transport. This work presents an experimental campaign and a critical analysis of water absorption in samples of two different building materials (clay brick and autoclaved aerated concrete) with and without joints at different positions (heights) and different contact configurations (natural contact and air space between layers). The results show that when the moisture reaches the interface there is a slowing of the wetting process due to the interfaces hygric resistance. The interfaces hygric resistance, in the AAC samples, is only observed for the joint located from a distance of 2 cm of the wetting plane. The penetration coefficient of the two building materials analysed is very different. Finally, the evolution of the distribution of liquid in the porous medium was analysed in terms of the Boltzmann transform method and anomalous diffusion equation.

  11. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  12. Stochastic Models for the Kinematics of Moisture Transport and Condensation in Homogeneous Turbulent Flows

    OpenAIRE

    O'Gorman, Paul A.; Schneider, Tapio

    2006-01-01

    The transport of a condensing passive scalar is studied as a prototype model for the kinematics of moisture transport on isentropic surfaces. Condensation occurs whenever the scalar concentration exceeds a specified local saturation value. Since condensation rates are strongly nonlinear functions of moisture content, the mean moisture flux is generally not diffusive. To relate the mean moisture content, mean condensation rate, and mean moisture flux to statistics of the advecting velocity fie...

  13. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  14. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  15. Turbulent particle flux to a perfectly absorbing surface

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pecseli, H.L.

    2005-01-01

    is generated by two moving grids. The simultaneous trajectories of many small approximately neutrally buoyant polystyrene particles are followed in time. In a Lagrangian analysis, we select one of these as the centre of a ‘sphere of interception’, and obtain estimates for the time variation of the statistical......The feasibility of an experimental method for investigations of the particle flux to an absorbing surface in turbulent flows is demonstrated in a Lagrangian as well as an Eulerian representation. A laboratory experiment is carried out, where an approximately homogeneous and isotropic turbulent flow...... average of the inward particle flux through the surface of this moving sphere. The variation of the flux with the radius in the sphere of interception, as well as the variation with basic flow parameters is described well by a simple model, in particular for radii smaller than a characteristic length...

  16. Assimilation of SMOS Brightness Temperatures or Soil Moisture Retrievals into a Land Surface Model

    Science.gov (United States)

    De Lannoy, Gabrielle J. M.; Reichle, Rolf H.

    2016-01-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40 degree incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  17. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  18. Surface energy, CO2 fluxes and sea ice

    CSIR Research Space (South Africa)

    Gulev, SK

    2009-09-01

    Full Text Available This paper reviews the current state of observation, parameterization and evaluation of surface air-sea energy and gas fluxes, and sea ice, for the purposes of monitoring and predicting the state of the global ocean. The last 10 years have been...

  19. Spatio-temporal variation of surface soil moisture over the Yellow River basin during 1961–2012

    Directory of Open Access Journals (Sweden)

    R. Tong

    2015-05-01

    Full Text Available Soil moisture plays a significant role in agricultural and ecosystem development. However, in the real world soil moisture data are very limited due to many factors. VIC-3L model, as a semi-distribution hydrological model, can potentially provide valuable information regarding soil moisture. In this study, daily soil moisture contents in the surface soil layer (0–10 cm of 1500 grids at 0.25 × 0.25 degree were simulated by the VIC-3L model. The Mann-Kendall trend test and Morlet wavelet analysis methods were used for the analysis of annual and monthly average surface soil moisture series. Results showed that the trend of surface soil moisture was not obvious on the basin scale, but it varied with spatial and temporal conditions. Different fluctuation amplitudes and periods of surface soil moisture were also discovered on the Yellow River basin during 1961 to 2012.

  20. Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.

    Science.gov (United States)

    Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2017-08-01

    Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    International Nuclear Information System (INIS)

    Zhou Zhou; Wang Jilong; Huang Xiao; Zhang Liwen; Moyo, Senelisile; Sun Shiyuan; Qiu Yiping

    2012-01-01

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  2. Near Surface Soil Moisture Controls Beyond the Darcy Support Scale: A Remote Sensing Perspective

    Science.gov (United States)

    Mohanty, B.; Gaur, N.

    2014-12-01

    Variability observed in near-surface soil moisture is a function of spatial and temporal scale and an understanding of the same is required in numerous environmental and hydrological applications. Past literature has focused largely on the Darcy support scale of measurement for generating knowledge about soil moisture variability and the factors causing it. With the advent of a remote sensing era, it is essential to develop a comprehensive understanding of soil moisture variability and the factors creating it at the remote sensing footprint scale. This understanding will facilitate knowledge transfer between scales which remains an area of active research. In this study, we have presented the hierarchy of controls that physical factors namely, soil, vegetation and topography exert on soil moisture distributions from airborne remote sensor footprint scale (~800 m) to a satellite footprint scale (12800 m) across 3 hydro-climates- humid (Iowa), sub-humid (Oklahoma) and semi-arid (Arizona). We evaluated the effect of physical factors on soil moisture variability at coarse spatial support scales but fine (daily) temporal spacing scales which are typical of remotely sensed soil moisture data. The hierarchy or ranking scheme defined in the study is a function of the areal extent of controls of the different physical factors and the magnitude of their effect in creating spatial variability of soil moisture. We found that even though the areal influence of soil on soil moisture variability remained significant at all scales, it decreased as we went from airborne scale to coarser scales whereas the influence of topography and vegetation increased for all three hydro-climates. The magnitude of the effect of these factors, however, was dependent on antecedent soil moisture conditions and hydro-climate.

  3. Botswana water and surface energy balance research program. Part 2: Large scale moisture and passive microwaves

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Chang, A. T. C.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. The research program consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components are explained in general and activities performed within the passive microwave research component are summarized. The microwave theory is discussed taking into account: soil dielectric constant, emissivity, soil roughness effects, vegetation effects, optical depth, single scattering albedo, and wavelength effects. The study site is described. The soil moisture data and its processing are considered. The relation between observed large scale soil moisture and normalized brightness temperatures is discussed. Vegetation characteristics and inverse modeling of soil emissivity is considered.

  4. Role of the Soil Thermal Inertia in the short term variability of the surface temperature and consequences for the soil-moisture temperature feedback

    Science.gov (United States)

    Cheruy, Frederique; Dufresne, Jean-Louis; Ait Mesbah, Sonia; Grandpeix, Jean-Yves; Wang, Fuxing

    2017-04-01

    A simple model based on the surface energy budget at equilibrium is developed to compute the sensitivity of the climatological mean daily temperature and diurnal amplitude to the soil thermal inertia. It gives a conceptual framework to quantity the role of the atmospheric and land surface processes in the surface temperature variability and relies on the diurnal amplitude of the net surface radiation, the sensitivity of the turbulent fluxes to the surface temperature and the thermal inertia. The performances of the model are first evaluated with 3D numerical simulations performed with the atmospheric (LMDZ) and land surface (ORCHIDEE) modules of the Institut Pierre Simon Laplace (IPSL) climate model. A nudging approach is adopted, it prevents from using time-consuming long-term simulations required to account for the natural variability of the climate and allow to draw conclusion based on short-term (several years) simulations. In the moist regions the diurnal amplitude and the mean surface temperature are controlled by the latent heat flux. In the dry areas, the relevant role of the stability of the boundary layer and of the soil thermal inertia is demonstrated. In these regions, the sensitivity of the surface temperature to the thermal inertia is high, due to the high contribution of the thermal flux to the energy budget. At high latitudes, when the sensitivity of turbulent fluxes is dominated by the day-time sensitivity of the sensible heat flux to the surface temperature and when this later is comparable to the thermal inertia term of the sensitivity equation, the surface temperature is also partially controlled by the thermal inertia which can rely on the snow properties; In the regions where the latent heat flux exhibits a high day-to-day variability, such as transition regions, the thermal inertia has also significant impact on the surface temperature variability . In these not too wet (energy limited) and not too dry (moisture-limited) soil moisture (SM

  5. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    Science.gov (United States)

    Chanzy, André

    2010-05-01

    Soil moisture is a key variable for many soil physical and biogeochemical processes. Its dynamic results from water fluxes in soil and at its boundaries, as well as soil water storage properties. If the water flows are dominated by diffusive processes, modelling approaches based on the Richard's equation or the Philip and de Vries coupled heat and water flow equations lead to a satisfactory representation of the soil moisture dynamic. However, It requires the characterization of soil hydraulic functions, the initialisation and the boundary conditions, which are expensive to obtain. The major problem to assess soil moisture for decision making or for representing its spatiotemporal evolution over complex landscape is therefore the lack of information to run the models. The aim of the presentation is to analyse how a soil moisture model can be implemented when only climatic data and basic soil information are available (soil texture, organic matter) and what would be the added of making a few soil moisture measurements. We considered the field scale, which is the key scale for decision making application (the field being the management unit for farming system) and landscape modelling (field size being comparable to the computation unit of distributed hydrological models). The presentation is limited to the bare soil case in order to limit the complexity of the system and the TEC model based on Philip and De Vries equations is used in this study. The following points are addressed: o the within field spatial variability. This spatial variability can be induced by the soil hydraulic properties and/or by the amount of infiltrated water induced by water rooting towards infiltration areas. We analyse how an effective parameterization of soil properties and boundary conditions can be used to simulate the field average moisture. o The model implementation with limited information. We propose strategies that can be implemented when information are limited to soil texture and

  6. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  7. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere. - Highlights: • Soil-air Hg fluxes are an important component of the

  8. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2016-12-01

    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  9. Surface temperature and surface heat flux determination of the inverse heat conduction problem for a slab

    International Nuclear Information System (INIS)

    Kuroyanagi, Toshiyuki

    1983-07-01

    Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)

  10. DO3SE modelling of soil moisture to determine ozone flux to forest trees

    Science.gov (United States)

    P. Büker; T. Morrissey; A. Briolat; R. Falk; D. Simpson; J.-P. Tuovinen; R. Alonso; S. Barth; M. Baumgarten; N. Grulke; P.E. Karlsson; J. King; F. Lagergren; R. Matyssek; A. Nunn; R. Ogaya; J. Peñuelas; L. Rhea; M. Schaub; J. Uddling; W. Werner; L.D. Emberson

    2012-01-01

    The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to...

  11. Numerical and experimental determination of surface temperature and moisture evolution in a field soil

    Science.gov (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan

    2007-03-01

    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  12. Ensemble based Assimilation of SMOS Surface Soil Moisture into the Surfex 11-layer Diffusion Scheme

    Science.gov (United States)

    Blyverket, Jostein; Hamer, Paul; Svendby, Tove; Lahoz, William

    2017-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite samples soil moisture at a spatial scale of ˜40 km and in the top ˜5 cm of the soil, depending on land cover and soil type. Remote sensing products have a limited spatial and temporal cover, with a re-visit time of 3 days close to the Equator for SMOS. These factors make it difficult to monitor the hydrological cycle over e.g., Northern Areas where there is a strong topography, fractal coastline and long periods of snow cover, all of which affect the SMOS soil moisture retrieval. Until now simple 3-layer force and restore models have been used to close the spatial (vertical/horizontal) and temporal gaps of soil moisture from remote sensing platforms. In this study we have implemented the Ensemble Transform Kalman Filter (ETKF) into the Surfex land surface model, and used the ISBA diffusion scheme with 11-vertical layers. In contrast to the rapid changing surface layer, the slower changing root zone soil moisture is important for long term evapotranspiration and water supply. By combining a land surface model with satellite observations using data assimilation we can provide a better estimate of the root zone soil moisture at regional scales. The Surfex model runs are done for a European domain, from 1 July 2012 to 1 August 2013. For validation of our model setup, we compare with in situ stations from the International Soil Moisture Network (ISMN) and the Norwegian Water and Energy Authorities (NVE); we also compare against the ESA CCI soil moisture product v02.2, which does not include SMOS soil moisture data. SMOS observations and open loop model runs are shown to exhibit large biases, these are removed before assimilation by a linear rescaling technique. Information from the satellite is transferred into deeper layers of the model using data assimilation, improving the root zone product when validated against in situ stations. The improved correlation between the assimilated product and the in situ values

  13. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Randy R. [Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  14. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    International Nuclear Information System (INIS)

    Kirkham, R.R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy's Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, G T , is a major component of the energy balance in arid systems and G T generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and G T for all sites

  15. Land surface model evaluation using a new soil moisture dataset from Kamennaya Steppe, Russia

    Science.gov (United States)

    Atkins, T.; Robock, A.; Speranskaya, N.

    2004-12-01

    The land surface affects the atmosphere through the transfer of energy and moisture and serves as the lower boundary in numerical weather prediction and climate models. To obtain good forecasts, these models must therefore accurately portray the land surface. Actual in situ measurements are vital for testing and developing these models. It is with this in mind that we have obtained a dataset of soil moisture, soil temperature and meteorological measurements from Kamennaya Steppe, Russia. The meteorological dataset spans the time period 1965-1991, while the soil moisture dataset runs from 1956-1991. The soil moisture dataset contains gravimetric volumetric total soil moisture measurements for 10 layers taken from forest, agricultural and grassland soils. The meteorological dataset contains 3-hourly measurements of precipitation, temperature, wind speed, pressure and relative humidity. We obtained longwave and shortwave radiation data from standard formulae. The data will be made available to the public via the Rutgers University Center for Environmental Prediction Global Soil Moisture Data Bank. Soil temperature is important in determining the timing, duration and intensity of runoff and snowmelt, particularly at the beginning and end of the winter when the ground is only partially frozen. Soil temperature can in turn be affected by the vertical distribution of roots. The soil temperature data are for 1969-1991. The data are daily averaged for every 20 cm to 1.2 meters in depth. These data are used to investigate the natural sensitivity of soil temperature to vegetation type and root distribution. We also use the temperature data, as well as water balance and snowfall data to test the sensitivity of the Noah land surface model (LSM) soil temperature to vertical root distribution, and what effect that has on the hydrology of the site. In addition to soil temperature data, we also have soil moisture data for several vegetation types. We compare the soil moisture time

  16. LPRM/AMSR2/GCOM-W1 L2 Downscaled Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  17. LPRM/AMSR2/GCOM-W1 L3 Descending Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  18. LPRM/AMSR2/GCOM-W1 L3 Ascending Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  19. LPRM/AMSR2/GCOM-W1 L2 Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 2 (swath) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  20. LPRM/WindSat/Coriolis L3 Night Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  1. LPRM/WindSat/Coriolis L3 Day Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  2. LPRM/AMSR-E/Aqua Daily L3 Ascending Surface Soil Moisture, Ancillary Params, and QC V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  3. LPRM/AMSR-E/Aqua Daily L3 Descending Surface Soil Moisture, Ancillary Params, and QC V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set’s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  4. Effect of airflow velocity on moisture exchange at surfaces of building materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2006-01-01

    The moisture transfer between air and construction are affected of the boundary layer conditions close to the surface, which is influenced by the airflow patterns in the room. Therefore an investigation of the relation be-tween the surface resistance and the airflow velocity above a material samp...... resistances decrease for increasing airflow velocity above the boundary layer of the material surface. The measured resistances are somewhat smaller than the ones esti-mated by use of the Lewis relation....

  5. Impact of groundwater capillary rises as lower boundary conditions for soil moisture in a land surface model

    Science.gov (United States)

    Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence

    2014-05-01

    Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.

  6. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  7. Multi Function Heat Pulse Probes (MFHPP) to Estimate Ground Heat Flux and Reduce Surface Energy Budget Errors

    Science.gov (United States)

    Ciocca, Francesco; Sharma, Varun; Lunati, Ivan; Parlange, Marc B.

    2013-04-01

    Ground heat flux plays a crucial role in surface energy budget: an incorrect estimation of energy storage and heat fluxes in soils occur when probes such as heat flux plates are adopted, and these mistakes can account for up to 90% of the residual variance (Higgins, GRL, 2012). A promising alternative to heat flux plates is represented by Multi Function Heat Pulse Probes (MFHPP). They have proven to be accurate in thermal properties and heat fluxes estimation (e.g. Cobos, VZJ, 2003) and can be used to monitor and quantify subsurface evaporation in field experiments (Xiao et al., VZJ, 2011). We perform a laboratory experiment with controlled temperature in a small Plexiglas column (20cm diameter and 40cm height). The column is packed with homogeneously saturated sandy soil and equipped with three MFHPPs in the upper 4cm and thermocouples and dielectric soil moisture probes deeper. This configuration allows for accurate and simultaneous ground heat flux, soil moisture and subsurface evaporation measurements. Total evaporation is monitored using a precision scale, while an infrared gun and a long wave radiometer measure the soil skin temperature and the outgoing long-short wave radiation, respectively. A fan and a heat lamp placed above the column allow to mimick on a smaller and more controlled scale the field conditions induced by the diurnal cycle. At a reference height above the column relative humidity, wind speed and air temperature are collected. Results are interpreted by means of numerical simulations performed with an ad-hoc-developed numerical model that simulates coupled heat and moisture transfer in soils and is used to match and interpolate the temperature and soil moisture values got at finite depths within the column. Ground heat fluxes are then estimated by integrating over almost continuous, numerically simulated temperature profiles, which avoids errors due to use of discrete data (Lunati et al., WRR, 2012) and leads to a more reliable estimate of

  8. Detecting the influence of ocean process on the moisture supply for India summer monsoon from Satellite Sea Surface Salinity

    Science.gov (United States)

    Tang, W.; Yueh, S. H.; Liu, W. T.; Fore, A.; Hayashi, A.

    2016-02-01

    A strong contrast in the onset of Indian summer monsoon was observed by independent satellites: average rain rate over India subcontinent (IS) in June was more than doubled in 2013 than 2012 (TRMM); also observed are larger area of wet soil (Aquarius) and high water storage (GRACE). The difference in IS rainfall was contributed to the moisture inputs through west coast of India, estimated from ocean wind (OSCAT2) and water vapor (TMI). This is an interesting testbed for studying the role of ocean on terrestrial water cycle, in particular the Indian monsoon, which has tremendous social-economical impact. What is the source of extra moisture in 2013 or deficit in 2012 for the monsoon onset? Is it possible to quantify the contribution of ocean process that maybe responsible for redistributing the freshwater in favor of the summer monsoon moisture supply? This study aims to identify the influence of ocean processes on the freshwater exchange between air-sea interfaces, using Aquarius sea surface salinity (SSS). We found two areas in Indian Ocean with high correlation between IS rain rate and Aquarius SSS: one area is in the Arabian Sea adjacent to IS, another area is a horizontal patch from 60°E to 100°E centered around 10°S. On the other hand, E-P (OAflux, TRMM) shows no similar correlation patterns with IS rain. Based on the governing equation of the salt budget in the upper ocean, we define the freshwater flux, F, from the oceanic branch of the water cycle, including contributions from salinity tendency, advection, and subsurface process. The tendency and advection terms are estimated using Aquarius SSS and OSCAR ocean current. We will present results of analyzing the spatial and temporal variability of F and evidence of and hypothesis on how the oceanic processes may enhance the moisture supply for summer Indian monsoon onset in 2013 comparing with 2012. The NASA Soil Moisture Active Passive (SMAP) has been producing the global soil moisture (SM) every 2-3 days

  9. Determination of 3D Equilibria from Flux Surface Knowledge Only

    International Nuclear Information System (INIS)

    Mynick, H.E.; Pomphrey, N.

    2001-01-01

    We show that the method of Christiansen and Taylor, from which complete tokamak equilibria can be determined given only knowledge of the shape of the flux surfaces, can be extended to 3-dimensional equilibria, such as those of stellarators. As for the tokamak case, the given geometric knowledge has a high degree of redundancy, so that the full equilibrium can be obtained using only a small portion of that information

  10. Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA

    Science.gov (United States)

    Becky L. Estes; Eric E. Knapp; Carl N. Skinner; Fabian C. C. Uzoh

    2012-01-01

    Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer...

  11. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    atively longer memory of soil moisture in com- parison with the variation of controlling parame- ters often leads to climatic ... and vegetation cover changes the soil colour and thus varies the surface albedo (Todd and Hoffer. 1998). .... The colour of the soil at the experimental site varied from dark brown to dark reddish brown.

  12. Greenhouse gas emissions from beef feedlot surface materials as affected by diet, moisture, temperature, and time

    Science.gov (United States)

    A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open lot, pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distil...

  13. Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P-ET in Observationally-Driven Land Surface Models

    Science.gov (United States)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.

    2016-01-01

    Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC equals P minus ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P minus ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to minus 0.03 millimeters per day per decade are reduced by the adjustments to 0.016 millimeters per day per decade, much closer to the LSM P minus ET estimate (0.007 millimeters per day per decade). Neither is significant at the 90 percent level. ENSO (El Nino-Southern Oscillation)-related modulation of VMFC and P minus ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

  14. Identification of boundary heat flux on the continuous casting surface

    Directory of Open Access Journals (Sweden)

    E. Majchrzak

    2008-12-01

    Full Text Available In the paper the numerical solution of the inverse problem consisting in the identification of the heat flux on the continuous casting surface is presented. The additional information results from the measured surface or interior temperature histories. In particular the sequential function specification method using future time steps is applied. On the stage of numerical computations the 1st scheme of the boundary element method for parabolic equations is used. Because the problem is strongly non-linear the additional procedure 'linearizing' the task discussed is introduced. This procedure is called the artificial heat source method. In the final part of the paper the examples of computations are shown.

  15. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  16. Study on a Dynamic Vegetation Model for Simulating Land Surface Flux Exchanges at Lien-Hua-Chih Flux Observation Site in Taiwan

    Science.gov (United States)

    Yeh, T. Y.; Li, M. H.; Chen, Y. Y.; Ryder, J.; McGrath, M.; Otto, J.; Naudts, K.; Luyssaert, S.; MacBean, N.; Bastrikov, V.

    2016-12-01

    Dynamic vegetation model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms) is a state of art land surface component of the IPSL (Institute Pierre Simon Laplace) Earth System Model. It has been used world-wide to investigate variations of water, carbon, and energy exchanges between the land surface and the atmosphere. In this study we assessed the applicability of using ORCHIDEE-CAN, a new feature with 3-D CANopy structure (Naudts et al., 2015; Ryder et al., 2016), to simulate surface fluxes measured at tower-based eddy covariance fluxes at the Lien-Hua-Chih experimental watershed in Taiwan. The atmospheric forcing including radiation, air temperature, wind speed, and the dynamics of vertical canopy structure for driving the model were obtained from the observations site. Suitable combinations of default plant function types were examined to meet in-situ observations of soil moisture and leaf area index from 2009 to 2013. The simulated top layer soil moisture was ranging from 0.1 to 0.4 and total leaf area was ranging from 2.2 to 4.4, respectively. A sensitivity analysis was performed to investigate the sensitive of model parameters and model skills of ORCHIDEE-CAN on capturing seasonal variations of surface fluxes. The most sensitive parameters were suggested and calibrated by an automatic data assimilation tool ORCHDAS (ORCHIDEE Data Assimilation Systems; http://orchidas.lsce.ipsl.fr/). Latent heat, sensible heat, and carbon fluxes simulated by the model were compared with long-term observations at the site. ORCHIDEE-CAN by making use of calibrated surface parameters was used to study variations of land-atmosphere interactions on a variety of temporal scale in associations with changes in both land and atmospheric conditions. Ref: Naudts, K., et al.,: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geoscientific Model Development, 8, 2035-2065, doi:10.5194/gmd-8

  17. TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km daytime V001 (LPRM_TMI_DY_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km daytime V001 is a Level 3 (gridded) data set. Its land surface parameters, surface soil moisture, land...

  18. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  19. The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia

    NARCIS (Netherlands)

    van der Molen, M. K.; de Jeu, R. A. M.; Wagner, W.; van der Velde, I. R.; Kolari, P.; Kurbatova, J.; Varlagin, A.; Maximov, T. C.; Kononov, A. V.; Ohta, T.; Kotani, A.; Krol, M. C.; Peters, W.

    2016-01-01

    Boreal Eurasia is a region where the interaction between droughts and the carbon cycle may have significant impacts on the global carbon cycle. Yet the region is extremely data sparse with respect to meteorology, soil moisture, and carbon fluxes as compared to e.g. Europe. To better constrain our

  20. Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondonia.

    NARCIS (Netherlands)

    Alvala, R.C.S.; Gielow, R.; Rocha, H.R.; Freitas, H.C.; Lopes, J.M.; Manzi, A.O.; von Rondow, C.; Dias, M.A.F.S.; Cabral, O.M.R.; Waterloo, M.J.

    2002-01-01

    Soil temperatures depend on the soil heat flux, an important parameter in meteorological and plant growth-energy balance models. Thus, they were measured, together with soil moisture contents, within the LBA program at forest (Reserva Jaru) and pasture (Fazenda Nossa Senhora) sites in Rondônia,

  1. Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska

    Directory of Open Access Journals (Sweden)

    C. S. Sturtevant

    2012-04-01

    Full Text Available Accurate estimates of annual budgets of methane (CH4 efflux in arctic regions are severely constrained by the paucity of non-summer measurements. Moreover, the incomplete understanding of the ecosystem-level sensitivity of CH4 emissions to changes in tundra moisture makes prediction of future CH4 release from the Arctic extremely difficult. This study addresses some of these research gaps by presenting an analysis of eddy covariance and chamber measurements of CH4 efflux and supporting environmental variables during the autumn season and associated beginning of soil freeze-up at our large-scale water manipulation site near Barrow, Alaska (the Biocomplexity Experiment. We found that the autumn season CH4 emission is significant (accounting for 21–25% of the average growing season emission, and that this emission is mostly controlled by the fraction of inundated landscape, atmospheric turbulence, and the decline in unfrozen water during the period of soil freezing. Drainage decreased autumn CH4 emission by a factor of 2.4 compared to our flooded treatment. Flooding slowed the soil freezing process which has implications for extending elevated CH4 emissions longer into the winter season.

  2. Assessment of the SMAP Level-4 Surface and Root-Zone Soil Moisture Product Using In Situ Measurements

    NARCIS (Netherlands)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas J.; Jones, Lucas A.; Kimball, John S.; Koster, Randal D.; Mahanama, Sarith P.; Smith, Edmond B.; Berg, Aaron; Bircher, Simone; Bosch, David; Caldwell, Todd G.; Cosh, Michael; Holifield Collins, Chandra D.; Jensen, Karsten H.; Livingston, Stan; Lopez-baeza, Ernesto; Martínez-fernández, José; Mcnairn, Heather; Moghaddam, Mahta; Pacheco, Anna; Pellarin, Thierry; Prueger, John; Rowlandson, Tracy; Seyfried, Mark; Starks, Patrick; Su, Bob; Thibeault, Marc; Van Der Velde, Rogier; Walker, Jeffrey; Wu, Xiaoling; Zeng, Yijian

    2017-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Surface and Root-Zone Soil Moisture (L4_SM) data product is generated by assimilating SMAP L-band brightness temperature observations into the NASA Catchment land surface model. The L4_SM product is available from 31 March 2015 to present

  3. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    Science.gov (United States)

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Regional surface fluxes from satellite-derived surface temperatures (AVHRR) and radiosonde profiles

    Science.gov (United States)

    Brutsaert, Wilfried; Sugita, Michiaki

    1992-01-01

    Radiometric surface temperatures, derived from measurements by the AVHRR instrument aboard the NOAA-9 and the NOAA-11 polar orbiting satellites, were used in combination with wind velocity and temperature profiles measured by radiosondes, to calculate surface fluxes of sensible heat. The measurements were made during FIFE, the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment, in a hilly tall grass prairie area of northeastern Kansas. The method of calculation was based on turbulent similarity formulations for the atmospheric boundary layer. Good agreement (r = 0.7) was obtained with reference values of sensible heat flux, taken as arithmetric means of measurements with the Bowen ratio method at six ground stations. The values of evaporation (latent heat fluxes), derived from these sensible heat fluxes by means of the energy budget, were also in good agreement (r = 0.94) with the corresponding reference values from the ground stations.

  5. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  6. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2009-02-01

    Full Text Available A long term data acquisition effort of profile soil moisture is currently underway at 13 automatic weather stations located in Southwestern France. In this study, the soil moisture measured in-situ at 5 cm is used to evaluate the normalised surface soil moisture (SSM estimates derived from coarse-resolution (25 km active microwave data of the ASCAT scatterometer instrument (onboard METOP, issued by EUMETSAT for a period of 6 months (April–September in 2007. The seasonal trend is removed from the satellite and in-situ time series by considering scaled anomalies. One station (Mouthoumet of the ground network, located in a mountainous area, is removed from the analysis as very few ASCAT SSM estimates are available. No correlation is found for the station of Narbonne, which is close to the Mediterranean sea. On the other hand, nine stations present significant correlation levels. For two stations, a significant correlation is obtained when considering only part of the ASCAT data. The soil moisture measured in-situ at those stations, at 30 cm, is used to estimate the characteristic time length (T of an exponential filter applied to the ASCAT product. The best correlation between a soil water index derived from ASCAT and the in-situ soil moisture observations at 30 cm is obtained with a T-value of 14 days.

  7. An evaluation of ASCAT surface soil moisture products with in-situ observations in Southwestern France

    Science.gov (United States)

    Albergel, C.; Rüdiger, C.; Carrer, D.; Calvet, J.-C.; Fritz, N.; Naeimi, V.; Bartalis, Z.; Hasenauer, S.

