WorldWideScience

Sample records for surface modulation time

  1. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  2. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  3. Surface modulation of dental hard tissues

    Science.gov (United States)

    Tantbirojn, Daranee

    Tooth surfaces play a central role in the equilibrium of dental hard tissues, in which contrasting processes lead to loss or deposition of materials. The central interest of this Thesis was the modulation of tooth surfaces to control such equilibrium. Four specific studies were carried out to investigate different classes of surface modulating agents. These are: (1) Ionic modulation of the enamel surface to enhance stain removal . Dental stain is the most apparent form of tooth surface deposit. The nature of extrinsic stain in terms of spatial chemical composition was studied by using electron probe microanalysis. An ionic surface modulating agent, sodium tripolyphosphate (STPP), was evaluated. Image analysis methodologies were developed and the ability of STPP in stain removal was proved. (2) Thin film modulation with substantive polymeric coating and the effect on in vitro enamel de/re-mineralization . A novel polymeric coating that formed a thin film on the tooth surface was investigated for its inhibitory effect on artificial enamel caries, without interfering with the remineralization process. The preventive effect was distinct, but the mineral redeposition was questionable. (3) Thick film modulation with fluoride containing sealants and the effect on in vitro enamel and root caries development. Fluoride incorporated into resin material is an example of combining different classes of surface modulating agents to achieve an optimal outcome. A proper combination, such as in resin modified glass ionomer, showed in vitro caries inhibitory effect beyond the material boundary in both enamel and dentin. (4) Thick film modulation with dental adhesives and the determination of adhesion to dentin. Dentin adhesives modulate intracoronal tooth surfaces by enhancing adhesion to restorative materials. Conventional nominal bond tests were inadequate to determine the performance of current high strength adhesives. It was shown that interfacial fracture toughness test was more

  4. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  5. Space-time-modulated stochastic processes.

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  6. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  7. A new VME timing module: TG8

    International Nuclear Information System (INIS)

    Beetham, C.G.; Daems, G.; Lewis, J.; Puccio, B.

    1992-01-01

    The two accelerator divisions of CERN, namely PS and SL, are defining a new common control system based on PC, VME and Workstations. This has provided an opportunity to review both central timing systems and to come up with common solutions. The result was, amongst others, the design of a unique timing module, called TG8. The TG8 is a multipurpose VME module, which receives messages distributed over a timing network. These messages include timing information, clock plus calendar and telegrams instructing the CERN accelerators on the characteristics of the next beam to be produced. The TG8 compares incoming messages with up to 256 programmed actions. An action consists of two parts, a trigger which matches an incoming message and what to do when the match occurs. The latter part may optionally create an output pulse on one of the eight output channels and/or a bus interrupt, both with programmable delay and telegram conditioning. (author)

  8. Modulation of SST, SSS over northern Bay of Bengal on ISO time scale

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, S.A.; Saha, S.K.; Pokhrel, S.; Sundar, D.; Dhakate, A.R.; Mahapatra, S.; Ali, S.; Chaudhari, H.S.; Shreeram, P.; Suneel, V.; Srikanth, A.S.; Suresh, R.R.V.

    hypothesize that the intra-seasonal rainfall variation modulates the amount of river discharge, which in turn modulates the salinity over northern Bay of Bengal on intra-seasonal time scale. Since surface warming always follows the surface freshening, the time...

  9. Emotional modulation of interval timing and time perception.

    Science.gov (United States)

    Lake, Jessica I; LaBar, Kevin S; Meck, Warren H

    2016-05-01

    Like other senses, our perception of time is not veridical, but rather, is modulated by changes in environmental context. Anecdotal experiences suggest that emotions can be powerful modulators of time perception; nevertheless, the functional and neural mechanisms underlying emotion-induced temporal distortions remain unclear. Widely accepted pacemaker-accumulator models of time perception suggest that changes in arousal and attention have unique influences on temporal judgments and contribute to emotional distortions of time perception. However, such models conflict with current views of arousal and attention suggesting that current models of time perception do not adequately explain the variability in emotion-induced temporal distortions. Instead, findings provide support for a new perspective of emotion-induced temporal distortions that emphasizes both the unique and interactive influences of arousal and attention on time perception over time. Using this framework, we discuss plausible functional and neural mechanisms of emotion-induced temporal distortions and how these temporal distortions may have important implications for our understanding of how emotions modulate our perceptual experiences in service of adaptive responding to biologically relevant stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Emotional Modulation of Interval Timing and Time Perception

    Science.gov (United States)

    Lake, Jessica I.; LaBar, Kevin S.; Meck, Warren H.

    2017-01-01

    Like other senses, our perception of time is not veridical, but rather, is modulated by changes in environmental context. Anecdotal experiences suggest that emotions can be powerful modulators of time perception; nevertheless, the functional and neural mechanisms underlying emotion-induced temporal distortions remain unclear. Widely accepted pacemaker-accumulator models of time perception suggest that changes in arousal and attention have unique influences on temporal judgments and contribute to emotional distortions of time perception. However, such models conflict with current views of arousal and attention suggesting that current models of time perception do not adequately explain the variability in emotion-induced temporal distortions. Instead, findings provide support for a new perspective of emotion-induced temporal distortions that emphasizes both the unique and interactive influences of arousal and attention on time perception over time. Using this framework, we discuss plausible functional and neural mechanisms of emotion-induced temporal distortions and how these temporal distortions may have important implications for our understanding of how emotions modulate our perceptual experiences in service of adaptive responding to biologically relevant stimuli. PMID:26972824

  11. N-2(A(3)Sigma(+)(u)) time evolution in N-2 atmospheric pressure surface dielectric barrier discharge driven by ac voltage under modulated regime

    Czech Academy of Sciences Publication Activity Database

    Ambrico, P. F.; Šimek, Milan; Dilecce, G.; De Benedictis, S.

    2009-01-01

    Roč. 94, č. 23 (2009), s. 231503-231503 ISSN 0003-6951 R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : Atmospheric pressure surface-DBD * Nitrogen metastable * LIF * Optical emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.554, year: 2009

  12. Particle separation by phase modulated surface acoustic waves.

    Science.gov (United States)

    Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L

    2017-09-01

    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.

  13. Light induced modulation instability of surfaces under intense illumination

    KAUST Repository

    Burlakov, V. M.

    2013-12-17

    We show that a flat surface of a polymer in rubber state illuminated with intense electromagnetic radiation is unstable with respect to periodic modulation. Initial periodic perturbation is amplified due to periodic thermal expansion of the material heated by radiation. Periodic heating is due to focusing-defocusing effects caused by the initial surface modulation. The surface modulation has a period longer than the excitation wavelength and does not require coherent light source. Therefore, it is not related to the well-known laser induced periodic structures on polymer surfaces but may contribute to their formation and to other phenomena of light-matter interaction.

  14. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  15. Aperiodic space-time modulation for pure frequency mixing

    Science.gov (United States)

    Taravati, Sajjad

    2018-03-01

    This paper experimentally demonstrates the effects of inharmonic photonic transition in tailored aperiodic space-time refractive index modulated media. Such effects introduce a pure frequency mixing based on the simultaneous and distinct shifts in the spatial and temporal frequencies. The medium is characterized with a periodic temporal modulation and a tailored aperiodic spatially modulated permittivity and permeability, yielding aperiodic, large and tunable photonic band gaps. Since the medium is time periodic, an infinite number of space-time mixing products are generated with a distance equal to the temporal frequency of the pump wave. However, thanks to the tailored spatial aperiodicity of the medium and associated photonic band gaps, transition to unwanted space-time mixing products is prohibited. Interesting features include tunability of the operation frequencies of the mixer via space-time modulation parameters, high isolation, linear response, and possibility of conversion gain due to the transfer of energy and momentum of the space-time modulation to the input wave. We derive the analytical solution for such mixer with aperiodic space-modulated permittivity and permeability and periodic time modulation, and then provide the synthesis procedure which takes into account the effects of space-time modulation inhomogeneity. Finally, to see the effect of the tailoring of space modulation, we compare the experimental results of the aperiodic space-time modulated pure mixer with those of the conventional periodic uniform space-time modulated medium.

  16. Skein modules of links in cylinders over surfaces

    Directory of Open Access Journals (Sweden)

    Jens Lieberum

    2002-01-01

    Full Text Available We define the Conway skein module  (M of ordered based links in a 3-manifold M. This module gives rise to  (M-valued invariants of usual links in M. We determine a basis of the ℤ[z]-module  (Σ×[0,1]/Tor ( (Σ×[0,1], where Σ is the real projective plane or a surface with boundary. For cylinders over the Möbius strip or the projective plane, we derive special properties of the Conway skein module, among them a refinement of a theorem of Hartley and Kawauchi about the Conway polynomial of strongly positive amphicheiral knots in S3. In addition, we determine the Homfly and Kauffman skein modules of Σ×[0,1] where Σ is an oriented surface with boundary.

  17. Interaction between heterogeneously charged surfaces: surface patches and charge modulation.

    Science.gov (United States)

    Ben-Yaakov, Dan; Andelman, David; Diamant, Haim

    2013-02-01

    When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.

  18. Controlling traffic jams by time modulating the safety distance

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Gorria, C.; Berkemer, R.

    2013-01-01

    The possibility of controlling traffic dynamics by applying high-frequency time modulation of traffic flow parameters is studied. It is shown that the region of the car density where the uniform (free) flow is unstable changes in the presence of time modulation compared with the unmodulated case....

  19. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...

  20. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  1. Design and test for the time module of HXMT

    International Nuclear Information System (INIS)

    Ji Jianfeng; Zhang Zhi; Liu Congzhan

    2007-01-01

    The time module is a key component of HXMT, which determines whether HXMT can realize its scientific aim, scan imaging and timing analysis, correctly. The design in this paper splits the time information into two parts. The time information above second, which can be synchronized by control system of HXMT, is generated by GPSs second pulse. The time information below second is generated by high precision crystal and revised by GPSs second pulse. In order to solve the problem of how to verify the correctness of the time module, a new method using timing analysis is proposed and implemented in this paper. (authors)

  2. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  3. The time course of attention modulation elicited by spatial uncertainty.

    Science.gov (United States)

    Huang, Dan; Liang, Huilou; Xue, Linyan; Wang, Meijian; Hu, Qiyi; Chen, Yao

    2017-09-01

    Uncertainty regarding the target location is an influential factor for spatial attention. Modulation in spatial uncertainty can lead to adjustments in attention scope and variations in attention effects. Hence, investigating spatial uncertainty modulation is important for understanding the underlying mechanism of spatial attention. However, the temporal dynamics of this modulation remains unclear. To evaluate the time course of spatial uncertainty modulation, we adopted a Posner-like attention orienting paradigm with central or peripheral cues. Different numbers of cues were used to indicate the potential locations of the target and thereby manipulate the spatial uncertainty level. The time interval between the onsets of the cue and the target (stimulus onset asynchrony, SOA) varied from 50 to 2000ms. We found that under central cueing, the effect of spatial uncertainty modulation could be detected from 200 to 2000ms after the presence of the cues. Under peripheral cueing, the effect of spatial uncertainty modulation was observed from 50 to 2000ms after cueing. Our results demonstrate that spatial uncertainty modulation produces robust and sustained effects on target detection speed. The time course of this modulation is influenced by the cueing method, which suggests that discrepant processing procedures are involved under different cueing conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhancement of the Modulation Bandwidth for surface Plasmon coupled LEDs for Visible Light Communication

    DEFF Research Database (Denmark)

    Li, Jiehui; Fadil, Ahmed; Ou, Haiyan

    2016-01-01

    The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system....

  5. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  6. Cell response to hydroxyapatite surface topography modulated by sintering temperature.

    Science.gov (United States)

    Mealy, Jacob; O'Kelly, Kevin

    2015-11-01

    Increased mesenchymal stem cell (MSC) activity on hydroxyapatite (HA) bone tissue engineering scaffolds will improve their viability in diffusion-based in vivo environments and is therefore highly desirable. This work focused on modulating the sintered HA surface topography with a view to increasing cell activity; this was achieved by varying the sintering temperature of the HA substrates. Cells were cultured on the substrates for periods of up to 19 days and displayed a huge variation in viability. MSC metabolic activity was measured using a resazurin sodium salt assay and revealed that surfaces sintered from 1250 to 1350°C significantly outperformed their lower temperature counterparts from day one (p ≤ 0.05). Surfaces sintered at 1300°C induced 57% more cell activity than the control at day 16. No significant activity was observed on surfaces sintered below 1200°C. It is suggested that this is due to the granular morphology produced at these temperatures providing insufficient contact area for cell attachment. In addition, we propose the average surface wavelength as a more quantitative surface descriptor than those readily found in the literature. The wavelengths of the substrates presented here were highly correlated with cell activity (R(2)  = 0.9019); with a wavelength of 2.675 µm on the 1300°C surface inducing the highest cell response. © 2015 Wiley Periodicals, Inc.