    2009-02-01

    A long term data acquisition effort of profile soil moisture is currently underway at 13 automatic weather stations located in Southwestern France. In this study, the soil moisture measured in-situ at 5 cm is used to evaluate the normalised surface soil moisture (SSM) estimates derived from coarse-resolution (25 km) active microwave data of the ASCAT scatterometer instrument (onboard METOP), issued by EUMETSAT for a period of 6 months (April-September) in 2007. The seasonal trend is removed from the satellite and in-situ time series by considering scaled anomalies. One station (Mouthoumet) of the ground network, located in a mountainous area, is removed from the analysis as very few ASCAT SSM estimates are available. No correlation is found for the station of Narbonne, which is close to the Mediterranean sea. On the other hand, nine stations present significant correlation levels. For two stations, a significant correlation is obtained when considering only part of the ASCAT data. The soil moisture measured in-situ at those stations, at 30 cm, is used to estimate the characteristic time length (T) of an exponential filter applied to the ASCAT product. The best correlation between a soil water index derived from ASCAT and the in-situ soil moisture observations at 30 cm is obtained with a T-value of 14 days.

  8. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status

    DEFF Research Database (Denmark)

    Sandholt, Inge; Rasmussen, Kjeld; Andersen, Jens Asger

    2002-01-01

    A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing interpre......A simplified land surface dryness index (Temperature-Vegetation Dryness Index, TVDI) based on an empirical parameterisation of the relationship between surface temperature (T-s) and vegetation index (NDVI) is suggested. The index is related to soil moisture and, in comparison to existing...... interpretations of the T-s/NDVI space, the index is conceptually and computationally straightforward. It is based on satellite derived information only, and the potential for operational application of the index is therefore large. The spatial pattern and temporal evolution in TVDI has been analysed using 37 NOAA...

  9. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    Science.gov (United States)

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  10. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    Science.gov (United States)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  11. Widespread extreme drought events in Iberia and their relationship with North Atlantic moisture flux deficit

    Science.gov (United States)

    Liberato, Margarida L. R.; Montero, Irene; Russo, Ana; Gouveia, Célia; Ramos, Alexandre M.; Trigo, Ricardo M.

    2015-04-01

    drought's magnitude, which is obtained after considering the area affected - defined by SPEI values over a certain threshold (in this case SPEI Different rankings are presented for the different timescales considering both the entire Iberian Peninsula and Portugal. Furthermore we used the NCEP/NCAR reanalysis in the 1948-2012 period, namely, the geopotential height, temperature, wind and specific humidity fields at all pressure levels and mean sea level pressure (MSLP) and total column water vapour (TCWV) for the Euro-Atlantic sector (60° W to 40° E, 20° N to 70° N) at full temporal (six hourly) and spatial (2.5° regular horizontal grid) resolutions available as well as the globally gridded monthly precipitation products of the Global Precipitation Climatology Centre (GPCC), to analyse the large-scale conditions associated with the most extreme droughts in Iberia. Results show that during these drought periods there is a clear moisture deficit over the region, with permanent negative anomalies of TCWV. Additionally, in these occasions, the zonal moisture transport is more intense over the northern Atlantic and less intense on the subtropics while the meridional moisture transport is intensified, in accordance with the barotropic structure of HGT anomalies. Vicente-Serrano, S.M., Beguería, S., and López-Moreno, J.I. (2010a). A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index - SPEI. Journal of Climate, 23, 1696-1718. Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., Angulo, M., and El Kenawy, A. (2010b). A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11, 1033-1043 Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).

  12. AMSR-E/Aqua L2B Surface Soil Moisture, Ancillary Parms, & QC EASE-Grids V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E/Aqua Level-2B land surface product includes surface soil moisture and vegetation/roughness water content interpretive information on a global 25 km...

  13. ENSO impact on surface radiative fluxes as observed from space

    Science.gov (United States)

    Pinker, R. T.; Grodsky, S. A.; Zhang, B.; Busalacchi, A.; Chen, W.

    2017-10-01

    We investigate the impact of El Niño-Southern Oscillation (ENSO) on surface radiative fluxes over the tropical Pacific using satellite observations and fluxes derived from selected atmospheric reanalyses. Agreement between the two in this region is important because reanalysis information is frequently used to assess surface energy budget sensitivity to ENSO. We found that during the traditional ENSO, the maximum variance of anomalous incoming solar radiation is located just west of the dateline and coincides with the area of the largest anomalous SST gradient. It can reach up to 60 W/m2 and lags behind the Niño3 index by about a month, suggesting a response to anomalous SST gradient. The magnitude of longwave anomaly is only half that large and varies in phase with the SST anomaly. Similar anomalies were derived from outputs: from the European Centre for Medium-Weather Forecasts Reanalysis Interim (ERA-I), from the Modern Era Retrospective Analysis version 2 (MERRA-2), from the NCEP/NCAR Reanalysis 1 (R1), and from the Japanese JRA55 reanalysis. Among the four reanalyses used, results from ERA-I are the closest to observations. We have also investigated the surface wind divergence/convergence and found that the main factor limiting eastward excursions of convection is the surface wind convergence. Due to the wind divergence pattern normally present over the eastern cold tongue, anomalous convection extends into the eastern equatorial Pacific only during the strongest warm events. Our analysis also considers the El Niño Modoki events, for which the radiation flux patterns are shifted westward following the SST pattern.

  14. Estimating Surface Soil Moisture in a Mixed-Landscape using SMAP and MODIS/VIIRS Data

    Science.gov (United States)

    Tang, J.; Di, L.; Xiao, J.

    2017-12-01

    Soil moisture, a critical parameter of earth ecosystem linking land surface and atmosphere, has been widely applied in many application (Di, 1991; Njoku et al. 2003; Western 2002; Zhao et al. 2014; McColl et al. 2017) from regional to continental or even global scale. The advent of satellite-based remote sensing, particular in the last two decades, has proven successful for mapping the surface soil moisture (SSM) from space (Petropoulos et al. 2015; Kim et al. 2015; Molero et al. 2016). The current soil moisture products, however, is not able to fully characterize the spatial and temporal variability of soil moisture at mixed landscape types (Albergel et al. 2013; Zeng et al. 2015). In this research, we derived the SSM at 1-km spatial resolution by using sensor observation and high-level products from SMAP and MODIS/VIIRS as well as metrorological, landcover, and soil data. Specifically, we proposed a practicable method to produce the originally planned SMAP L3_SM_A with comparable quality by downscaling the SMAP L3_SM_P product through a proved method, the geographically weighted regression method at mixed landscape in southern New Hampshire. This estimated SSM was validated using the Soil Climate Analysis Network (SCAN) from Natural Resources Conservation Service (NRCS) of United States Department of Agriculture (USDA).

  15. Critical heat flux maxima during boiling crisis on textured surfaces

    Science.gov (United States)

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  16. The significance of vertical moisture diffusion on drifting snow sublimation near snow surface

    Science.gov (United States)

    Huang, Ning; Shi, Guanglei

    2017-12-01

    Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.

  17. On the predictability of land surface fluxes from meteorological variables

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.

    2018-01-01

    Previous research has shown that land surface models (LSMs) are performing poorly when compared with relatively simple empirical models over a wide range of metrics and environments. Atmospheric driving data appear to provide information about land surface fluxes that LSMs are not fully utilising. Here, we further quantify the information available in the meteorological forcing data that are used by LSMs for predicting land surface fluxes, by interrogating FLUXNET data, and extending the benchmarking methodology used in previous experiments. We show that substantial performance improvement is possible for empirical models using meteorological data alone, with no explicit vegetation or soil properties, thus setting lower bounds on a priori expectations on LSM performance. The process also identifies key meteorological variables that provide predictive power. We provide an ensemble of empirical benchmarks that are simple to reproduce and provide a range of behaviours and predictive performance, acting as a baseline benchmark set for future studies. We reanalyse previously published LSM simulations and show that there is more diversity between LSMs than previously indicated, although it remains unclear why LSMs are broadly performing so much worse than simple empirical models.

  18. Improving Long-term Global Precipitation Dataset Using Multi-sensor Surface Soil Moisture Retrievals and the Soil Moisture Analysis Rainfall Tool (SMART)

    Science.gov (United States)

    Chen, F.; Crow, W. T.; Holmes, T. R.

    2012-12-01

    Using multiple historical satellite surface soil moisture products, the Kalman Filtering-based Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain gauge observations. In order to adapt to the irregular retrieval frequency of heritage soil moisture products, a new variable correction window method is developed which allows for better efficiency in leveraging temporally sparse satellite soil moisture retrievals. Results confirm the advantage of using this variable window method relative to an existing fixed-window version of SMART over a range of accumulation periods. Using this modified version of SMART, and heritage satellite surface soil moisture products, a 1.0-degree, 1979-1998 global rainfall dataset over land is corrected and validated. Relative to the original precipitation product, the updated correction scheme demonstrates improved root-mean-square-error and correlation accuracy and provides a higher probability of detection and lower false alarm rates for 3-day rainfall accumulation estimates, except for the heaviest (99th percentile) cases. This corrected rainfall dataset is expected to provide improved rainfall forcing data for the land surface modeling community.

  19. Improving long-term, retrospective precipitation datasets using satellite-based surface soil moisture retrievals and the Soil Moisture Analysis Rainfall Tool

    Science.gov (United States)

    Chen, Fan; Crow, Wade T.; Holmes, Thomas R. H.

    2012-01-01

    Using historical satellite surface soil moisture products, the Soil Moisture Analysis Rainfall Tool (SMART) is applied to improve the submonthly scale accuracy of a multi-decadal global daily rainfall product that has been bias-corrected to match the monthly totals of available rain gauge observations. In order to adapt to the irregular retrieval frequency of heritage soil moisture products, a new variable correction window method is developed that allows for better efficiency in leveraging temporally sparse satellite soil moisture retrievals. Results confirm the advantage of using this variable window method relative to an existing fixed-window version of SMART over a range of one- to 30-day accumulation periods. Using this modified version of SMART and heritage satellite surface soil moisture products, a 1.0-deg, 20-year (1979 to 1998) global rainfall dataset over land is corrected and validated. Relative to the original precipitation product, the corrected dataset demonstrates improved correlation with a global gauge-based daily rainfall product, lower root-mean-square-error (-13%) on a 10-day scale and provides a higher probability of detection (+5%) and lower false alarm rates (-3.4%) for five-day rainfall accumulation estimates. This corrected rainfall dataset is expected to provide improved rainfall forcing data for the land surface modeling community.

  20. Investigation of (de)coupling between surface and subsurface soil moisture using a Distributed Lag Non-linear Model (DNLM)

    Science.gov (United States)

    Carranza, Coleen; van der Ploeg, Martine

    2017-04-01

    Accurate estimates of water content in the soil profile are essential for environmental and climate modeling studies. Current trends for estimating profile soil moisture incorporate remote sensing methods for mapping soil moisture at greater spatial coverage but is limited to the upper soil layers (e.g. 5cm for radar satellites). Data assimilation methods offer promising computational techniques to translate mapped surface soil moisture to estimates of profile soil moisture, in conjunction with physical models. However, a variety of factors, such as differences in the drying rates, can lead to "decoupling" (Capehart and Carlson, 1997) of surface and subsurface soil moisture. In other words, surface soil moisture conditions no longer reflect or represent subsurface conditions. In this study, we investigated the relation and observed decoupling between surface and subsurface soil moisture from 15-minute interval time series datasets in four selected Dutch agricultural fields (SM_05, SM_09, SM_13, SM_20) from the soil moisture network in Twente region. The idea is that surface soil moisture conditions will be reflected in the subsurface after a certain time lag because of its movement or flow from the surface. These lagged associations were analysed using distributed lag non-linear model (DLNM). This statistical technique provides a framework to simultaneously represent non-linear exposure-response dependencies and delayed effects. DNLM was applied to elucidate which surface soil moisture conditions resulted in a high association to subsurface values, indicating good correlation between the two zones. For example, initial results for this ongoing study from SM_13 show an overall low but increasing association from dry to intermediate soil moisture values (0 to 25%). At this range of values, we say that the two zones are decoupled. Above these values towards near saturated conditions ( 40%), associations between the two zones remain high. For predictor

  1. Intense equatorial flux spots on the surface of Earth's core

    Science.gov (United States)

    Jackson, A.

    2003-04-01

    A vast number of vector measurements of the Earth's magnetic field have recently become available from the satellite Oersted, currently in orbit monitoring the core magnetic field. In this presentation I will present new maps of the Earth's magnetic field at the surface of the fluid core derived from these satellite data which show intense flux spots in equatorial regions; the images are derived using a maximum entropy technique which is capable of reconstructing images with high dynamic range more precisely than conventional techniques. The intensity of these features is unusually large - they are comparable to high-latitude flux patches near the poles, previously identified as the major component of the dynamo field. A comparison with sunspots is tempting, though they are probably not associated with expulsion of toroidal magnetic field as is the case for the sun. Indeed, the tendency for pairing of these spots to the north and south of the geographical equator suggests they might be associated with the tops of so-called `Taylor columns' (indicative of the dominance of the rotation of the Earth) which have previously been suggested to be associated with the four high-latitude flux patches near the poles. Equatorially-trapped waves are known to exist in theory, and a correct interpretation of these features might lead to constraints on the strength of the hidden toroidal magnetic field within the Earth, as well as constraints on other physical regimes.

  2. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data

    Science.gov (United States)

    Heilman, J. L.; Moore, D. G.

    1982-01-01

    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed in order to evaluate HCMM thermal data use in estimating near-surface soil moisture in a complex agricultural landscape. Because of large spatial and temporal ground cover variations, HCMM radiometric temperatures alone did not correlate with soil water content. The radiometric temperatures consisted of radiance contributions from different canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, a highly significant correlation was obtained between the estimated soil temperatures and near-surface soil water content.

  3. Analysis of airborne flux measurements of heat, moisture and carbon dioxide, and their correlation with land cover types in BOREAS

    Science.gov (United States)

    Ogunjemiyo, Segun Ojo

    The landscape of the boreal forest in north-central Canada is characterised by mosaics of broad-leaved deciduous trees (aspen, Populus; birch, Betula), evergreen conifers (black spruce, Picea mariana; jack pine, Pinus banksiana; and larch, Larix), fens and lakes. The forest has been cited as the possible location of a global carbon sink, and its likely response in the event of global climate change remains unclear. To improve our current understanding of the links between the boreal forest ecosystem and the lower atmosphere, the Boreal Ecosystem- Atmosphere Study (BOREAS) was executed in a series of field experiments in 1994 and 1996. This thesis documents the efforts made to characterise and map temporal and spatial distributions of the fluxes of heat, water vapour and CO2 over two 16 km x 16 km heterogeneous sites at the BOREAS study sites. Most of the data in this thesis were obtained from the airborne observations by the Canadian Twin Otter Aircraft, operated by the Institute for Aerospace Research of the Canadian National Research Council, at the BOREAS Northern Study Area (NSA), and Southern Study Area (SSA). The research aircraft was flown at a fixed altitude of about 30 m agl. The data acquired in 1994 were primarily used to develop an objective deterending scheme in eddy-correlation flux estimates, that took into consideration the physical nature of turbulent transport during convective daytime conditions, and to map the spatial distribution of sensible heat, latent heat and CO2 fluxes over three intensive field campaigns. Maps of spatial patterns of the surface characteristics, such as the surface temperature excess over air temperature (Ts-T a) and Greenness index (GI), were also constructed. The mapping procedure involved generation of an array of grid points by block averaging the parameter of interests along the flight lines, spaced 2 km apart, over 2 km windows, with 1 km overlap between adjacent windows. The (Ts-Ta) maps showed, not surprisingly

  4. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    Uncertainties in the flux estimates, resulting from the use of bulk method and remotely sensed data are worked out and are presented for individual and total fluxes. These uncertainties in satellite derived fluxes are further compared...

  5. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  6. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin; Cuo, Lan

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.

  7. Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices

    Science.gov (United States)

    Nagler, P.L.; Glenn, E.P.; Kim, H.; Emmerich, W.; Scott, R.L.; Huxman, T. E.; Huete, A.R.

    2007-01-01

    We used moisture Bowen ratio flux tower data and the enhanced vegetation index (EVI) from the moderate resolution imaging spectrometer (MODIS) on the Terra satellite to measure and scale evapotranspiration (ET) over sparsely vegetated grassland and shrubland sites in a semiarid watershed in southeastern Arizona from 2000 to 2004. The grassland tower site had higher mean annual ET (336 mm yr-1) than the shrubland tower site (266 mm yr-1) (Pequation. The regression equation relating ET to EVI and P was used to scale ET over 25 km2 areas of grassland and shrubland around each tower site. Over the study, ratios of T to ET ranged from 0.75 to 1.0. Winter rains stimulated spring ET, and a large rain event in fall, 2000, stimulated ET above T through the following year, indicating that winter rain stored in the soil profile can be an important component of the plants' water budget during the warm season in this ecosystem. We conclude that remotely sensed vegetation indices can be used to scale ground measurements of ET over larger landscape units in semiarid ranglelands, and that the vegetation communities in this landscape effectively harvest the available precipitation over a period of years, even though precipitation patterns are variably seasonally and interannually. ?? 2007 Elsevier Ltd. All rights reserved.

  8. A Smart Irrigation Approach Aided by Monitoring Surface Soil Moisture using Unmanned Aerial Vehicles

    Science.gov (United States)

    Wienhold, K. J.; Li, D.; Fang, N. Z.

    2017-12-01

    Soil moisture is a critical component in the optimization of irrigation scheduling in water resources management. Unmanned Aerial Vehicles (UAV) equipped with multispectral sensors represent an emerging technology capable of detecting and estimating soil moisture for irrigation and crop management. This study demonstrates a method of using a UAV as an optical and thermal remote sensing platform combined with genetic programming to derive high-resolution, surface soil moisture (SSM) estimates. The objective is to evaluate the feasibility of spatially-variable irrigation management for a golf course (about 50 acres) in North Central Texas. Multispectral data is collected over the course of one month in the visible, near infrared and longwave infrared spectrums using a UAV capable of rapid and safe deployment for daily estimates. The accuracy of the model predictions is quantified using a time domain reflectometry (TDR) soil moisture sensor and a holdout validation test set. The model produces reasonable estimates for SSM with an average coefficient of correlation (r) = 0.87 and coefficient of determination of (R2) = 0.76. The study suggests that the derived SSM estimates be used to better inform irrigation scheduling decisions for lightly vegetated areas such as the turf or native roughs found on golf courses.

  9. Rigorous bounds on buoyancy flux in surface driven flows

    Science.gov (United States)

    Caulfield, C. P.

    2004-11-01

    Stably stratified shear flows, where both the velocity and density vary with height, are common in environmentally and geophysically relevant flows. An understanding of constraints on mixing processes is essential for an improved parameterization of geophysical turbulence, in particular for appropriate modelling of the budgets of heat, salinity and momentum in larger scale models. Flows that are principally driven by surface-localized stresses (e.g. caused by wind) are particularly prevalent in geophysical flows. In this talk, I will derive rigorous bounds on the long-time averaged buoyancy flux for a class of such flows, using the background method developed by Doering & Constantin. Interestingly, flows that maximize the buoyancy flux can be directly related to laminar flows with stronger forcing. This is qualitatively different from other stratified mixing problems, for example in stratified plane Couette flow. This result suggests that quasi-laminar mixing, which is typically much more efficient than strongly turbulent mixing, may be the dominant process by which irreversible changes in density occur within such surface driven flows.

  10. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2018-03-01

    Full Text Available This work assesses the estimation of surface volumetric soil moisture (VSM using the global navigation satellite system interferometric reflectometry (GNSS-IR technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m. The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 =  0.86 and RMSE  =  0.04 m3 m−3. It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  11. Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France

    Science.gov (United States)

    Zhang, Sibo; Calvet, Jean-Christophe; Darrozes, José; Roussel, Nicolas; Frappart, Frédéric; Bouhours, Gilles

    2018-03-01

    This work assesses the estimation of surface volumetric soil moisture (VSM) using the global navigation satellite system interferometric reflectometry (GNSS-IR) technique. Year-round observations were acquired from a grassland site in southwestern France using an antenna consecutively placed at two contrasting heights above the ground surface (3.3 and 29.4 m). The VSM retrievals are compared with two independent reference datasets: in situ observations of soil moisture, and numerical simulations of soil moisture and vegetation biomass from the ISBA (Interactions between Soil, Biosphere and Atmosphere) land surface model. Scaled VSM estimates can be retrieved throughout the year removing vegetation effects by the separation of growth and senescence periods and by the filtering of the GNSS-IR observations that are most affected by vegetation. Antenna height has no significant impact on the quality of VSM estimates. Comparisons between the VSM GNSS-IR retrievals and the in situ VSM observations at a depth of 5 cm show good agreement (R2 = 0.86 and RMSE = 0.04 m3 m-3). It is shown that the signal is sensitive to the grass litter water content and that this effect triggers differences between VSM retrievals and in situ VSM observations at depths of 1 and 5 cm, especially during light rainfall events.

  12. Evaluation of surface renewal and flux-variance methods above agricultural and forest surfaces

    Science.gov (United States)

    Fischer, M.; Katul, G. G.; Noormets, A.; Poznikova, G.; Domec, J. C.; Trnka, M.; King, J. S.

    2016-12-01

    Measurements of turbulent surface energy fluxes are of high interest in agriculture and forest research. During last decades, eddy covariance (EC), has been adopted as the most commonly used micrometeorological method for measuring fluxes of greenhouse gases, energy and other scalars at the surface-atmosphere interface. Despite its robustness and accuracy, the costs of EC hinder its deployment at some research experiments and in practice like e.g. for irrigation scheduling. Therefore, testing and development of other cost-effective methods is of high interest. In our study, we tested performance of surface renewal (SR) and flux variance method (FV) for estimates of sensible heat flux density. Surface renewal method is based on the concept of non-random transport of scalars via so-called coherent structures which if accurately identified can be used for the computing of associated flux. Flux variance method predicts the flux from the scalar variance following the surface-layer similarity theory. We tested SR and FV against EC in three types of ecosystem with very distinct aerodynamic properties. First site was represented by agricultural wheat field in the Czech Republic. The second site was a 20-m tall mixed deciduous wetland forest on the coast of North Carolina, USA. The third site was represented by pine-switchgrass intercropping agro-forestry system located in coastal plain of North Carolina, USA. Apart from solving the coherent structures in a SR framework from the structure functions (representing the most common approach), we applied ramp wavelet detection scheme to test the hypothesis that the duration and amplitudes of the coherent structures are normally distributed within the particular 30-minutes time intervals and so just the estimates of their averages is sufficient for the accurate flux determination. Further, we tested whether the orthonormal wavelet thresholding can be used for isolating of the coherent structure scales which are associated with

  13. The impact of temporal auto-correlation mismatch on the assimilation of satellite-derived surface soil moisture retrievals

    Science.gov (United States)

    Satellite-based surface soil moisture retrievals are commonly assimilated into eco-hydrological models in order to obtain improved profile soil moisture estimates. However, differences in temporal auto-correlation structure between these retrievals and comparable model-based predictions can potentia...

  14. Estimating local atmosphere-surface fluxes using eddy covariance and numerical ogive optimization

    DEFF Research Database (Denmark)

    Sievers, Jakob; Papakyriakou, T.; Larsen, S.

    2014-01-01

    -frequency contributions to vertical turbulent surface fluxes. For high flux-rates (|Sensible heat flux|> 40 Wm^(-2), |latent heat flux|>10 Wm^(-2) and |CO_2 flux|>170 mmol m^(-2) d^(-1)) we found that the average relative difference between fluxes estimated by Ogive optimization and the conventional method was low (5......–20%) suggesting negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. For flux-rates below these thresholds, however, the average relative difference between flux estimates was found to be very high (23–80%) suggesting non-negligible low-frequency influence...... and that the conventional method fails in separating low-frequency influences from the turbulent fluxes. Hence, the Ogive optimization method is an appropriate method of flux analysis, particularly in low-flux environments....

  15. Effects of Land Use on the Predictability of Land-Atmosphere Fluxes and Moisture Transport in the North American Monsoon Region

    Science.gov (United States)

    Bohn, T. J.; Mascaro, G.; White, D. D.; Vivoni, E. R.

    2014-12-01

    Southern Arizona and New Mexico receive 40-60% of their annual rainfall in the summer, as part of the North American Monsoon (NAM). Modeling studies suggest that 15-25% of this rainfall first falls on Mexican land, is transpired by vegetation, and subsequently is transported northward across the border to the US. The main source regions in Mexico include two primary landcover types in Sonora and Sinaloa: subtropical scrub and tropical deciduous forests in the foothills of the Sierra Madre Occidental; and large expanses of irrigated agriculture along the Gulf of California. The foothill ecosystems, known for their rapid greening and large transpiration rates at the onset of the monsoon, are under threat from deforestation for grazing activities. On the other hand, irrigated agriculture in both the winter and summer has shifted the seasonality of evaporative fluxes and introduced socio-economic factors into their interannual variability and predictability. In this study, we examine the differences in spatial and temporal characteristics of evapotranspiration yielded by current and pre-industrial land cover / land use. To this end, we employ the Variable Infiltration Capacity (VIC) land surface model at 1/16 degree resolution, driven by gridded meteorological observations and MODIS LAI, NDVI, and albedo products, across the NAM region (Arizona, New Mexico, and northern Mexico). We compare the magnitude and timing of land-atmosphere fluxes given by both pre-industrial and current land cover/use, as well as the land cover under several possible alternative land use scenarios. We identify the regions where the largest changes in magnitude and timing of evapotranspiration have occurred, as well as the regions and land use changes that could produce the largest changes in future evapotranspiration under different scenarios. Finally, we explore the consequences these effects have for the predictability of monsoon moisture transport.

  16. Coherent structures in stratocumulus topped boundary layer: sensitivity to surface fluxes, radiative cooling and vertical stability

    Science.gov (United States)

    Davini, Paolo; D'Andrea, Fabio; Park, Seung-bu; Gentine, Pierre

    2017-04-01

    The representation of stratocumulus clouds in global climate models is still a concern for the climate modelling community. This is due to the low efficacy of current parametrization to simulate the full set of phenomena that governs the stratocumulus topped boundary layer (STBL), but also by the inaccurate knowledge of the sensitivities of the STBL dynamics to external large scale forcing. Here we show that making of a series of high-resolution LES simulations, we are able to detect and track coherent structures such as updrafts, downdrafts and their returning shells (i.e. both ascending and subsiding), together with the entraining air from the inversion layer or the free troposphere in a non-precipitating marine nighttime STBL. This is done with a new classification method based on octant analysis - using vertical velocity and two passive scalars - which defines the structures also in cloud-free regions. We are thus able to quantify the geometrical and thermodynamic characteristics (e.g. areal fraction, temperature, liquid and total water mixing ratio, buoyancy, etc.) of those structures, highlighting the single contributions to the turbulent transport of mass, heat and moisture. It is thus possible to estimate the sensitivity of the turbulent fluxes to the intensity of the cloud-top radiative cooling, to the surface latent and sensible fluxes and to the strength of the vertical stability is explored. Indeed, this analysis lays the foundation for a new parametrization of stratocumulus-topped boundary layer for global climate models.

  17. Spatial Scaling Assessment of Surface Soil Moisture Estimations Using Remotely Sensed Data for Precision Agriculture

    Science.gov (United States)

    Hassan Esfahani, L.; Torres-Rua, A. F.; Jensen, A.; McKee, M.

    2014-12-01

    Airborne and Landsat remote sensing are promising technologies for measuring the response of agricultural crops to variations in several agricultural inputs and environmental conditions. Of particular significance to precision agriculture is surface soil moisture, a key component of the soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface and affects vegetation health. Its estimation using the spectral reflectance of agricultural fields could be of value to agricultural management decisions. While top soil moisture can be estimated using radiometric information from aircraft or satellites and data mining techniques, comparison of results from two different aerial platforms might be complicated because of the differences in spatial scales (high resolution of approximately 0.15m versus coarser resolutions of 30m). This paper presents a combined modeling and scale-based approach to evaluate the impact of spatial scaling in the estimation of surface soil moisture content derived from remote sensing data. Data from Landsat 7 ETM+, Landsat 8 OLI and AggieAirTM aerial imagery are utilized. AggieAirTM is an airborne remote sensing platform developed by Utah State University that includes an autonomous Unmanned Aerial System (UAS) which captures radiometric information at visual, near-infrared, and thermal wavebands at spatial resolutions of 0.15 m or smaller for the optical cameras and about 0.6 m or smaller for the thermal infrared camera. Top soil moisture maps for AggieAir and Landsat are developed and statistically compared at different scales to determine the impact in terms of quantitative predictive capability and feasibility of applicability of results in improving in field management.

  18. Estimates of Soil Moisture Using the Land Information System for Land Surface Water Storage: Case Study for the Western States Water Mission

    Science.gov (United States)

    Liu, P. W.; Famiglietti, J. S.; Levoe, S.; Reager, J. T., II; David, C. H.; Kumar, S.; Li, B.; Peters-Lidard, C. D.