  7. Parity-time symmetric cloak with isotropic modulation

    International Nuclear Information System (INIS)

    Yang, Fan; Lei Mei, Zhong

    2016-01-01

    In this work, a different kind of parity-time ( PT ) symmetric one-way cloak is proposed. Different from conventional PT -cloak, it enjoys the property of isotropic modulation for refractive index profiles. By combining PT -symmetry with the concept of cloaking at a distance, the dilemma of realizing anisotropic modulation is removed. This combination facilitates the practical realization of PT -symmetric one-way cloak. (letter)

  8. Comparison of vision through surface modulated and spatial light modulated multifocal optics.

    Science.gov (United States)

    Vinas, Maria; Dorronsoro, Carlos; Radhakrishnan, Aiswaryah; Benedi-Garcia, Clara; LaVilla, Edward Anthony; Schwiegerling, Jim; Marcos, Susana

    2017-04-01

    Spatial-light-modulators (SLM) are increasingly used as active elements in adaptive optics (AO) systems to simulate optical corrections, in particular multifocal presbyopic corrections. In this study, we compared vision with lathe-manufactured multi-zone (2-4) multifocal, angularly and radially, segmented surfaces and through the same corrections simulated with a SLM in a custom-developed two-active-element AO visual simulator. We found that perceived visual quality measured through real manufactured surfaces and SLM-simulated phase maps corresponded highly. Optical simulations predicted differences in perceived visual quality across different designs at Far distance, but showed some discrepancies at intermediate and near.

  9. Multi-hit time-to-amplitude CAMAC module (MTAC)

    International Nuclear Information System (INIS)

    Kang, H.

    1980-10-01

    A Multi-Hit Time-to-Amplitude Module (MTAC) for the SLAC Mark III drift chamber system has been designed to measure drift time by converting time-proportional chamber signals into analog levels, and converting the analog data by slow readout via a semi-autonomous controller in a CAMAC crate. The single width CAMAC module has 16 wire channels, each with a 4-hit capacity. An externally generated common start initiates an internal precision ramp voltage which is then sampled using a novel shift register gating scheme and CMOS sampling switches. The detailed design and performance specifications are described

  10. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  11. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response.

    Science.gov (United States)

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Increased titanium surface hydrophilicity has been shown to accelerate dental implant osseointegration. Macrophages are important in the early inflammatory response to surgical implant placement and influence the subsequent healing response. This study investigated the modulatory effect of a hydrophilic titanium surface on the inflammatory cytokine expression profile in a human macrophage cell line (THP-1). Genes for 84 cytokines, chemokines, and their receptors were analyzed following exposure to (1) polished (SMO), (2) micro-rough sand blasted, acid etched (SLA), and (3) hydrophilic-modified SLA (modSLA) titanium surfaces for 1 and 3 days. By day 3, the SLA surface elicited a pro-inflammatory response compared to the SMO surface with statistically significant up-regulation of 16 genes [Tumor necrosis factor (TNF) Interleukin (IL)-1β, Chemokine (C-C motif) ligand (CCL)-1, 2, 3, 4, 18, 19, and 20, Chemokine (C-X-C motif) ligand (CXCL)-1, 5, 8 and 12, Chemokine (C-C motif) receptor (CCR)-7, Lymphotoxin-beta (LTB), and Leukotriene B4 receptor (LTB4R)]. This effect was countered by the modSLA surface, which down-regulated the expression of 10 genes (TNF, IL-1α and β, CCL-1, 3, 19 and 20, CXCL-1 and 8, and IL-1 receptor type 1), while two were up-regulated (osteopontin and CCR5) compared to the SLA surface. These cytokine gene expression changes were confirmed by decreased levels of corresponding protein secretion in response to modSLA compared to SLA. These results show that a hydrophilic titanium surface can modulate human macrophage pro-inflammatory cytokine gene expression and protein secretion. An attenuated pro-inflammatory response may be an important molecular mechanism for faster and/or improved wound healing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  12. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spartaru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  13. Time domain referencing in intensity modulation fiber optic sensing systems

    Science.gov (United States)

    Adamovsky, G.

    1986-01-01

    Intensity modulation sensors are classified depending on the way in which the reference and signal channels are separated: in space, wavelength (frequency), or time domains. To implement the time domain referencing different types of fiber optic (FO) loops have been used. A pulse of short duration sent into the loop results in a series of pulses of different amplitudes. The information about the measured parameter is retrieved from the relative amplitudes of pulses in the same train.

  14. Real Time Monitoring and Wear Out of Power Modules

    DEFF Research Database (Denmark)

    Ghimire, Pramod

    the expected lifetime of converters. Real time monitoring of power modules is very important together with a smart control and a driving technique in a converter. This ensures to operate the device within a safe operating area and also to protect from a catastrophic failure. Furthermore, the inherent physical...... parameters that deviate by thermo-mechanical stress need to be identified and also measured during operation. Major stressors for high power multi-chip IGBT modules are identified as maximum junction temperature, temperature cycle, over-voltage, over-current, humidity, vibration etc. In addition, finding...... as an advanced power cycling test setup, where both power module characterization and field emulated testing are proposed. As temperature is identified as a major stressor, transforming on-state forward voltage drop to die temperature for each individual chip is presented at a nominal rated power level. The wear...

  15. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    Science.gov (United States)

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  16. The time course of attentional modulation on emotional conflict processing.

    Science.gov (United States)

    Zhou, Pingyan; Yang, Guochun; Nan, Weizhi; Liu, Xun

    2016-01-01

    Cognitive conflict resolution is critical to human survival in a rapidly changing environment. However, emotional conflict processing seems to be particularly important for human interactions. This study examined whether the time course of attentional modulation on emotional conflict processing was different from cognitive conflict processing during a flanker task. Results showed that emotional N200 and P300 effects, similar to colour conflict processing, appeared only during the relevant task. However, the emotional N200 effect preceded the colour N200 effect, indicating that emotional conflict can be identified earlier than cognitive conflict. Additionally, a significant emotional N100 effect revealed that emotional valence differences could be perceived during early processing based on rough aspects of input. The present data suggest that emotional conflict processing is modulated by top-down attention, similar to cognitive conflict processing (reflected by N200 and P300 effects). However, emotional conflict processing seems to have more time advantages during two different processing stages.

  17. Relaxation time estimation in surface NMR

    Science.gov (United States)

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  18. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    Science.gov (United States)

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.

  19. Modulation of human time processing by subthalamic deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Lars Wojtecki

    Full Text Available Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS of the subthalamic nucleus (STN is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-production of the 15-second interval and a significant enhancement of this under(re-production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.

  20. Space-time modulations of phononic crystals (Conference Presentation)

    Science.gov (United States)

    Nassar, Hussein; Norris, Andrew; Huang, Guoliang

    2017-04-01

    When a set of resonators is attached to a master structure, a bandgap opens in the vicinity of the resonance frequency. Then, using piezoelectric circuitry for instance, the spring constant coupling the resonators to the structure can be tuned thus allowing to actively control the resonance frequency and subsequently the position of the bandgap. In this study, we investigate the consequences of dynamically changing the resonance frequency of a resonant metamaterial on its dispersion diagram. In particular, the resonance frequency is modulated periodically in space and in time at a uniform speed in a wave-like fashion and at low frequencies of the same order of magnitude of the resonance frequency itself. A two-scale asymptotic homogenization approach shows that the modulated resonant metamaterial effectively behave as another resonant metamaterial with a different set of resonance frequencies. Changing the modulation speed reveals interesting effective dynamics whereby the bandgaps of the original metamaterial split, move, condense and merge to form new band structures. The results are illustrated and exemplified through the analytical study of a onedimensional elastic medium coupled with a continuous distribution of spring-mass oscillators resonating at low frequencies. The conclusions point towards possible applications in breaking time-reversal symmetry, active wave control and filtering.

  1. Surface charge modulated aptasensor in a single glass conical nanopore.

    Science.gov (United States)

    Cai, Sheng-Lin; Cao, Shuo-Hui; Zheng, Yu-Bin; Zhao, Shuang; Yang, Jin-Lei; Li, Yao-Qun

    2015-09-15

    In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.4. With the occurring of recognition event, the negatively charged wall was partially neutralized by the positively charged lysozyme molecules, leading to a sensitive change of the surface charge-dependent current-voltage (I-V) characteristics. Our results not only demonstrate excellent selectivity and sensitivity towards the target protein, but also suggest a route to extend this nanopore-based sensing strategy to the biosensing platform designs of a wide range of proteins based on a charge modulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Service Time Analysis for Secondary Packet Transmission with Adaptive Modulation

    KAUST Repository

    Wang, Wen-Jing

    2017-05-12

    Cognitive radio communications can opportunistically access underutilized spectrum for emerging wireless applications. With interweave cognitive implementation, secondary user transmits only if primary user does not occupy the channel and waits for transmission otherwise. Therefore, secondary packet transmission involves both transmission time and waiting time. The resulting extended delivery time (EDT) is critical to the throughput analysis of secondary system. In this paper, we study the EDT of secondary packet transmission with adaptive modulation under interweave implementation to facilitate the delay and throughput analysis of such cognitive radio system. In particular, we propose an analytical framework to derive the probability density functions of EDT considering random-length transmission and waiting slots. We also present selected numerical results to illustrate the mathematical formulations and to verify our analytical approach.

  3. Time-resolved metabolomics reveals metabolic modulation in rice foliage

    Directory of Open Access Journals (Sweden)

    Arita Masanori

    2008-06-01

    Full Text Available Abstract Background To elucidate the interaction of dynamics among modules that constitute biological systems, comprehensive datasets obtained from "omics" technologies have been used. In recent plant metabolomics approaches, the reconstruction of metabolic correlation networks has been attempted using statistical techniques. However, the results were unsatisfactory and effective data-mining techniques that apply appropriate comprehensive datasets are needed. Results Using capillary electrophoresis mass spectrometry (CE-MS and capillary electrophoresis diode-array detection (CE-DAD, we analyzed the dynamic changes in the level of 56 basic metabolites in plant foliage (Oryza sativa L. ssp. japonica at hourly intervals over a 24-hr period. Unsupervised clustering of comprehensive metabolic profiles using Kohonen's self-organizing map (SOM allowed classification of the biochemical pathways activated by the light and dark cycle. The carbon and nitrogen (C/N metabolism in both periods was also visualized as a phenotypic linkage map that connects network modules on the basis of traditional metabolic pathways rather than pairwise correlations among metabolites. The regulatory networks of C/N assimilation/dissimilation at each time point were consistent with previous works on plant metabolism. In response to environmental stress, glutathione and spermidine fluctuated synchronously with their regulatory targets. Adenine nucleosides and nicotinamide coenzymes were regulated by phosphorylation and dephosphorylation. We also demonstrated that SOM analysis was applicable to the estimation of unidentifiable metabolites in metabolome analysis. Hierarchical clustering of a correlation coefficient matrix could help identify the bottleneck enzymes that regulate metabolic networks. Conclusion Our results showed that our SOM analysis with appropriate metabolic time-courses effectively revealed the synchronous dynamics among metabolic modules and elucidated the

  4. Acoustical Direction Finding with Time-Modulated Arrays

    Directory of Open Access Journals (Sweden)

    Ben Clark

    2016-12-01

    Full Text Available Time-Modulated Linear Arrays (TMLAs offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ± 1 ∘ within an angular range of approximately ± 50 ∘ . In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA estimation within ± 2 . 5 ∘ of the target signal is readily achieved inside a ± 45 ∘ range using a single switched input stage and a simple hardware setup.

  5. Space Time – Track Circuits with Trellis Code Modulation

    Directory of Open Access Journals (Sweden)

    Marius Enulescu

    2017-07-01

    Full Text Available The track circuits are very important equipments used in the railway transportation system. Today these are used to send vital information, to the running train, in the same time with the integrity checking of the rail. The actual track circuits have a small problem due to the use of the same transmission medium by the signals containing vital information and the return traction current, the running track rails. But this small problem can produce big disturbances in the train circulation, especially in the rush hours. To improve the data transmission to the train on-board equipment, the implementation of new track circuits using new communication technology were studied. This technology is used by the mobile and satellite communications and applies the principle of diversity encoding both time and space through the use of multiple transmission points of the track circuit signal for telegram which is sent to the train. Since this implementation does not satisfy the intended purpose, other modern communication principles such as 8PSK signals modulation and encoding using Trellis Coded Modulation were developed. This new track circuit aims to solve the problems which appeared in the current operation of track circuits and theoretically manages to transmit vital information to the train on board equipment without being affected by disturbances in electric traction transport systems.

  6. Time-to-contact estimation modulated by implied friction.

    Science.gov (United States)

    Yamada, Yuki; Sasaki, Kyoshiro; Miura, Kayo

    2014-01-01

    The present study demonstrated that friction cues for target motion affect time-to-contact (TTC) estimation. A circular target moved in a linear path with a constant velocity and was gradually occluded by a static rectangle. The target moved with forward and backward spins or without spin. Observers were asked to respond at the time when the moving target appeared to pass the occluder. The results showed that TTC was significantly longer in the backward spin condition than in the forward and without-spin conditions. Moreover, similar results were obtained when a sound was used to imply friction. Our findings indicate that the observer's experiential knowledge of motion coupled with friction intuitively modulated their TTC estimation.