    2017-12-01

    Soil moisture is one of the critical factors in terrestrial hydrology. Accurate soil moisture information improves estimation of terrestrial water storage and fluxes, that is essential for water resource management including sustainable groundwater pumping and agricultural irrigation practices. It is particularly important during dry periods when water stress is high. The Western States Water Mission (WSWM), a multiyear mission project of NASA's Jet Propulsion Laboratory, is operated to understand and estimate quantities of the water availability in the western United States by integrating observations and measurements from in-situ and remote sensing sensors, and hydrological models. WSWM data products have been used to assess and explore the adverse impacts of the California drought (2011-2016) and provide decision-makers information for water use planning. Although the observations are often more accurate, simulations using land surface models can provide water availability estimates at desired spatio-temporal scales. The Land Information System (LIS), developed by NASA's Goddard Space Flight Center, integrates developed land surface models and data processing and management tools, that enables to utilize the measurements and observations from various platforms as forcings in the high performance computing environment to forecast the hydrologic conditions. The goal of this study is to implement the LIS in the western United States for estimates of soil moisture. We will implement the NOAH-MP model at the 12km North America Land Data Assimilation System grid and compare to other land surface models included in the LIS. Findings will provide insight into the differences between model estimates and model physics. Outputs from a multi-model ensemble from LIS can also be used to enhance estimated reliability and provide quantification of uncertainty. We will compare the LIS-based soil moisture estimates to the SMAP enhanced 9 km soil moisture product to understand the

  19. Estimating global air-sea fluxes from surface properties and from climatological flux data using an oceanic general circulation model

    Science.gov (United States)

    Tziperman, Eli; Bryan, Kirk

    1993-12-01

    A simple method is presented and demonstrated for estimating air-sea fluxes of heat and fresh water with the aid of a general circulation model (GCM), using both sea surface temperature and salinity data and climatological air-sea flux data. The approach is motivated by a least squares optimization problem in which the various data sets are combined to form an optimal solution for the air-sea fluxes. The method provides estimates of the surface properties and air-sea flux data that are as consistent as possible with the original data sets and with the model physics. The calculation of these estimates involves adding a simple equation for calculating the air-sea fluxes during the model run and then running the model to a steady state. The proposed method was applied to a coarse resolution global primitive equation model and annually averaged data sets. Both the spatial distribution of the global air-sea fluxes and the meridional fluxes carried by the ocean were estimated. The resulting air-sea fluxes seem smoother and significantly closer to the climatological flux estimates than do the air-sea fluxes obtained from the GCM by simply specifying the surface temperature and salinity. The better fit to the climatological fluxes was balanced by a larger deviation from the surface temperature and salinity. These surface fields were still close to the observations within the measurement error in most regions, except western boundary areas. The inconsistency of the model and data in western boundary areas is probably related to the inability of the coarse resolution GCM to appropriately simulate the large transports there. The meridional fluxes calculated by the proposed method differ very little from those obtained by simply specifying the surface temperature and salinity. We suggest therefore that these meridional fluxes are strongly influenced by the interior model dynamics; in particular, the too-weak model meridional circulation cell seems to be the reason for

  20. Impact of urban cover fraction on SMOS and SMAP surface soil moisture retrieval

    Science.gov (United States)

    Ye, N.; Walker, J. P.; Rudiger, C.; Ryu, D.; Gurney, R.

    2011-12-01

    L-band (~1.4 GHz) microwave radiometry has been widely acknowledged as the most promising technique for surface (top ~5cm) soil moisture observation at regional and global scales, due to its all weather capability, direct relationship to soil moisture, and reduced sensitivity to surface roughness and vegetation. Radiometer observations of microwave emission from the soil surface are used to estimate soil moisture through a radiative transfer model using ancillary information including land cover and soil properties etc. This technique has been applied to the ESA's (European Space Agency) Soil Moisture and Ocean Salinity (SMOS) satellite, the first soil moisture dedicated space mission, launched on 2nd Nov. 2009. Similarly, radiometer techniques will be employed by NASA's (National Aeronautics and Space Administration) Soil Moisture Active and Passive (SMAP) mission, in both the passive and active-passive products. However, passive microwave soil moisture retrieval suffers from land surface heterogeneity at coarse scales; with the radiometer footprints of both missions being ~40 km, which is the best spatial resolution currently achievable using current satellite antenna technology. In order to achieve the ~0.04 m3/m3 target volumetric soil moisture accuracies at such scales, microwave contributions of non-soil targets (such as urban areas) within the sensors' field-of-view needs to be considered in the retrieval algorithm error budget and implementation, since the impact could potentially be significant if ignored. Currently there is a lack of knowledge on the microwave behaviour of non-soil targets, with little assessment of their microwave emissions and impact on satellite scale footprints. Therefore, the objectives of this study are to 1) investigate the relationship between urban induced brightness temperature uncertainties and urban fraction, 2) extract urban fraction thresholds for negligible brightness temperature impact by urban areas based on the SMOS and

  1. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  2. Comparative analysis of surface soil moisture retrieval using VSWI and TVDI in karst areas

    Science.gov (United States)

    Yan, Hongbo; Zhou, Guoqing; Lu, Xianjian

    2015-12-01

    Vegetation Supply Water Index (VSWI) and Temperature Vegetation dryness Index (TVDI) are two most commonly used methods for surface soil moisture (SSM) retrieval using electromagnetic spectrum of visible, near infrared and thermal infrared band. Both of them take into account the effect of vegetation index (VI) and surface temperature (Ts) on SSM. A comparative analysis of the ability and effect of the two methods for SSM retrieval in karst areas was carried out, using the remote sensing data of Landsat 8 OLI_TIRS. The study area is located in Guilin, which is a typical karst area. The experimental results show that TVDI is more suitable for SSM retrieval in karst areas.

  3. Spatial Variability of Soil Properties and its Impact on Simulated Surface Soil Moisture Patterns

    Science.gov (United States)

    Korres, W.; Bothe, T.; Reichenau, T. G.; Schneider, K.

    2015-12-01

    The spatial variability of soil properties (particle size distribution, PSD, and bulk density, BD) has large effects on the spatial variability of soil moisture and therefore on plant growth and surface exchange processes. In model studies, soil properties from soil maps are considered homogeneous over mapping units, which neglects the small scale variability of soil properties and leads to underestimated small scale variability of simulated soil moisture. This study focuses on the validation of spatial variability of simulated surface soil moisture (SSM) in a winter wheat field in Western Germany using the eco-hydrological simulation system DANUBIA. SSM measurements were conducted at 20 different sampling points and nine different dates in 2008. Frequency distributions of BD and PSD were derived from an independent dataset (n = 486) of soil physical properties from Germany and the USA. In the simulations, BD and PSD were parameterized according to these frequency distributions. Mean values, coefficients of variation and frequency distributions of simulated SSM were compared to the field measurements. Using the heterogeneous model parameterization, up to 76 % of the frequency distribution of the measured SSM can be explained. Furthermore, the results show that BD has a larger impact on the variability of SSM than PSD. The introduced approach can be used for simulating mean SSM and SSM variability more accurately and can form the basis for a spatially heterogeneous parameterization of soil properties in mesoscale models.

  4. Critical heat flux variations on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, A.; Luxat, J.C., E-mail: behdada@mcmaster.ca, E-mail: luxatj@mcmaster.ca [McMaster Univ., Engineering Physics Dept., Hamilton, Ontario (Canada)

    2012-07-01

    Heavy water moderator surrounding each fuel channel is one of the important safety features in CANDU reactors since it provides an in-situ passive heat sink for the fuel in situations where other engineered means of heat removal from fuel channels have failed. In a critical break LOCA scenario, fuel cooling becomes severely degraded due to rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes experiencing significant heat-up during early stages of the accident when coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the pressure tube (PT) into contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to CT and a large heat flux spike from the CT to the moderator fluid. For conditions where subcooling of the moderator fluid is low, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in continued thermal creep strain deformation of both the PT and the CT. The focus of this work is to develop a mechanistic model to predict Critical Heat Flux (CHF) on the CT surface following a contact with its pressure tube. A mechanistic CHF model is applied based on a concept of wall dry patch formation, prevention of rewetting and subsequent dry patch spreading. Results have been compared to an empirical correlation and a good agreement has been obtained. The model has been used to predict the spatial variation of CHF over a cylinder with dimensions of CANDU CT. (author)

  5. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    Science.gov (United States)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  6. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration

    Science.gov (United States)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.

    2017-04-01

    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land

  7. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  8. Assessing the Impacts of Urbanization-Associated Land Use/Cover Change on Land Surface Temperature and Surface Moisture: A Case Study in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Yitong Jiang

    2015-04-01

    Full Text Available Urbanization-associated land use and land cover (LULC changes lead to modifications of surface microclimatic and hydrological conditions, including the formation of urban heat islands and changes in surface runoff pattern. The goal of the paper is to investigate the changes of biophysical variables due to urbanization induced LULC changes in Indianapolis, USA, from 2001 to 2006. The biophysical parameters analyzed included Land Surface Temperature (LST, fractional vegetation cover, Normalized Difference Water Index (NDWI, impervious fractions evaporative fraction, and soil moisture. Land cover classification and changes and impervious fractions were obtained from the National Land Cover Database of 2001 and 2006. The Temperature-Vegetation Index (TVX space was created to analyze how these satellite-derived biophysical parameters change during urbanization. The results showed that the general trend of pixel migration in response to the LULC changes was from the areas of low temperature, dense vegetation cover, and high surface moisture conditions to the areas of high temperature, sparse vegetation cover, and low surface moisture condition in the TVX space. Analyses of the T-soil moisture and T-NDWI spaces revealed similar changed patterns. The rate of change in LST, vegetation cover, and moisture varied with LULC type and percent imperviousness. Compared to conversion from cultivated to residential land, the change from forest to commercial land altered LST and moisture more intensively. Compared to the area changed from cultivated to residential, the area changed from forest to commercial altered 48% more in fractional vegetation cover, 71% more in LST, and 15% more in soil moisture Soil moisture and NDWI were both tested as measures of surface moisture in the urban areas. NDWI was proven to be a useful measure of vegetation liquid water and was more sensitive to the land cover changes comparing to soil moisture. From a change forest to

  9. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  10. Downscaling of Surface Soil Moisture Retrieval by Combining MODIS/Landsat and In Situ Measurements

    Directory of Open Access Journals (Sweden)

    Chenyang Xu

    2018-02-01

    Full Text Available Soil moisture, especially surface soil moisture (SSM, plays an important role in the development of various natural hazards that result from extreme weather events such as drought, flooding, and landslides. There have been many remote sensing methods for soil moisture retrieval based on microwave or optical thermal infrared (TIR measurements. TIR remote sensing has been popular for SSM retrieval due to its fine spatial and temporal resolutions. However, because of limitations in the penetration of optical TIR radiation and cloud cover, TIR methods can only be used under clear sky conditions. Microwave SSM retrieval is based on solid physical principles, and has advantages in cases of cloud cover, but it has low spatial resolution. For applications at the local scale, SSM data at high spatial and temporal resolutions are important, especially for agricultural management and decision support systems. Current remote sensing measurements usually have either a high spatial resolution or a high temporal resolution, but not both. This study aims to retrieve SSM at both high spatial and temporal resolutions through the fusion of Moderate Resolution Imaging Spectroradiometer (MODIS and Land Remote Sensing Satellite (Landsat data. Based on the universal triangle trapezoid, this study investigated the relationship between land surface temperature (LST and the normalized difference vegetation index (NDVI under different soil moisture conditions to construct an improved nonlinear model for SSM retrieval with LST and NDVI. A case study was conducted in Iowa, in the United States (USA (Lat: 42.2°~42.7°, Lon: −93.6°~−93.2°, from 1 May 2016 to 31 August 2016. Daily SSM in an agricultural area during the crop-growing season was downscaled to 120-m spatial resolution by fusing Landsat 8 with MODIS, with an R2 of 0.5766, and RMSE from 0.0302 to 0.1124 m3/m3.

  11. AMSR-E/Aqua Daily L3 Surface Soil Moisture, Interpretive Parms, & QC EASE-Grids V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E/Aqua Level-3 daily land product includes surface soil moisture, vegetation/roughness water content interpretive information, and TBs on global 25 km...

  12. Regional warming of hot extremes accelerated by surface energy fluxes

    Science.gov (United States)

    Donat, M. G.; Pitman, A. J.; Seneviratne, S. I.

    2017-07-01

    Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hot spots of accelerated warming of model-simulated hot extremes in Europe, North America, South America, and Southeast China. These hot spots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most Coupled Model Intercomparison Project Phase 5 models. Exploring the conditions on the specific day when the hot extreme occurs demonstrates that the hot spots are explained by changes in the surface energy fluxes consistent with drying soils. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a reevaluation of how climate models resolve the relevant terrestrial processes.

  13. A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Chen, Jiquan; Liu, Shaomin; Lin, Yi; Fisher, Joshua B.; McVicar, Tim R.; Cheng, Jie; Jia, Kun; Zhang, Xiaotong; Xie, Xianhong; Jiang, Bo; Sun, Liang

    2017-05-01

    A simple and robust satellite-based method for estimating agricultural field to regional surface energy fluxes at a high spatial resolution is important for many applications. We developed a simple temperature domain two-source energy balance (TD-TSEB) model within a hybrid two-source model scheme by coupling "layer" and "patch" models to estimate surface heat fluxes from Landsat thematic mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imagery. For estimating latent heat flux (LE) of full soil, we proposed a temperature domain residual of the energy balance equation based on a simplified framework of total aerodynamic resistances, which provides a key link between thermal satellite temperature and subsurface moisture status. Additionally, we used a modified Priestley-Taylor model for estimating LE of full vegetation. The proposed method was applied to TM/ETM+ imagery and was validated using the ground-measured data at five crop eddy-covariance tower sites in China. The results show that TD-TSEB yielded root-mean-square-error values between 24.9 (8.9) and 78.2 (21.4) W/m2 and squared correlation coefficient (R2) values between 0.60 (0.51) and 0.97 (0.90), for the estimated instantaneous (daily) surface net radiation, soil, latent, and sensible heat fluxes at all five sites. The TD-TSEB model shows good accuracy for partitioning LE into soil (LEsoil) and canopy (LEcanopy) components with an average bias of 11.1% for the estimated LEsoil/LE ratio at the Daman site. Importantly, the TD-TSEB model produced comparable accuracy but requires fewer forcing data (i.e., no wind speed and roughness length are needed) when compared with two other widely used surface energy balance models. Sensitivity analyses demonstrated that this accurate operational model provides an alternative method for mapping field surface heat fluxes with satisfactory performance.

  14. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  15. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation

    Directory of Open Access Journals (Sweden)

    M. Zribi

    2011-01-01

    Full Text Available The present paper proposes a method for the evaluation of soil evaporation, using soil moisture estimations based on radar satellite measurements. We present firstly an approach for the estimation and monitoring of soil moisture in a semi-arid region in North Africa, using ENVISAT ASAR images, over two types of vegetation covers. The first mapping process is dedicated solely to the monitoring of moisture variability related to rainfall events, over areas in the "non-irrigated olive tree" class of land use. The developed approach is based on a simple linear relationship between soil moisture and the backscattered radar signal normalised at a reference incidence angle. The second process is proposed over wheat fields, using an analysis of moisture variability due to both rainfall and irrigation. A semi-empirical model, based on the water-cloud model for vegetation correction, is used to retrieve soil moisture from the radar signal. Moisture mapping is carried out over wheat fields, showing high variability between irrigated and non-irrigated wheat covers. This analysis is based on a large database, including both ENVISAT ASAR and simultaneously acquired ground-truth measurements (moisture, vegetation, roughness, during the 2008–2009 vegetation cycle. Finally, a semi-empirical approach is proposed in order to relate surface moisture to the difference between soil evaporation and the climate demand, as defined by the potential evaporation. Mapping of the soil evaporation is proposed.

  16. Variability of Phenology and Fluxes of Water and Carbon with Observed and Simulated Soil Moisture in the Ent Terrestrial Biosphere Model (Ent TBM Version 1.0.1.0.0)

    Science.gov (United States)

    Kim, Y.; Moorcroft, P. R.; Aleinov, Igor; Puma, M. J.; Kiang, N. Y.

    2015-01-01

    The Ent Terrestrial Biosphere Model (Ent TBM) is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models (GCMs). This study describes the leaf phenology submodel implemented in the Ent TBM version 1.0.1.0.0 coupled to the carbon allocation scheme of the Ecosystem Demography (ED) model. The phenology submodel adopts a combination of responses to temperature (growing degree days and frost hardening), soil moisture (linearity of stress with relative saturation) and radiation (light length). Growth of leaves, sapwood, fine roots, stem wood and coarse roots is updated on a daily basis. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites, with both observed and prognostic hydrology, and observed and prognostic seasonal leaf area index. The phenology submodel is able to capture the timing and magnitude of leaf-out and senescence for temperate broadleaf deciduous forest (Harvard Forest and Morgan- Monroe State Forest, US), C3 annual grassland (Vaira Ranch, US) and California oak savanna (Tonzi Ranch, US). For evergreen needleleaf forest (Hyytiäla, Finland), the phenology submodel captures the effect of frost hardening of photosynthetic capacity on seasonal fluxes and leaf area. We address the importance of customizing parameter sets of vegetation soil moisture stress response to the particular land surface hydrology scheme. We identify model deficiencies that reveal important dynamics and parameter needs.

  17. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Leung, Lai-Yung R.

    2015-06-28

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

  18. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

    Science.gov (United States)

    Yoon, Jin-Ho; Leung, L. Ruby

    2015-06-01

    This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index, and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño-Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

  19. Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2014-01-01

    Full Text Available The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM and leaf area index (LAI. This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs land surface model within the the externalised surface model (SURFEX modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function matching technique. A multivariate multi-scale land data assimilation system (LDAS based on the extended Kalman Filter (EKF is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011. The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil

  20. Experimental study on the effect of temperature and flux conditions on moisture distribution in vadose zone soil.

    Science.gov (United States)

    Wang, Jinguo; Zheng, Hu

    2017-02-01

    Moisture distribution in vadose zone soil is the most important parameter for land productivity and vegetation status of ecological systems, and is sensitive to temperature variation. In this study, laboratory scale tests were conducted to determine the effect of temperature on variation in moisture distribution in covered and uncovered conditions. The results indicated that soil moisture from 2.65 to 20 cm was positively correlated with temperature and temperature gradient, and the top 2.65 to 5 cm was dramatically influenced by temperature changes in both covered and uncovered conditions. The moisture content when temperature was increasing was higher than that when temperature was decreasing for the same temperature, when the film covered the top of the soil column. In contrast, the moisture content when temperature was increasing was lower than when the temperature was decreasing for the uncovered soil column. The difference between treatments was not maintained as soil depth increased.

  1. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Leila Hassan-Esfahani

    2015-03-01

    Full Text Available Many crop production management decisions can be informed using data from high-resolution aerial images that provide information about crop health as influenced by soil fertility and moisture. Surface soil moisture is a key component of soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface; however, high-resolution remotely sensed data is rarely used to acquire soil moisture values. In this study, an artificial neural network (ANN model was developed to quantify the effectiveness of using spectral images to estimate surface soil moisture. The model produces acceptable estimations of surface soil moisture (root mean square error (RMSE = 2.0, mean absolute error (MAE = 1.8, coefficient of correlation (r = 0.88, coefficient of performance (e = 0.75 and coefficient of determination (R2 = 0.77 by combining field measurements with inexpensive and readily available remotely sensed inputs. The spatial data (visual spectrum, near infrared, infrared/thermal are produced by the AggieAir™ platform, which includes an unmanned aerial vehicle (UAV that enables users to gather aerial imagery at a low price and high spatial and temporal resolutions. This study reports the development of an ANN model that translates AggieAir™ imagery into estimates of surface soil moisture for a large field irrigated by a center pivot sprinkler system.

  2. Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance.

    Science.gov (United States)

    Castells-Gil, Javier; Novio, Fernando; Padial, Natalia M; Tatay, Sergio; Ruíz-Molina, Daniel; Martí-Gastaldo, Carlos

    2017-12-27

    Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal-organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

  3. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  4. New approaches to predicting surface fuel moisture in south east Australian forests

    Science.gov (United States)

    Sheridan, Gary; Nyman, Petter; Hawthorne, Sandra; Bovill, William; Walsh, Sean; Baillie, Craig; Duff, Thomas; Tolhurst, Kevin; Lane, Patrick

    2016-04-01

    The capacity to predict of the moisture content (FMC) of fine surface fuels in mountainous south east Australian forests has improved dramatically in recent years due to the convergence of several new technologies, including i) improved process-based account-keeping type FMC models, ii) improved understanding and representation of topographic effects (aspect, drainage position, elevation) on surface fuel and soil moisture, iii) improved methods for downscaling weather variables (eg. rainfall/throughfall, short-wave radiation) using digital elevation models and airborne LIDaR, and, iv) new in-situ sensor technologies (fuelsticks, capacitance sensors, Ibuttons) for continuously monitoring surface fuels and within-litter micro-climate conditions, generating datasets of unprecedented temporal resolution and continuity for model development and testing under real field conditions across a broad range of forests, landscapes and climates. In this study the combined improvements in predictive capacity were quantified by comparing the field FMC observations with predictions from traditional, widely used operational FMC models, and with two new process-based models, including improved spatial parameterisation provided by the new technologies outlined above. The results are interpreted in the context of planned-burning decision making and outcomes, and bushfire modelling and management. The initial results showed that the new approaches to FMC prediction offered substantial improvements over the traditional methods and could be reasonably implemented at operational scales.

  5. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  6. A field evaluation of soil moisture modelling with the Soil, Vegetation, and Snow (SVS) land surface model using evapotranspiration observations as forcing data

    Science.gov (United States)

    Maheu, Audrey; Anctil, François; Gaborit, Étienne; Fortin, Vincent; Nadeau, Daniel F.; Therrien, René

    2018-03-01

    To address certain limitations with their current operational model, Environment and Climate Change Canada recently developed the Soil, Vegetation, and Snow (SVS) land surface model and the representation of subsurface hydrological processes was targeted as an area for improvement. The objective of this study is to evaluate the ability of HydroSVS, the component of SVS responsible for the vertical redistribution of water, to simulate soil moisture under snow-free conditions when using flux-tower observations of evapotranspiration as forcing data. We assessed (1) model fidelity by comparing soil moisture modelled with HydroSVS to point-scale measurements of volumetric soil water content and (2) model complexity by comparing the performance of HydroSVS to that of HydroGeoSphere, a state-of-the-art integrated surface and subsurface hydrologic model. To do this, we performed one-dimensional soil column simulations at four sites of the AmeriFlux network. Results indicate that under Mediterranean and temperate climates, HydroSVS satisfactorily simulated soil moisture (Nash-Sutcliffe efficiency between 0.26 and 0.70; R2 ≥ 0.80), with a performance comparable to HydroGeoSphere (Nash-Sutcliffe efficiency ≥0.60; R2 ≥ 0.80). However, HydroSVS performed weakly under a semiarid climate while HydroGeoSphere performed relatively well. By decoupling the magnitude and sourcing of evapotranspiration, this study proposes a powerful diagnostic tool to evaluate the representation of subsurface hydrological processes in land surface models. Overall, this study highlights the potential of SVS for hydrological applications.

  7. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  8. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  9. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  10. Neural Network-Based Retrieval of Surface and Root Zone Soil Moisture using Multi-Frequency Remotely-Sensed Observations

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Kolassa, Jana; Prigent, Catherine; Aires, Filipe; Gentine, Pierre

    2017-04-01

    Knowledge of root zone soil moisture is essential in studying plant's response to different stress conditions since plant photosynthetic activity and transpiration rate are constrained by the water available through their roots. Current global root zone soil moisture estimates are based on either outputs from physical models constrained by observations, or assimilation of remotely-sensed microwave-based surface soil moisture estimates with physical model outputs. However, quality of these estimates are limited by the accuracy of the model representations of physical processes (such as radiative transfer, infiltration, percolation, and evapotranspiration) as well as errors in the estimates of the surface parameters. Additionally, statistical approaches provide an alternative efficient platform to develop root zone soil moisture retrieval algorithms from remotely-sensed observations. In this study, we present a new neural network based retrieval algorithm to estimate surface and root zone soil moisture from passive microwave observations of SMAP satellite (L-band) and AMSR2 instrument (X-band). SMAP early morning observations are ideal for surface soil moisture retrieval. AMSR2 mid-night observations are used here as an indicator of plant hydraulic properties that are related to root zone soil moisture. The combined observations from SMAP and AMSR2 together with other ancillary observations including the Solar-Induced Fluorescence (SIF) estimates from GOME-2 instrument provide necessary information to estimate surface and root zone soil moisture. The algorithm is applied to observations from the first 18 months of SMAP mission and retrievals are validated against in-situ observations and other global datasets.

  11. A missing piece of the puzzle in climate change hotspots: Near-surface turbulent interactions controlling ET-soil moisture coupling in semiarid areas

    Science.gov (United States)

    Haghighi, Erfan; Gianotti, Daniel J.; Rigden, Angela J.; Salvucci, Guido D.; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Being located in the transitional zone between dry and wet climate areas, semiarid ecosystems (and their associated ecohydrological processes) play a critical role in controlling climate change and global warming. Land evapotranspiration (ET), which is a central process in the climate system and a nexus of the water, energy and carbon cycles, typically accounts for up to 95% of the water budget in semiarid areas. Thus, the manner in which ET is partitioned into soil evaporation and plant transpiration in these settings is of practical importance for water and carbon cycling and their feedbacks to the climate system. ET (and its partitioning) in these regions is primarily controlled by surface soil moisture which varies episodically under stochastic precipitation inputs. Important as the ET-soil moisture relationship is, it remains empirical, and physical mechanisms governing its nature and dynamics are underexplored. Thus, the objective of this study is twofold: (1) to provide observational evidence for the influence of surface cover conditions on ET-soil moisture coupling in semiarid regions using soil moisture data from NASA's SMAP satellite mission combined with independent observationally based ET estimates, and (2) to develop a relatively simple mechanistic modeling platform improving our physical understanding of interactions between micro and macroscale processes controlling ET and its partitioning in partially vegetated areas. To this end, we invoked concepts from recent progress in mechanistic modeling of turbulent energy flux exchange in bluff-rough regions, and developed a physically based ET model that explicitly accounts for how vegetation-induced turbulence in the near-surface region influences soil drying and thus ET rates and dynamics. Model predictions revealed nonlinearities in the strength of the ET-soil moisture relationship (i.e., ∂ET/∂θ) as vegetation cover fraction increases, accounted for by the nonlinearity of surface

  12. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  13. Observed and simulated effect of plant physiology and structure on land surface energy fluxes and soil conditions

    Science.gov (United States)

    Lu, Yen-Sen; Rihani, Jehan; Langensiepen, Matthias; Simmer, Clemens

    2016-04-01

    The parameterization of stomatal conductance and leaf area index (LAI) in land surface models largely influence simulated terrestrial system states. While stomatal conductance mainly controls transpiration, latent heat flux, and root-water-uptake, LAI impacts additionally the radiative energy exchange. Thus both affect canopy evaporation and transpiration and land surface energy and water fluxes as a whole. Common parameterizations of stomatal conductance follow either semi-mechanistic forms based on photosynthesis (Ball-Berry Type (BB)) or forms which consider environmental factors such as impact of light, temperature, humidity and soil moisture (Jarvis-Stewart Type (JS)). Both approaches differ also in the interpretation of humidity effects and light-use efficiency. While soil moisture plays an important role for root-water-uptake there is no clear conclusion yet about how soil moisture interacts with stomata activity. Values for LAI can be obtained from field measurements, satellite estimates or modelling and are used as an essential model input. While field measurements are very time consuming and only represent single points, satellite estimates may have biases caused by variable albedo and sensor limitations. Representing LAI within land surface models requires complex schemes in order to represent all processes contributing to plant growth. We use the Terrestrial System Modelling Platform (TerrSysMP) over the Rur watershed in Germany for studying the influence of plant physiology and structure on the state of the terrestrial system. The Transregional Collaborative Research Center 32 (TR32) extensively monitors this catchment for almost a decade. The land surface (CLM3.5) and the subsurface (ParFlow) modules of TerrSysMP are conditioned based on satellite-retrieved land cover and the soil map from FAO and forced with a high-resolution reanalysis by DWD. For studying the effect of plant physiology, the Ball-Berry-Leuning, and Jarvis-Stewart stomatal

  14. Surface forces between hydrophilic silica surfaces in a moisture-sensitive oleophilic diacrylate monomer liquid

    Science.gov (United States)

    Ito, Shunya; Kasuya, Motohiro; Kurihara, Kazue; Nakagawa, Masaru

    2018-02-01

    We measured the surface forces generated between fused silica surfaces in a low-viscosity oleophilic diacrylate monomer for reliably repeated ultraviolet (UV) nanoimprinting, and studied the influence of water in monomer liquids on the forces. Fused silica surfaces, with a static contact angle of 52.6 ± 1.7° for water, owing to the low degree of hydroxylation, hardly showed reproducible surface forces with repeated scan cycles, comprising approach and separation, even in an identical liquid monomer medium with both of low and high water content. The monomer liquid with a high water content of approximately 420 ppm showed a greater tendency to increase the surface forces at longer surface-surface distances compared with the monomer liquid with a low water content of approximately 60 ppm. On the other hand, silica surfaces with a water contact angle of < 5° after exposure to vacuum UV (VUV) light under a reduced air pressure showed reproducible profiles of surfaces forces using the monomer with a low water concentration of approximately 60 ppm for repeated surface forces scan cycles even in separately prepared silica surfaces, whilst they showed less reproducible profiles in the liquids with high water content of 430 ppm. These results suggested that water possibly adsorbed on the hydrophilic and hydrophobic silica surfaces in the monomer liquid of the high water concentration influenced the repeatability of the surface forces profiles.