  7. Halogen-aromatic π-interactions modulate inhibitor residence time.

    Science.gov (United States)

    Heroven, Christina; Georgi, Victoria; Ganotra, Gaurav K; Brennan, Paul E; Wolfreys, Finn; Wade, Rebecca C; Fernández-Montalván, Amaury E; Chaikuad, Apirat; Knapp, Stefan

    2018-03-30

    Prolonged drug residence times may result in longer lasting drug efficacy, improved pharmacodynamic properties and "kinetic selectivity" over off-targets with fast drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Here, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5-iodotubercidin (5-iTU) derivatives as a model for an archetypal active state (type I) kinase-inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. This key interaction is dependent on the interactions with an aromatic residue in the gatekeeper position and we observe this interaction in other kinases with an aromatic gatekeeper residue. We provide a detailed mechanistic characterization of the halogen-aromatic π interactions in the haspin-inhibitor complexes by means of kinetic, thermodynamic, and structural measurements along with binding energy calculations. Since halogens are frequently used in drugs and aromatic residues are often present in the binding sites of proteins, our results provide a compelling rationale for introducing aromatic-halogen interactions to prolong drug-target residence times. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  9. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    Science.gov (United States)

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    up to 10 days, when alkaline phosphatase (ALP) activity and osteogenic transcription factors were up-modulated. Altogether, our results showed for the first time that nano hydroxyapatite-blasted titanium surface promotes crucial intracellular signaling network responsible for cell adapting on the Ti-surface.Biotechnol. Bioeng. 2017;114: 1888-1898. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Time and motion simulation of the WRAP Module 1 Facility

    International Nuclear Information System (INIS)

    Van Zanten, K.D.; Weidert, J.R.

    1993-02-01

    A Time and Motion simulation model was developed for the Waste Receiving and Processing (WRAP) Module 1 Facility which will be located at the Hanford site. The simulation model was developed using the WITNESS computer program licensed from AT ampersand T ISTEL. The model simulates the movement of 6,825 drums per year of transuranic (TRU) and low level waste (LLW) through the WRAP 1 Facility. In the WRAP 1 Facility, four main areas were modeled: Receiving, Non-Destructive Examination/Non-Destructive Assay (NDE/NDA), Waste Process and Shipping. Movement of waste drums through the plant is accomplished with forklifts, roller conveyors, two automated guided vehicles (AGV's), lift tables, jib cranes and pallet transfer carts. In-plant drum storage is provided by an automated storage and retrieval system (ASRS) for palletized drums in the Receiving/Shipping areas, a 12-drum storage carousel in the NDE/NDA area and a 24-drum storage carousel in the Waste Process area. The process simulation models use a color graphic display of plant operations to show drum (or pallet) movement throughout the plant. Actual speeds of vehicles, conveyors and forklifts are simulated in the model as well as machine cycle times, delay times, and stop times. Vehicle load and unload times, and acceleration and deceleration are included in the model. Distributions for the arrival of trucks delivering pallets or trucks leaving with waste drums or pallets are included in the model. Random numbers for distributions are assigned to determine the effect of variability on plant performance. The simulation program generates a full range of reports that allows users to determine the plant throughput under a wide variety of conditions. Typically a warm-up period is run to allow drums to complete travel through the system until steady ''steady-state'' operation is achieved. The model is then run at these steady-state conditions for several days, weeks or even years, depending on the complexity of the model

  11. Art in Time and Space: Context Modulates the Relation between Art Experience and Viewing Time

    Science.gov (United States)

    Brieber, David; Nadal, Marcos; Leder, Helmut; Rosenberg, Raphael

    2014-01-01

    The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest), understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior. PMID:24892829

  12. Art in time and space: context modulates the relation between art experience and viewing time.

    Science.gov (United States)

    Brieber, David; Nadal, Marcos; Leder, Helmut; Rosenberg, Raphael

    2014-01-01

    The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest), understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior.

  13. Art in time and space: context modulates the relation between art experience and viewing time.

    Directory of Open Access Journals (Sweden)

    David Brieber

    Full Text Available The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest, understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior.

  14. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  15. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  16. Time-dependent corticosteroid modulation of prefrontal working memory processing

    NARCIS (Netherlands)

    Henckens, Marloes J. A. G.; van Wingen, Guido A.; Joëls, Marian; Fernández, Guillén

    2011-01-01

    Corticosteroids are potent modulators of human higher cognitive function. They are released in response to stress, and are thought to be involved in the modulation of cognitive function by inducing distinct rapid nongenomic, and slow genomic changes, affecting neural plasticity throughout the brain.

  17. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  18. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2013-11-01

    Prism modules of 20 nm-, 40 nm-, and 60 nm-thick spin-coated silver films both without and with an upper 100 nm-thick spin-coated polymer layer were fabricated for surface plasmon resonance (SPR) image sensor applications. The prism modules were applied to an SPR image sensor system. The coefficients of determination (R2s) for the 20 nm-, 40 nm- and 60 nm-thick silver films without the polymer layer were 0.9231, 0.9901, and 0.9889, respectively, and with the polymer layer 0.9228, 0.9951, and 0.9880, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The upper polymer layer has no effect on the R2. The prism modules of the 40-nm-thick spin-coated silver films had the highest R2 value of approximately 0.99. The durability of the 40 nm-thick spin-coated silver film with the 100 nm-thick polymer layer is much better than that without the upper low-loss polymer layer. The developed SPR image sensor module of the 40 nm-thick spin-coated silver film with the upper 100 nm-thick low-loss polymer film is expected to be a very cost-effective and robust solution because the films are formed at low temperatures in a short period of time without requiring a vacuum system and are very durable.

  19. A Pulse Power Modulator System for Commercial High Power Ion Beam Surface Treatment Applications

    International Nuclear Information System (INIS)

    Barrett, D.M.; Cockreham, B.D.; Dragt, A.J.; Ives, H.C.; Neau, E.L.; Reed, K.W.; White, F.E.

    1999-01-01

    The Ion Beam Surface Treatment (lBESTrM) process utilizes high energy pulsed ion beams to deposit energy onto the surface of a material allowing near instantaneous melting of the surface layer. The melted layer typically re-solidifies at a very rapid rate which forms a homogeneous, fine- grained structure on the surface of the material resulting in significantly improved surface characteristics. In order to commercialize the IBESTTM process, a reliable and easy-to-operate modulator system has been developed. The QM-I modulator is a thyratron-switched five-stage magnetic pulse compression network which drives a two-stage linear induction adder. The adder provides 400 kV, 150 ns FWHM pulses at a maximum repetition rate of 10 pps for the acceleration of the ion beam. Special emphasis has been placed upon developing the modulator system to be consistent with long-life commercial service

  20. 2D surface temperature measurement of plasma facing components with modulated active pyrometry

    International Nuclear Information System (INIS)

    Amiel, S.; Loarer, T.; Pocheau, C.; Roche, H.; Gauthier, E.; Aumeunier, M.-H.; Courtois, X.; Jouve, M.; Balorin, C.; Moncada, V.; Le Niliot, C.; Rigollet, F.

    2014-01-01

    In nuclear fusion devices, such as Tore Supra, the plasma facing components (PFC) are in carbon. Such components are exposed to very high heat flux and the surface temperature measurement is mandatory for the safety of the device and also for efficient plasma scenario development. Besides this measurement is essential to evaluate these heat fluxes for a better knowledge of the physics of plasma-wall interaction, it is also required to monitor the fatigue of PFCs. Infrared system (IR) is used to manage to measure surface temperature in real time. For carbon PFCs, the emissivity is high and known (ε ∼ 0.8), therefore the contribution of the reflected flux from environment and collected by the IR cameras can be neglected. However, the future tokamaks such as WEST and ITER will be equipped with PFCs in metal (W and Be/W, respectively) with low and variable emissivities (ε ∼ 0.1–0.4). Consequently, the reflected flux will contribute significantly in the collected flux by IR camera. The modulated active pyrometry, using a bicolor camera, proposed in this paper allows a 2D surface temperature measurement independently of the reflected fluxes and the emissivity. Experimental results with Tungsten sample are reported and compared with simultaneous measurement performed with classical pyrometry (monochromatic and bichromatic) with and without reflective flux demonstrating the efficiency of this method for surface temperature measurement independently of the reflected flux and the emissivity

  1. Developing an optical chopper-modulated capacitive probe for measuring surface charge.

    Science.gov (United States)

    Ugolini, D; McKinney, R; Harry, G M

    2007-04-01

    Gravitational-wave observatories such as Laser Interferometer Gravitational-Wave Observatory (LIGO) use suspended optics in a Michelson interferometer configuration to measure strains in space between 10 Hz and 3 kHz. One potential noise source in this frequency range is the buildup and motion of surface charge on the optics, which can generate fluctuating electric fields, interfere with position control, and reduce reflectance by attracting dust to the optical surface. We have developed a capacitive probe to measure the magnitude and relaxation time of surface charge deposited on smaller test optics in high vacuum ( approximately 10(-5) Torr). Our device modulates capacitance with a tuning-fork optical chopper between probe and sample, chosen for vacuum compatibility and minimal cost. We have found that the probe has a resolution of (3.5+/-0.5)x10(5) e(-)cm(2) in air, on the order of charging levels that could contribute noise to Advanced LIGO, and sufficient for measuring relaxation times on test optics.

  2. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  3. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order perturbation theory we establish the governing equations for the full nonequilibrium...... problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  4. Reference Reactor Module for the Affordable Fission Surface Power System

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Amiri, Benjamin W.; Marcille, Thomas F.

    2008-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The requirements of many surface power applications allow the consideration of systems with much less development risk than most other space reactor applications, because of modest power (10s of kWe) and no driving need for minimal mass (allowing temperatures 2 -fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. One of the important 'affordability' attributes is that the concept has been designed to minimize both the technical and programmatic safety risk

  5. Scattering of a TEM wave from a time varying surface

    Science.gov (United States)

    Elcrat, Alan R.; Harder, T. Mark; Stonebraker, John T.

    1990-03-01

    A solution is given for reflection of a plane wave with TEM polarization from a planar surface with time varying properties. These properties are given in terms of the currents on the surface. The solution is obtained by numerically solving a system of differential-delay equations in the time domain.

  6. Modulation of the Casimir force by laser pulses: Influence of oxide films on the silicon surface

    Science.gov (United States)

    Klimchitskaya, G. L.; Bukina, M. N.; Churkin, Yu. V.; Yurova, V. A.

    2010-10-01

    The possibility of modulating the Casimir force that acts in an air medium between a gold sphere and a silicon plate irradiated by laser pulses has been studied. It has been demonstrated that the oxide film that is formed on the silicon surface in air hardly affects the possibility of modulating the Casimir force when the distances between interacting bodies are of the order of 100 nm. With an increase in the distance, the modulation depth decreases; however, this region is of less practical interest, because the Casimir forces become too weak.

  7. 3D surface configuration modulates 2D symmetry detection.

    Science.gov (United States)

    Chen, Chien-Chung; Sio, Lok-Teng

    2015-02-01

    We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Vertical-Cavity Surface-Emitting Lasers: Advanced Modulation Formats and Coherent Detection

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto

    transmission link with real-time demodulation. Furthermore, advanced modulation formats are considered in this thesis to expand the state-of-the-art in high-speed short-range data transmission system based on VCSELs. First, directly modulation of a VCSEL with a 4-level pulse amplitude modulation (PAM-4) signal...... at 50 Gb/s is achieved. This is the highest data rate ever transmitted with a single VCSEL at the time of this thesis work. The capacity of this system is increased to 100 Gb/s by using polarization multiplexing emulation and forward error correction techniques. Compared to a non return-to-zero on-off...

  9. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Directory of Open Access Journals (Sweden)

    Yunhong Liang

    2017-03-01

    Full Text Available Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing, an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L, interval (S, and height (H of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  10. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  11. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  12. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    Science.gov (United States)

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  13. Terahertz modulation based on surface plasmon resonance by self-gated graphene

    Science.gov (United States)

    Qian, Zhenhai; Yang, Dongxiao; Wang, Wei

    2018-05-01

    We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.

  14. Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2010-01-01

    We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....

  15. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    Science.gov (United States)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P.; Landes, Christy F.

    2013-09-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors.

  16. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    International Nuclear Information System (INIS)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F

    2013-01-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. (technical note)

  17. Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems

    CERN Document Server

    Burban, Igor

    2017-01-01

    In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \\mathbb{k} x,y,z/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.

  18. MTR2: a discriminator and dead-time module used in counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, J

    2000-03-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard.

  19. MTR2: a discriminator and dead-time module used in counting systems

    International Nuclear Information System (INIS)

    Bouchard, J.

    2000-01-01

    In the field of radioactivity measurement, there is a constant need for highly specialized electronic modules such as ADCs, amplifiers, discriminators, dead-time modules, etc. But sometimes it is almost impossible to find on the market the modules having the performances corresponding to our needs. The purpose of the module presented here, called MTR2 (Module de Temps-mort Reconductible), is to process, in terms of pulse height discrimination and dead-time corrections, the pulses delivered by the detectors used in counting systems. This dead-time, of the extendible type, is triggered by both the positive and negative parts of the incoming pulse and the dead-time corrections are made according to the live-time method. This module, which has been developed and tested at LPRI, can be used alone in simple counting channels or in more complex systems such as coincidence systems. The philosophy governing the choice and the implementation of this type of dead-time as well as the system used for the dead-time corrections is presented. The electronic scheme and the performances are also presented. This module is available in the NIM standard

  20. Nuclear Technology. Course 27: Metrology. Module 27-4, Angle Measurement Instruments, Optical Projections and Surface Texture Gages.