  15. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  16. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    Science.gov (United States)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  17. Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions

    Science.gov (United States)

    Nasta, Paolo; Penna, Daniele; Brocca, Luca; Zuecco, Giulia; Romano, Nunzio

    2018-02-01

    Indirect measurements of field-scale (hectometer grid-size) spatial-average near-surface soil moisture are becoming increasingly available by exploiting new-generation ground-based and satellite sensors. Nonetheless, modeling applications for water resources management require knowledge of plot-scale (1-5 m grid-size) soil moisture by using measurements through spatially-distributed sensor network systems. Since efforts to fulfill such requirements are not always possible due to time and budget constraints, alternative approaches are desirable. In this study, we explore the feasibility of determining spatial-average soil moisture and soil moisture patterns given the knowledge of long-term records of climate forcing data and topographic attributes. A downscaling approach is proposed that couples two different models: the Eco-Hydrological Bucket and Equilibrium Moisture from Topography. This approach helps identify the relative importance of two compound topographic indexes in explaining the spatial variation of soil moisture patterns, indicating valley- and hillslope-dependence controlled by lateral flow and radiative processes, respectively. The integrated model also detects temporal instability if the dominant type of topographic dependence changes with spatial-average soil moisture. Model application was carried out at three sites in different parts of Italy, each characterized by different environmental conditions. Prior calibration was performed by using sparse and sporadic soil moisture values measured by portable time domain reflectometry devices. Cross-site comparisons offer different interpretations in the explained spatial variation of soil moisture patterns, with time-invariant valley-dependence (site in northern Italy) and hillslope-dependence (site in southern Italy). The sources of soil moisture spatial variation at the site in central Italy are time-variant within the year and the seasonal change of topographic dependence can be conveniently

  18. Global High Resolution Sea Surface Flux Parameters From Multiple Satellites

    Science.gov (United States)

    Zhang, H.; Reynolds, R. W.; Shi, L.; Bates, J. J.

    2007-05-01

    Advances in understanding the coupled air-sea system and modeling of the ocean and atmosphere demand increasingly higher resolution data, such as air-sea fluxes of up to 3 hourly and every 50 km. These observational requirements can only be met by utilizing multiple satellite observations. Generation of such high resolution products from multiple-satellite and in-situ observations on an operational basis has been started at the U.S. National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center. Here we describe a few products that are directly related to the computation of turbulent air-sea fluxes. Sea surface wind speed has been observed from in-situ instruments and multiple satellites, with long-term observations ranging from one satellite in the mid 1987 to six or more satellites since mid 2002. A blended product with a global 0.25° grid and four snapshots per day has been produced for July 1987 to present, using a near Gaussian 3-D (x, y, t) interpolation to minimize aliases. Wind direction has been observed from fewer satellites, thus for the blended high resolution vector winds and wind stresses, the directions are taken from the NCEP Re-analysis 2 (operationally run near real time) for climate consistency. The widely used Reynolds Optimum Interpolation SST analysis has been improved with higher resolutions (daily and 0.25°). The improvements use both infrared and microwave satellite data that are bias-corrected by in- situ observations for the period 1985 to present. The new versions provide very significant improvements in terms of resolving ocean features such as the meandering of the Gulf Stream, the Aghulas Current, the equatorial jets and other fronts. The Ta and Qa retrievals are based on measurements from the AMSU sounder onboard the NOAA satellites. Ta retrieval uses AMSU-A data, while Qa retrieval uses both AMSU-A and AMSU-B observations. The retrieval algorithms are developed using the neural network approach. Training

  19. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  20. LBA-HMET PC-06 ECMWF Modeled Precipitation and Surface Flux, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the mean diurnal cycle of precipitation, near-surface thermodynamics, and surface fluxes generated from short-term forecasts from the European...

  1. LBA-HMET PC-06 ECMWF Modeled Precipitation and Surface Flux, Rondonia, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides the mean diurnal cycle of precipitation, near-surface thermodynamics, and surface fluxes generated from short-term forecasts from...

  2. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Science.gov (United States)

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen. Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  3. Do Surface Energy Fluxes Reveal Land Use/Land Cover Change in South Florida?: A Remote Sensing Perspective

    Science.gov (United States)

    Kandel, H. P.; Melesse, A. M.

    2017-12-01

    Series of changes on land use/ land cover in South Florida resulting from drainage and development activities during early to mid-20th followed by restoration measures since late-20th century have had prominent impacts on hydrologic regime and energy fluxes in the region. Previous results from numerical modeling and MODIS-based analysis have shown a shift in dominance of heat fluxes: from latent to sensible along the axes of urbanization, and an opposite along the axes of restoration. This study implements a slightly modified version of surface energy balance algorithm (SEBAL) on cloud-masked Landsat imageries archived over the period of 30-years combined with ground-meteorological data for South Florida using spatial analysis model in ArcGIS and calculates energy flux components: sensible heat flux, latent heat flux, and ground heat flux. The study finally computes variation of Bowen's ratio (BR) and daily evapotranspiration (ET) rate over various land covers for different years. Coexistences are apparent between increased BR and increased intensity of urbanization, and between increased daily ET rates and improved best management practices in agricultural areas. An increase in mean urban BR from 1.67 in 1984 to 3.06 in 2010 show plausible link of BR with urban encroachment of open lands, and expulsion of additional heat by increased population/automobiles/factories/air conditioning units. Likewise, increase in mean agricultural daily ET rates from 0.21 mm/day to 3.60 mm/day between 1984 to 2010 probably shows the effects of improved moisture conditions on the northern farm lands as the results of restoration practices. Once new observed data become available to corroborate these results, remote sensing methods-owing to their greater spatial and temporal details-can be used as assessment measures both for the progress of restoration evaluation and for the extent detection of human-induced climate change.

  4. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    November, 1985. During this period the mean heat storage in the upper 125 m water column is found to be 300 W.m-2. The net surface heat fluxes indicate a mean loss of 37 W.m-2 across the sea surface. Estimation of the heat flux divergence at residual from...

  5. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  6. Evaluating the JULES Land Surface Model Energy Fluxes Using FLUXNET Data

    NARCIS (Netherlands)

    Blyth, E.; Gash, J.H.C.; Lloyd, A.J.; Pryor, M.; Weedon, G.P.; Shuttleworth, J.

    2010-01-01

    Surface energy flux measurements from a sample of 10 flux network (FLUXNET) sites selected to represent a range of climate conditions and biome types were used to assess the performance of the Hadley Centre land surface model (Joint U. K. Land Environment Simulator; JULES). Because FLUXNET data are

  7. A comparison between remotely-sensed and modelled surface soil moisture (and frozen status) at high latitudes

    Science.gov (United States)

    Gouttevin, I.; Bartsch, A.; Krinner, G.; Naeimi, V.

    2013-08-01

    In this study, the combined surface status and surface soil moisture products retrieved by the ASCAT sensor within the ESA-DUE Permafrost project are compared to the hydrological outputs of the land surface model ORCHIDEE over Northern Eurasia. The objective is to derive broad conclusions as to the strengths and weaknesses of hydrological modelling and, to a minor extent, remote sensing of soil moisture over an area where data is rare and hydrological modelling is though crucial for climate and ecological applications. The spatial and temporal resolutions of the ASCAT products make them suitable for comparison with model outputs. Modelled and remotely-sensed surface frozen and unfrozen statuses agree reasonably well, which allows for a seasonal comparison between modelled and observed (liquid) surface soil moisture. The atmospheric forcing and the snow scheme of the land surface model are identified as causes of moderate model-to-data divergence in terms of surface status. For unfrozen soils, the modelled and remotely-sensed surface soil moisture signals are positively correlated over most of the study area. The correlation deteriorates in the North-Eastern Siberian regions, which is consistent with the lack of accurate model parameters and the scarcity of meteorological data. The model shows a reduced ability to capture the main seasonal dynamics and spatial patterns of observed surface soil moisture in Northern Eurasia, namely a characteristic spring surface moistening resulting from snow melt and flooding. We hypothesize that these weak performances mainly originate from the non-representation of flooding and surface ponding in the model. Further identified limitations proceed from the coarse treatment of the hydrological specificities of mountainous areas and spatial inaccuracies in the meteorological forcing in remote, North-Eastern Siberian areas. Investigations are currently underway to determine to which extent plausible inaccuracies in the satellite data

  8. How do uncertainties in NCEP R2 and CFSR surface fluxes impact tropical ocean simulations?

    Science.gov (United States)

    Wen, Caihong; Xue, Yan; Kumar, Arun; Behringer, David; Yu, Lisan

    2017-11-01

    NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface fluxes are widely used by the research community to understand surface flux climate variability, and to drive ocean models as surface forcings. However, large discrepancies exist between these two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase in difference after 2000. The goals of this study are to examine the sensitivity of ocean simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of the two products. A set of experiments, where an ocean model was driven by a combination of surface flux components from R2 and CFSR, were carried out. The model simulations were contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. The accuracy of the model simulations was validated against the tropical moorings data, altimetry SSH and SST reanalysis products. Sensitivity of ocean simulations showed that temperature bias difference in the upper 100 m is mostly sensitive to the differences in surface heat fluxes, while depth of 20 °C (D20) bias difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have large negative bias similar to those with R2 winds after 2000, partly because easterly winds over the central Pacific were underestimated in both CFSR and R2. On the other hand, the observed temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual variability in all three tropical oceans to a varying degree. The improvement in the tropical Atlantic is most significant and is largely attributed to differences in surface winds.

  9. Using Sentinel-1 and Landsat 8 satellite images to estimate surface soil moisture content.

    Science.gov (United States)

    Mexis, Philippos-Dimitrios; Alexakis, Dimitrios D.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.

    2016-04-01

    Nowadays, the potential for more accurate assessment of Soil Moisture (SM) content exploiting Earth Observation (EO) technology, by exploring the use of synergistic approaches among a variety of EO instruments has emerged. This study is the first to investigate the potential of Synthetic Aperture Radar (SAR) (Sentinel-1) and optical (Landsat 8) images in combination with ground measurements to estimate volumetric SM content in support of water management and agricultural practices. SAR and optical data are downloaded and corrected in terms of atmospheric, geometric and radiometric corrections. SAR images are also corrected in terms of roughness and vegetation with the synergistic use of Oh and Topp models using a dataset consisting of backscattering coefficients and corresponding direct measurements of ground parameters (moisture, roughness). Following, various vegetation indices (NDVI, SAVI, MSAVI, EVI, etc.) are estimated to record diachronically the vegetation regime within the study area and as auxiliary data in the final modeling. Furthermore, thermal images from optical data are corrected and incorporated to the overall approach. The basic principle of Thermal InfraRed (TIR) method is that Land Surface Temperature (LST) is sensitive to surface SM content due to its impact on surface heating process (heat capacity and thermal conductivity) under bare soil or sparse vegetation cover conditions. Ground truth data are collected from a Time-domain reflectometer (TRD) gauge network established in western Crete, Greece, during 2015. Sophisticated algorithms based on Artificial Neural Networks (ANNs) and Multiple Linear Regression (MLR) approaches are used to explore the statistical relationship between backscattering measurements and SM content. Results highlight the potential of SAR and optical satellite images to contribute to effective SM content detection in support of water resources management and precision agriculture. Keywords: Sentinel-1, Landsat 8, Soil

  10. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    Science.gov (United States)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2018-02-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation

  11. [The relationship between the variation rate of MODIS land surface temperature and AMSR-E soil moisture and its application to downscaling].

    Science.gov (United States)

    Wang, An-Qi; Xie, Chao; Shi, Jian-Cheng; Gong, Hui-Li

    2013-03-01

    Using AMSR-E soil moisture, MODIS land surface temperature (Ts) and vegetation index product, the authors discuss the relationship between the variation rate of land surface temperature and surface soil moisture. Selecting the plains region of central United States as the study area, the authors propose the distribution triangle of the variation rate of land surface temperature and soil moisture. In the present paper, temperature variation and vegetation index (TVVI), a new index containing the information of temperature variation and vegetation, is introduced. The authors prove that TVVI and soil moisture show a steady relationship of exponential function; and build a quantitative model of soil moisture(SM) and instantaneous surface temperature variation (VTs). The authors later achieve downscaling of AMSR-E soil moisture data, through the above stated functional relationships and high-resolution MODIS data. Comparison with measured data on ground surface indicates that this method of downscaling is of high precision

  12. Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Directory of Open Access Journals (Sweden)

    Alfonso F. Torres-Rua

    2016-04-01

    Full Text Available Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed.

  13. Fuel moisture content estimation: a land-surface modelling approach applied to African savannas

    Science.gov (United States)

    Ghent, D.; Spessa, A.; Kaduk, J.; Balzter, H.

    2009-04-01

    Despite the importance of fire to the global climate system, in terms of emissions from biomass burning, ecosystem structure and function, and changes to surface albedo, current land-surface models do not adequately estimate key variables affecting fire ignition and propagation. Fuel moisture content (FMC) is considered one of the most important of these variables (Chuvieco et al., 2004). Biophysical models, with appropriate plant functional type parameterisations, are the most viable option to adequately predict FMC over continental scales at high temporal resolution. However, the complexity of plant-water interactions, and the variability associated with short-term climate changes, means it is one of the most difficult fire variables to quantify and predict. Our work attempts to resolve this issue using a combination of satellite data and biophysical modelling applied to Africa. The approach we take is to represent live FMC as a surface dryness index; expressed as the ratio between the Normalised Difference Vegetation Index (NDVI) and land-surface temperature (LST). It has been argued in previous studies (Sandholt et al., 2002; Snyder et al., 2006), that this ratio displays a statistically stronger correlation to FMC than either of the variables, considered separately. In this study, simulated FMC is constrained through the assimilation of remotely sensed LST and NDVI data into the land-surface model JULES (Joint-UK Land Environment Simulator). Previous modelling studies of fire activity in Africa savannas, such as Lehsten et al. (2008), have reported significant levels of uncertainty associated with the simulations. This uncertainty is important because African savannas are among some of the most frequently burnt ecosystems and are a major source of greenhouse trace gases and aerosol emissions (Scholes et al., 1996). Furthermore, regional climate model studies indicate that many parts of the African savannas will experience drier and warmer conditions in future

  14. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    Science.gov (United States)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  15. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  16. Characterizing Surface Energy Budget Components in Urban Regions Using Combination of Flux Tower Observations and Satellite Remote Sensing Measurements

    Science.gov (United States)

    Norouzi, H.; Vant-hull, B.; Ramamurthy, P.; Blake, R.; Prakash, D. S.

    2016-12-01

    Urban and built regions because of their lack of surface moisture and their surface impermeability significantly perform differently in surface energy budget than natural and non-urban regions. Characterizing the effect and the response of each surface type in the cities can help to increase our understanding of climate, anthropogenic heat, and urban heat islands. Both ground observations and remote sensing observations are important when the extent of the heat energy balance components in big cities is targeted. This is study aims to provide a novel approach to use ground observations and map the maxima and minima air temperature in New York City using satellite measurements. Complete energy balance stations are installed over distinct materials such as concrete, asphalt, and rooftops. The footprint of these stations is restricted to the individual materials. The energy balance stations monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. Moreover, satellite observations from Landsat 8 are utilized to classify the city surfaces to distinct defined surfaces where ground observations were performed. The mapped temperatures will be linked to MODIS surface temperatures to develop a model that can downscale MODIS skin temperatures to fine resolution air temperature over urban regions. The results are compared with ground observations, which they reveal a great potential of using synergetic use of flux tower observations and satellite measurement to study urban surface energy budget. The results of this study can enhance our understanding about urban heat islands as well as climate studies and their effects on the environment.

  17. Understanding moisture stress on light use efficiency across terrestrial ecosystems based on global flux and remote-sensing data

    Science.gov (United States)

    Yulong Zhang; Conghe Song; Ge Sun; Lawrence E. Band; Asko Noormets; Quanfa Zhang

    2015-01-01

    Light use efficiency (LUE) is a key biophysical parameter characterizing the ability of plants to convert absorbed light to carbohydrate. However, the environmental regulations on LUE, especially moisture stress, are poorly understood, leading to large uncertainties in primary productivity estimated by LUE models. The objective of this study is to investigate the...

  18. Error in Radar-Derived Soil Moisture due to Roughness Parameterization: An Analysis Based on Synthetical Surface Profiles

    Directory of Open Access Journals (Sweden)

    Bernard De Baets

    2009-02-01

    Full Text Available In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration.

  19. LPRM/AMSR2/GCOM-W1 L3 Descending Downscaled Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  20. LPRM/AMSR2/GCOM-W1 L3 Ascending Downscaled Surface Soil Moisture, Ancillary Params, and QC V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This Level 3 (gridded) data set¿s land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are derived from...

  1. Surface modification of basalt with silane coupling agent on asphalt mixture moisture damage

    Energy Technology Data Exchange (ETDEWEB)

    Min, Yahong; Fang, Ying; Huang, Xiaojun; Zhu, Yinhui; Li, Wensheng [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Yuan, Jianmin [College of Materials Engineering, Hunan University, Changsha, 410082 (China); Tan, Ligang [College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 (China); Wang, Shuangyin [State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhenjun, E-mail: wooawt@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • A new silane coupling agent was synthesized based on KH570. • Basalt surface was modified using the new silane coupling agent. • Chemical bond between basalt and the new silane coupling agent was formed. • Asphalt mixture which used modified basalt show superior water stability. - Abstract: A new silane coupling agent was synthesized based on γ-(methacryloyloxy) propyltrimethoxysilane (KH570). The surface of basalt rocks was modified by KH570 and the new silane coupling agent (NSCA), and the interfacial interaction between silane coupling agent and basalt was also studied. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the silane coupling agent molecule bound strongly with basalt rocks. Scanning electronic microscopy (SEM) observation showed that a thin layer of coupling agent was formed on the surface of modified basalt. The boiling test and immersion Marshall test confirmed that the moisture sensitivity of basalt modified with the new silane coupling agent increased more significantly than that untreated and treated with KH570. The Retained Marshall Strength of basalt modified with the new coupling agent increased from 71.74% to 87.79% compared with untreated basalt. The results indicated that the new silane coupling agent played an important role in improving the interfacial performance between basalt and asphalt.

  2. Estimation of Surface CO2 Flux Using a Carbon Tracking System Based on Ensemble Kalman Filter

    Science.gov (United States)

    Kim, J.; Kim, H. M.; Cho, C. H.; Boo, K. O.

    2015-12-01

    Estimation of the surface CO2 flux is crucial to understand the mechanism of surface carbon source and sink. In Asia, there are large uptake regions such as forests in boreal and temperate regions. In this study, to diagnose the surface CO2 flux in the globe and Asia, CO2 observations were assimilated in the CarbonTracker developed by NOAA. The CarbonTracker is an inverse modeling system that estimates the surface CO2 flux using an ensemble Kalman filter with atmospheric CO2 measurements as a constraint. First, the capability of CarbonTracker as an analysis tool for estimating surface CO2 flux in Asia was investigated. Different from the CarbonTracker developed by NOAA, a nesting domain centered on Asia was used with additional observations in Asia. In addition, a diagnostic tool to calculate the effect of individual CO2 observations on estimating the surface CO2 flux was developed using the analysis sensitivity to observation and information content in the CarbonTracker framework. The results showed that CarbonTracker works appropriately for estimating surface CO2 flux. The nesting domain centered in Asia produces a detailed estimate of the surface CO2 fluxes and exhibited better agreement with the CO2 observations in Asia. Additional observations provide beneficial impact on the estimated surface CO2 flux in Asia and Europe. The analysis sensitivity showed seasonal variations with greater sensitivities in summer and lower sensitivities in winter. Strong correlation exists between the information content and the optimized surface CO2 flux.

  3. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  4. Inter-comparison of energy balance and hydrological models for land surface energy flux estimation over a whole river catchment

    DEFF Research Database (Denmark)

    Guzinski, R.; Nieto, H.; Stisen, S.

    2015-01-01

    , distributed hydrological model, while the energy-balance approach is often used with remotely sensed observations of, for example, the land surface temperature (LST) and the state of the vegetation. In this study we compare the catchment-scale output of two remote sensing models based on the two-source energy......-balance (TSEB) scheme, against a hydrological model, MIKE SHE, calibrated over the Skjern river catchment in western Denmark. The three models utilize different primary inputs to estimate ET (LST from different satellites in the case of remote sensing models and modelled soil moisture and heat flux in the case....... The temporal patterns produced by the remote sensing and hydrological models are quite highly correlated (r ≈ 0.8). This indicates potential benefits to the hydrological modelling community of integrating spatial information derived through remote sensing methodology (contained in the ET maps...

  5. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  6. Determination of surface fluxes using a Bowen ratio system | Kakane ...

    African Journals Online (AJOL)

    The fluxes are obtained by the energy balance Bowen ratio technique, a gradient method that uses vertical gradients of temperature and vapour pressure in combination with point measurements of net radiation and soil heat flow from two sets of soil sensors. The Bowen ratio was measured as the ratio of air temperature ...

  7. First-order chemistry in the surface-flux layer

    DEFF Research Database (Denmark)

    Kristensen, L.; Andersen, C.E.; Ejsing Jørgensen, Hans

    1997-01-01

    of a characteristic turbulent time scale and the scalar mean lifetime. We show that if we use only first-order closure and neglect the effect of the Damkohler ratio on the turbulent diffusivity we obtain another analytic solution for the profiles of the flux and the mean concentration which, from an experimental...

  8. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover

  9. Structure of the urban moisture field

    International Nuclear Information System (INIS)

    Sisterson, D.L.; Dirks, R.A.

    1975-01-01

    In the 26 July 1974 case study in St. Louis as a part of Project METROMEX, aircraft and surface network stations were used to determine specific humidity and potential temperature patterns near the surface and at two levels within the mixing layer. From the data acquired at these three levels, three-dimensional analyses of the moisture fields in the mixing layer were constructed. The mesoscale dry regions observed throughout the mixing layer correspond to the more impervious surfaces of the urban area. From energy budget considerations, latent heat fluxes are small over these impervious surfaces owing to the large runoff of precipitation and the lack of moisture retention capabilities. Hence, urbanization obviously alters the local energy budget. Surface boundary layer conditions are determined by heat and moisture fluxes. A new internal boundary layer within the city is formed after the breakdown of the radiation inversion in order to compensate for the alteration of sensible heat and latent heat energies. Hence, isolated semistagnant urban air is replenished by moisture only as quickly as evapotranspiration from impervious surfaces will allow. The city surface, therefore, is not a sink of moisture, but rather a reduced source relative to rural areas

  10. Electrical conductivity and electron cyclotron current drive efficiencies for non-circular flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    O'Brien, M.R.

    1989-01-01

    As is well known, the presence of electron trapping can strongly reduce the electrical conductivity and rf current drive efficiencies of tokamak plasmas. For example, the conductivity (in the low collisionality limit) of a flux surface with inverse aspect ratio ε=0.1 is approximately one half of the Spitzer conductivity (σ sp )for uniform magnetic fields. Previous estimates of these effects have assumed that the variation of magnetic field strength around a flux surface is given by the standard form for circular flux surfaces. (author) 11 refs., 4 figs

  11. Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis

    Science.gov (United States)

    Rita C.L.B. Rodrigues; William R. Kenealy; Diane Dietrich; Thomas W. Jeffries

    2012-01-01

    Response surface methodology (RSM), based on a 22 full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO...

  12. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

    Science.gov (United States)

    Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker

    2017-01-01

    Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...

  13. Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data

    NARCIS (Netherlands)

    Wen, J.; Su, Z.; Ma, Y.

    2003-01-01

    An analytical algorithm for the determination of land surface temperature and soil moisture from the Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) remote sensing data has been developed in this study. The error analyses indicate that the uncertainties of the enrolled parameters

  14. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  15. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    Science.gov (United States)

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  16. Fluxes over a heterogeneous land surface: results and perspectives of the LITFASS program

    NARCIS (Netherlands)

    Beyrich, F.; Richter, S.H.; Weisensee, U.; Herzog, H.J.; DeBruin, H.A.R.; Meijninger, W.M.L.

    2002-01-01

    From 1995 till 2001, the German Meteorological Service (DWD) has performed a research project (LITFASS='Lindenberg Inhomogeneous Terrain - Fluxes between Atmosphere and Surface: a Long-term Study') in order to develop and to test a strategy for the determination of the area-averaged turbulent fluxes

  17. Parameter estimation of a two-horizon soil profile by combining crop canopy and surface soil moisture observations using GLUE

    Science.gov (United States)

    Sreelash, K.; Sekhar, M.; Ruiz, L.; Tomer, S. K.; Guérif, M.; Buis, S.; Durand, P.; Gascuel-Odoux, C.

    2012-08-01

    SummaryEstimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to

  18. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Science.gov (United States)

    Albergel, C.; Calvet, J.-C.; de Rosnay, P.; Balsamo, G.; Wagner, W.; Hasenauer, S.; Naeimi, V.; Martin, E.; Bazile, E.; Bouyssel, F.; Mahfouf, J.-F.

    2010-11-01

    The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM) measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km) active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP), issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing) by TU-Wien (Vienna University of Technology) over a two year period (2007-2008). A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP) and the Integrated Forecasting System (IFS) analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  19. Cross-evaluation of modelled and remotely sensed surface soil moisture with in situ data in southwestern France

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2010-11-01

    Full Text Available The SMOSMANIA soil moisture network in Southwestern France is used to evaluate modelled and remotely sensed soil moisture products. The surface soil moisture (SSM measured in situ at 5 cm permits to evaluate SSM from the SIM operational hydrometeorological model of Météo-France and to perform a cross-evaluation of the normalised SSM estimates derived from coarse-resolution (25 km active microwave observations from the ASCAT scatterometer instrument (C-band, onboard METOP, issued by EUMETSAT and resampled to the Discrete Global Grid (DGG, 12.5 km gridspacing by TU-Wien (Vienna University of Technology over a two year period (2007–2008. A downscaled ASCAT product at one kilometre scale is evaluated as well, together with operational soil moisture products of two meteorological services, namely the ALADIN numerical weather prediction model (NWP and the Integrated Forecasting System (IFS analysis of Météo-France and ECMWF, respectively. In addition to the operational SSM analysis of ECMWF, a second analysis using a simplified extended Kalman filter and assimilating the ASCAT SSM estimates is tested. The ECMWF SSM estimates correlate better with the in situ observations than the Météo-France products. This may be due to the higher ability of the multi-layer land surface model used at ECMWF to represent the soil moisture profile. However, the SSM derived from SIM corresponds to a thin soil surface layer and presents good correlations with ASCAT SSM estimates for the very first centimetres of soil. At ECMWF, the use of a new data assimilation technique, which is able to use the ASCAT SSM, improves the SSM and the root-zone soil moisture analyses.

  20. Impact of Surface Soil Moisture Variations on Radar Altimetry Echoes at Ku and Ka Bands in Semi-Arid Areas

    Directory of Open Access Journals (Sweden)

    Christophe Fatras

    2018-04-01

    Full Text Available Radar altimetry provides information on the topography of the Earth surface. It is commonly used for the monitoring not only sea surface height but also ice sheets topography and inland water levels. The radar altimetry backscattering coefficient, which depends on surface roughness and water content, can be related to surface properties such as surface soil moisture content. In this study, the influence of surface soil moisture on the radar altimetry echo and backscattering coefficient is analyzed over semi-arid areas. A semi-empirical model of the soil’s complex dielectric permittivity that takes into account that small-scale roughness and large-scale topography was developed to simulate the radar echoes. It was validated using waveforms acquired at Ku and Ka-bands by ENVISAT RA-2 and SARAL AltiKa respectively over several sites in Mali. Correlation coefficients ranging from 0.66 to 0.94 at Ku-band and from 0.27 to 0.96 at Ka-band were found. The increase in surface soil moisture from 0.02 to 0.4 (i.e., the typical range of variations in semi-arid areas increase the backscattering from 10 to 15 dB between the core of the dry and the maximum of the rainy seasons.

  1. Evaluation of the flux gradient technique for measurement of ozone surface fluxes over snowpack at Summit, Greenland

    Directory of Open Access Journals (Sweden)

    F. Bocquet

    2011-10-01

    Full Text Available A multi-step procedure for investigating ozone surface fluxes over polar snow by the tower gradient method was developed and evaluated. These measurements were then used to obtain five months (April–August 2004 of turbulent ozone flux data at the Summit research camp located in the center of the Greenland ice shield. Turbulent fluxes were determined by the gradient method incorporating tower measurements of (a ozone gradients measured by commercial ultraviolet absorption analyzers, (b ambient temperature gradients using aspirated thermocouple sensors, and (c wind speed gradients determined by cup anemometers. All gradient instruments were regularly inter-compared by bringing sensors or inlets to the same measurement height. The developed protocol resulted in an uncertainty on the order of 0.1 ppbv for 30-min averaged ozone gradients that were used for the ozone flux calculations. This protocol facilitated a lower sensitivity threshold for the ozone flux determination of ∼8 × 10−3μg m−2 s−1, respectively ∼0.01 cm s−1 for the ozone deposition velocity for typical environmental conditions encountered at Summit. Uncertainty in the 30-min ozone exchange measurements (evaluated by the Monte Carlo statistical approach was on the order of 10−2 cm s−1. This uncertainty typically accounted to ~20–100% of the ozone exchange velocities that were determined. These measurements are among the most sensitive ozone deposition determinations reported to date. This flux experiment allowed for measurements of the relatively low ozone uptake rates encountered for polar snow, and thereby the study of their environmental and spring-versus-summer dependencies.

  2. Changes in soil moisture affect carbon and water fluxes from trees and soils differently in a young semi-arid ponderosa pine stand

    Science.gov (United States)

    Ruehr, N. K.; Martin, J.; Pettijohn, J. C.; Law, B. E.

    2010-12-01

    A potential decline in the global trend in land evapotranspiration due to soil moisture limitation may alter the C balance of forest ecosystems, especially in water-limited Mediterranean and semi-arid climate zones. Despite the wide distribution of ponderosa pine forests in semi-arid climate zones of the USA, detailed studies on how these ecosystems may respond to changes in soil water availability are rather rare. To provide better insights on this relevant topic, we conducted a soil moisture manipulation experiment and investigated the response of tree and soil carbon and water fluxes in a young ponderosa pine stand in Oregon (Ameriflux site US-Me6) during summer 2010. Irrigation started with the onset of the dry season at the end of June, maintaining volumetric soil moisture content constantly above 20%. In contrast, in the control treatment soil moisture dried down with regional drought and was below 10% and 15% in 10 cm and 30 cm depth by the end of August. Results show that irrigation increased soil CO2 efflux by 40% at the end of July and reached a maximum of 60% in mid August, with about one-third to two-thirds originating from root-rhizosphere respiration (soil CO2 efflux under tree - soil CO2 efflux in the open). Photosynthesis (Amax), stomatal conductance (gs) and transpiration (T) rates were not affected by irrigation in early summer. However, Amax, gs and T rates in both treatments suddenly decreased, most likely caused by increased VPD and decreased soil water availability (predawn needle water potentials) at the end of July. Irrigation dampened that decrease and caused Amax, gs and T to remain on average about 25% higher, following largely the course of VPD during August. In summary, our preliminary results indicate that higher soil water content affected in particular soil activity and root-rhizosphere respiration rates. Photosynthesis and transpiration appeared to depend to a lesser extent and later in the season on irrigation water, yet both

  3. Shrub patterns and surface hydrological fluxes in a semiarid hillslope

    Science.gov (United States)

    Svoray, Tal; Sela, Shai; Assouline, Shmuel

    2010-05-01

    Climate-vegetation interactions and feedbacks are the subject of many studies and recently, the rainfall-plant-soil interplay in the hillslope scale is in the foci of ecohydrology. As most of the models in this scale rely on synthetic environments, there is a need for studies that use remotely sensed and in-situ data to examine the effect of hillslope hydrological processes on ecosystem functioning and plant population spread in a more realistic manner. A major problem is the difficulty encountered in simulating water budget and measuring vegetation at the individual level. In this research, a typical hillslope was chosen offering variations in slope decline and orientation, soil depth and vegetation cover, at the LTER Lehavim site in the center of Israel (31020' N, 34045' E). The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterized by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. Eight areal photographs of the slope, between the years 1978-2005, were acquired, georeferenced and shrub cover was estimated based on supervised classification of the airphotos. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density, soil depth) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically-based modeling. This spatio-temporal database was used to characterize 1187 spatial cells serving as an input to a numeric hydrological model (Hydrus 1D) solving the flow equations to predict soil water content at the single storm and seasonal scales. The model was verified by sampling soil moisture at 63 random locations at the research site, during three consecutive storms in the 2008-09 rainy seasons. The results show

  4. Surface layer scintillometry for estimating the sensible heat flux component of the surface energy balance

    Directory of Open Access Journals (Sweden)

    M. J. Savage

    2010-01-01

    Full Text Available The relatively recently developed scintillometry method, with a focus on the dual-beam surface layer scintillometer (SLS, allows boundary layer atmospheric turbulence, surface sensible heat and momentum flux to be estimated in real-time. Much of the previous research using the scintillometer method has involved the large aperture scintillometer method, with only a few studies using the SLS method. The SLS method has been mainly used by agrometeorologists, hydrologists and micrometeorologists for atmospheric stability and surface energy balance studies to obtain estimates of sensible heat from which evaporation estimates representing areas of one hectare or larger are possible. Other applications include the use of the SLS method in obtaining crucial input parameters for atmospheric dispersion and turbulence models. The SLS method relies upon optical scintillation of a horizontal laser beam between transmitter and receiver for a separation distance typically between 50 and 250 m caused by refractive index inhomogeneities in the atmosphere that arise from turbulence fluctuations in air temperature and to a much lesser extent the fluctuations in water vapour pressure. Measurements of SLS beam transmission allow turbulence of the atmosphere to be determined, from which sub-hourly, real-time and in situ path-weighted fluxes of sensible heat and momentum may be calculated by application of the Monin-Obukhov similarity theory. Unlike the eddy covariance (EC method for which corrections for flow distortion and coordinate rotation are applied, no corrections to the SLS measurements, apart from a correction for water vapour pressure, are applied. Also, path-weighted SLS estimates over the propagation path are obtained. The SLS method also offers high temporal measurement resolution and usually greater spatial coverage compared to EC, Bowen ratio energy balance, surface renewal and other sensible heat measurement methods. Applying the shortened surface

  5. AMSR-E/Aqua surface soil moisture (LPRM) L3 1 day 25 km x 25 km ascending V002 (LPRM_AMSRE_A_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — AMSR-E/Aqua surface soil moisture (LPRM) L3 1 day 25 km x 25 km ascending V002 is a Level 3 (gridded) data set. Its land surface parameters, surface soil moisture,...

  6. Spatial and temporal variability of soil temperature, moisture and surface soil properties

    Science.gov (United States)

    Hajek, B. F.; Dane, J. H.

    1993-01-01

    The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.

  7. Goddard Satellite-Based Surface Turbulent Fluxes, Daily Grid F08 V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version 3 (GSSTF3) Dataset recently produced through a MEaSURES funded project led by Dr....

  8. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Monthly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  9. Surface Turbulent Fluxes, 1x1 deg Seasonal Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  10. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F13 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  11. Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  12. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Set1 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF2c) Dataset recently produced through a MEaSUREs funded project led by Dr....

  13. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  14. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F11 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  15. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F14 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  16. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F08 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  17. Goddard Satellite-Based Surface Turbulent Fluxes, Daily Grid F10 V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version 3 (GSSTF3) Dataset recently produced through a MEaSURES funded project led by Dr....

  18. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F10 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  19. Helicity injection with moving vacuum--plasma boundary with arbitrary flux surfaces

    International Nuclear Information System (INIS)

    Bellan, P.M.

    1988-01-01

    If a toroidal plasma has arbitrary nested magnetic flux surfaces and a moving plasma--vacuum interface, then any helicity injected by modulating the magnetic fields is simply consumed by an increase in helicity dissipation due to the modulated fields

  20. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Satellite F15 V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are part of the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF 2c) Dataset recently produced through a MEaSURES funded project led by...

  1. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Yearly Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  2. Goddard Satellite-Based Surface Turbulent Fluxes Climatology, Seasonal Grid V3

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-3 Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  3. Microbial and environmental controls of methane fluxes along a soil moisture gradient in a Pacific coastal temperate rainforest

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Levy-Booth, David; Prescott, Cindy E.

    2016-01-01

    Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution of the u......Most studies of greenhouse gas fluxes from forest soils in the coastal rainforest have considered carbon dioxide (CO2), whereas methane (CH4) has not received the same attention. Soil hydrology is a key driver of CH4 dynamics in ecosystems, but the impact on the function and distribution...

  4. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    Science.gov (United States)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  5. Estimating surface soil moisture with the scanning low frequency microwave radiometer (SLFMR) during the Southern Great Plains 1997 (SGP97) hydrology experiment

    NARCIS (Netherlands)

    Uitdewilligen, D.C.A.; Kustas, W.P.; Oevelen, van P.J.

    2003-01-01

    The scanning low frequency microwave radiometer (SLFMR) was used to map surface soil moisture (0-5 cm depth) during the Southern Great Plains 1997 (SGP97) hydrology experiment. On June 29, July 2, and July 3. surface soil moisture maps with a pixel resolution of 200 m were obtained using a soil

  6. Evaluation of satellite and reanalysis-based global net surface energy flux and uncertainty estimates

    Science.gov (United States)

    Allan, Richard; Liu, Chunlei

    2017-04-01

    The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty (Trenberth and Fasullo, 2013; Roberts et al., 2016). A combination of satellite-derived radiative fluxes at the top of atmosphere (TOA) adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis are used to estimate surface energy flux globally (Liu et al., 2015). Land surface fluxes are adjusted through a simple energy balance approach using relations at each grid point with the consideration of snowmelt to improve regional realism. The energy adjustment is redistributed over the oceans using a weighting function to avoid meridional discontinuities. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis input data and products. Zonal multiannual mean surface flux uncertainty is estimated to be less than 5 Wm-2 but much larger uncertainty is likely for regional monthly values. The meridional energy transport is calculated using the net surface heat fluxes estimated in this study and the result shows better agreement with observations in Atlantic than before. The derived turbulent fluxes (difference between the net heat flux and the CERES EBAF radiative flux at surface) also have good agreement with those from OAFLUX dataset and buoy observations. Decadal changes in the global energy budget and the hemisphere energy imbalances are quantified and present day cross-equator heat transports is re-evaluated as 0.22±0.15 PW southward by the atmosphere and 0.32±0.16 PW northward by the ocean considering the observed ocean heat sinks (Roemmich et al., 2006) . Liu et al. (2015) Combining satellite observations and reanalysis energy transports to estimate global net surface energy fluxes 1985-2012. J. Geophys. Res., Atmospheres. ISSN 2169-8996 doi: 10.1002/2015JD

  7. Use of microwave remote sensing data to monitor spatio temporal characteristics of surface soil moisture at local and regional scales

    Directory of Open Access Journals (Sweden)

    A. Löw

    2005-01-01

    Full Text Available Hydrologic processes, such as runoff production or evapotranspiration, largely depend on the variation of soil moisture and its spatial pattern. The interaction of electromagnetic waves with the land surface can be dependant on the water content of the uppermost soil layer. Especially in the microwave domain of the electromagnetic spectrum, this is the case. New sensors as e.g. ENVISAT ASAR, allow for frequent, synoptically and homogeneous image acquisitions over larger areas. Parameter inversion models are therefore developed to derive bio- and geophysical parameters from the image products. The paper presents a soil moisture inversion model for ENVISAT ASAR data for local and regional scale applications. The model is validated against in situ soil moisture measurements. The various sources of uncertainties, being related to the inversion process are assessed and quantified.

  8. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    Science.gov (United States)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  9. Micropatterned surfaces through moisture-induced phase-separation of polystyrene-clay nanocomposite particles.

    Science.gov (United States)

    Nair, Bindu P; Pavithran, Chorappan

    2010-08-03

    We report micropatterned polystyrene-clay nanocomposite (PCN) surfaces with concavities by moisture-induced phase separation of PCN particles. Micropatterned film with concavity size of 800 nm to 1.3 microm and a high number density of 2 x 10(8) features/cm(2) was obtained by drop-casting PCN solution (20 mg/mL PCN/THF) under ambient relative humidity of 70-80%. It is proposed that water droplets were channeled through the hydrophilic interfaces between the PCN particles, and the two-dimensional array of concavities was formed by spontaneous phase separation due to the presence of rigid clay platelets. The concavity size and number density can be tuned by varying the solvent for PCN. Micropatterned film with concavity size in the range of 650 nm to 1.1 microm with a number density of 5 x 10(7) features/cm(2) was obtained using chloroform as solvent, whereas a concavity size of 150-740 nm and number density of 10(8) features/cm(2) were obtained using carbon disulfide.

  10. Soil Moisture and Sea Surface Temperatures equally important for Land Climate in the Warm Season

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2015-12-01

    Both sea surface temperatures (SSTs) and soil moisture (SM) are important drivers of climate variability over land. In this study we present a comprehensive comparison of SM versus SST impacts on land climate in the warm season. We perform ensemble experiments with the Community Earth System Model (CESM) where we set SM or SSTs to median conditions, respectively, to remove their inter-annual variability, whereby the other component - SST or SM - is still interactively computed. In contrast to earlier experiments performed with prescribed SSTs, our experiments suggest that SM is overall as important as SSTs for land climate, not only in the midlatitudes but also in the tropics and subtropics. Mean temperature and precipitation are reduced by 0.1-0.5 K and 0-0.2 mm, respectively, whereas their variability at different time scales decreases by 10-40% (temperature) and 0-10% (precipitation) when either SM or SSTs are prescribed. Also drought occurrence is affected, with mean changes in the maximum number of cumulative dry days of 0-0.75 days. Both SM and SST-induced changes are strongest for hot temperatures (up to 0.7 K, and 50%), extreme precipitation (up to 0.4 mm, and 20%), and strong droughts (up to 2 days). Local climate changes in response to removed SM variability are controlled - to first order - by the land-atmosphere coupling and the natural SM variability. SST-related changes are partly controlled by the relation of local temperature or precipitation with the El Niño-Southern Oscillation. Moreover removed SM or SST variabilities both induce remote effects by impacting the atmospheric circulation. Our results are similar for the present day and the end of the century. We investigate the inter-dependency between SM and SST and find a sufficient degree of independence for the purpose of this study. The robustness of our findings is shown by comparing the response of CESM to removed SM variability with four other global climate models. In summary, SM and SSTs

  11. An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products

    Science.gov (United States)

    Li, Hongyu; Fu, Congbin; Guo, Weidong

    2017-08-01

    An integrated evaluation of monthly mean land surface energy fluxes over China in seven reanalysis and land model products during the period 1979-2015 is conducted. Observations from seven field sites are used to evaluate these flux products, including four reanalysis data sets and three produced by off-line land surface models. In general, the expected seasonal variations and spatial patterns in major climatic regimes are well reproduced by all reanalysis and modeling products. However, large differences among the four reanalysis products are found, while the three off-line land surface modeling products correlate well with each other. Looking at the Bowen ratio, it is found that the off-line land surface models convert a larger fraction of surface available energy into sensible heat flux compared to the reanalysis products in all climatic regimes. There are three centers of high interannual variability in sensible heat located in West China, Northeast China, and the eastern Inner Mongolia, respectively. In addition, the sensible heat flux agrees better with observations at grassland sites than at forest sites, while the latent heat flux and net radiation are significantly overestimated at forest sites in all the flux products. Besides, mean square errors of the fluxes are decomposed into biases, correlations, and differences in standard deviation. Finally, based on a ranking system adopted to quantitatively evaluate the performance of each data set, it is found that the surface energy fluxes in ERA-Interim and JRA-25 agree well with observations and the ensemble mean of all these products remains reasonably realistic as well.

  12. Spatial Variation of Surface Energy Fluxes Due to Land Use Changes across China

    Directory of Open Access Journals (Sweden)

    Enjun Ma

    2014-04-01

    Full Text Available We estimate the heat flux changes caused by the projected land transformation over the next 40 years across China to improve the understanding of the impacts of land dynamics on regional climate. We use the Weather Research and Forecasting (WRF model to investigate these impacts in four representative land transformation zones, where reclamation, overgrazing, afforestation, and urbanization dominates the land use and land cover changes in each zone respectively. As indicated by the significant variance of albedo due to different land use and cover changes, different surface properties cause great spatial variance of the surface flux. From the simulation results, latent heat flux increases by 2 and 21 W/m2 in the reclamation and afforestation regions respectively. On the contrary, overgrazing and urban expansion results in decrease of latent heat flux by 5 and 36 W/m2 correspondingly. Urban expansion leads to an average increase of 40 W/m2 of sensible heat flux in the future 40 years, while reclamation, afforestation, as well as overgrazing result in the decrease of sensible heat flux. Results also show that reclamation and overgrazing lead to net radiation decrease by approximately 4 and 7 W/m2 respectively, however, afforestation and urbanization lead to net radiation increase by 6 and 3 W/m2 respectively. The simulated impacts of projected HLCCs on surface energy fluxes will inform sustainable land management and climate change mitigation.

  13. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  14. Estimation of '"effective"" soil hydraulic properties by top soil moisture and evaporation modelling applied to an arable site in Central Spain.

    NARCIS (Netherlands)

    Gouweleeuw, B.T.; vd Griend, A.A.; Owe, M.

    1996-01-01

    A surface moisture model for large-scale semiarid land application has been extended with a moisture flow routine for capillary flow. The model has been applied to a field-scale data set of topsoil moisture and latent heat flux of an arable site in central Spain. A comparison of the soil hydraulic

  15. Intuition for the radial penetration of flux surface shaping in tokamaks

    Science.gov (United States)

    Ball, Justin; Parra, Felix I.

    2015-03-01

    Using analytic calculations, the effects of the edge flux surface shape and the toroidal current profile on the penetration of flux surface shaping are investigated in a tokamak. It is shown that the penetration of shaping is determined by the poloidal variation of the poloidal magnetic field on the surface. This fact is used to investigate how different flux surface shapes penetrate from the edge. Then, a technique to separate the effects of magnetic pressure and tension in the Grad-Shafranov equation is presented and used to calculate radial profiles of strong elongation for nearly constant current profiles. Lastly, it is shown that more hollow toroidal current profiles are significantly better at conveying shaping from the edge to the core.

  16. Intuition for the radial penetration of flux surface shaping in tokamaks

    International Nuclear Information System (INIS)

    Ball, Justin; Parra, Felix I

    2015-01-01

    Using analytic calculations, the effects of the edge flux surface shape and the toroidal current profile on the penetration of flux surface shaping are investigated in a tokamak. It is shown that the penetration of shaping is determined by the poloidal variation of the poloidal magnetic field on the surface. This fact is used to investigate how different flux surface shapes penetrate from the edge. Then, a technique to separate the effects of magnetic pressure and tension in the Grad–Shafranov equation is presented and used to calculate radial profiles of strong elongation for nearly constant current profiles. Lastly, it is shown that more hollow toroidal current profiles are significantly better at conveying shaping from the edge to the core. (paper)

  17. Orientation effect of ion flux splitting reflected from Wehner cone on solid surface

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    It is shown that simple geometrical model of specular reflection of particles from the surface of Wehner cone (frequently observed feature of solid surface macroscopic topography developed under ion bombardment) can describe qualitatively the essential characteristics of the reflected particles flux splitting effect predicted earlier by means of computer simulation methods.

  18. `Surface-Layer' momentum fluxes in nocturnal slope flows over steep terrain

    Science.gov (United States)

    Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.

    2017-12-01

    A common working definition for the `surface layer' is the lowest 10% of the atmospheric boundary layer (ABL) where the turbulent fluxes are essentially constant. The latter part of this definition is a critical assumption that must hold for accurate flux estimations from land-surface models, wall models, similarity theory, flux-gradient relations and bulk transfer methods. We present cases from observed momentum fluxes in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland that satisfy the classical definitions of the surface layer and other cases where no traditional surface layer is observed. These cases broadly fall into two distinct flow regimes occurring under clear-sky conditions: (1) buoyancy-driven, `katabatic flow', characterized by an elevated velocity maximum (katabatic jet peak) and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. Velocity profiles in downslope wind cases are quite similar to logarithmic profiles typically observed over horizontal and homogeneous terrain, and the corresponding momentum fluxes roughly resemble a constant-flux surface-layer. Contrastingly, velocity profiles in the katabatic regime exhibit a jet-like shape. This jet strongly modulates the corresponding momentum fluxes, which exhibit strong gradients over the shallow katabatic layer and usually change sign near the jet peak, where the velocity gradients also change sign. However, a counter-gradient momentum flux is frequently observed near the jet peak (and sometimes at higher levels), suggesting strong non-local turbulent transport within the katabatic jet layer. We compare our observations with katabatic flow theories and observational studies over shallow-angle slopes and use co-spectral analyses to better identify and understand the non-local transport dynamics. Finally, we show that because of the counter-gradient momentum fluxes, surface layer stability and even local stability can be

  19. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    Science.gov (United States)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  20. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    NARCIS (Netherlands)

    Babenhauserheide, A.; Basu, S.; Peters, W.

    2015-01-01

    Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on assimilation of more than one

  1. Calibration of rock-surface moisture content using an infrared optical moisture metre : the relationship between absorbance intensity and moisture content of several types of rock

    OpenAIRE

    Matsukura, Yukinori

    2001-01-01

    Matsukura and Takahashi(1999)have examined the possibility of in situ rapid, non-destrucive measuring of rock moisture content using an infrared optical moisture metre. A laboratory test was carried out using ...

  2. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  3. Spatial and Temporal Distribution of Soil Moisture at the Catchment Scale Using Remotely-Sensed Energy Fluxes

    Directory of Open Access Journals (Sweden)

    Thomas K. Alexandridis

    2016-01-01

    Full Text Available Despite playing a critical role in the division of precipitation between runoff and infiltration, soil moisture (SM is difficult to estimate at the catchment scale and at frequent time steps, as is required by many hydrological, erosion and flood simulation models. In this work, an integrated methodology is described to estimate SM at the root zone, based on the remotely-sensed evaporative fraction (Λ and ancillary information on soil and meteorology. A time series of Terra MODIS satellite images was used to estimate SM maps with an eight-day time step at a 250-m spatial resolution for three diverse catchments in Europe. The study of the resulting SM maps shows that their spatial variability follows the pattern of land cover types and the main geomorphological features of the catchment, and their temporal pattern follows the distribution of rain events, with the exception of irrigated land. Field surveys provided in situ measurements to validate the SM maps’ accuracy, which proved to be variable according to site and season. In addition, several factors were analyzed in order to explain the variation in the accuracy, and it was shown that the land cover type, the soil texture class, the temporal difference between the datasets’ acquisition and the presence of rain events during the measurements played a significant role, rather than the often referred to scale difference between in situ and satellite observations. Therefore, the proposed methodology can be used operationally to estimate SM maps at the catchment scale, with a 250-m spatial resolution and an eight-day time step.

  4. Aeolian vertical mass flux profiles above dry and moist sandy beach surfaces

    Science.gov (United States)

    Rotnicka, Joanna

    2013-04-01

    The vertical distribution of aeolian mass flux was investigated in a natural beach environment. Field experiments conducted on the beach of the Łeba Barrier, southern Baltic coast, Poland, measured the sand transport rate and the vertical mass flux distribution above dry rippled sand and a moist flat sandy surface. The experiments were intended to show the changes in the vertical distribution of sand with changing wind speed. All the data represent saturated flux conditions. Sand transport was measured using 0.5 m-high vertically segmented passive sand traps, while the wind speed and direction were monitored at 1 m elevation. The obtained dataset comprises 65 measurements on dry surfaces and 51 measurements on moist sandy surfaces. The sand transport rate above the moist surface was up to 90% higher than above the dry surface for wind speeds of 7-11 m/s, but higher velocities gave smaller differences between the surfaces. The saltation layer was thicker above the moist surface than above the dry surface. All the vertical sand flux profiles are best described by exponential decay functions. Analysis of the normalised flux profiles grouped by wind velocity shows that the fitted curves are less inclined for moist surfaces than dry surfaces. Moreover, the regression coefficients depict a marked trend in which the intercept decreases and the slope increases with increasing wind speed; this indicates that more sand is transported at higher elevations above the bed and less at lower elevations. The proportion of total transport seems to be independent of wind speed at elevations of approximately 35 mm and 50 mm above the dry and moist surfaces, respectively. Differences between the measured- and exponential-fit values of mass flux are particularly distinct close to the bed, where the exponential fit either over- or under-predicts the measured values. Over-predictions occur in weaker winds (up to 6-7 m/s), whereas under-predictions become more pronounced as the wind

  5. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    Science.gov (United States)

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the te...

  6. High-resolution hot-film measurement of surface heat flux to an impinging jet

    Science.gov (United States)

    O'Donovan, T. S.; Persoons, T.; Murray, D. B.

    2011-10-01

    To investigate the complex coupling between surface heat transfer and local fluid velocity in convective heat transfer, advanced techniques are required to measure the surface heat flux at high spatial and temporal resolution. Several established flow velocity techniques such as laser Doppler anemometry, particle image velocimetry and hot wire anemometry can measure fluid velocities at high spatial resolution (µm) and have a high-frequency response (up to 100 kHz) characteristic. Equivalent advanced surface heat transfer measurement techniques, however, are not available; even the latest advances in high speed thermal imaging do not offer equivalent data capture rates. The current research presents a method of measuring point surface heat flux with a hot film that is flush mounted on a heated flat surface. The film works in conjunction with a constant temperature anemometer which has a bandwidth of 100 kHz. The bandwidth of this technique therefore is likely to be in excess of more established surface heat flux measurement techniques. Although the frequency response of the sensor is not reported here, it is expected to be significantly less than 100 kHz due to its physical size and capacitance. To demonstrate the efficacy of the technique, a cooling impinging air jet is directed at the heated surface, and the power required to maintain the hot-film temperature is related to the local heat flux to the fluid air flow. The technique is validated experimentally using a more established surface heat flux measurement technique. The thermal performance of the sensor is also investigated numerically. It has been shown that, with some limitations, the measurement technique accurately measures the surface heat transfer to an impinging air jet with improved spatial resolution for a wide range of experimental parameters.

  7. Evapotranspiration and Surface Energy Fluxes Estimation Using the Landsat-7 Enhanced Thematic Mapper Plus Image over a Semiarid Agrosystem in the North-West of Algeria

    Directory of Open Access Journals (Sweden)

    Nehal Laounia

    Full Text Available Abstract Monitoring evapotranspiration and surface energy fluxes over a range of spatial and temporal scales is crucial for many agroenvironmental applications. Different remote sensing based energy balance models have been developed, to estimate evapotranspiration at both field and regional scales. In this contribution, METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration, has been applied for the estimation of actual evapotranspiration in the Ghriss plain in Mascara (western Algeria, a semiarid region with heterogeneous surface conditions. Four images acquired during 2001 and 2002 by the Landsat-7 satellite were used. The METRIC model followed an energy balance approach, where evapotranspiration is estimated as the residual term when net radiation, sensible and soil heat fluxes are known. Different moisture indicators derived from the evapotranspiration were then calculated: reference evapotranspiration fraction, Priestley-Taylor parameter and surface resistance to evaporation. The evaluation of evapotranspiration and surface energy fluxes are accurate enough for the spatial variations of evapotranspiration rather satisfactory than sophisticated models without having to introduce an important number of parameters in input with difficult accessibility in routine. In conclusion, the results suggest that METRIC can be considered as an operational approach to predict actual evapotranspiration from agricultural areas having limited amount of ground information.

  8. Response of concrete exposed to a high heat flux on one surface

    International Nuclear Information System (INIS)

    Muir, J.F.

    1977-11-01

    Experiments were performed to investigate the response of concrete to severe thermal environments such as might be encountered during the interaction of molten reactor core materials with the containment substructure following a hypothetical fuel melt accident. The dominant mechanism for erosion of both limestone and basaltic concrete appears to be melting of the cementitious material in the matrix. The erosion proceeded in a quiescent manner with negligible spallation. The erosion rate increased with heat flux, becoming as large as approximately 70 cm/hr for a net surface heat flux of roughly 190 W/cm 2 . Analyses reveal the surface temperature to be the single most significant parameter affecting the net surface heat flux, through its importance to emitted radiation; and that the greatest fraction of the net energy transmitted to the concrete goes into sensible heat

  9. Biological soil crust succession impact on soil moisture and temperature in the sub-surface along a rainfall gradient

    Science.gov (United States)

    Zaady, E.; Yizhaq, H.; Ashkenazy, Y.

    2012-04-01

    Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.

  10. Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature

    Science.gov (United States)

    Gu, Lianhong; Meyers, Tilden; Pallardy, Stephen G.; Hanson, Paul J.; Yang, Bai; Heuer, Mark; Hosman, Kevin P.; Liu, Qing; Riggs, Jeffery S.; Sluss, Dan; Wullschleger, Stan D.

    2007-01-01

    The interest of this study was to develop an initial assessment on the potential importance of biomass heat and biochemical energy storages for land-atmosphere interactions, an issue that has been largely neglected so far. We conducted flux tower observations and model simulations at a temperate deciduous forest site in central Missouri in the summer of 2004. The model used was the comprehensive terrestrial ecosystem Fluxes and Pools Integrated Simulator (FAPIS). We first examined FAPIS performance by testing its predictions with and without the representation of biomass energy storages against measurements of surface energy and CO2 fluxes. We then evaluated the magnitudes and temporal patterns of the biomass energy storages calculated by FAPIS. Finally, the effects of biomass energy storages on land-atmosphere exchanges of sensible and latent heat fluxes and variations of land surface radiative temperature were investigated by contrasting FAPIS simulations with and without these storage terms. We found that with the representation of the two biomass energy storage terms, FAPIS predictions agreed with flux tower measurements fairly well; without the representation, however, FAPIS performance deteriorated for all predicted surface energy flux terms although the effect on the predicted CO2 flux was minimal. In addition, we found that the biomass heat storage and biochemical energy storage had clear diurnal patterns with typical ranges from -50 to 50 and -3 to 20 W m-2, respectively; these typical ranges were exceeded substantially when there were sudden changes in atmospheric conditions. Furthermore, FAPIS simulations without the energy storages produced larger sensible and latent heat fluxes during the day but smaller fluxes (more negative values) at night as compared with simulations with the energy storages. Similarly, without-storage simulations had higher surface radiative temperature during the day but lower radiative temperature at night, indicating that the

  11. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan

    2008-01-01

    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  12. Model-based surface soil moisture (SSM) retrieval algorithm using multi-temporal RISAT-1 C-band SAR data

    Science.gov (United States)

    Pandey, Dharmendra K.; Maity, Saroj; Bhattacharya, Bimal; Misra, Arundhati

    2016-05-01

    Accurate measurement of surface soil moisture of bare and vegetation covered soil over agricultural field and monitoring the changes in surface soil moisture is vital for estimation for managing and mitigating risk to agricultural crop, which requires information and knowledge to assess risk potential and implement risk reduction strategies and deliver essential responses. The empirical and semi-empirical model-based soil moisture inversion approach developed in the past are either sensor or region specific, vegetation type specific or have limited validity range, and have limited scope to explain physical scattering processes. Hence, there is need for more robust, physical polarimetric radar backscatter model-based retrieval methods, which are sensor and location independent and have wide range of validity over soil properties. In the present study, Integral Equation Model (IEM) and Vector Radiative Transfer (VRT) model were used to simulate averaged backscatter coefficients in various soil moisture (dry, moist and wet soil), soil roughness (smooth to very rough) and crop conditions (low to high vegetation water contents) over selected regions of Gujarat state of India and the results were compared with multi-temporal Radar Imaging Satellite-1 (RISAT-1) C-band Synthetic Aperture Radar (SAR) data in σ°HH and σ°HV polarizations, in sync with on field measured soil and crop conditions. High correlations were observed between RISAT-1 HH and HV with model simulated σ°HH & σ°HV based on field measured soil with the coefficient of determination R2 varying from 0.84 to 0.77 and RMSE varying from 0.94 dB to 2.1 dB for bare soil. Whereas in case of winter wheat crop, coefficient of determination R2 varying from 0.84 to 0.79 and RMSE varying from 0.87 dB to 1.34 dB, corresponding to with vegetation water content values up to 3.4 kg/m2. Artificial Neural Network (ANN) methods were adopted for model-based soil moisture inversion. The training datasets for the NNs were

  13. Use of barium-strontium carbonatite for flux welding and surfacing of mining machines

    Science.gov (United States)

    Kryukov, R. E.; Kozyrev, N. A.; Usoltsev, A. A.