    Science.gov (United States)

    Selleck, Ben; Espy, John

    This fourth in a series of eight modules for a course titled Metrology describes the universal bevel protractor and the sine bar, the engineering microscope and optical projector, and several types of surface texture gages. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  1. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  2. Applying Swarm Optimization Techniques to Calculate Execution Time for Software Modules

    OpenAIRE

    Nagy Ramadan Darwish; Ahmed A. Mohamed; Bassem S. M. Zohdy

    2016-01-01

    This research aims to calculate the execution time for software modules, using Particle Swarm Optimization (PSO) and Parallel Particle Swarm Optimization (PPSO), in order to calculate the proper time. A comparison is made between MATLAB Code without Algorithm (MCWA), PSO and PPSO to figure out the time produced when executing any software module. The proposed algorithms which include the PPSO increase the speed of executing the algorithm itself, in order to achieve quick results. This researc...

  3. TOF-SEMSANS—Time-of-flight spin-echo modulated small-angle neutron scattering

    NARCIS (Netherlands)

    Strobl, M.; Tremsin, A.S.; Hilger, A.; Wieder, F.; Kardjilov, N.; Manke, I.; Bouwman, W.G.; Plomp, J.

    2012-01-01

    We report on measurements of spatial beam modulation of a polarized neutron beam induced by triangular precession regions in time-of-flight mode and the application of this novel technique spin-echo modulated small-angle neutron scattering (SEMSANS) to small-angle neutron scattering in the very

  4. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  5. Photonic Mach-Zehnder modulators driven by surface acoustic waves in AlGaAs technology

    Science.gov (United States)

    Crespo-Poveda, A.; Gargallo, B.; Artundo, I.; Doménech, J. D.; Muñoz, P.; Hey, R.; Biermann, K.; Tahraoui, A.; Santos, P. V.; Cantarero, A.; de Lima, M. M.

    2014-03-01

    In this paper, photonic devices driven by surface acoustic waves and operating in the GHz frequency range are presented. The devices were designed and fabricated in (Al,Ga)As technology. In contrast to previously realized modulators, where part of the light transmission is lost due to destructive interference, in the present devices light only switches paths, avoiding losses. One of the devices presents two output channels with 180°-dephasing synchronization. Odd multiples of the fundamental driving frequency are enabled by adjusting the applied acoustic power. A second and more complex photonic integrated device, based on the acoustic modulation of tunable Arrayed Waveguide Gratings, is also proposed.

  6. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  7. Influence of convection at outer ceramic surfaces on the characterization of thermoelectric modules by impedance spectroscopy

    Science.gov (United States)

    Beltrán-Pitarch, Braulio; García-Cañadas, Jorge

    2018-02-01

    Impedance spectroscopy is a useful method for the characterization of thermoelectric (TE) modules. It can determine with high accuracy the module's dimensionless figure of merit (zT) as well as the average TE properties of the module's thermoelements. Interpretation of impedance results requires the use of a theoretical model (equivalent circuit), which provides the desired device parameters after a fitting is performed to the experimental results. Here, we extend the currently available equivalent circuit, only valid for adiabatic conditions, to account for the effect of convection at the outer surface of the module ceramic plates, which is the part of the device where convection is more prominent. This is performed by solving the heat equation in the frequency domain including convection heat losses. As a result, a new element (convection resistance) appears in the developed equivalent circuit, which starts to influence at mid-low frequencies, causing a decrease of the typically observed semicircle in the impedance spectrum. If this effect is not taken into account, an underestimation of the zT occurs when measurements are performed under room conditions. The theoretical model is validated by experimental measurements performed in a commercial module with and without vacuum. Interestingly, the use of the new equivalent circuit allows the determination of the convection heat transfer coefficient (h), if the module's Seebeck coefficient is known, and an impedance measurement in vacuum is performed, opening up the possibility to develop TE modules as h sensors. On the other hand, if h is known, all the properties of the module (zT, ohmic (internal) resistance, average Seebeck coefficient and average thermal conductivity of the thermoelements and thermal conductivity of the ceramics) can be obtained from one impedance measurement in vacuum and another measurement under room conditions.

  8. Time transfer capability of standard small form factor pluggable laser modules based on photon counting approach

    Science.gov (United States)

    Trojanek, Pavel; Prochazka, Ivan; Blazej, Josef

    2017-05-01

    We are reporting on timing parameters of commonly used standard Small Form Factor Pluggable (SFP) laser modules using single photon counting method. Photon counting is a promising approach for laser time transfer via optical fiber communication hardware. The sub-picosecond precision and stability may be achieved. We have performed several experiments with the aim to measure main parameters of the modules, such as time delay precision, time stability and temperature stability, all being critical for optical time transfer applications. Two standard 16 and 10 Gbit/s at 850 nm SFP modules were examined. The ultimate precision of possible time transfer of 800 fs for averaging times of hours was achieved. The modules together with their driving circuits exhibited very good temperature stability. The temperature drift as low as 300+/-200 fs/K was measured. The achieved timing parameters will enable to use the standard SFP modules for a new method of two way time transfer where the time differences between two distant time scales are measured in parallel to data transfer on existing optical data links without any communication interference.

  9. Detection of the Defect on the Metal Surface Using the Modulated Microwave

    International Nuclear Information System (INIS)

    Joo, G. T.; Jung, S. H.; Song, K. Y.; Kim, J. O.

    1999-01-01

    The defects on the metal surface, such as the ended circular pressed hole, the penetrated circular drilled hole, and the linear hollow lanes have been investigated by means of the microwave. In this experiment, frequency was set at 9.2GHz with 3kHz modulation, and the methods of reflection, transmission, fixed carrier frequency, and mod-demodulated technique have been used for investigating defects. The magnitudes of the microwave signals have been changed at the ended circular pressed hole and the penetrated circular drilled hole. The defect sizes that were estimated from the reflected microwave signals had the dimensions enlarged by twice the original size of the penetrated circular drilled hole and 2.5 times the original size of the ended circular pressed hole. The magnitudes of the reflected microwave signals from the linear hollow lane have increased with expansion of the width of the notch. In the linear hollow lane with the depth of 2.4mm, the reflected microwave signals versus the defect widths had a maximum value at the defect width of 50mm, and in the linear hollow lanes with the depths of 1.2mm and 0.45mm, the reflected microwave signals versus the defects widths had the maximum values each at the defect depths of 55mm

  10. Tracking the Reorganization of Module Structure in Time-Varying Weighted Brain Functional Connectivity Networks.

    Science.gov (United States)

    Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert

    2018-05-01

    Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.

  11. Single-Server Queueing System with Markov-Modulated Arrivals and Service Times

    OpenAIRE

    Dimitrov, Mitko

    2011-01-01

    Key words: Markov-modulated queues, waiting time, heavy traffic. Markov-modulated queueing systems are those in which the input process or service mechanism is influenced by an underlying Markov chain. Several models for such systems have been investigated. In this paper we present heavy traffic analysis of single queueing system with Poisson arrival process whose arrival rate is a function of the state of Markov chain and service times depend on the state of the same Markov chain at the e...

  12. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  13. Towards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix.

    Science.gov (United States)

    Damanik, Febriyani F R; Rothuizen, Tonia C; van Blitterswijk, Clemens; Rotmans, Joris I; Moroni, Lorenzo

    2014-09-19

    Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tissue regeneration applications. Results showed tunable surface topography, roughness, wettability, and chemistry by varying treatment type and exposure, allowing for the first time to correlate the effect of these surface properties on cell attachment, morphology, strength and proliferation, as well as proinflammatory (IL-1β, IL-6) and antiinflammatory cytokines (TGF-β1, IL-10) secreted in medium, and protein expression of collagen and elastin. Surface microstructuring, derived from chloroform partial etching, increased surface roughness and oxygen content. This resulted in enhanced cell adhesion, strength and proliferation as well as a balance of soluble factors for optimum collagen and elastin synthesis for tissue regeneration. By linking surface parameters to cell activity, we could determine the fate of the regenerated tissue to create successful soft tissue-engineered replacement.

  14. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S. (IIT); (Vermont); (BU)

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  15. Driving time modulates accommodative response and intraocular pressure.

    Science.gov (United States)

    Vera, Jesús; Diaz-Piedra, Carolina; Jiménez, Raimundo; Morales, José M; Catena, Andrés; Cardenas, David; Di Stasi, Leandro L

    2016-10-01

    Driving is a task mainly reliant on the visual system. Most of the time, while driving, our eyes are constantly focusing and refocusing between the road and the dashboard or near and far traffic. Thus, prolonged driving time should produce visual fatigue. Here, for the first time, we investigated the effects of driving time, a common inducer of driver fatigue, on two ocular parameters: the accommodative response (AR) and the intraocular pressure (IOP). A pre/post-test design has been used to assess the impact of driving time on both indices. Twelve participants (out of 17 recruited) completed the study (5 women, 24.42±2.84years old). The participants were healthy and active drivers with no visual impairment or pathology. They drove for 2h in a virtual driving environment. We assessed AR and IOP before and after the driving session, and also collected subjective measures of arousal and fatigue. We found that IOP and AR decreased (i.e., the accommodative lag increased) after the driving session (p=0.03 and p<0.001, respectively). Moreover, the nearest distances tested (20cm, 25cm, and 33cm) induced the highest decreases in AR (corrected p-values<0.05). Consistent with these findings, the subjective levels of arousal decreased and levels of fatigue increased after the driving session (all p-values<0.001). These results represent an innovative step towards an objective, valid, and reliable assessment of fatigue-impaired driving based on visual fatigue signs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Real Time Physics Module 1: Mechanics, 2nd Edition

    Science.gov (United States)

    Sokoloff, David R.

    2004-01-01

    Lab 1: Introduction to Motion. Lab 2: Changing Motion. Lab 3: Force and Motion. Lab 4: Combining Forces. Lab 5: Force, Mass, and Acceleration. Lab 6: Gravitational Forces. Lab 7: Passive Forces and Newton's Laws. Lab 8: One-Dimensional Collisions. Lab 9: Newton's Third Law and Conservation.of Momentum. Lab 10: Two-Dimensional Motion (Projectile Motion). Lab 11: Work and Energy. Lab 12: Conservation of Energy. Appendix A: RealTime Physics Mechanics. Experiment Configuration. Files.

  17. A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors

    Science.gov (United States)

    Haddad, H.; Loison, R.; Gillard, R.; Harmouch, A.; Jrad, A.

    2018-02-01

    This study proposes a new approach to flatten retrodirective corner reflectors. The proposed method enables compact reflectors via Transformation Optics (TO) combined with Surface Impedance Modulation (SIM). This combination permits to relax the constraints on the anisotropic material resulting from the TO. Phase gradient approach is generalized to be used within anisotropic media and is implemented with SIM. Different reflector setups are designed, simulated and compared for fop = 8GHz using ANSYS® HFSS® in order to validate the use of such a combination.

  18. Non-Contact Surface Roughness Measurement by Implementation of a Spatial Light Modulator.

    Science.gov (United States)

    Aulbach, Laura; Salazar Bloise, Félix; Lu, Min; Koch, Alexander W

    2017-03-15

    The surface structure, especially the roughness, has a significant influence on numerous parameters, such as friction and wear, and therefore estimates the quality of technical systems. In the last decades, a broad variety of surface roughness measurement methods were developed. A destructive measurement procedure or the lack of feasibility of online monitoring are the crucial drawbacks of most of these methods. This article proposes a new non-contact method for measuring the surface roughness that is straightforward to implement and easy to extend to online monitoring processes. The key element is a liquid-crystal-based spatial light modulator, integrated in an interferometric setup. By varying the imprinted phase of the modulator, a correlation between the imprinted phase and the fringe visibility of an interferogram is measured, and the surface roughness can be derived. This paper presents the theoretical approach of the method and first simulation and experimental results for a set of surface roughnesses. The experimental results are compared with values obtained by an atomic force microscope and a stylus profiler.

  19. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  20. Elastic Reverse Time Migration (RTM) From Surface Topography

    Science.gov (United States)

    Akram, Naveed; Chen, Xiaofei

    2017-04-01

    Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.

  1. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  2. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    Directory of Open Access Journals (Sweden)

    Joana P Gonçalves

    Full Text Available Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1 apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2 ignore local patterns, abundant in most interesting cases of transcriptional activity; (3 neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4 limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots. Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in

  3. Optimization of Modulator and Circuits for Low Power Continuous-Time Delta-Sigma ADC

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Bruun, Erik

    2014-01-01

    This paper presents a new optimization method for achieving a minimum current consumption in a continuous-time Delta-Sigma analog-to-digital converter (ADC). The method is applied to a continuous-time modulator realised with active-RC integrators and with a folded-cascode operational transconduc......- tance amplifier (OTA). Based on a detailed circuit analysis of the integrator and the OTA, key expression are derived relating the biasing current of the OTA to the noise requirements of the integrator. In the optimization the corner frequency of the modulator loop filter and the number of quantizer...... levels are swept. Based on the results of the circuit analysis, for each modulator combination the summed current consumption of the 1st integrator and quantizer of the ADC is determined. By also sweeping the partitioning of the noise power for the different circuit parts, the optimum modulator...