    2017-09-01

    The results of application of barium-strontium carbonatite for modifying and refining iron-carbon alloys, used for welding and surfacing in ore mining and smelting industry, are generalized. The technology of manufacturing a flux additive containing 70 % of barium-strontium carbonatite and 30 % of liquid glass is proposed. Several compositions of welding fluxes based on silicomanganese slag were tested. The flux additive was introduced in an amount of 1, 3, 5 %. Technological features of welding with the application of the examined fluxes are determined. X-ray spectral analysis of the chemical composition of examined fluxes, slag crusts and weld metal was carried out, as well as metallographic investigations of welded joints. The principal possibility of applying barium-strontium carbonatite as a refining and gas-protective additive for welding fluxes is shown. The use of barium-strontium carbonatite reduces the contamination of the weld seam with nonmetallic inclusions: non-deforming silicates, spot oxides and brittle silicates, and increases the desulfurizing capacity of welding fluxes.

  14. Assimilating Remotely Sensed Surface Soil Moisture into SWAT using Ensemble Kalman Filter

    Science.gov (United States)

    In this study, a 1-D Ensemble Kalman Filter has been used to update the soil moisture states of the Soil and Water Assessment Tool (SWAT) model. Experiments were conducted for the Cobb Creek Watershed in southeastern Oklahoma for 2006-2008. Assimilation of in situ data proved limited success in the ...

  15. Spatial and temporal monitoring of soil moisture using surface electrical resistivity tomography in Mediterranean soils

    NARCIS (Netherlands)

    Alamry, Abdulmohsen S.; van der Meijde, Mark; Noomen, Marleen; Addink, Elisabeth A.|info:eu-repo/dai/nl/224281216; van Benthem, Rik; de Jong, Steven M.|info:eu-repo/dai/nl/120221306

    2017-01-01

    ERT techniques are especially promising in (semi-arid) areas with shallow and rocky soils where other methods fail to produce soil moisture maps and to obtain soil profile information. Electrical Resistivity Tomography (ERT) was performed in the Peyne catchment in southern France at four sites

  16. [The temperature and temperature gradients distribution in the rabbit body thermophysical model with evaporation of moisture from its surface].

    Science.gov (United States)

    Rumiantsev, G V

    2004-04-01

    On created in laboratory heat-physical model of a rabbit body reflecting basic heat-physical parameters of the body such as: weight, size of a relative surface, heat absorption and heat conduction, heat capacity etc., a change of radial distribution of temperature and size was found across a superficial layer of evaporation of water from its surface, that simulates sweating, with various ratio of environmental temperature and capacity of electrical heater simulating heat production in animal. The experiments have shown that with evaporation of moisture from a surface of model in all investigated cases, there is an increase of superficial layer of body of a temperature gradient and simultaneous decrease of temperature of a model inside and on the surface. It seems that, with evaporation of a moisture from a surface of a body, the size of a temperature gradient in a thin superficial layer dependent in our experiments on capacity for heat production and environmental temperature, is increased and can be used in a live organism for definition of change in general heat content of the body with the purpose of maintenance of its thermal balance with environment.

  17. Validation of SMAP Surface Soil Moisture Products with Core Validation Sites

    Science.gov (United States)

    Colliander, A.; Jackson, T. J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S. B.; Cosh, M. H.; Dunbar, R. S.; Dang, L.; Pashaian, L.; hide

    2017-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.

  18. Aggregation of energy and water surface fluxes at the agricultural landscape scale by combining scintillometer measurements, remote sensing data and SVAT modelling.

    Science.gov (United States)

    Brut, A.; Rivalland, V.; Coudert, B.; Solignac, P. A.; Cote, J.; Keravec, P.; Merlin, O.; Ceschia, E.

    2012-04-01

    The Earth's surface shows variability at the landscape scale (1-10 km) and this has consequences on the water and energy surface fluxes intensity and spatial distribution. In this context, the question of the measurement representativeness is posed. Similarly, the simulation of these surface fluxes is depending on the models parameters distribution whether they are considered at the crop scale or the landscape scale. The purpose of this work is to present a study combining 1) measurements from an eXtra Large Aperture Scintillometer (XLAS), 2) simulations with a calibrated Soil-Vegetation-Atmosphere-Transfer (SVAT) model and 3) fluxes estimates based on a simple Equation Balance model and high resolution remote sensing data, in order to better understand the aggregation processes of surface energy fluxes over agricultural landscapes. In the framework of the SudOuest project managed by CESBIO and the CarboEurope Regional Experiment (CERES 2007), a comprehensive instrumental set-up has been installed over an agricultural area in Southwestern France, near Toulouse. It included an optical scintillometer integrating sensible heat flux over a 10 km transect, between June and September 2007; and two instrumented sites which are part of the GHGEurope network. On these sites, micrometeorological (mass and energy fluxes), vegetation and other biophysical parameters are continuously collected since the year 2005. In this study, we first present the flux computation and data validation from the XLAS measurements, and we perform a quick analysis of the surface heat fluxes related to both the landscape and the local flux datasets from local instrumented fields. Then, a two energy sources SVAT model (SEtHyS french acronym for sol moisture monitoring) has been calibrated over the 2 agricultural experimental sites for the main classes of vegetation and soil types of the studied area. Different aggregation configurations have been tested with the simulated fluxes, either using a

  19. Surface Energy Exchange in a Tropical Montane Cloud Forest Environment: Flux Partitioning, and Seasonal and Land Cover-Related Variations

    Science.gov (United States)

    Holwerda, F.; Alvarado-Barrientos, M. S.; González-Martínez, T.

    2015-12-01

    Relationships between seasonal climate, land cover and surface energy exchange in tropical montane cloud forest (TMCF) environments are poorly understood. Yet, understanding these linkages is essential to evaluating the impacts of land use and climate change on the functioning of these unique ecosystems. In central Veracruz, Mexico, TMCF occurs between 1100 and 2500 m asl. The canopy of this forest consists of a mix of deciduous and broadleaved-evergreen tree species, the former of which shed their leaves for a short period during the dry season. The aim of this study was to quantify the surface energy balance, and seasonal variations therein, for TMCF, as well as for shaded coffee (CO) and sugarcane (SU), two important land uses that have replaced TMCF at lower elevations. Sensible (H) and latent heat (LE) fluxes were measured using eddy covariance and sap flow methods. Other measurements included: micrometeorological variables, soil heat flux, soil moisture and vegetation characteristics. Partitioning of available energy (A) into H and LE showed important seasonal changes as well as differences among land covers. During the wet-season month of July, average midday Bowen ratios for sunny days were lowest and least variable among land covers: 0.5 in TMCF and SU versus 0.7 in CO. However, because of higher A, along with lower Bowen ratio with respect to CO, LE over TMCF was ca. 20% higher compared to CO and SU. During the late dry-season months of March and April, average midday Bowen ratios for sunny days were generally much higher and more variable among land covers. The higher Bowen ratios indicated a reduction of LE under the drier conditions prevailing (low soil moisture and high VPD), something rarely observed in TMCFs. Moreover, because some trees were still partially leafless in March, LE over TMCF was about half that over CO and SU, suggesting an important effect of phenology on energy exchange of this TMCF. Observed differences between seasons and land

  20. Modeling spatial and seasonal soil moisture in a semi arid hillslope: The impact of integrating soil surface seal parameters

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2010-05-01

    Modeling hillslope hydrology and the complex and coupled reaction of runoff processes to rainfall, lies in the focus of a growing number of research studies. The ability to characterize and understand the mechanisms underlying the complex hillslope soil moisture patterns, which trigger spatially variable non linear runoff initiation, still remains a current hydrological challenge especially in ungauged catchments. In humid climates, connectivity of transient moisture patches was suggested as a unifying concept for studying thresholds for subsurface flow and redistribution of soil moisture at the hillslope scale. In semiarid areas, however, transient moisture patches control also the differentiation between evaporation and surface runoff and the ability to identify a unifying concept controlling the large variability of soil moisture at the hillslope scale remains an open research gap. At the LTER Lehavim site in the center of Israel (31020' N, 34045' E) a typical hillslope (0.115 km2) was chosen offering different aspects and a classic geomorphologic banding. The annual rainfall is 290 mm, the soils are brown lithosols and arid brown loess and the dominant rock formations are Eocenean limestone and chalk with patches of calcrete. The vegetation is characterised by scattered dwarf shrubs (dominant species Sarcopoterium spinosum) and patches of herbaceous vegetation, mostly annuals, are spread between rocks and dwarf shrubs. An extensive spatial database of soil hydraulic and environmental parameters (e.g. slope, radiation, bulk density) was measured in the field and interpolated to continuous maps using geostatistical techniques and physically based modelling. To explore the effect of soil surface sealing, Mualem and Assouline (1989) equations describing the change in hydraulic parameters resulting from soil seal formation were applied. Two simple indices were developed to describe local evaporation values and contribution of water from rock outcrops to the soil

  1. Importance of moisture determination in studies of infiltration and surface runoff for long periods

    Directory of Open Access Journals (Sweden)

    Fabian Fulginiti

    2011-08-01

    Full Text Available The determination of the natural soil moisture is essential to solve problems related to irrigation water requirements, environmental considerations, and determination of surplus water. For the determination of runoff one can adopt models that consider exclusively the infiltration as a loss or one could use computational models of infiltration to model the infiltrated water. Models based on the infiltration calculation consider well the interaction between infiltration - runoff processes and provide additional information on the phenomenon of infiltration which establishes the existing conditions of moisture in the soil before the occurrence of a new event (simulation for long periods. These models require solving Richards’s equation and for this purpose it is necessary to determine the relation between the soil moisture - suction and hydraulic conductivity - suction which require the determination of the hydraulic properties that can be obtained by measuring the water content by moisture profiles. The aim of this study was the verification of these moisture curves in loessic soils in the south of the city of Cordoba, Argentina. To do this, measurements were done and compared with results of infiltration models based on the determined hydraulic functions. The measurements were done using three probes installed at different depths. The results showed that the values obtained with NETRAIN adequately represent the behavior of wetting and drying conditions of the studied soil.The determination of these curves provided a basis for future studies that include the advancement of agricultural chemicals in the soil and its potential capacity to pollute groundwater, fundamental issue to define environmental management policies.

  2. High-resolution land surface fluxes from satellite and reanalysis data (HOLAPS v1.0): evaluation and uncertainty assessment

    Science.gov (United States)

    Loew, Alexander; Peng, Jian; Borsche, Michael

    2016-07-01

    Surface water and energy fluxes are essential components of the Earth system. Surface latent heat fluxes provide major energy input to the atmosphere. Despite the importance of these fluxes, state-of-the-art data sets of surface energy and water fluxes largely differ. The present paper introduces a new framework for the estimation of surface energy and water fluxes at the land surface, which allows for temporally and spatially high-resolved flux estimates at the quasi-global scale (50° S, 50° N) (High resOlution Land Atmosphere Parameters from Space - HOLAPS v1.0). The framework makes use of existing long-term satellite and reanalysis data records and ensures internally consistent estimates of the surface radiation and water fluxes. The manuscript introduces the technical details of the developed framework and provides results of a comprehensive sensitivity and evaluation study. Overall the root mean square difference (RMSD) was found to be 51.2 (30.7) W m-2 for hourly (daily) latent heat flux, and 84 (38) W m-2 for sensible heat flux when compared against 48 FLUXNET stations worldwide. The largest uncertainties of latent heat flux and net radiation were found to result from uncertainties in the solar radiation flux obtained from satellite data products.

  3. Surface oxygen vacancy and oxygen permeation flux limits of perovskite ion transport membranes

    KAUST Repository

    Hunt, Anton

    2015-09-01

    © 2015 Elsevier B.V. The mechanisms and quantitative models for how oxygen is separated from air using ion transport membranes (ITMs) are not well understood, largely due to the experimental complexity for determining surface exchange reactions at extreme temperatures (>800°C). This is especially true when fuels are present at the permeate surface. For both inert and reactive (fuels) operations, solid-state oxygen surface vacancies (δ) are ultimately responsible for driving the oxygen flux, JO2. In the inert case, the value of δ at either surface is a function of the local PO2 and temperature, whilst the magnitude of δ dictates both the JO2 and the inherent stability of the material. In this study values of δ are presented based on experimental measurements under inert (CO2) sweep: using a permeation flux model and local PO2 measurements, collected by means of a local gas-sampling probe in our large-scale reactor, we can determine δ directly. The ITM assessed was La0.9Ca0.1FeO3-δ (LCF); the relative resistances to JO2 were quantified using the pre-defined permeation flux model and local PO2 values. Across a temperature range from 825°C to 1056°C, δ was found to vary from 0.007 to 0.029 (<1%), safely within material stability limits, whilst the permeate surface exchange resistance dominates. An inert JO2 limit was identified owing to a maximum sweep surface δ, δmaxinert. The physical presence of δmaxinert is attributed to a rate limiting step shift from desorption to associative electron transfer steps on the sweep surface as PO2 is reduced. Permeate surface exchange limitations under non-reactive conditions suggest that reactive (fuel) operation is necessary to accelerate surface chemistry for future work, to reduce flux resistance and push δpast δmaxinert in a stable manner.

  4. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  5. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  6. Assessment of clear sky radiative fluxes in CMIP5 climate models using surface observations from BSRN

    Science.gov (United States)

    Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.

    2017-12-01

    Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky

  7. Critical heat flux for downward-facing pool boiling on CANDU calandria tube surface

    Energy Technology Data Exchange (ETDEWEB)

    Behdadi, Azin, E-mail: behdada@mcmaster.ca; Talebi, Farshad; Luxat, John

    2017-04-15

    Highlights: • Pressure tube-calandria tube contact may challenge fuel channel integrity in CANDU. • Critical heat flux variation is predicted on the outer surface of CANDU calandria tube. • A two-phase boundary layer flow driven by buoyancy is modeled on the surface. • Different slip ratios and flow regimes are considered inside the boundary layer. • Subcooling effects are added to the model using wall heat flux partitioning. - Abstract: One accident scenario in CANDU reactors that can challenge the integrity of the primary pressure boundary is a loss of coolant accident, referred to as critical break LOCA, in which the pressure tube (PT) can undergo thermal creep strain deformation and contact its calandria tube (CT). In such case, rapid redistribution of stored heat from PT to CT, leads to a large spike in heat flux to the moderator which can cause bubble accumulation and dryout on the CT surface. A challenge to fuel channel integrity is posed if critical heat flux occurs on the surface of the CT and results in sustained film boiling. If the post-dryout temperature becomes sufficiently high then continued creep strain of the PT and CT may lead to fuel channel failure. In this study, a mechanistic model is developed to predict the critical heat flux variations along the downward facing outer surface of CT. The hydrodynamic model considers a liquid macrolayer beneath an elongated vapor slug on the surface. Local dryout is postulated to occur whenever the fresh liquid supply to the macrolayer is not sufficient to compensate for the liquid depletion. A boundary layer analysis is performed, treating the two phase motion as an external buoyancy driven flow. The model shows good agreement with the available experimental data and has been modified to take into account the effect of subcooling.

  8. Ocean Surface Waves and Turbulence: Air-Sea Fluxes and Climate Variability

    Science.gov (United States)

    Melville, W. Kendall

    2009-11-01

    Apart from heating of the atmosphere, two of the most important consequences of current climate variability are changes in sea level, and acidification of the oceans. Over decadal time scales, changes in sea level are caused by changes in heat content and salinity of the ocean, and by changes in mass resulting from exchanges between the ocean, glaciers and other land-based reservoirs. The oceans have absorbed about one third of the anthropogenic CO2 due to fossil fuel burning. This reduces the green house effect in the atmosphere, but the CO2 reacts in the surface waters of the ocean to lower pH. Conservative projections of sea level rise over the next century are O(0.1 - 1) m, while ocean acidification is already having an impact on marine ecosystems. Both these processes depend on air-sea fluxes: heat flux for sea level rise, and gas flux for ocean acidification. These fluxes are among the most poorly constrained in current climate models, but both ultimately depend on fluid dynamics at the ocean surface and in the adjacent boundary layers. Traditional boundary layer models of the marine boundary layer and the marine atmospheric boundary layer were based on classical theories of boundary layers over rigid surfaces, but there is increasing evidence that these models must now include surface wave effects. In this talk the motivating climate data and modeling will be briefly reviewed, and then recent work on surface wave dynamics, air-sea fluxes and the adjacent boundary layers will be presented. The roles of surface wave breaking, Langmuir circulations, wave-turbulence interactions and gravity-capillary waves will be discussed.

  9. A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes

    KAUST Repository

    Yee, Mei Sun

    2015-11-01

    Accurate measurements of energy fluxes between land and atmosphere are important for understanding and modeling climatic patterns. Several methods are available to measure heat fluxes, and scintillometers are becoming increasingly popular because of their ability to measure sensible (. H) and latent (. LvE) heat fluxes over large spatial scales. The main motivation of this study was to test the use of different methods and technologies to derive surface heat fluxes.Measurements of H and LvE were carried out with an eddy covariance (EC) system, two different makes of optical large aperture scintillometers (LAS) and two microwave scintillometers (MWS) with different frequencies at a pasture site in a semi-arid environment of New South Wales, Australia. We used the EC measurements as a benchmark. Fluxes derived from the EC system and LAS systems agreed (R2>0.94), whereas the MWS systems measured lower H (bias ~60Wm-2) and larger LvE (bias ~65Wm-2) than EC. When the scintillometers were compared against each other, the two LASs showed good agreement of H (R2=0.98), while MWS with different frequencies and polarizations led to different results. Combination of LAS and MWS measurements (i.e., two wavelength method) resulted in performance that fell in between those estimated using either LAS or MWS alone when compared with the EC system. The cause for discrepancies between surface heat fluxes derived from the EC system and those from the MWS systems and the two-wavelength method are possibly related to inaccurate assignment of the structure parameter of temperature and humidity. Additionally, measurements from MWSs can be associated with two values of the Bowen ratio, thereby leading to uncertainties in the estimation of the fluxes. While only one solution has been considered in this study, when LvE was approximately less than 200Wm-2, the alternate solution may be more accurate. Therefore, for measurements of surface heat fluxes in a semi-arid or dry environment, the

  10. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    Soil heat flux is a critical component of the surface energy balance along with the ... and prediction techniques. Evaporation measured .... Both incident and reflected solar radiation sensors are developed using wide spectrum photodiodes. The accuracy, resolution and range of the sensors used in the hydro-meteorological ...

  11. Energy and water cycle over the Tibetan plateau : surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Zhongbo; Zhang, Ting; Ma, Yaoming; Jia, Li; Wen, Jun

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  12. Energy and water cycle over the Tibetan Plateau: surface energy balance and turbulent heat fluxes

    NARCIS (Netherlands)

    Su, Z.; Zhang, T.; Ma, Y.; Jia, L.; Wen, J.

    2006-01-01

    This contribution presents an overview and an outlook of studies on energy and water cycle over the Tibetan plateau with focuses on the estimation of energy balance terms and turbulent heat fluxes. On the basis of the surface energy balance calculations, we show that the phenomena of the energy

  13. Multi-sensor remote sensing parameterization of heat fluxes over heterogeneous land surfaces

    NARCIS (Netherlands)

    Faivre, R.D.

    2014-01-01

    The parameterization of heat transfer by remote sensing, and based on SEBS scheme for turbulent heat fluxes retrieval, already proved to be very convenient for estimating evapotranspiration (ET) over homogeneous land surfaces. However, the use of such a method over heterogeneous landscapes (e.g.

  14. Minimum activation martensitic alloys for surface disposal after exposure to neutron flux

    Science.gov (United States)

    Lechtenberg, Thomas

    1985-01-01

    Steel alloys for long-term exposure to neutron flux have a martensitic microstructure and contain chromium, carbon, tungsten, vanadium and preferably titanium. Activation of the steel is held to within acceptable limits for eventual surface disposal by stringently controlling the impurity levels of Ni, Mo, Cu, N, Co, Nb, Al and Mn.

  15. INVESTIGATION OF SOLAR ABSORPTANCE OF BUILDING EXTERNAL SURFACES FROM HEAT FLUX POINT OF VIEW

    Directory of Open Access Journals (Sweden)

    Meral ÖZEL

    2006-02-01

    Full Text Available In this study, solar absorptance of external surfaces of buildings has been numerically investigated from the heat gain and losses point of view. For this purpose, external surface solar absorptance was icreased from 0 to 1with an ratio of 0.1 and, for the summer and winter conditions, heat fluxs was calculated by considering orientations of the wall and its roof for brick and concrete structure materials. Besides, external surface absorptance was assumed as 0.2, 0.5 and 0.9, respectively. Than, heat gain and losses were calculated to insulation thickness increasing on the outdoor surface of wall. Results obtained were presented as graphics

  16. Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements

    Science.gov (United States)

    Hübner, R.; Heller, K.; Günther, T.; Kleber, A.

    2015-01-01

    Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.

  17. Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product States

    Science.gov (United States)

    2016-03-04

    an ideal gas at a given temperature, pressure, and composition. A more detailed description of this method can be found in: Norman...are generated at random points on a plane above the surface with a frequency corresponding to the flux of an ideal gas through that plane. This plane...to a dissociated gas at a given temperature and pressure. Examples of steady state surfaces for both amorphous SiO2 and crystalline SiO2 (quartz

  18. Detecting buried radium contamination using soil-gas and surface-flux radon meaurements

    International Nuclear Information System (INIS)

    Karp, K.E.

    1988-06-01

    The Technical Measurements Center (TMC) has investigated the effectiveness of using radon soil-gas under surface-flux measurments to locate radium contamination that is buried sufficiently deep to be undetectable by surface gamma methods. At the first test site studied, an indication of a buried source was revealed by mapping anomalous surface-flux and soil-gas concentrations in the near surface overburden. The mapped radon anomalies were found to correspond in rough outline to the shape of the areal extent of the deposit as determined by borehole gamma-ray logs. The 5.9pCi/g radium deposit, buried 2 feet below the surface, went undetected by conventional surface gamma measurements. Similar results were obtained at the second test site where radon and conventional surface gamma measurements were taken in an area having radium concentrations ranging from 13.3 to 341.0 pCi/g at a depth of 4 feet below the surface. The radon methods were found to have a detection limit for buried radium lower than that of the surface gamma methods, as evidenced by the discovery of the 13.3 pCi/g deposit which went undetected by the surface gamma methods. 15 refs., 33 figs., 8 tabs

  19. Influence of the Surface and Cloud Nonuniformities in the Solar Energy Fluxes in the Arctic

    Science.gov (United States)

    Rozwadowska, A.; Cahalan, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Solar energy fluxes reaching the surface and absorbed by it are basic components of the energy balance of the Arctic. They depend mainly on the solar zenith angle, a state of the atmosphere, especially the cloudiness, and the surface albedo. However, they can also be modified by variabilities in the surface albedo and cloud optical thickness. The surface of the Arctic can be highly nonuniform. The surface of the Arctic Ocean, which covers the huge part of the Arctic can be view as a mosaic of sea water, sea ice, snow and, in the melting period, melting ponds. In our paper, results are presented of Monte Carlo simulations of the expected influence of nonuniform cloud structure and nonuniform surface albedo on radiative fluxes at the Arctic surface. In particular, the plane parallel biases in the surface absorptance and atmospheric transmittance are studied. The bias is defined as the difference between the real absorptance or transmittance (i.e. nonuniform conditions) averaged over a given area, and the uniform or plane parallel case with the same mean cloud optical thickness and the same mean surface albedo. The dependence of the biases is analysed with respect to the following: domain averaged values of the cloud optical thickness and surface albedo, scales of their spatial variabilities, correlation between cloud optical thickness and cloud albedo variabilities, cloud height, and the solar zenith angle. Ranges of means and standard deviations of the input parameters typical of Arctic conditions are obtained from the SHEBA experiment.

  20. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Science.gov (United States)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  1. Using machine learning to produce near surface soil moisture estimates from deeper in situ records at U.S. Climate Reference Network (USCRN) locations: Analysis and applications to AMSR-E satellite validation

    Science.gov (United States)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Boyles, Ryan

    2016-12-01

    Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.

  2. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  3. The topological molecule: Its finite fluxes, exchange stability and minimal surfaces

    Science.gov (United States)

    Thomas, Gerald F.

    2016-03-01

    Molecules have at least one nontrivial topological property in common: their minimal surfaces of finite flux. This is why they are stable aggregates of atoms mutually engaged to varying degrees via Coulombic and exchange interactions in fealty to quantum mechanics on otherwise passive nuclear scaffolds. Isolated atoms do not have minimal surfaces but they do undergo exchange interactions. All surfaces implicitly defined by a molecule’s charge density are shown to have zero mean curvature and are consequently minimal surfaces. This finding extends to any potential of a molecule. The minimal surface is of importance in that it is indicative of a vanishing mean curvature whose measurement serves as a way of gauging the charge density or electrostatic potential’s local reliability, a quality assurance protocol absent in conventional crystallography but available to scanning force microscopy. The smaller the mean curvature of an atom, the more bonded is that atom in a molecule. The basis for this discovery is that implicit surfaces admit finite flux to cross them regardless of atomic affiliation, thus engendering exchange, correlation, and chemical bonding between the atoms in the underlying nuclear framework of a molecule. Finite flux in the charge density is a necessary condition for chemical bonding and the stability of molecules and is what makes the electron localization function (ELF) and the exchange-correlation functional (BLYP) useful.

  4. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  5. Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer

    Science.gov (United States)

    Gao, Zhongming; Liu, Heping; Russell, Eric S.; Huang, Jianping; Foken, Thomas; Oncley, Steven P.

    2016-02-01

    The effects of large eddies on turbulence structures and flux transport were studied using data collected over a flat cotton field during the Energy Balance Experiment 2000 in the San Joaquin Valley of California in August 2000. Flux convergence (FC; larger fluxes at 8.7 m than 2.7 m) and divergence (FD) in latent heat flux (LE) were observed in a disturbed, unstable atmospheric surface layer, and their magnitudes largely departed from the prediction of Monin-Obukhov similarity theory. From our wavelet analysis, it was identified that large eddies affected turbulence structures, scalar distribution, and flux transport differently at 8.7 m and 2.7 m under the FC and FD conditions. Using the ensemble empirical mode decomposition, time series data were decomposed into large eddies and small-scale background turbulence, the time-domain characteristics of large eddies were examined, and the flux contribution by large eddies was also determined quantitatively. The results suggest that large eddies over the frequency range of 0.002 Hz < f < 0.02 Hz (predominantly 300-400 m) enhanced the vertical velocity spectra more significantly at 8.7 m than 2.7 m, leading to an increased magnitude of the cospectra and thus LE at 8.7 m. In the FD case, however, these large eddies were not present and even suppressed in the vertical velocity spectra at 8.7 m. Consequently, the cospectra divergence over the low-frequency ranges primarily caused the LE divergence. This work implies that large eddies may either improve or degrade the surface energy balance closure by increasing or decreasing turbulent fluxes, respectively.

  6. A non-linear and stochastic response surface method for Bayesian estimation of uncertainty in soil moisture simulation from a land surface model

    Directory of Open Access Journals (Sweden)

    F. Hossain

    2004-01-01

    Full Text Available This study presents a simple and efficient scheme for Bayesian estimation of uncertainty in soil moisture simulation by a Land Surface Model (LSM. The scheme is assessed within a Monte Carlo (MC simulation framework based on the Generalized Likelihood Uncertainty Estimation (GLUE methodology. A primary limitation of using the GLUE method is the prohibitive computational burden imposed by uniform random sampling of the model's parameter distributions. Sampling is improved in the proposed scheme by stochastic modeling of the parameters' response surface that recognizes the non-linear deterministic behavior between soil moisture and land surface parameters. Uncertainty in soil moisture simulation (model output is approximated through a Hermite polynomial chaos expansion of normal random variables that represent the model's parameter (model input uncertainty. The unknown coefficients of the polynomial are calculated using limited number of model simulation runs. The calibrated polynomial is then used as a fast-running proxy to the slower-running LSM to predict the degree of representativeness of a randomly sampled model parameter set. An evaluation of the scheme's efficiency in sampling is made through comparison with the fully random MC sampling (the norm for GLUE and the nearest-neighborhood sampling technique. The scheme was able to reduce computational burden of random MC sampling for GLUE in the ranges of 10%-70%. The scheme was also found to be about 10% more efficient than the nearest-neighborhood sampling method in predicting a sampled parameter set's degree of representativeness. The GLUE based on the proposed sampling scheme did not alter the essential features of the uncertainty structure in soil moisture simulation. The scheme can potentially make GLUE uncertainty estimation for any LSM more efficient as it does not impose any additional structural or distributional assumptions.

  7. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia

    International Nuclear Information System (INIS)

    Forkel, Matthias; Beer, Christian; Thonicke, Kirsten; Cramer, Wolfgang; Bartalev, Sergey; Schmullius, Christiane

    2012-01-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires can degrade the forest, affect human values, emit huge amounts of carbon and aerosols and alter the land surface albedo. Usually, wind, slope and dry air conditions have been recognized as factors determining fire spread. Here we identify surface moisture as an additional important driving factor for the evolution of extreme fire events in the Baikal region. An area of 127 000 km 2 burned in this region in 2003, a large part of it in regions underlain by permafrost. Analyses of satellite data for 2002–2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation anomalies or fire weather indices for larch forests with continuous permafrost. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil, and how coupled mechanisms can lead to extreme events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, vegetation functioning, and fire activity in Earth system models for projecting climate change impacts over the next century. (letter)

  8. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Directory of Open Access Journals (Sweden)

    Robert M. Parinussa

    2016-10-01

    Full Text Available Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth’s surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1–2 GHz. Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E, as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM, and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm and descending (01:30 am paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for

  9. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    Science.gov (United States)

    Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.