  4. Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation

    International Nuclear Information System (INIS)

    Dalir, Hamed; Ahmed, Moustafa; Bakry, Ahmed; Koyama, Fumio

    2014-01-01

    We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

  5. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  6. Decay of surface nanostructures via long-time-scale dynamics

    International Nuclear Information System (INIS)

    Voter, A.F.; Stanciu, N.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool

  7. Optimization of time distribution for studying the course modules on advanced training of health care administrators

    Directory of Open Access Journals (Sweden)

    Dorovskaya A.l.

    2015-06-01

    Full Text Available The research objective is rational (optimal time management in studying the course modules on Advanced Training of Health Care Administrators. Materials and methods. We conducted expert survey of 73 healthcare administrators from medical organizations of Saratov region. Branch-and-bound method was used for rescheduling the educational program. Results. Both direct and inverse problems have been solved. The direct one refers to time distribution for each module of the advanced Training of Healthcare Administrators course so that the total score is maximum and each module is marked not lower than "satisfactory". The inverse one resulted in achieving minimal time characteristics for varieties of average score. Conclusion. The offered approach allows to solve problems of managing time given for education.

  8. Hold-Up Time Analysis of a DC-Link Module With a Series Voltage Compensator

    DEFF Research Database (Denmark)

    Wang, Huai; Liu, Wenchao; Chung, Henry

    2012-01-01

    A dc-link module composed of dc-link capacitors and a series voltage compensator has been proposed. It has been verified that the module can reduce the dc-link capacitance to 10–20% while achieving a very low voltage ripple across its output terminals. This paper investigates the required dc......-link capacitance when a certain period of hold-up time is considered. Trade-off design conditions are presented and the hold-up time is compared with the solution without the series voltage compensator. The analysis is crucial to power converters connected to critical loads when hold-up time is required...

  9. Karakteristik Life Time dan Efisiensi Modul Surya Berbasis Pewarna Menggunakan Interkoneksi Seri

    Directory of Open Access Journals (Sweden)

    Iqbal Febriana

    2016-06-01

    Full Text Available Sel surya berbasis pewarna atau yang dikenal dengan dye-sensitized solar cell (DSSC merupakan sel surya generasi baru yang bekerja berdasarkan photoelectrochemical. Proses absorpsi cahaya dilakukan oleh molekul pewarna (dye dan proses pemisahan muatan oleh bahan semikonduktor anorganik (dalam penelitian ini digunakan TiO2. Dalam penelitian ini dilakukan pabrikasi modul surya menggunakan lapisan partikel nano TiO2 (non-scattering dan menggunakan campuran lapisan partikel nano TiO2 dengan lapisan partikel sub-mikron TiO2 (scattering. Tujuan penelitian ini adalah untuk mengetahui waktu hidup (life time dan efisiensi modul surya dengan bahan yang berbeda. Pabrikasi modul surya ini menggunakan teknik screen printing. Karakteristik life time diperoleh dari hasil pengukuran I-V yang dilakukan secara manual menggunakan lampu LED 15 Watt dengan intensitas 40 mW/cm2 . Pengujian life time dilakukan selama 500 jam, dan hasilnya menunjukkan bahwa modul surya dengan lapisan scattering dapat mempengaruhi karakteristik life time namun efisiensi yang didapatkan kurang baik yaitu sebesar 0,31% sedangkan modul surya dengan lapisan non-scattering menunjukkan efisiensi yang baik yaitu sebesar 1,83% namun karakteristik life time yang kurang baik.

  10. Experimental search for a time-modulated muon flux from the direction of Cygnus X-3

    International Nuclear Information System (INIS)

    Worstell, W.A.

    1986-01-01

    Two underground experiments have recently reported detection of an anomalously large muon flux from the direction of the binary X-ray source cygnus X-3, with the 4.8-hour period characteristic of this source. A muon flux of the claimed magnitude, combined with constraints from surface observations, is inconsistent with the production of these muons by photons from Cygnus X-3 in normal air showers. This flux would require either unexpected photon interactions at very high energy (>5 TeV)( or a new type of neutral particle in the flux from Cygnus X-3. This thesis documents measurements with the HPW (Harvard-Purdue-Wisconsin) large underground water Cerenkov detector which do not confirm the claimed muon flux. The author places an upper limit on the flux of time-modulated muons from the direction of Cygnus X-3 of 5 x 10 -11 muons-cm -2 sec -1 at a vertical depth of 1450 MWE meters of water equivalent, with 90% confidence. This upper limit may be compared with the flux of 7 x 10 -11 muons-cm 2 sec -1 at a vertical depth of 1800 MWE which was claimed by another experiment. The HPW measurements are consistent with no anomalous muon flux from Cygnus X-3

  11. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability.

    Science.gov (United States)

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M

    2016-12-19

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.

  12. Numerical thermal analysis and optimization of multi-chip LED module using response surface methodology and genetic algorithm

    NARCIS (Netherlands)

    Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.

    2017-01-01

    In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the

  13. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    Remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS) are used to estimate biological heating rate and investigate the biological modulation of the sea surface temperature (SST) in a bulk mixed layer model...

  14. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-01-01

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  15. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface

    International Nuclear Information System (INIS)

    Pantzali, M.N.; Kanaris, A.G.; Antoniadis, K.D.; Mouza, A.A.; Paras, S.V.

    2009-01-01

    In the present work, the effect of the use of a nanofluid in a miniature plate heat exchanger (PHE) with modulated surface has been studied both experimentally and numerically. First, the thermophysical properties (i.e., thermal conductivity, heat capacity, viscosity, density and surface tension) of a typical nanofluid (CuO in water, 4% v/v) were systematically measured. The effect of surface modulation on heat transfer augmentation and friction losses was then investigated by simulating the existing miniature PHE as well as a notional similar PHE with flat plate using a CFD code. Finally, the effect of the nanofluid on the PHE performance was studied and compared to that of a conventional cooling fluid (i.e., water). The results suggest that, for a given heat duty, the nanofluid volumetric flow rate required is lower than that of water causing lower pressure drop. As a result, smaller equipment and less pumping power are required. In conclusion, the use of the nanofluids seems to be a promising solution towards designing efficient heat exchanging systems, especially when the total volume of the equipment is the main issue. The only drawbacks so far are the high price and the possible instability of the nanoparticle suspensions.

  16. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  17. Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate

    Energy Technology Data Exchange (ETDEWEB)

    Buttafava, Mauro, E-mail: mauro.buttafava@polimi.it; Boso, Gianluca; Ruggeri, Alessandro; Tosi, Alberto [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Dalla Mora, Alberto [Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy)

    2014-08-15

    We present the design and characterization of a complete single-photon counting module capable of time-gating a silicon single-photon avalanche diode with ON and OFF transition times down to 110 ps, at repetition rates up to 80 MHz. Thanks to this sharp temporal filtering of incoming photons, it is possible to reject undesired strong light pulses preceding (or following) the signal of interest, allowing to increase the dynamic range of optical acquisitions up to 7 decades. A complete experimental characterization of the module highlights its very flat temporal response, with a time resolution of the order of 30 ps. The instrument is fully user-configurable via a PC interface and can be easily integrated in any optical setup, thanks to its small and compact form factor.

  18. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    International Nuclear Information System (INIS)

    Feng Cun-Fang; Wang Ying-Hai

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach. (general)

  19. In situ targeting TEM8 via immune response and polypeptide recognition by wavelength-modulated surface plasmon resonance biosensor

    Science.gov (United States)

    Wang, Yimin; Luo, Zewei; Liu, Kunping; Wang, Jie; Duan, Yixiang

    2016-01-01

    There is an increasing interest in real-time and in situ monitoring of living cell activities in life science and medicine. This paper reports a whole cell sensing protocol over the interface of Au film coupled in a wavelength-modulated surface plasmon resonance (WMSPR) biosensor. With dual parabolic mirrors integrated in the sensor, the compact and miniaturized instrument shows satisfactory refractive index sensitivity (2220 nm/RIU) and a high resolution of resonance wavelength shift of 0.3 nm to liquid samples. The affinity interactions between the biomarker of human tumor endothelial marker 8 (TEM8) and antibody (Ab) or specific polypeptide (PEP) were firstly introduced to WMSPR biosensor analysis. Both the interaction events of Ab-cell and PEP-cell over the Au film interface can be recognized by the sensor and the balance time of interactions is about 20 min. The concentration range of Ab for quantitative monitoring of the TEM8 expression on human colon carcinoma SW620 cells was investigated. The present low-cost and time-saving method provides a time resolution of binding specificity between Ab/PEP and TEM8 for real-time analysis of antigen on living tumor cell surface. PMID:26822761

  20. Using Multidimensional ADTPE and SVM for Optical Modulation Real-Time Recognition

    Directory of Open Access Journals (Sweden)

    Junyu Wei

    2016-01-01

    Full Text Available Based on the feature extraction of multidimensional asynchronous delay-tap plot entropy (ADTPE and multiclass classification of support vector machine (SVM, we propose a method for recognition of multiple optical modulation formats and various data rates. We firstly present the algorithm of multidimensional ADTPE, which is extracted from asynchronous delay sampling pairs of modulated optical signal. Then, a multiclass SVM is utilized for fast and accurate classification of several widely-used optical modulation formats. In addition, a simple real-time recognition scheme is designed to reduce the computation time. Compared to the existing method based on asynchronous delay-tap plot (ADTP, the theoretical analysis and simulation results show that our recognition method can effectively enhance the tolerance of transmission impairments, obtaining relatively high accuracy. Finally, it is further demonstrated that the proposed method can be integrated in an optical transport network (OTN with flexible expansion. Through simply adding the corresponding sub-SVM module in the digital signal processer (DSP, arbitrary new modulation formats can be recognized with high recognition accuracy in a short response time.

  1. Study on real-time images compounded using spatial light modulator

    Science.gov (United States)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the

  2. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic co...... compounds. We model the physics as a change in the top mirror loss caused by swelling of the polymer upon absorbing the target volatile organic compound. Further we show how acetone vapors at 82 000 ppm concentration can change the polymer coated VCSEL output power by 20 mu W....

  3. Time-dependent changes in copper indium gallium (di)selenide and cadmium telluride photovoltaic modules due to outdoor exposure

    Science.gov (United States)

    Choi, Sungwoo; Sato, Ritsuko; Ishii, Tetsuyuki; Chiba, Yasuo; Masuda, Atsushi

    2017-08-01

    The performance of photovoltaic (PV) modules deteriorates with time due to outdoor exposure. We investigated the time-dependent changes in PV modules and evaluated the amount of power generated during their lifetime. Once a year, the exposed modules were removed and measured under standard test conditions using a solar simulator. Their outputs were measured indoors and normalized to nominal values. In addition, the relationship between the indoor measurement and the energy yield for thin-film PV modules will be reported. In CIGS PV modules, the normalized maximum power (P MAX) and performance ratio (PR) differ with the type of module. The P MAX and PR of CdTe PV modules significantly decrease after outdoor exposure for three years. These results help to determine the characteristics of the time-dependent changes in the P MAX of PV modules due to outdoor exposure.

  4. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    Science.gov (United States)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in

  5. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alexander Klein

    2014-11-01

    Full Text Available We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS with the enhanced noise rejection of wavelength modulation spectroscopy (WMS. In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS and an additional 20 kHz sinusoidal modulation (WMS. The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K. A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

  6. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    Science.gov (United States)

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  7. Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders

    International Nuclear Information System (INIS)

    Oh, J.S.; Cho, M.H.; Namkung, W.; Chung, K.H.; Shintake, T.; Matsumoto, H.

    2000-01-01

    In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ∼0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, V s xT p , where V s is load voltage and T p is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time

  8. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  9. Titanium surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts.

    Science.gov (United States)

    Schwartz-Filho, Humberto Osvaldo; Morandini, Ana Carolina Faria; Ramos-Junior, Erivan Schnaider; Jimbo, Ryo; Santos, Carlos Ferreira; Marcantonio, Elcio; Wennerberg, Ann; Marcantonio, Rosemary Adriana Chiérici

    2012-10-01

    Implant topography is an important factor that influences many cell types. To understand the role of topography in the inflammatory events, we evaluated the response of human gingival fibroblasts (HGFs) by the release pattern of cytokines. HGFs were cultured on Ti discs for 24 and 48 h. Four different surface treatments were used: machining method (turned), blasting followed by an acid-etching method (BAE), oxidative nanopatterning (ON) method, and an association of blasting followed by an acid-etching plus oxidative nanopatterning (BAE+ON) method. Extracellular levels of IL-6, IL-8, transforming growth factor beta (TGF-β), IL-4, and IL-10 were measured by enzyme-linked immunosorbant assay. Increased levels of IL-6 and IL-8 were observed in all surfaces after 24 h which decreased after 48 h. BAE, ON, and BAE+ON surfaces showed a reduction in IL-6 levels compared with the turned after 48 h (p < 0.05). On one hand, IL-8 production was lower in BAE+ON in comparison to the turned surface (p < 0.05). On the other hand, IL-4 showed increased levels with 48 h, which were significantly different between turned, BAE, and ON surfaces, but not with BAE+ON. Additionally, TGF-β and IL-10 production were not detected. This study indicates that nanotopography might be important in the modulation of the inflammatory response in cultured HGFs. Copyright © 2012 Wiley Periodicals, Inc.

  10. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.