    2016-01-01

    Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative

  10. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions

    Science.gov (United States)

    Serafimovich, Andrei; Metzger, Stefan; Hartmann, Jörg; Kohnert, Katrin; Zona, Donatella; Sachs, Torsten

    2018-03-01

    The objective of this study was to upscale airborne flux measurements of sensible heat and latent heat and to develop high resolution flux maps. In order to support the evaluation of coupled atmospheric/land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties. We used airborne eddy-covariance measurements acquired by the POLAR 5 research aircraft in June-July 2012 to analyze surface fluxes. Footprint-weighted surface properties were then related to 21 529 sensible heat flux observations and 25 608 latent heat flux observations using both remote sensing and modelled data. A boosted regression tree technique was used to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers. In order to improve the spatial coverage and spatial representativeness of energy fluxes we used relationships extracted across heterogeneous Arctic landscapes to infer high-resolution surface energy flux maps, thus directly upscaling the observational data. These maps of projected sensible heat and latent heat fluxes were used to assess energy partitioning in northern ecosystems and to determine the dominant energy exchange processes in permafrost areas. This allowed us to estimate energy fluxes for specific types of land cover, taking into account meteorological conditions. Airborne and modelled fluxes were then compared with measurements from an eddy-covariance tower near Atqasuk. Our results are an important contribution for the advanced, scale-dependent quantification of surface energy fluxes and provide new insights into the processes affecting these fluxes for the main vegetation types in high-latitude permafrost areas.

  11. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    Science.gov (United States)

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  12. Methane oxidation in pig and cattle slurry storages, and effects of surface crust moisture and methane availability

    DEFF Research Database (Denmark)

    Petersen, S.O.; Ambus, P.

    2006-01-01

    2 during incubation, while intact subsamples were used to characterize CH4 oxidation as a function of CH4 availability and moisture content. Methane oxidation was observed in all materials except for an expanded clay product (Leca) sampled from a pig slurry storage. Despite significant variation......Storages with liquid manure (slurry) may develop a surface crust of particulate organic matter, or an artificial crust can be established. Slurry storages are net sources of atmospheric methane (CH4), but a potential for bacterial oxidation of CH4 in surface crusts was recently suggested in a study...... of experimental storages. The present study was conducted to investigate methanotrophic activity under practical storage conditions. Surface crusts from slurry storages at two pig farms and four dairy farms were sampled in late autumn. Mixed samples (0-4 cm depth) were used to determine changes in CH4, O-2 and CO...

  13. Studying the hydrological cycle in the Iberian Peninsula using the LEAFHYDRO LSM: Influence of groundwater dynamics on soil moisture and land-atmosphere coupling. Impacts of artificial water extraction in the regional water cycle, including land-surface f

    Science.gov (United States)

    Martinez, A.; Miguez-Macho, G.

    2012-04-01

    We perform long-term (10 year) simulations over the Iberian Peninsula at 2.5 km resolution with the LEAFHYDRO LSM, which includes groundwater dynamics and river routing. Atmospheric forcing comes from ERA-interim and a regional high-resolution analysis of precipitation over Spain and Portugal. The model simulates the coupled evolution of the groundwater, land surface (soil moisture and vegetation) and river reservoirs and we validate the simulation with all available observations of river flow and water table depth. In an experiment, we impose an artificial water extraction rate from the groundwater reservoir based on observations and estimations of irrigation withdrawals and we investigate the impact on the regional water cycle. The extraction rates induce a depression of the water table that over the years becomes quite significant and that matches observed decreasing rates of water table levels. The depressed water table discontinues groundwater input into rivers and the stream flow is diminished notably, in particular during the dry summer. Moreover, in areas with semiarid climate where the water table was naturally relatively shallow and connected to soil moisture and vegetation, which include most of the agricultural areas inland Spain, the depression of the water table has a significant impact on soil moisture and land-surface fluxes, with a decrease of root zone soil water availability and evapotranspiration and increasing water stress for the vegetation. The land hydrology alteration is more pronounced in the summer when there is an absence of precipitation, and as the model shows, through the induced changes in land-surface fluxes can potentially have a noticeably impact on the regional climate.

  14. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005

    Directory of Open Access Journals (Sweden)

    Hongxiong Xu

    2015-01-01

    Full Text Available Three to four tropical cyclones (TCs by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC version of the Hurricane WRF (HWRF model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the right position. Sensitive experiments indicated that Taiwan’s surface heat fluxes have significant influence on the super Typhoon Haitang. Compared to sensible heat (SH fluxes, latent heat (LH is the dominant factor affecting the intensity and rainfall, but they showed opposite effects on intensity and rainfall. LH (SH flux of Taiwan Island intensified (weakened Typhoon Haitang’s intensity and structure by transferring more energy from (to surface. However, only LH played a major role in the looped path before the landfall of the Typhoon Haitang.

  15. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical Engineering

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.

  16. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Critical heat flux (CHF) phenomenon on a downward facing curved surface

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.

    1997-06-01

    This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation laws along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs

  18. Standard Test Method for Measuring Heat Flux Using Surface-Mounted One-Dimensional Flat Gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes the measurement of the net heat flux normal to a surface using flat gages mounted onto the surface. Conduction heat flux is not the focus of this standard. Conduction applications related to insulation materials are covered by Test Method C 518 and Practices C 1041 and C 1046. The sensors covered by this test method all use a measurement of the temperature difference between two parallel planes normal to the surface to determine the heat that is exchanged to or from the surface in keeping with Fourier’s Law. The gages operate by the same principles for heat transfer in either direction. 1.2 This test method is quite broad in its field of application, size and construction. Different sensor types are described in detail in later sections as examples of the general method for measuring heat flux from the temperature gradient normal to a surface (1). Applications include both radiation and convection heat transfer. The gages have broad application from aerospace to biomedical en...

  19. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  20. The spatial heterogeneity of land surface conditions and its influence on surface fluxes over a typical underlying surface in the Tibetan Plateau

    Science.gov (United States)

    Sun, Genhou; Hu, Zeyong; Wang, Jiemin; Ma, Weiqiang; Gu, Lianglei; Sun, Fanglin; Xie, Zhipeng; Yan, Xiaoqiang

    2018-01-01

    Accurately estimating the surface fluxes of over the heterogeneous land surface in Tibetan Plateau will be helpful to advance the understanding of its influence on regional climate and hydrology. This paper presents a study on the spatial heterogeneity of land surface parameters in terms of the spatial variability and spatial structure of land surface parameters and the influence on surface fluxes over a typical land surface in Tibetan Plateau. The results suggest that the sensible heat fluxes (H) and latent heat fluxes (LE) in the study area in the rain and dry seasons show apparent spatial variabilities due to the spatial heterogeneity in the leaf area index (LAI) and land surface undulations. The relative frequency distribution of H and LE at the spatial resolution of 30 m suggests that the spatial variability of surface fluxes has a close relationship with the spatial heterogeneity of land surface temperature (LST) and LAI. The variogram analyses of LST, LAI, H, and LE in the study area in rain season indicate that the spatial structures of LST and LAI are different and the spatial structures of H and LE are strongly influenced by the spatial structures of LST and LAI in both rain and dry seasons. The optimal pixel sizes for LST, LAI, H, and LE in the study area are 506, 156, 500, and 225 m in the rain season. The optimal pixel sizes for LST, H, and LE in the study area are 165, 165, and 162 m in the dry season. An analysis of the relative frequency distributions (RFDs) of the LST, LAI, H, and LE at different spatial resolutions in the rain and dry seasons reveals that their values at the maximum relative frequency keep stable although their spatial variabilities become weak as the spatial resolution decreases. The averages of LST, LAI, H, and LE of different spatial resolutions of the study area in rain and dry seasons vary within small ranges, suggesting that the influence of spatial resolution on the averaged land surface parameters and surface fluxes in the

  1. Seasonal and latitudinal variations of surface fluxes at two Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey A.; Persson, P. Ola G.; Uttal, Taneil; Akish, Elena A.; Cox, Christopher J.; Morris, Sara M.; Fairall, Christopher W.; Stone, Robert S.; Lesins, Glen; Makshtas, Alexander P.; Repina, Irina A.

    2017-11-01

    This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 71.6°N, respectively). While significant gross similarities exist in the annual cycles of various meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of the atmospheric boundary layer and upper soil temperature profiles. An important factor is that even though higher latitude sites (in this case Eureka) generally receive less annual incoming solar radiation but more total daily incoming solar radiation throughout the summer months than lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in Eureka which is located almost 10° north of Tiksi. The study further highlights the differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation as well as the moderating cloudiness effects that lead to temporal and spatial differences in the structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons (Arctic winter) when the ground is covered with snow and air temperatures

  2. Global surface wind and flux fields from model assimilation of Seasat data

    Science.gov (United States)

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  3. Analysis of surface and root-zone soil moisture dynamics with ERS scatterometer and the hydrometeorological model SAFRAN-ISBA-MODCOU at Grand Morin watershed (France

    Directory of Open Access Journals (Sweden)

    T. Paris Anguela

    2008-12-01

    Full Text Available Spatial and temporal variations of soil moisture strongly affect flooding, erosion, solute transport and vegetation productivity. Its characterization, offers an avenue to improve our understanding of complex land surface-atmosphere interactions. In this paper, soil moisture dynamics at soil surface (first centimeters and root-zone (up to 1.5 m depth are investigated at three spatial scales: local scale (field measurements, 8×8 km2 (hydrological model and 25×25 km2 scale (ERS scatterometer in a French watershed. This study points out the quality of surface and root-zone soil moisture data for SIM model and ERS scatterometer for a three year period. Surface soil moisture is highly variable because is more influenced by atmospheric conditions (rain, wind and solar radiation, and presents RMSE up to 0.08 m3 m−3. On the other hand, root-zone moisture presents lower variability with small RMSE (between 0.02 and 0.06 m3 m−3. These results will contribute to satellite and model verification of moisture, but also to better application of radar data for data assimilation in future.

  4. High resolution land surface fluxes from satellite data (HOLAPS v1.0): evaluation and uncertainty assessment

    Science.gov (United States)

    Loew, A.; Peng, J.; Borsche, M.

    2015-12-01

    Surface water and energy fluxes are essential components of the Earth system. Surface latent heat fluxes provide major energy input to the atmosphere. Despite the importance of these fluxes, state-of-the-art datasets of surface energy and water fluxes largely differ. The present paper introduces a new framework for the estimation of surface energy and water fluxes at the land surface, which allows for temporally and spatially high resolved flux estimates at the global scale (HOLAPS). The framework maximizes the usage of existing long-term satellite data records and ensures internally consistent estimates of the surface radiation and water fluxes. The manuscript introduces the technical details of the developed framework and provides results of a comprehensive sensitivity and evaluation study. Overall the results indicate very good agreement with in situ observations when compared against 49 FLUXNET stations worldwide. Largest uncertainties of latent heat flux and net radiation were found to result from uncertainties in the global solar radiation flux obtained from satellite data products.

  5. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  6. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    Science.gov (United States)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  7. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  8. Soil Moisture Memory in Karst and Non-Karst Landscapes

    Science.gov (United States)

    Sobocinski-Norton, H. E.; Dirmeyer, P.

    2016-12-01

    Underlying geology plays an important role in soil column hydrology that is largely overlooked within the land surface model (LSM) parameterizations used in weather and climate models. LSMs typically treat the soil column as a set of horizontally homogeneous layers through which liquid water diffuses. These models parameterize the flow of water out of the bottom of the active soil column as "baseflow" that is typically a function of mean surface slope and the soil moisture in the lowest model layer. However, roughly 25% of the United States is underlain by karst systems that are characterized by heavily fractured bedrock or unconsolidated materials. These heavily fractured systems allow for more rapid drainage, increasing "baseflow" and reducing the amount of soil moisture available for surface fluxes. This increased drainage can also affect soil moisture memory, which is key to determining the strength of land-atmosphere coupling. We examine lagged autocorrelations of in-situ soil moisture data from climatologically similar stations over different substrates, to determine the extent to which karst affects soil moisture memory. These results are compared to simulations with the NCEP Noah LSM with both default parameters and setting all soil types to sand to enhance drainage in a crude approximation of karst macropores. Given the importance of soil moisture in surface fluxes and in turn land-atmospheric coupling, we will demonstrate the importance of representing shallow geology as realistically as possible, and develop better parameterizations of these processes for LSMs.

  9. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data.

    Science.gov (United States)

    Chakraborty, Surya Deb; Kant, Yogesh; Mitra, Debashis

    2015-01-15

    Surface energy processes has an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. The research was undertaken to analyze the potential of Landsat and MODIS data in retrieving biophysical parameters in estimating land surface temperature & heat fluxes diurnally in summer and winter seasons of years 2000 and 2010 and understanding its effect on anthropogenic heat disturbance over Delhi and surrounding region. Results show that during years 2000-2010, settlement and industrial area increased from 5.66 to 11.74% and 4.92 to 11.87% respectively which in turn has direct effect on land surface temperature (LST) and heat fluxes including anthropogenic heat flux. Based on the energy balance model for land surface, a method to estimate the increase in anthropogenic heat flux (Has) has been proposed. The settlement and industrial areas has higher amounts of energy consumed and has high values of Has in all seasons. The comparison of satellite derived LST with that of field measured values show that Landsat estimated values are in close agreement within error of ±2 °C than MODIS with an error of ±3 °C. It was observed that, during 2000 and 2010, the average change in surface temperature using Landsat over settlement & industrial areas of both seasons is 1.4 °C & for MODIS data is 3.7 °C. The seasonal average change in anthropogenic heat flux (Has) estimated using Landsat & MODIS is up by around 38 W/m(2) and 62 W/m(2) respectively while higher change is observed over settlement and concrete structures. The study reveals that the dynamic range of Has values has increased in the 10 year period due to the strong anthropogenic influence over the area. The study showed that anthropogenic heat flux is an indicator of the strength of urban heat island effect, and can be used to quantify the magnitude of the urban heat island effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    Science.gov (United States)

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  11. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the surface, and...

  12. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    DEFF Research Database (Denmark)

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    % greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance......Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy...... covariance and scintillometry measurements from a reservoir in southeast Queensland, Australia. The work presented expands on a short study presented by McJannet et al. (2011) to include comparisons of eddy covariance measurements and scintillometer-derived predictions of surface energy fluxes under a wide...

  13. Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Aaron Anthony [GAME-CNRM, Meteo-France, Toulouse (France); Poccard-Leclercq, Isabelle [Universite de Nantes, LETG-Geolittomer, Nantes (France); Xue, Yongkang; Feng, Jinming [University of California at Los Angeles, Los Angeles, CA (United States); Rosnay, Patricia de [European Centre for Medium Range Weather Forecasting, Reading (United Kingdom)

    2010-07-15

    The West African monsoon (WAM) circulation and intensity have been shown to be influenced by the land surface in numerous numerical studies using regional scale and global scale atmospheric climate models (RCMs and GCMs, respectively) over the last several decades. The atmosphere-land surface interactions are modulated by the magnitude of the north-south gradient of the low level moist static energy, which is highly correlated with the steep latitudinal gradients of the vegetation characteristics and coverage, land use, and soil properties over this zone. The African Multidisciplinary Monsoon Analysis (AMMA) has organised comprehensive activities in data collection and modelling to further investigate the significance land-atmosphere feedbacks. Surface energy fluxes simulated by an ensemble of land surface models from AMMA Land-surface Model Intercomparison Project (ALMIP) have been used as a proxy for the best estimate of the ''real world'' values in order to evaluate GCM and RCM simulations under the auspices of the West African Monsoon Modelling Experiment (WAMME) project, since such large-scale observations do not exist. The ALMIP models have been forced in off-line mode using forcing based on a mixture of satellite, observational, and numerical weather prediction data. The ALMIP models were found to agree well over the region where land-atmosphere coupling is deemed to be most important (notably the Sahel), with a high signal to noise ratio (generally from 0.7 to 0.9) in the ensemble and a inter-model coefficient of variation between 5 and 15%. Most of the WAMME models simulated spatially averaged net radiation values over West Africa which were consistent with the ALMIP estimates, however, the partitioning of this energy between sensible and latent heat fluxes was significantly different: WAMME models tended to simulate larger (by nearly a factor of two) monthly latent heat fluxes than ALMIP. This results due to a positive precipitation

  14. A Numerical Study on Impact of Taiwan Island Surface Heat Flux on Super Typhoon Haitang (2005)

    OpenAIRE

    Xu, Hongxiong

    2015-01-01

    Three to four tropical cyclones (TCs) by average usually impact Taiwan every year. This study, using the Developmental Tested Center (DTC) version of the Hurricane WRF (HWRF) model, examines the effects of Taiwan’s island surface heat fluxes on typhoon structure, intensity, track, and its rainfall over the island. The numerical simulation successfully reproduced the structure and intensity of super Typhoon Haitang. The model, especially, reproduced the looped path and landfall at nearly the ...

  15. Relevance of decadal variations in surface radiative fluxes for climate change

    Science.gov (United States)

    Wild, Martin

    2013-05-01

    Recent evidence suggests that radiative fluxes incident at Earth's surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected due to the increasing greenhouse effect, but also in the solar spectral range. Observations suggest that surface solar radiation, after a period of decline from the 1950s to the 1980s ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations, often in line with changes in anthropogenic air pollution. These decadal variations observed in both solar and thermal surface radiative fluxes have the potential to affect various aspects of climate change. Discussed here are specifically the evidence for potential effects on global warming, as seen in asymmetries in hemispheric warming rates as well as in differences in the decadal warming rates over land and oceans. These variations in observed warming rates fit well to our conceptual understanding of how aerosol and greenhouse gas-induced changes in the surface radiative fluxes should affect global warming. Specifically, on the Northern Hemisphere, the suppression of warming from the 1950s to the 1980s fits to the concurrent dimming and increasing air pollution, while the accelerated warming from the 1980s to 2000 matches with the brightening and associated reduction in pollution levels. The suppression of warming from the 1950s to the 1980s is even somewhat stronger over oceans than over land, in line with the conceptual idea that aerosol-induced dimming and brightening tendencies may be enhanced through cloud aerosol interactions particularly over the pristine ocean areas. On the Southern Hemisphere, the absence of significant pollution levels as well as trend reversals therein, fit to the observed stable warming rates over the entire 1950 to 2000 period.

  16. A non-equilibrium model for soil heating and moisture transport during extreme surface heating: The soil (heat-moisture-vapor) HMV-Model Version

    Science.gov (United States)

    William Massman

    2015-01-01

    Increased use of prescribed fire by land managers and the increasing likelihood of wildfires due to climate change require an improved modeling capability of extreme heating of soils during fires. This issue is addressed here by developing and testing the soil (heat-moisture-vapor) HMVmodel, a 1-D (one-dimensional) non-equilibrium (liquid- vapor phase change)...

  17. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  18. Improved characterization of root zone soil moisture in land surface models by assimilation of groundwater level data. An example with TerrSysMP.

    Science.gov (United States)

    Hendricks Franssen, Harrie-Jan; Zhang, Hongjuan; Kurtz, Wolfgang; Kollet, Stefan; Vereecken, Harry

    2017-04-01

    Land surface model predictions are affected by uncertainty with respect to parameters, atmospheric forcings and process representation. Therefore, constraining land surface model predictions by assimilation of soil moisture data is of great interest, using techniques like the Ensemble Kalman Filter. Soil moisture is a key variable in land surface models linking the water and energy cycles. However, various studies found that assimilation of remotely sensed soil moisture content improved root zone soil moisture characterization only marginally. In addition, below densely vegetated areas measured remotely sensed soil moisture content is unreliable. In this study, we explored groundwater level data as an additional information source to be used in data assimilation to constrain root zone soil moisture characterization and land surface model predictions. In order to extract as much information as possible from groundwater level data we used the model TerrSysMP, which represents groundwater better than classical land surface models considering lateral subsurface flow, and fully coupled interactions between the vadose zone and groundwater. The assimilation of groundwater level data in integrated hydrological models like TerrSysMP is challenging. If groundwater level data are assimilated in terms of pressure information and used to update pressure in the vadose zone and aquifer, unrealistic updates may be generated in the upper vadose zone during (very) dry conditions as probability density functions of pressure are highly skewed. On the other hand, if groundwater level data are assimilated in terms of soil moisture values (equal to porosity in the aquifer) and used to update soil moisture in the vadose zone, under specific conditions which we will detail in the presentation updating also does not work well. We tested different data assimilation strategies in synthetic experiments and found that assimilating groundwater level data in terms of pressure, but updating model

  19. Assessment of large aperture scintillometry for large-area surface energy fluxes over an irrigated cropland in north India

    Science.gov (United States)

    Danodia, Abhishek; Sehgal, V. K.; Patel, N. R.; Dhakar, R.; Mukherjee, J.; Saha, S. K.; Kumar, A. Senthil

    2017-07-01

    Amount of available net energy and its partitioning into sensible, latent and soil heat fluxes over an agricultural landscape are critical to improve estimation of evapotranspiration and modelling parse (ecosystem modelling, hydrological and meteorological modelling). Scintillometry is a peculiar and robust methodology to provide structure parameter of refractive index and energy balance. Scintillometer has proven for assessment of sensible and latent heat flux, which is based on the principle of Monin-Obukhov similarity theory. Scintillometer has been installed in the agricultural experimental farm of ICAR-Indian Agricultural Research Institute, New Delhi, with a spatial covering path length of 990 m of irrigated and cultivable agricultural landscape. This paper discusses the patterns of energy flux as diurnal and seasonal basis at scintillometer path which was mainly covered by maize in Kharif and wheat in Rabi season during a crop growing seasons of 2014-2015. The biophysical parameters (leaf area, soil moisture, crop height) were recorded at a temporal resolution of fortnight basis along the path length at usual sampling distance. The Bowen ratio value for both Kharif and Rabi season was 0.76 and 0.88, respectively by scintillometer. Leaf area index had a significantly positive correlation with latent heat flux (R2 =0.80) while a significantly negative correlation with sensible heat flux (R2{=}-0.79). Soil moisture had a significant negative correlation with sensible heat flux (R2{=}-0.68). The average evapotranspiration from crop land was 1.58 mm d^{-1} and total evapotranspiration was 543 mm over the 12 months study period. This study defines that large aperture scintillometer is robust instrument which can evaluate energy flux over a large area with a long term series time domain. Moreover, further studied should be conducted to use in crop simulation modelling, developing of new model with calibration and validation of remote sensing energy balance

  20. Assimilation of the ESA CCI Soil Moisture ACTIVE and PASSIVE Product into the SURFEX Land Surface Model using the Ensemble Transform Kalman Filter

    Science.gov (United States)

    Blyverket, J.; Hamer, P.; Bertino, L.; Lahoz, W. A.

    2017-12-01

    The European Space Agency Climate Change Initiative for soil moisture (ESA CCI SM) was initiated in 2012 for a period of six years, the objective for this period was to produce the most complete and consistent global soil moisture data record based on both active and passive sensors. The ESA CCI SM products consist of three surface soil moisture datasets: The ACTIVE product and the PASSIVE product were created by fusing scatterometer and radiometer soil moisture data, respectively. The COMBINED product is a blended product based on the former two datasets. In this study we assimilate globally both the ACTIVE and PASSIVE product at a 25 km spatial resolution. The different satellite platforms have different overpass times, an observation is mapped to the hours 00.00, 06.00, 12.00 or 18.00 if it falls within a 3 hour window centred at these times. We use the SURFEX land surface model with the ISBA diffusion scheme for the soil hydrology. For the assimilation routine we apply the Ensemble Transform Kalman Filter (ETKF). The land surface model is driven by perturbed MERRA-2 atmospheric forcing data, which has a temporal resolution of one hour and is mapped to the SURFEX model grid. Bias between the land surface model and the ESA CCI product is removed by cumulative distribution function (CDF) matching. This work is a step towards creating a global root zone soil moisture product from the most comprehensive satellite surface soil moisture product available. As a first step we consider the period from 2010 - 2016. This allows for comparison against other global root zone soil moisture products (SMAP Level 4, which is independent of the ESA CCI SM product).

  1. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    International Nuclear Information System (INIS)

    Meyer, F W; Hijazi, H; Bannister, M E; Unocic, K A; Garrison, L M; Parish, C M

    2016-01-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2–4) × 10 23 m −2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed. (paper)

  2. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    Science.gov (United States)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  3. Using multi-temporal Sentinal-2 imagery for mapping Andean meadows and surface soil moisture in central Chile

    Science.gov (United States)

    Araya, Rocio; Fassnacht, Fabian E.; Lopatin, Javier; Hernández, H. Jaime

    2017-04-01

    In the Rio Maipo watershed, situated in central Chile, mining activities are the main factor impacting Andean meadows, through the consumption and exploitation of water and land. As wetlands are vulnerable and particularly susceptible to changes of water supply, alterations and modifications in the hydrological regime have direct effects on vegetation cover. In order to better understand this ecosystem, as well as for conservation planning and resource management, there is a strong need for spatially explicit and update wetland ecosystem assessment. However, there is a lack of baseline dataset and state of knowledge on these habitats. During the last decades remote sensing as evolve as an efficient tool for mapping and monitoring wetland ecosystems at different temporal and spatial scales. Accurate and up-to-date mapping and assessment of wetlands allows monitoring the changes in wetlands' vegetation due to natural and/or anthropogenic disturbances. New freely available spaceborne imagery, like Sentinel-2, supports long term monitoring on a high spatial resolution (10 m). The main aim of this work was to evaluate the potential of multi-temporal Sentinel-2 images in the detection and monitoring of water status of Andean meadows with anthropic disturbances. For these tasks we used bias support vector machines (BSVM), a one-class classifier to map and monitor meadow areas, and the support vector machines regression (SVMR) to estimate surface soil moisture (i.e. top 30 cm). BSVM produces probability maps of the class of interest, were only data of this class is needed as input of the model. One-class classifiers are well suited for situations where the numbers of the training samples from the class of interest is small and/or cover a small fraction of the area to be classified. We found that BSVM was capable to classify the meadow areas with an overall accuracy between 65% and 96%. Meanwhile, surface soil moisture prediction using SVMR reached r2 values between 0.2 and

  4. Assimilating the cosmic-ray soil moisture observing system measurements for understanding watershed hydrodynamics

    Science.gov (United States)

    Xiao, D.; Cai, Z.; Shi, Y.; Li, L.

    2016-12-01

    Soil moisture is an essential variable in hydrologic, land-surface and reactive transport processes. The intermediate-scale cosmic-ray soil moisture observing system (COSMOS) provides average soil water content measurement over a footprint of 0.34 km2 with depths up to 70 cm and an innovative means to understand watershed water dynamics. Compared with point measurements at the scale of centimeters, the COSMOS data represent averaged soil moisture at the scale of hundreds of meters. In this study, we test the use of COSMOS observations in constraining parameters in a physics-based hydrology model Flux-PIHM via the ensemble Kalman filter (EnKF). We aim to investigate 1) how COSMOS data can be used to predict soil moisture in a low-order watershed by Flux-PIHM, 2) which parameters are critical in predicting areal averaged soil moisture, and 3) how changes in data availability of the COSMOS influence prediction of watershed hydrodynamics. Synthetic data experiments are performed at the Shale Hills Susquehanna Critical Zone Observatory in central Pennsylvania. The COSMOS data is assimilated into Flux-PIHM using the EnKF, in addition to discharge and land surface temperature observations. The assimilation of COSMOS measurements can improve the model prediction of top layer soil moisture, and the soil parameters like van Genuchten β and porosity are critical in reproducing areal averaged soil moisture. The accuracy of EnKF estimated parameters and water and energy flux predictions is evaluated, reflecting the sensitivity of the observation to the corresponding parameter related hydrologic processes. In addition, the results are compared with assimilating point soil moisture measurement to assess the effects of soil moisture measurements at different scales in calibrating Flux-PIHM. The data retrieval frequency experiments evaluate the consequence of data availability on the hydrodynamics of simulated soil moisture profiles. We found that there exists an optimal data

  5. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  6. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  7. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva

    2014-01-01

    The use of Penman–Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal) and b...

  8. The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Zyta Hakuba, Maria; Sanchez-Lorenzo, Arturo

    2017-08-01

    The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500 000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as global dimming and brightening. GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch. Supplementary data are available at https://doi.org/10.1594/PANGAEA.873078.

  9. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  10. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  11. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  12. Fluxes of nitrates between snow surfaces and the atmosphere in the European high Arctic

    Directory of Open Access Journals (Sweden)

    H. J. Beine

    2003-01-01

    Full Text Available Measurements of atmospheric and snow mixing ratios of nitrates and nitrites and their fluxes above the snow surface were made during two intensive campaigns during spring time 2001 at Ny-Ålesund, Svalbard as part of the EU project  "`The NItrogen Cycle and Effects on the oxidation of atmospheric trace species at high latitudes' (NICE. At this coastal site close to the unseasonably unfrozen fjord, of the measured nitrogen species, only HNO3 showed a significant flux on to the snow surface; a mean deposition of -8.7 nmol h-1 m-2 was observed in late April / early May 2001. These fluxes may be due to the reaction of HNO3 with sea salt, and especially NaCl, or may be simply uptake of HNO3 by ice, which is alkaline because of the sea salt in our marine environment. During snowfall periods dry deposition of HNO3 may contribute up to 10% of the N budget in the snow; however, the main source for N is wet deposition in falling snow. The surface snow at Ny-Ålesund showed very complex stratigraphy; the NO3- mixing ratio in snow varied between 65 and 520 ng g-1, the total NO3- content of the snowpack was on the order of 2700 ng cm-2. In comparison the atmospheric boundary layer column showed a NO3- content of only 8 ng cm-2. The limited exchange, however, between the snow and the atmosphere was attributed to low mobility of NO3- in the observed snow. Contrary to other Arctic sites (i.e. Alert, Nunavut or Summit, Greenland deposition of sea salt and crustal aerosols in this marine environment made the surface snow alkaline; snow NO3- was associated with heavier cations and was not readily available for physical exchange or photochemical reactions.