    2009-09-11

    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  11. Generalized synchronization-based multiparameter estimation in modulated time-delayed systems

    Science.gov (United States)

    Ghosh, Dibakar; Bhattacharyya, Bidyut K.

    2011-09-01

    We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

  12. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    Science.gov (United States)

    Kaplan, A. F. H.

    2012-10-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO2-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  13. A 10 MHz Bandwidth Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger; Bruun, Erik

    2016-01-01

    A fourth-order 1-bit continuous-time delta-sigma modulator designed in a 65 nm process for portable ultrasound scanners is presented in this paper. The loop filter consists of RCintegrators, with programmable capacitor arrays and resistors, and the quantizer is implemented with a high-speed clocked...

  14. Goal-driven modulations as a function of time in saccadic target selection

    NARCIS (Netherlands)

    van Zoest, L.J.F.M.; Donk, M.

    2008-01-01

    Four experiments were performed to investigate the contribution of goal-driven modulation in saccadic target selection as a function of time. Observers were required to make an eye movement to a prespecified target that was concurrently presented with multiple nontargets and possibly one distractor.

  15. Double modulation pyrometry: A radiometric method to measure surface temperatures of directly irradiated samples

    Science.gov (United States)

    Potamias, Dimitrios; Alxneit, Ivo; Wokaun, Alexander

    2017-09-01

    The design, implementation, calibration, and assessment of double modulation pyrometry to measure surface temperatures of radiatively heated samples in our 1 kW imaging furnace is presented. The method requires that the intensity of the external radiation can be modulated. This was achieved by a rotating blade mounted parallel to the optical axis of the imaging furnace. Double modulation pyrometry independently measures the external radiation reflected by the sample as well as the sum of thermal and reflected radiation and extracts the thermal emission as the difference of these signals. Thus a two-step calibration is required: First, the relative gains of the measured signals are equalized and then a temperature calibration is performed. For the latter, we transfer the calibration from a calibrated solar blind pyrometer that operates at a different wavelength. We demonstrate that the worst case systematic error associated with this procedure is about 300 K but becomes negligible if a reasonable estimate of the sample's emissivity is used. An analysis of the influence of the uncertainties in the calibration coefficients reveals that one (out of the five) coefficient contributes almost 50% to the final temperature error. On a low emission sample like platinum, the lower detection limit is around 1700 K and the accuracy typically about 20 K. Note that these moderate specifications are specific for the use of double modulation pyrometry at the imaging furnace. It is mainly caused by the difficulty to achieve and maintain good overlap of the hot zone with a diameter of about 3 mm Full Width at Half Height and the measurement spot both of which are of similar size.

  16. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    Science.gov (United States)

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico

    2015-11-01

    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  17. New Module to Simulate Groundwater-Surface Water Interactions in Small-Scale Alluvial Aquifer System.

    Science.gov (United States)

    Flores, L.

    2017-12-01

    Streamflow depletion can occur when groundwater pumping wells lower water table elevations adjacent to a nearby stream. Being able to accurately model the severity of this process is of critical importance in semi-arid regions where groundwater-surface water interactions affect water rights and the sustainability of water resource practices. The finite-difference flow model MODFLOW is currently the standard for estimating groundwater-surface water interactions in many regions in the western United States. However, certain limitations of the model persist when highly-resolved spatial scales are used to represent the stream-aquifer system, e.g. when the size of computational grid cells is much less than the river width. In this study, an external module is developed and linked with MODFLOW that (1) allows for multiple computational grid cells over the width of the river; (2) computes streamflow and stream stage along the length of the river using the one-dimensional (1D) steady (over a stress period) shallow water equations, which allows for more accurate stream stages when normal flow cannot be assumed or a rating curve is not available; and (3) incorporates a process for computing streamflow loss when an unsaturated zone develops under the streambed. Use of the module not only provides highly-resolved estimates of streamflow depletion, but also of streambed hydraulic conductivity. The new module is applied to the stream-aquifer alluvial system along the South Platte River south of Denver, Colorado, with results tested against field-measured groundwater levels, streamflow, and streamflow depletion.

  18. A surface plasmon resonance interferometer based on spatial phase modulation for protein array detection

    Science.gov (United States)

    Yu, Xinglong; Ding, Xiang; Liu, Fangfang; Wei, Xing; Wang, Dingxin

    2008-01-01

    Thousands of kinds of proteins exist in a single cell. Proteomics research aims to characterize these proteins and simultaneously analyse modifications and interactions on a large scale. Here we present a label-free surface plasmon resonance (SPR) imaging interferometer based on spatial phase modulation, which can be useful in this field. It consists of a light source, a SPR sensing unit, a special phase modulator, a photoelectric conversion unit and a computer. Collimated light is projected into a prism and reflected at the gold-glass interface. The p- and s-polarized components of the reflected light pass through a one-dimensional beam expander and a Wollaston prism, and form an interference pattern on a CCD. Interference images are acquired and transferred to the computer for data processing. Protein interaction on the gold surface leads to a local refractive index change and results in interference fringe phase shift. By calculating the phase shift, interaction information can be obtained. It is demonstrated that this technique can detect different concentrations of NaCl solutions, and the phase change generated by a 0.9% NaCl solution is about 10°. In protein-protein interaction experiments, a model system of rabbit IgG and goat-anti-rabbit IgG is tested. The maximum phase change is up to 12°. The phase resolution of the system is 0.2°, equivalent to the refractive index resolution of 3 × 10-5 RIU, and this value can be improved to 2 × 10-6 RIU just by increasing the gold thickness of the sensing chip. It is concluded that the sensitivity of the interferometer is enough to achieve larger capacity than that detected by the present protein micro-array products. These results suggest that the SPR interferometer based on spatial phase modulation provides a potential facility to meet the requirements in proteomics research.

  19. Pulse Splitting for Harmonic Beamforming in Time-Modulated Linear Arrays

    Directory of Open Access Journals (Sweden)

    Lorenzo Poli

    2014-01-01

    Full Text Available A novel strategy for harmonic beamforming in time-modulated linear arrays is proposed. The pulse splitting technique is exploited to simultaneously generate two harmonic patterns, one at the central frequency and another at a preselected harmonic of arbitrary order, while controlling the maximum level of the remaining sideband radiations. An optimization strategy based on the particle swarm optimizer is developed in order to determine the optimal parameters describing the pulse sequence used to modulate the excitation weights of the array elements. Representative numerical results are reported and discussed to point out potentialities and limitations of the proposed approach.

  20. Controlling Gel Structure to Modulate Cell Adhesion and Spreading on the Surface of Microcapsules.

    Science.gov (United States)

    Zheng, Huizhen; Gao, Meng; Ren, Ying; Lou, Ruyun; Xie, Hongguo; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-08-03

    The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.

  1. Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique

    Science.gov (United States)

    Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge

    2017-09-01

    Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.

  2. Time-domain effects on error rates of multilevel digital pulse interval modulation systems

    Science.gov (United States)

    Wei, Wei; Zhang, Xiaohui; Rao, Jionghui; Pan, Chen

    2011-10-01

    A channel discretization was applied to investigate time-domain effects on error rates of Multilevel Digital Pulse Interval Modulation (MDPIM) underwater optical wireless communication systems imposed by water scattering. Taking time domain dispersion into account, package error rates of MDPIM were analyzed. The deterioration of package error rates were computed at various link ranges and transmitted rates. Theory model is an agreement with Monte Carlo simulation.

  3. Differential Space-Time Block Code Modulation for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2002-01-01

    Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.

  4. Deepwater Horizon - Estimating surface oil volume distribution in real time

    Science.gov (United States)

    Lehr, B.; Simecek-Beatty, D.; Leifer, I.

    2011-12-01

    Spill responders to the Deepwater Horizon (DWH) oil spill required both the relative spatial distribution and total oil volume of the surface oil. The former was needed on a daily basis to plan and direct local surface recovery and treatment operations. The latter was needed less frequently to provide information for strategic response planning. Unfortunately, the standard spill observation methods were inadequate for an oil spill this size, and new, experimental, methods, were not ready to meet the operational demands of near real-time results. Traditional surface oil estimation tools for large spills include satellite-based sensors to define the spatial extent (but not thickness) of the oil, complemented with trained observers in small aircraft, sometimes supplemented by active or passive remote sensing equipment, to determine surface percent coverage of the 'thick' part of the slick, where the vast majority of the surface oil exists. These tools were also applied to DWH in the early days of the spill but the shear size of the spill prevented synoptic information of the surface slick through the use small aircraft. Also, satellite images of the spill, while large in number, varied considerably in image quality, requiring skilled interpretation of them to identify oil and eliminate false positives. Qualified staff to perform this task were soon in short supply. However, large spills are often events that overcome organizational inertia to the use of new technology. Two prime examples in DWH were the application of hyper-spectral scans from a high-altitude aircraft and more traditional fixed-wing aircraft using multi-spectral scans processed by use of a neural network to determine, respectively, absolute or relative oil thickness. But, with new technology, come new challenges. The hyper-spectral instrument required special viewing conditions that were not present on a daily basis and analysis infrastructure to process the data that was not available at the command

  5. An MPSoC-Based QAM Modulation Architecture with Run-Time Load-Balancing

    Directory of Open Access Journals (Sweden)

    Doumenis Demosthenes

    2011-01-01

    Full Text Available QAM is a widely used multilevel modulation technique, with a variety of applications in data radio communication systems. Most existing implementations of QAM-based systems use high levels of modulation in order to meet the high data rate constraints of emerging applications. This work presents the architecture of a highly parallel QAM modulator, using MPSoC-based design flow and design methodology, which offers multirate modulation. The proposed MPSoC architecture is modular and provides dynamic reconfiguration of the QAM utilizing on-chip interconnection networks, offering high data rates (more than 1 Gbps, even at low modulation levels (16-QAM. Furthermore, the proposed QAM implementation integrates a hardware-based resource allocation algorithm that can provide better throughput and fault tolerance, depending on the on-chip interconnection network congestion and run-time faults. Preliminary results from this work have been published in the Proceedings of the 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010. The current version of the work includes a detailed description of the proposed system architecture, extends the results significantly using more test cases, and investigates the impact of various design parameters. Furthermore, this work investigates the use of the hardware resource allocation algorithm as a graceful degradation mechanism, providing simulation results about the performance of the QAM in the presence of faulty components.

  6. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  7. Increased control and data acquisition capabilities via microprocessor-based timed reading and time plot CAMAC modules

    International Nuclear Information System (INIS)

    Barsotti, E.J.; Purvis, D.M.; Loveless, R.L.; Hance, R.D.

    1977-01-01

    By implementing a microprocessor-based CAMAC module capable of being programmed to function as a time plot or a timed reading controller, the capabilities of the experimental area serial CAMAC control and data acquisition system at Fermilab have been extensively increased. These modules provide real-time data gathering and pre-processing functions synchronized to the main accelerator cycle clock while adding only a minimal amount to the host computer's CPU time and memory requirements. Critical data requiring a fast system response can be read by the host computer immediately following the request for this data. The vast majority of data, being non-critical, can be read via a block transfer during a non-busy time in the main accelerator cycle. Each of Fermilab's experimental areas, Meson, Neutrino and Proton, are controlled primarily by a Lockheed MAC-16 computer. Each of these three minicomputers is linked to a larger Digital Equipment Corporation PDP-11/50 computer. The PDP-11 computers are used primarily for data analysis and reduction. Presently two PDP-11's are linked to the three MAC-16 computers

  8. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S.; Gallegos, C.E.; Dubner, D. [Radiopathology Laboratory, Nuclear Regulatory Authority, Buenos Aires (Argentina); Favier, B.; Carosella, E.D. [CEA, I2BM, Hopital Saint-Louis, IUH, Service de Recherches en Hemato-Immunologie, Paris (France)

    2009-07-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of {gamma}-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that {gamma}-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  9. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  10. Investigating fractal property and respiratory modulation of human heartbeat time series using empirical mode decomposition.

    Science.gov (United States)

    Yeh, Jia-Rong; Sun, Wei-Zen; Shieh, Jiann-Shing; Huang, Norden E

    2010-06-01

    The human heartbeat interval reflects a complicated composition with different underlying modulations and the reactions against environmental inputs. As a result, the human heartbeat interval is a complex time series and its complexity can be scaled using various physical quantifications, such as the property of long-term correlation in detrended fluctuation analysis (DFA). Recently, empirical mode decomposition (EMD) has been shown to be a dyadic filter bank resembling those involved in wavelet decomposition. Moreover, the hierarchy of the extracted modes may be exploited for getting access to the Hurst exponent, which also reflects the property of long-term correlation for a stochastic time series. In this paper, we present significant findings for the dynamic properties of human heartbeat time series by EMD. According to our results, EMD provides a more accurate access to long-term correlation than Hurst exponent does. Moreover, the first intrinsic mode function (IMF 1) is an indicator of orderliness, which reflects the modulation of respiratory sinus arrhythmia (RSA) for healthy subjects or performs a characteristic component similar to that decomposed from a stochastic time series for subjects with congestive heart failure (CHF) and atrial fibrillation (AF). In addition, the averaged amplitude of IMF 1 acts as a parameter of RSA modulation, which reflects significantly negative correlation with aging. These findings lead us to a better understanding of the cardiac system. Copyright 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. A Time Modulated Printed Dipole Antenna Array for Beam Steering Application

    Directory of Open Access Journals (Sweden)

    Ruchi Gahley

    2017-01-01

    Full Text Available This paper presents time modulated beam steered antenna array without phase shifters. The beam steering is analyzed considering a two-element time modulated antenna array (TMAA of printed dipoles with microstrip via-hole balun. The proposed array resonates at the Industrial, Scientific, and Medical (ISM radio bands, 2.45 GHz and 5.8 GHz, and offers wide bandwidth inherited due to modified structure of ground plane. Array elements are excited by complex exponential excitation signal through broadband power divider and radio frequency (RF switches to achieve amplitude and phase variation without phase shifters. Differential Evolution algorithm is used to modify the time sequences of the RF switches connected to the antennas to generate radiation pattern with optimum dynamic efficiency by suppressing sideband radiations. Also switch-on time instant of RF switch connected to the subsequent element is modulated to steer the beam towards different directions. The proposed prototype is fabricated followed by parametric optimization. The fabrication results agree significantly well with simulated results.

  12. Modulation of Coiled-Coil Dimer Stability through Surface Residues while Preserving Pairing Specificity.

    Science.gov (United States)

    Drobnak, Igor; Gradišar, Helena; Ljubetič, Ajasja; Merljak, Estera; Jerala, Roman

    2017-06-21

    The coiled-coil dimer is a widespread protein structural motif and, due to its designability, represents an attractive building block for assembling modular nanostructures. The specificity of coiled-coil dimer pairing is mainly based on hydrophobic and electrostatic interactions between residues at positions a, d, e, and g of the heptad repeat. Binding affinity, on the other hand, can also be affected by surface residues that face away from the dimerization interface. Here we show how design of the local helical propensity of interacting peptides can be used to tune the stabilities of coiled-coil dimers over a wide range. By designing intramolecular charge pairs, regions of high local helical propensity can be engineered to form trigger sequences, and dimer stability is adjusted without changing the peptide length or any of the directly interacting residues. This general principle is demonstrated by a change in thermal stability by more than 30 °C as a result of only two mutations outside the binding interface. The same approach was successfully used to modulate the stabilities in an orthogonal set of coiled-coils without affecting their binding preferences. The stability effects of local helical propensity and peptide charge are well described by a simple linear model, which should help improve current coiled-coil stability prediction algorithms. Our findings enable tuning the stabilities of coiled-coil-based building modules match a diverse range of applications in synthetic biology and nanomaterials.

  13. Mycobacterium tuberculosis DNA detection using surface plasmon resonance modulated by telecommunication wavelength.

    Science.gov (United States)

    Hsu, Shih-Hsiang; Lin, Yan-Yu; Lu, Shao-Hsi; Tsai, I-Fang; Lu, Yen-Ta; Ho, Hsin-Tsung

    2013-12-27

    A surface plasmon resonance sensor for Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) is developed using repeatable telecommunication wavelength modulation based on optical fiber communications laser wavelength and stability. MTB DNA concentrations of 1 μg/mL and 10 μg/mL were successfully demonstrated to have the same spectral half-width in the dip for optimum coupling. The sensitivity was shown to be -0.087 dB/(μg/mL) at all applied telecommunication wavelengths and the highest sensitivity achieved was 115 ng/mL without thiolated DNA immobilization onto a gold plate, which is better than the sensor limit of 400 ng/mL possible with commercial biosensor equipment.

  14. Finite-difference Time-domain Modeling of Laser-induced Periodic Surface Structures

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Skolski, J.Z.P.; Vincenc Obona, J.; Huis in 't Veld, Bert

    2014-01-01

    Laser-induced periodic surface structures (LIPSSs) consist of regular wavy surface structures with amplitudes the (sub)micrometer range and periodicities in the (sub)wavelength range. It is thought that periodically modulated absorbed laser energy is initiating the growth of LIPSSs. The “Sipe

  15. Land surface phenology from SPOT VEGETATION time series

    Directory of Open Access Journals (Sweden)

    A. Verger

    2016-12-01

    Full Text Available Land surface phenology from time series of satellite data are expected to contribute to improve the representation of vegetation phenology in earth system models. We characterized the baseline phenology of the vegetation at the global scale from GEOCLIM-LAI, a global climatology of leaf area index (LAI derived from 1-km SPOT VEGETATION time series for 1999-2010. The calibration with ground measurements showed that the start and end of season were best identified using respectively 30% and 40% threshold of LAI amplitude values. The satellite-derived phenology was spatially consistent with the global distributions of climatic drivers and biome land cover. The accuracy of the derived phenological metrics, evaluated using available ground observations for birch forests in Europe, cherry in Asia and lilac shrubs in North America showed an overall root mean square error lower than 19 days for the start, end and length of season, and good agreement between the latitudinal gradients of VEGETATION LAI phenology and ground data.

  16. Real-time creased approximate subdivision surfaces with displacements.

    Science.gov (United States)

    Kovacs, Denis; Mitchell, Jason; Drone, Shanon; Zorin, Denis

    2010-01-01

    We present an extension of Loop and Schaefer's approximation of Catmull-Clark surfaces (ACC) for surfaces with creases and corners. We discuss the integration of ACC into Valve's Source game engine and analyze performance of our implementation.

  17. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  18. Modulation of homogeneous space-time rainfall cascades to account for orographic influences

    Directory of Open Access Journals (Sweden)

    M. G. Badas

    2006-01-01

    Full Text Available The development of efficient space-time rainfall downscaling procedures is highly important for the implementation of a meteo-hydrological forecasting chain operating over small watersheds. Multifractal models based on homogeneous cascade have been successfully applied in literature to reproduce space-time rainfall events retrieved over ocean, where the hypothesis of spatial homogeneity can be reasonably accepted. The feasibility to apply this kind of models to rainfall fields occurring over a mountainous region, where spatial homogeneity may not hold, is herein investigated. This issue is examined through the analysis of rainfall data retrieved by the high temporal resolution rain gage network of the Sardinian Hydrological Survey. The proposed procedure involves the introduction of a modulating function which is superimposed to homogeneous and isotropic synthetic fields to take into account the spatial heterogeneity detected in observed precipitation events. Specifically the modulating function, which reproduces the differences in local mean values of the precipitation intensity probability distribution, has been linearly related to the terrain elevation of the analysed spatial domain. Comparisons performed between observed and synthetic data show how the proposed procedure preserves the observed rainfall fields features and how the introduction of the modulating function improves the reproduction of spatial heterogeneity in rainfall probability distributions.

  19. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  20. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; Rowland, Clare E. [Department; Jawaid, Ali M.; Chattopadhyay, Soma; Gulec, Ahmet; Shamirian, Armen; Zuo, Xiaobing; Klie, Robert F.; Schaller, Richard D. [Department; Snee, Preston T.

    2017-08-31

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Reported here are the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Furthermore, the transient photoluminescence and the kinetics of dopant oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.

  1. Dissociating nociceptive modulation by the duration of pain anticipation from unpredictability in the timing of pain.

    Science.gov (United States)

    Clark, Jennifer A; Brown, Christopher A; Jones, Anthony K P; El-Deredy, Wael

    2008-12-01

    Waiting longer to receive pain increases its perceived unpleasantness by inducing 'dread'. However, it is not clear how unpredictability in the timing of the impending pain stimulus interacts with dread and whether the two factors show differential effects on the neural generators of the pain-evoked response. We manipulated the duration of anticipation of laser-induced pain independently of unpredictability of stimulus delivery timing, to observe the relative effect on P2 amplitudes of the laser-evoked potential (LEP) response and its estimated sources. Subjects (n=12) reported increased pain ratings after longer pain anticipation, irrespective of unpredictability in the timing of stimulus delivery. By contrast, unpredictability in stimulus timing increased the amplitude of the P2 irrespective of anticipation duration. The modulation of P2 amplitude by unpredictability was localized to midcingulate cortex (MCC) and ipsilateral secondary somatosensory (S2) areas. Greater anticipation duration increased activity in a hippocampal-insula-prefrontal network but not in MCC areas. Distinct neural networks contribute to the P2 and are differentially affected by pain anticipation duration and unpredictability in stimulus timing. ERP research into dread should be careful to appreciate the neural generators of pain-evoked responses and their potential modulation by unpredictability.

  2. The Role of Nitric Oxide in Memory is Modulated by Diurnal Time

    Directory of Open Access Journals (Sweden)

    Stephanie L. Gage

    2014-04-01

    Full Text Available Nitric oxide (NO is thought to play an important neuromodulatory role in the olfactory system. This modulation has been suggested to be particularly important for olfactory learning and memory in the antennal lobe (the primary olfactory network in invertebrates. We are using the hawkmoth, Manduca sexta, to further investigate the role of NO in olfactory memory. Recent findings suggest that NO affects short-term memory traces and that NO concentration fluctuates with the light cycle. This gives rise to the hypothesis that NO may be involved in the connection between memory and circadian rhythms. In this study, we explore the role of diurnal time and NO in memory by altering the time of day when associative-olfactory conditioning is performed. We find a strong effect of NO on short-term memory, and two surprising effects of diurnal time. We find that (1 at certain time points, NO affects longer traces of memory in addition to short-term memory, and (2 when conditioning is performed close to the light cycle switches—both from light to dark and dark to light—NO does not significantly affect memory at all. These findings suggest an intriguing functional role for NO in olfactory conditioning that is modulated as a function of diurnal time.

  3. Extending DIII-D Neutral Beam Modulated Operations with a Camac Based Total on Time Interlock

    International Nuclear Information System (INIS)

    Baggest, D.S.; Broesch, J.D.; Phillips, J.C.

    1999-01-01

    A new total-on-time interlock has increased the operational time limits of the Neutral Beam systems at DIII-D. The interlock, called the Neutral Beam On-Time-Limiter (NBOTL), is a custom built CAMAC module utilizing a Xilinx 9572 Complex Programmable Logic Device (CPLD) as its primary circuit. The Neutral Beam Injection Systems are the primary source of auxiliary heating for DIII-D plasma discharges and contain eight sources capable of delivering 20MW of power. The delivered power is typically limited to 3.5 s per source to protect beam-line components, while a DIII-D plasma discharge usually exceeds 5 s. Implemented as a hardware interlock within the neutral beam power supplies, the NBOTL limits the beam injection time. With a continuing emphasis on modulated beam injections, the NBOTL guards against command faults and allows the beam injection to be safely spread over a longer plasma discharge time. The NBOTL design is an example of incorporating modern circuit design techniques (CPLD) within an established format (CAMAC). The CPLD is the heart of the NBOTL and contains 90% of the circuitry, including a loadable, 1 MHz, 28 bit, BCD count down timer, buffers, and CAMAC communication circuitry. This paper discusses the circuit design and implementation. Of particular interest is the melding of flexible modern programmable logic devices with the CAMAC format

  4. Classifying terrestrial surface water systems using integrated residence time

    Science.gov (United States)

    Jones, Allan; Hodges, Ben; McClelland, James; Hardison, Amber; Moffett, Kevan

    2017-04-01

    Linkages between ecology and hydrology in terrestrial surface water often invoke a discussion of lentic (reservoir) vs. lotic (riverine) system behaviors. However, the literature shows a wide range of thresholds separating lentic/lotic regimes and little agreement on a quantitative, repeatable classification metric that can be broadly and reliably applied across a range of systems hosting various flow regimes and suspended/benthic taxa. We propose an integrated Residence Time (iTR) metric as part of a new Freshwater Continuum Classification (FCC) to address this issue. The iTR is computed as the transit time of a water parcel across a system given observed temporal variations in discharge and volume, which creates a temporally-varying metric applicable across a defined system length. This approach avoids problems associated with instantaneous residence times or average residence times that can lead to misleading characterizations in seasonally- or episodically-dynamic systems. The iTR can be directly related to critical flow thresholds and timescales of ecology (e.g., zooplankton growth). The FCC approach considers lentic and lotic to be opposing end-members of a classification continuum and also defines intermediate regimes that blur the line between the two ends of the spectrum due to more complex hydrological system dynamics. We also discover the potential for "oscillic" behavior, where a system switches between lentic and lotic classifications either episodically or regularly (e.g., seasonally). Oscillic behavior is difficult to diagnose with prior lentic/lotic classification schemes, but can be readily identified using iTR. The FCC approach was used to analyze 15 tidally-influenced river segments along the Texas (USA) coast of the Gulf of Mexico. The results agreed with lentic/lotic designations using prior approaches, but also identified more nuanced intermediate and oscillic regimes. Within this set of systems, the oscillic nature of some of the river

  5. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    Science.gov (United States)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  6. Behavior of the potential-induced degradation of photovoltaic modules fabricated using flat mono-crystalline silicon cells with different surface orientations

    Science.gov (United States)

    Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke

    2016-04-01

    This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.

  7. Presynaptic Ionotropic Receptors Controlling and Modulating the Rules for Spike Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Matthijs B. Verhoog

    2011-01-01

    Full Text Available Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP. The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create “timing” windows during which particular timing rules lead to synaptic changes.