  13. A fast, magnetics-free flux surface estimation and q-profile reconstruction algorithm for feedback control of plasma profiles

    NARCIS (Netherlands)

    Hommen, G.; de M. Baar,; Citrin, J.; de Blank, H. J.; Voorhoeve, R. J.; de Bock, M. F. M.; Steinbuch, M.

    2013-01-01

    The flux surfaces' layout and the magnetic winding number q are important quantities for the performance and stability of tokamak plasmas. Normally, these quantities are iteratively derived by solving the plasma equilibrium for the poloidal and toroidal flux. In this work, a fast, non-iterative

  14. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations

    Science.gov (United States)

    Xie, Jin; Yu, Ye; Li, Jiang-lin; Ge, Jun; Liu, Chuan

    2018-02-01

    Surface sensible and latent heat fluxes (SH and LE) over the Tibetan Plateau (TP) have been under research since 1950s, especially for recent several years, by mainly using observation, reanalysis, and satellite data. However, the spatiotemporal changes are not consistent among different studies. This paper focuses on the spatiotemporal variation of SH and LE over the TP from 1981 to 2013 using reanalysis data sets (ERA-Interim, JRA-55, and MERRA) and observations. Results show that the spatiotemporal changes from the three reanalysis data sets are significantly different and the probable causes are discussed. Averaged for the whole TP, both SH and LE from MERRA are obviously higher than the other two reanalysis data sets. ERA-Interim shows a significant downward trend for SH and JRA-55 shows a significant increase of LE during the 33 years with other data sets having no obvious changes. By comparing the heat fluxes and some climate factors from the reanalysis with observations, it is found that the differences of heat fluxes among the three reanalysis data sets are closely related to their differences in meteorological conditions as well as the different parameterizations for surface transfer coefficients. In general, the heat fluxes from the three reanalysis have a better representation in the western TP than that in the eastern TP under inter-annual scale. While in terms of monthly variation, ERA-Interim may have better applicability in the eastern TP with dense vegetation conditions, while SH of JRA-55 and LE of MERRA are probably more representative for the middle and western TP with poor vegetation conditions.

  15. AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 10 km x 10 km ascending V001 (LPRM_AMSR2_DS_A_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 10 km x 10 km ascending V001 is a Level 3 (gridded) data set. Its land surface parameters, surface soil moisture,...

  16. WindSat/Coriolis surface soil moisture (LPRM) L3 1 day 25 km x 25 km daytime V001 (LPRM_WINDSAT_DY_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — WindSat/Coriolis surface soil moisture (LPRM) L3 1 day 25 km x 25 km daytime V001 is a Level 3 (gridded) data set. Its land surface parameters, surface soil...

  17. WindSat/Coriolis surface soil moisture (LPRM) L3 1 day 25 km x 25 km nighttime V001 (LPRM_WINDSAT_NT_SOILM3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — WindSat/Coriolis surface soil moisture (LPRM) L3 1 day 25 km x 25 km nighttime V001 is a Level 3 (gridded) data set. Its land surface parameters, surface soil...

  18. Optimizing critical heat flux enhancement through nano-particle-based surface modifications

    International Nuclear Information System (INIS)

    Truong, B.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Colloidal dispersions of nano-particles, also known as nano-fluids, have shown to yield significant Critical Heat Flux (CHF) enhancement. The CHF enhancement mechanism in nano-fluids is due to the buildup of a porous layer of nano-particles upon boiling. Unlike microporous coatings that had been studied extensively, nano-particles have the advantages of forming a thin layer on the substrate with surface roughness ranges from the sub-micron to several microns. By tuning the chemical properties it is possible to coat the nano-particles in colloidal dispersions onto the desired surface, as has been demonstrated in engineering thin film industry. Building on recent work conducted at MIT, this paper illustrates the maximum CHF enhancement that can be achieved based on existing correlations. Optimization of the CHF enhancement by incorporation of key factors, such as the surface wettability and roughness, will also be discussed. (authors)

  19. MERRA IAU 2d surface and TOA radiation fluxes subsetted along CloudSat track V5.2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the MERRA IAU 2d surface and TOA radiation fluxes subset, collocated with the CloudSat track. The subset is processed at the Modeling and Assimilation Data...

  20. Surface Turbulent Fluxes, 1x1 deg Yearly Climatology, Set1 and NCEP V2c (GSSTFYC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  1. Surface Turbulent Fluxes, 1x1 deg Monthly Climatology, Set1 and NCEP V2c (GSSTFMC) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSURES funded project led by Dr. Chung-Lin Shie...

  2. Surface Turbulent Fluxes, 1x1 deg Daily Grid, Set1 V2c (GSSTF) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c (GSSTF2c) Dataset recently produced through a MEaSUREs funded project led by Dr....

  3. Surface Turbulent Fluxes, 1x1 deg Monthly Grid, Set1 and Interpolated Data V2c

    Data.gov (United States)

    National Aeronautics and Space Administration — These data are the Goddard Satellite-based Surface Turbulent Fluxes Version-2c Dataset recently produced through a MEaSUREs funded project led by Dr. Chung-Lin Shie...

  4. The role of surface energy fluxes in pan-Arctic snow cover changes

    International Nuclear Information System (INIS)

    Shi Xiaogang; Lettenmaier, Dennis P; Groisman, Pavel Ya; Dery, Stephen J

    2011-01-01

    We analyze snow cover extent (SCE) trends in the National Oceanic and Atmospheric Administration's (NOAA) northern hemisphere weekly satellite SCE data using the Mann-Kendall trend test and find that North American and Eurasian snow cover in the pan-Arctic have declined significantly in spring and summer over the period of satellite record beginning in the early 1970s. These trends are reproduced, both in trend direction and statistical significance, in reconstructions using the variable infiltration capacity (VIC) hydrological model. We find that spring and summer surface radiative and turbulent fluxes generated in VIC have strong correlations with satellite observations of SCE. We identify the role of surface energy fluxes and determine which is most responsible for the observed spring and summer SCE recession. We find that positive trends in surface net radiation (SNR) accompany most of the SCE trends, whereas modeled latent heat (LH) and sensible heat (SH) trends associated with warming on SCE mostly cancel each other, except for North America in spring, and to a lesser extent for Eurasia in summer. In spring over North America and summer in Eurasia, the SH contribution to the observed snow cover trends is substantial. The results indicate that ΔSNR is the primary energy source and ΔSH plays a secondary role in changes of SCE. Compared with ΔSNR and ΔSH, ΔLH has a minor influence on pan-Arctic snow cover changes.

  5. Correlations Between Sea-Surface Salinity Tendencies and Freshwater Fluxes in the Pacific Ocean

    Science.gov (United States)

    Li, Zhen; Adamec, David

    2007-01-01

    Temporal changes in sea-surface salinity (SSS) from 21 years of a high resolution model integration of the Pacific Ocean are correlated with the freshwater flux that was used to force the integration. The correlations are calculated on a 1 x10 grid, and on a monthly scale to assess the possibility of deducing evaporation minus precipitation (E-P) fields from the salinity measurements to be taken by the upcoming Aquarius/SAC-D mission. Correlations between the monthly mean E-P fields and monthly mean SSS temporal tendencies are mainly zonally-oriented, and are highest where the local precipitation is relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude storm tracks and are relatively small in the tropics. The response of the model's surface salinity to surface forcing is very complex, and retrievals of freshwater fluxes from SSS measurements alone will require consideration of other processes, including horizontal advection and vertical mixing, rather than a simple balance between the two.

  6. Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data

    Science.gov (United States)

    Han, Cunbo; Ma, Yaoming; Chen, Xuelong; Su, Zhongbo

    2016-02-01

    Regional land surface albedo, land surface temperature, net radiation flux, ground heat flux, sensible heat flux, and latent heat flux were derived in the Mt. Everest area utilizing topographical enhanced surface energy balance system (TESEBS) model and nine scenes of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data under clear-sky and in-situ measurements at the QOMS station (the Qomolangma Station for Atmospheric Environmental Observation and Research, Chinese Academy of Sciences). The parameterization schemes for diffused and reflected downward shortwave radiation flux of the TESEBS model were improved by introducing the parameters sky-view factor (SVF) and terrain configuration factor (Ct). Then, a so-called C-correction method for land surface albedo was coupled into the TESEBS model to reduce the influences of topography. After topographical correction, the albedo of the dark tilted surface facing away from the Sun was compensated and albedo of the brightness surface facing the Sun was restrained. The downward shortwave radiation flux was broken down into three components including solar direct radiation flux, solar diffused radiation flux, and reflected solar radiation flux by surrounding terrain. The solar diffused radiation flux ranges from about 30 to 60 W/m2 at the satellite passing time on 6 January 2008. The reflected solar radiation flux changes from 0 to more than 100 W/m2 in the area covered by glaciers and snows. Thus, it is important to take the topographical effects into account in estimation of surface radiation balance in the mountainous area, especially in the glacier area. The retrieved land surface parameters, land surface radiation balance components, and the land surface energy balance components were evaluated by the field measurements in the QOMS station. The estimated results were very close to the in-situ observations with low mean bias errors, low root mean square errors and high correlation coefficients

  7. Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Directory of Open Access Journals (Sweden)

    G. H. de Rooij

    2012-03-01

    Full Text Available The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks.

  8. Ideal climatic conditions for condensation of atmospheric moisture on the plants’ surface

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey

    2015-12-01

    A study of the diversity of the plant adaptation mechanisms that contribute to lowering the surface temperature and the absorption of condensate will allow us in the future to carry out introduction, genetic modification or selection of plants with the most visible effect of lowering the temperature and the least dependence on insolation.

  9. The soil moisture velocity equation

    Science.gov (United States)

    Ogden, Fred L.; Allen, Myron B.; Lai, Wencong; Zhu, Jianting; Seo, Mookwon; Douglas, Craig C.; Talbot, Cary A.

    2017-06-01

    Numerical solution of the one-dimensional Richards' equation is the recommended method for coupling groundwater to the atmosphere through the vadose zone in hyperresolution Earth system models, but requires fine spatial discretization, is computationally expensive, and may not converge due to mathematical degeneracy or when sharp wetting fronts occur. We transformed the one-dimensional Richards' equation into a new equation that describes the velocity of moisture content values in an unsaturated soil under the actions of capillarity and gravity. We call this new equation the Soil Moisture Velocity Equation (SMVE). The SMVE consists of two terms: an advection-like term that accounts for gravity and the integrated capillary drive of the wetting front, and a diffusion-like term that describes the flux due to the shape of the wetting front capillarity profile divided by the vertical gradient of the capillary pressure head. The SMVE advection-like term can be converted to a relatively easy to solve ordinary differential equation (ODE) using the method of lines and solved using a finite moisture-content discretization. Comparing against analytical solutions of Richards' equation shows that the SMVE advection-like term is >99% accurate for calculating infiltration fluxes neglecting the diffusion-like term. The ODE solution of the SMVE advection-like term is accurate, computationally efficient and reliable for calculating one-dimensional vadose zone fluxes in Earth system and large-scale coupled models of land-atmosphere interaction. It is also well suited for use in inverse problems such as when repeat remote sensing observations are used to infer soil hydraulic properties or soil moisture.type="synopsis">type="main">Plain Language SummarySince its original publication in 1922, the so-called Richards' equation has been the only rigorous way to couple groundwater to the land surface through the unsaturated zone that lies between the water table and land surface. The soil

  10. Effects of porous superhydrophilic surfaces on flow boiling critical heat flux in IVR accident scenarios

    OpenAIRE

    Atkhen, Kresna; Buongiorno, Jacopo; Azizian, Mohammad Reza; McKrell, Thomas J

    2015-01-01

    Critical Heat Flux (CHF) plays a key role in nuclear reactor safety both during normal operation as well as in accident scenarios. In particular,when an in-vessel retention (IVR) strategy is used as a severe accident management strategy, the reactor pressure vessel (RPV) cavity is flooded with water, to remove the decay heat from the corium relocated in the lower plenum by conduction through the RPV wall and flow boiling on the outer surface of the RPV. The CHF limit must not be ex...

  11. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector

    2013-01-01

    and parallel; as well as the iterative algorithm included in the TSM to disaggregate the soil-surface composite temperature into its separate components. Continuous field measurements of composite soil-vegetation surface temperature (T) and bare soil temperature (T) from thermal infrared sensors were used...... of lower errors (~10%) in estimating H using parallel resistance, the series scheme was more robust showing slightly higher correlations (r=0.78-0.80 vs. r=0.75-0.77) and allowing a better disaggregation of soil and canopy fluxes. Differences between model runs using the iterative algorithm to disaggregate...... T and the simplified version that uses separate inputs of T and T' were minor. This demonstrates the robustness of the iterative procedure to disaggregate a composite soil-vegetation temperature into separate soil and vegetation components in semiarid environments with good prospects for image...

  12. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. REMOTE SENSING AND SURFACE ENERGY FLUX MODELS TO DERIVE EVAPOTRANSPIRATION AND CROP COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2008-06-01

    Full Text Available Remote sensing techniques using high resolution satellite images provide opportunities to evaluate daily crop water use and its spatial and temporal distribution on a field by field basis. Mapping this indicator with pixels of few meters of size on extend areas allows to characterize different processes and parameters. Satellite data on vegetation reflectance, integrated with in field measurements of canopy coverage features and the monitoring of energy fluxes through the soil-plant-atmosphere system, allow to estimate conventional irrigation components (ET, Kc thus improving irrigation strategies. In the study, satellite potential evapotranspiration (ETp and crop coefficient (Kc maps of orange orchards are derived using semi-empirical approaches between reflectance data from IKONOS imagery and ground measurements of vegetation features. The monitoring of energy fluxes through the orchard allows to estimate actual crop evapotranspiration (ETa using energy balance and the Surface Renewal theory. The approach indicates substantial promise as an efficient, accurate and relatively inexpensive procedure to predict actual ET fluxes and Kc from irrigated lands.

  14. Bi-Maxwellian electron energy distribution function in the vicinity of the last closed flux surface in fusion plasma

    Czech Academy of Sciences Publication Activity Database

    Popov, T.S.V.K.; Dimitrova, Miglena; Pedrosa, M. A.; López-Bruna, D.; Horáček, Jan; Kovačič, J.; Dejarnac, Renaud; Stöckel, Jan; Aftanas, Milan; Böhm, Petr; Bílková, Petra; Hidalgo, C.; Pánek, Radomír

    2015-01-01

    Roč. 57, č. 11 (2015), č. článku 115011. ISSN 0741-3335 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : COMPASS tokamak, parallel power flux density * TJ-II stellarator * bi-Maxwellian EEDF * last closed flux surface * SOL * parallel power flux density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  15. Electrostatic potential variation on the flux surface and its impact on impurity transport

    Science.gov (United States)

    García-Regaña, J. M.; Beidler, C. D.; Kleiber, R.; Helander, P.; Mollén, A.; Alonso, J. A.; Landreman, M.; Maaßberg, H.; Smith, H. M.; Turkin, Y.; Velasco, J. L.

    2017-05-01

    The impurity transport in magnetically confined plasmas under some conditions finds neither quantitatively nor qualitatively a satisfactory theory-based explanation. This compromises the successful realization of thermo-nuclear fusion for energy production since impurity accumulation is known to be one of the causes that limits the plasma performance through radiative losses and plasma dilution. Under stellarator reactor-relevant conditions, accumulation is supported by the negative (inwards pointing) radial electric field which must arise to satisfy the ambipolarity constraint on the neoclassical particle fluxes. The high charge number of the impurities makes their transport particularly sensitive to the presence of electric fields and, consequently, the electrostatic potential variation on the flux surface, {Φ1} , which conventional neoclassical theory usually neglects, may contribute to the theoretical interpretation of experimental results not yet fully understood, e.g. Ida et al (2009 Phys. Plasmas 16 056111) and Yoshinuma et al (2009 Nucl. Fusion 49 062002). In the present work we have considered different stellarator configurations and assessed the impact that {Φ1} has on the radial particle transport of selected impurities. The results for LHD show that {Φ1} can strongly modify this transport, resulting in large deviations of the level of inward impurity flux predicted by the standard neoclassical theory in most cases. In Wendelstein 7-X, on the contrary, {Φ1} is significantly smaller and, for the parameters considered, its effect only appreciable for impurities with high charge number. Finally, in TJ-II the potential variation leads to appreciable changes of the impurity radial flux, although not to the extent its large amplitude might lead one to think. The dependence on the chosen parameters and open questions for future developments are discussed.

  16. Characterization of land surface energy fluxes in a tropical lowland rice paddy

    Science.gov (United States)

    Chatterjee, Dibyendu; Tripathi, Rahul; Chatterjee, Sumanta; Debnath, Manish; Shahid, Mohammad; Bhattacharyya, Pratap; Swain, Chinmaya Kumar; Tripathy, Rojalin; Bhattacharya, Bimal K.; Nayak, Amaresh Kumar

    2018-04-01

    A field experiment was conducted in 2015 to study the land surface energy fluxes from tropical lowland rice paddy in eastern India with an objective to determine the mass, momentum, and energy exchange rates between rice paddies and the atmosphere. All the land surface energy fluxes were measured by eddy covariance (EC) system (make Campbell Scientific) in dry season (DS, 1-125 Julian days), dry fallow (DF, 126-181 Julian days), wet season (WS, 182-324 Julian days), and wet fallow (WF, 325-365 Julian days). The rice was cultivated in dry season (January-May) and wet season (July-November) in low wet lands and the ground is kept fallow during the remainder of the year. Results showed that albedo varied from 0.09 to 0.24 and showed positive value from morning 6:00 h until evening 18:00 h. Mean soil temperature (T g) was highest in DF, while the skin temperature (T s) was highest in WS. Average Bowen ratio (B) ranged from 0.21 to 0.64 and large variation in B was observed during the fallow periods as compared to the cropping seasons. The magnitude of aerodynamic, canopy, and climatological resistances increased with the progress of cropping season and their magnitudes decreased during the end of both cropping seasons and found minimum during the fallow periods. At a constant vapor pressure deficit (VPD) at 0.16, 0.18, 0.15, and 0.43 kPa, latent heat flux (LE) initially increased, but later it tended to level off with an increase in VPD. The actual evapotranspiration (ETa) during both the cropping seasons was higher than the fallow period. This study can be used as a source of default values for many land surface energy fluxes which are required in various meteorological or air-quality models for rice paddies. A larger imbalance of energy was observed during the wet season as the energy is stored and perhaps advected in the fresh water.

  17. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics

    2017-06-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  18. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  19. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    International Nuclear Information System (INIS)

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-01-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m 2 s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  20. Correlation between the critical heat flux and the fractal surface roughness of zirconium alloy tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; McRae, G.A.; Coleman, C.E.; Nitheanandan, T.; Sanderson, D.B.

    1999-10-01

    In CANDU fuel channels, Zircaloy calandria tubes isolate the hot pressure tubes from the cool heavy water moderator. The heavy-water moderator provides a backup heat sink during some postulated loss-of-coolant accidents. The decay heat from the fuel is transferred to the moderator to ensure fuel channel integrity during emergencies. Moderator temperature requirements are specified to ensure that the transfer of decay heat does not exceed the critical heat flux (CHF) on the outside surface of the calandria tube. An enhanced CHF provides increases in safety margin. Pool boiling experiments indicate the CHF is enhanced with glass-peening of the outside surface of the calandria tubes. The objective of this study was to evaluate the surface characteristics of glass-peened tubes and relate these characteristics to CHF. The micro-topologies of the tube surfaces were analysed using stereo-pair micrographs obtained from scanning electron microscopy (SEM) and photogrammetry techniques. A linear relationship correlated the CHF as a function of the 'fractal' surface roughness of the tubes. (author)

  1. Effects of surface roughness on magnetic flux leakage testing of micro-cracks

    Science.gov (United States)

    Deng, Zhiyang; Sun, Yanhua; Yang, Yun; Kang, Yihua

    2017-04-01

    Magnetic flux leakage (MFL) testing owns the advantages of high inspection sensitivity and stability, but its testing results are always affected by surface roughness. The relationship between the surface roughness ({{R}a} ) and detection signals for surface-breaking cracks is mainly discussed. The existence of roughness magnetic compression effect (RMCE) in present MFL testing is specially pointed out and its relevant theory is also analyzed, which manifest themselves in the compression of MFL signal in its peak value and the baseline drifts mixed with noise. An experimental investigation on surface comparators with different arithmetic average height ({{R}a} ) and artificial notch size, is performed to analyze the effects of surface roughness on detection signals of cracks. The detection limit (DL) of micro-crack is analyzed by comparing the {{B}y} noise-signal ratio ({{S}y} ) and peak-peak signals of the cracks. Meanwhile, {{S}y} increases with the {{R}a} and R{{S}m} , in this case, relatively shallow defects cannot be clearly distinguished at determined rough surface. Afterwards, a series of simulations are designed and performed to verify the effects of surface roughness on characteristic {{B}y} of the electromagnetic field, and a theoretical DL of micro-crack is presented as: DL=2.88{{R}a}+7.00 . Furthermore, the optimal lift-off value is selected for the micro-cracks’ detection to weaken the negative magnetic compression effect. MFL signals cannot reflect the accurate sizes of the cracks on rough surface due to the RMCE and its relevant phenomenon. The discovery and results will benefit the quantitative evaluation of the MFL testing.

  2. Mathematical modeling of the formation of sedimentary acid precipitation in the atmosphere in view of the evaporation of moisture from their surface

    Directory of Open Access Journals (Sweden)

    Gvozdyakov Dmitry

    2017-01-01

    Full Text Available The article presents the results of numeric simulation of the formation of sedimentary acid precipitation in the atmosphere taking into account the evaporation of moisture from their surfaces. It is established that the joint condensation of vapors of sulfuric anhydride and water vapor, given the flow of solar energy and the evaporation process significantly slows the growth of drops. The possibility of achieving the underlying surface by the formed sediments is analyzed.

  3. Soil heat flux and day time surface energy balance closure at ...

    Indian Academy of Sciences (India)

    energy balance along with the net radiation (R), latent heat flux (L), sensible heat flux (H), and in some cases, canopy storage and photosynthesis. (Cobos and Baker 2003). The influence of soil heat flux on chemical reactions and microclimate are self evident. On a wet or full-vegetation-covered sur- face, the soil heat flux is ...

  4. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  5. Revisiting the Cause of the 1989-2009 Arctic Surface Warming Using the Surface Energy Budget: Downward Infrared Radiation Dominates the Surface Fluxes

    Science.gov (United States)

    Lee, Sukyoung; Gong, Tingting; Feldstein, Steven B.; Screen, James A.; Simmonds, Ian

    2017-10-01

    The Arctic has been warming faster than elsewhere, especially during the cold season. According to the leading theory, ice-albedo feedback warms the Arctic Ocean during the summer, and the heat gained by the ocean is released during the winter, causing the cold-season warming. Screen and Simmonds (2010; SS10) concluded that the theory is correct by comparing trend patterns in surface air temperature (SAT), surface turbulence heat flux (HF), and net surface infrared radiation (IR). However, in this comparison, downward IR is more appropriate to use. By analyzing the same data used in SS10 using the surface energy budget, it is shown here that over most of the Arctic the skin temperature trend, which closely resembles the SAT trend, is largely accounted for by the downward IR, not the HF, trend.

  6. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and

  7. Observations of orientation dependence of surface morphology in tungsten implanted by low energy and high flux D plasma

    DEFF Research Database (Denmark)

    Xu, H.Y.; Zhang, Yubin; Yuan, Y.

    2013-01-01

    Surface modification by formation of blistering and nanostructures with pronounced orientation dependence has been observed on surfaces of rolled tungsten and recrystallized tungsten after exposure to a low energy (38 eV) deuterium (D) plasma with a high flux of 1024 m-2 s -1. The correlation bet...

  8. Surface Radiative Fluxes from GOES-E over the Amazon Basin: Model Comparison

    Science.gov (United States)

    Ceballos, J. C.; Pinker, R. T.; Pereira, E. B.; Martins, F. R.; Kato, H.; de Miranda, R. M.; Wonsick, M.

    2006-12-01

    In this study reported are results from an algorithm intercomparison initiative aimed at the development of improved estimates of surface radiative fluxes from satellite observations over the Amazon Basin. Three algorithms are used: (UMD-SRB, University of Maryland; GL1.2, INPE, Brazil; and Brasil-SR, INPE and University of Santa Catarina, Brazil). The algorithms are physically based, yet differ in their implementation and the way they address issues specific to this region, such as aerosols from biomass burning. Two fifteen day periods in 2005 were selected representing the rainy and dry seasons. The same satellite observations from GOES E were used by all the models. Ground truth from existing stations in the Amazon as well as from a new solar monitoring network of high quality have been used in evaluation. Using daily mean values for the March rainy season, it was found that: 1) the Brasil-SR and UMD-SRB estimates bear a close resemblance; 2) higher irradiances for Petrolina (semi-arid region in Northeast Brazil) are best described by the UMD-SRB and Brasil-SR, probably due to better assessment of water vapor column and absorption parameterization; 3) the GL1.2 results shows a systematic deviation, underestimating daily mean by about 20 Wm-2, but have lower dispersion than UMD-SRB or Brasil-SR; 4) irradiance interval 180 < E < 250 Wm-2 seems better described by GL1.2. This last behavior may be related to better assessment of cloudiness under partial coverage situations. September is characterized by intensive biomass burning in several Brazilian regions, particularly in the Amazon. The Northeast region is not affected by aerosols and estimates from all three models are in close agreement and have similar characteristics to those of March. For the Amazon sites: 1) lower irradiances (for overcast days) are correctly assessed; 2) UMD-SRB and Brasil-SR overestimate solar radiation, especially for higher irradiances (lower cloudiness); 3) GL1.2 model does not include

  9. Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions

    Directory of Open Access Journals (Sweden)

    A. Babenhauserheide

    2015-09-01

    Full Text Available Data assimilation systems allow for estimating surface fluxes of greenhouse gases from atmospheric concentration measurements. Good knowledge about fluxes is essential to understand how climate change affects ecosystems and to characterize feedback mechanisms. Based on the assimilation of more than 1 year of atmospheric in situ concentration measurements, we compare the performance of two established data assimilation models, CarbonTracker and TM5-4DVar (Transport Model 5 – Four-Dimensional Variational model, for CO2 flux estimation. CarbonTracker uses an ensemble Kalman filter method to optimize fluxes on ecoregions. TM5-4DVar employs a 4-D variational method and optimizes fluxes on a 6° × 4° longitude–latitude grid. Harmonizing the input data allows for analyzing the strengths and weaknesses of the two approaches by direct comparison of the modeled concentrations and the estimated fluxes. We further assess the sensitivity of the two approaches to the density of observations and operational parameters such as the length of the assimilation time window. Our results show that both models provide optimized CO2 concentration fields of similar quality. In Antarctica CarbonTracker underestimates the wintertime CO2 concentrations, since its 5-week assimilation window does not allow for adjusting the distant surface fluxes in response to the detected concentration mismatch. Flux estimates by CarbonTracker and TM5-4DVar are consistent and robust for regions with good observation coverage, regions with low observation coverage reveal significant differences. In South America, the fluxes estimated by TM5-4DVar suffer from limited representativeness of the few observations. For the North American continent, mimicking the historical increase of the measurement network density shows improving agreement between CarbonTracker and TM5-4DVar flux estimates for increasing observation density.

  10. Buoyancy effects laminar slot jet impinging on a surface with constant heat flux

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Esfahanian, V.; Masoodi, R.

    2004-01-01

    The two-dimensional laminar air jet issuing from a nozzle of half which terminates at height above a flat plate normal to the jet is numerically on the flow and thermal structure of the region near impingement. The impinging surface is maintained at a constant heat flux condition. The full Navier-Stocks and energy equations are solved by a finite difference method to evaluate the velocity profiles and temperature distribution. The governing parameters and their ranges are: Reynolds number Re, 10-50, Grashof number Gr, 0-50, Richardson number Ri=Gr/ Re 2 , Non dimensional nozzle height H,2-3. Results of the free streamline, local friction factor and heat transfer coefficient are graphically presented. It is found that enhancement of the heat transfer rate is substantial for high Richardson number conditions. Although the laminar jet impingement for isothermal condition has been already studied, however the constant heat flux has not been studied enough. the present paper will analyze a low velocity air jet, Which can be used for cooling of a simulated electronics package

  11. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  12. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  13. Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data

    Directory of Open Access Journals (Sweden)

    Nemesio J. Rodríguez-Fernández

    2016-11-01

    Full Text Available A method to retrieve soil moisture (SM from Advanced Scanning Microwave Radiometer—Earth Observing System Sensor (AMSR-E observations using Soil Moisture and Ocean Salinity (SMOS Level 3 SM as a reference is discussed. The goal is to obtain longer time series of SM with no significant bias and with a similar dynamical range to that of the SMOS SM dataset. This method consists of training a neural network (NN to obtain a global non-