  8. Real-time 3D shape recording by DLP-based all-digital surface encoding

    Science.gov (United States)

    Höfling, Roland; Aswendt, Petra

    2009-02-01

    The use of computer generated sinusoidal fringe patterns has found wide acceptance in optical metrology. There are corresponding software solutions that reconstruct the phase field encoded in the fringe pattern in order to get 3D-shape data via triangulation and deflection measuring setups, respectively. Short recording time is a common issue of high importance for all tasks on the factory shop floor as well as in medical applications and for security. Recent high-speed implementations take advantage of MEMS based spatial light modulators and the digital micro mirror chipset DLP DiscoveryTM* is the fastest proven component currently available for this aim. Being a bi-stable on-off-state system, the sinusoidal gray level pictures are generated by controlling the mirrors ON-time period during which an analogue detector is exposed. This digital generation of light intensity distributions provides outstanding precision and long-term stability. It is used in leading edge technology solutions that produce video type streams of 3D surface data with a sustained repetition rate of 40 Hz. A new proposal is discussed in this paper that goes beyond this state of the art by considering the optical encoding of the surface as an all-digital communication link. After a brief classification of state-of- the-art systems, the authors describe how future all-digital encoding leads to extremely high speed and precision in 3D shape acquisition.

  9. Muscle fatigue and contraction intensity modulates the complexity of surface electromyography.

    Science.gov (United States)

    Cashaback, Joshua G A; Cluff, Tyler; Potvin, Jim R

    2013-02-01

    Nonlinear dynamical techniques offer a powerful approach for the investigation of physiological time series. Multiscale entropy analyses have shown that pathological and aging systems are less complex than healthy systems and this finding has been attributed to degraded physiological control processes. A similar phenomenon may arise during fatiguing muscle contractions where surface electromyography signals undergo temporal and spectral changes that arise from the impaired regulation of muscle force production. Here we examine the affect of fatigue and contraction intensity on the short and long-term complexity of biceps brachii surface electromyography. To investigate, we used an isometric muscle fatigue protocol (parsed into three windows) and three contraction intensities (% of maximal elbow joint moment: 40%, 70% and 100%). We found that fatigue reduced the short-term complexity of biceps brachii activity during the last third of the fatiguing contraction. We also found that the complexity of surface electromyography is dependent on contraction intensity. Our results show that multiscale entropy is sensitive to muscle fatigue and contraction intensity and we argue it is imperative that both factors be considered when evaluating the complexity of surface electromyography signals. Our data contribute to a converging body of evidence showing that multiscale entropy can quantify subtle information content in physiological time series. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries

    NARCIS (Netherlands)

    van Haaren, Paul M. A.; VanBavel, Ed; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    We hypothesized that modulation of the effective charge density of the endothelial surface layer ( ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries ( diameter similar to 190 mu m) were isolated, cannulated, perfused, and superfused

  11. FPGA based image processing for optical surface inspection with real time constraints

    Science.gov (United States)

    Hasani, Ylber; Bodenstorfer, Ernst; Brodersen, Jörg; Mayer, Konrad J.

    2015-02-01

    Today, high-quality printing products like banknotes, stamps, or vouchers, are automatically checked by optical surface inspection systems. In a typical optical surface inspection system, several digital cameras acquire the printing products with fine resolution from different viewing angles and at multiple wavelengths of the visible and also near infrared spectrum of light. The cameras deliver data streams with a huge amount of image data that have to be processed by an image processing system in real time. Due to the printing industry's demand for higher throughput together with the necessity to check finer details of the print and its security features, the data rates to be processed tend to explode. In this contribution, a solution is proposed, where the image processing load is distributed between FPGAs and digital signal processors (DSPs) in such a way that the strengths of both technologies can be exploited. The focus lies upon the implementation of image processing algorithms in an FPGA and its advantages. In the presented application, FPGAbased image-preprocessing enables real-time implementation of an optical color surface inspection system with a spatial resolution of 100 μm and for object speeds over 10 m/s. For the implementation of image processing algorithms in the FPGA, pipeline parallelism with clock frequencies up to 150 MHz together with spatial parallelism based on multiple instantiations of modules for parallel processing of multiple data streams are exploited for the processing of image data of two cameras and three color channels. Due to their flexibility and their fast response times, it is shown that FPGAs are ideally suited for realizing a configurable all-digital PLL for the processing of camera line-trigger signals with frequencies about 100 kHz, using pure synchronous digital circuit design.

  12. Sensitivity of bimodal listeners to interaural time differences with modulated single- and multiple-channel stimuli.

    Science.gov (United States)

    Francart, Tom; Lenssen, Anneke; Wouters, Jan

    2011-01-01

    In a previous study, it was shown that users of a cochlear implant and a contralateral hearing aid are sensitive to interaural time differences (ITDs). In the current study, we investigated (1) the influence on ITD sensitivity of bilaterally varying the place of excitation in the cochlea and of modulation frequency, and (2) the sensitivity to ITD with a 3-channel stimulus generated using continuous-interleaved-sampling (CIS)-like processing. The stimuli were (1) a high-frequency carrier (acoustic sinusoid and single-electrode electric pulse train), modulated with a half-wave-rectified low-frequency sinusoid (a so-called transposed stimulus), and (2) a 3-channel stimulus, generated by sending an acoustic click train through processing similar to the CIS strategy. Four bimodal listeners were sensitive to ITD for both stimulus types. For the first stimulus type, there was no significant influence on ITD sensitivity of the acoustic carrier frequency. Performance decreased with increasing modulation frequency with a limit of sensitivity at around 150-200 Hz. Sensitivity was similar for the single- and 3-channel stimulus. The results indicate the possibility of ITD perception with adapted clinical processors, which can lead to improved sound source localization and binaural unmasking. Copyright © 2010 S. Karger AG, Basel.

  13. Assessing ground compaction via time lapse surface wave analysis

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.

    2016-01-01

    Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016

  14. Time-variable surface patterns as an indicator of the surface environments on Mars

    Science.gov (United States)

    Toyota, T.; Kawaguchi, K.; Kurita, K.

    2008-09-01

    Introduction On the planets having atmosphere such as Mars various types of interactions between the atmosphere and the ground surface cause observable change in the surface pattern. Polar caps and aeolian features are typical examples. With the accumulation of satellitebased exploratory data, time-variable surface patterns have been focused and investigated extensively [1,2], because they can be direct indicators of the changing surface environments. Here we report two types of time-variable surface patterns that have been unidentified until now. One is dark halo near the top of high altitude volcanoes in Tharsis region. The other is brightness of the Outer Lobe of Double Layered Ejecta crater at the northern lowlands. Both have almost no associated topography and they are only recognized in visible/IR images as albedo patterns. Dark halo near the top of high altitude volcanoes in the Tharsis region Fig. 1 shows MOC wide-angle image of Pavonis Mons (R1400388NRed). The large caldera can be seen at the top of the volcano. Surrounding the caldera there exists a dark halo. Fig. 1B is MOC wide-angle image which shows detailed structure of the dark halo in the SW part. The dark zone is not uniform and instead it is composed of many slender dark stripes aligned in radial direction from the top (caldera center). Each unit is spindle-shaped with length of 30- 50km and width at the middle part of 5km. Spindles seem to start from higher position because it is always clear and darker. The initiation point is quite narrow region, which can be considered as a point. In many cases, there exist no recognisable obstacles at the initiation point. This is a remarkable difference from the wind streaks, which is caused by erosion/sedimentation of wind by local turbulence behind topographical anomaly. This makes us to consider something is emanating from subsurface, blown off by the mountain winds and deposited in downwind part. Similar pattern is observed in high altitude large volume

  15. KCNE5 Induces Time- and Voltage-Dependent Modulation of the KCNQ1 Current

    OpenAIRE

    Angelo, Kamilla; Jespersen, Thomas; Grunnet, Morten; Nielsen, Morten Schak; Klaerke, Dan A.; Olesen, Søren-Peter

    2002-01-01

    The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 mV in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as com...

  16. Quantum secret sharing based on modulated high-dimensional time-bin entanglement

    International Nuclear Information System (INIS)

    Takesue, Hiroki; Inoue, Kyo

    2006-01-01

    We propose a scheme for quantum secret sharing (QSS) that uses a modulated high-dimensional time-bin entanglement. By modulating the relative phase randomly by {0,π}, a sender with the entanglement source can randomly change the sign of the correlation of the measurement outcomes obtained by two distant recipients. The two recipients must cooperate if they are to obtain the sign of the correlation, which is used as a secret key. We show that our scheme is secure against intercept-and-resend (IR) and beam splitting attacks by an outside eavesdropper thanks to the nonorthogonality of high-dimensional time-bin entangled states. We also show that a cheating attempt based on an IR attack by one of the recipients can be detected by changing the dimension of the time-bin entanglement randomly and inserting two 'vacant' slots between the packets. Then, cheating attempts can be detected by monitoring the count rate in the vacant slots. The proposed scheme has better experimental feasibility than previously proposed entanglement-based QSS schemes

  17. Controlling DNA Translocation Speed through Solid-State Nanopores by Surface Charge Modulation

    Science.gov (United States)

    Meller, Amit

    2013-03-01

    The Nanopore method is an emerging technique, which extends gel-electrophoresis to the single-molecule level and allows the analysis of DNAs, RNAs and DNA-protein complexes. The strength of the technique stems from two fundamental facts: First, nanopores due to their nanoscale size can be used to uncoil biopolymers, such as DNA or RNA and slide them in a single file manner that allows scanning their properties. Consequently, the method can be used to probe short as well as extremely long biopolymers, such as genomic DNA with high efficiency. Second, electrostatic focusing of charged biopolymers into the nanopore overcomes thermally driven diffusion, thus facilitating an extremely efficient end-threading (or capture) of DNA. Thus, nanopores can be used to detect minute DNA copy numbers, circumventing costly molecular amplification such as Polymerase Chain Reaction. A critical factor, which determines the ability of nanopore to distinguish fine properties within biopolymers, such as the location of bound small-molecules, proteins, or even the nucleic acid's sequence, is the speed at which molecules are translocated through the pore. When the translocation speed is too high the electrical noise masks the desired signal, thus limiting the utility of the method. Here I will discuss new experimental results showing that modulating the surface charge inside the pore can effectively reduce the translocation speed through solid-state nanopores fabricated in thin silicon nitride membranes. I will present a simple physical model to account for these results.

  18. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.

    Science.gov (United States)

    Rajapaksa, Anushi; Qi, Aisha; Yeo, Leslie Y; Coppel, Ross; Friend, James R

    2014-06-07

    A practical, commercially viable microfluidic device relies upon the miniaturization and integration of all its components--including pumps, circuitry, and power supply--onto a chip-based platform. Surface acoustic waves (SAW) have become popular in microfluidic manipulation, in solving the problems of microfluidic manipulation, but practical applications employing SAW still require more power than available via a battery. Introducing amplitude modulation at 0.5-40 kHz in SAW nebulization, which requires the highest energy input levels of all known SAW microfluidic processes, halves the power required to 1.5 W even while including the power in the sidebands, suitable for small lithium ion batteries, and maintains the nebulization rate, size, and size distributions vital to drug inhalation therapeutics. This simple yet effective means to enable an integrated SAW microfluidics device for nebulization exploits the relatively slow hydrodynamics and is furthermore shown to deliver shear-sensitive biomolecules--plasmid DNA and antibodies as exemplars of future pulmonary gene and vaccination therapies--undamaged in the nebulized mist. Altogether, the approach demonstrates a means to offer truly micro-scale microfluidics devices in a handheld, battery powered SAW nebulization device.

  19. Pre-Rationalized Parametric Designing of Roof Shells Formed by Repetitive Modules of Catalan Surfaces

    Directory of Open Access Journals (Sweden)

    Jolanta Dzwierzynska

    2018-04-01

    Full Text Available The aim of the study is to develop an original, methodical, and practical approach to the early stages of parametric design of roof shells formed by repetitive modules of Catalan surfaces. It is presented on the example of designing the roof shells compound of four concrete elements. The designing process proposed by us consists in linking geometric shaping of roofs’ models with their structural analysis and optimization. Contrary to other methods, which use optimization process in order to find free roof forms, we apply it in order to explore and improve design alternatives. It is realized with the application of designing tools working in Rhinoceros 3D software. The flexible scripts elaborated by us, in order to achieve roofs’ models of regular and symmetrical shapes, are converted into simulation models to perform structural analysis. It is mainly focused on how the roof shells perform dependently on their geometric characteristics. The simulation enables one to evaluate various roof shells’ shapes, as well as to select an optimal design solution. The proposed approach to the conceptual design process may drive the designing to achieve geometric and structural forms which not only follow the design intentions but also target better results.

  20. Time and frequency domain methods for quantifying common modulation of motor unit firing patterns

    Directory of Open Access Journals (Sweden)

    Myers Lance J

    2004-10-01

    Full Text Available Abstract Background In investigations of the human motor system, two approaches are generally employed toward the identification of common modulating drives from motor unit recordings. One is a frequency domain method and uses the coherence function to determine the degree of linear correlation between each frequency component of the signals. The other is a time domain method that has been developed to determine the strength of low frequency common modulations between motor unit spike trains, often referred to in the literature as 'common drive'. Methods The relationships between these methods are systematically explored using both mathematical and experimental procedures. A mathematical derivation is presented that shows the theoretical relationship between both time and frequency domain techniques. Multiple recordings from concurrent activities of pairs of motor units are studied and linear regressions are performed between time and frequency domain estimates (for different time domain window sizes to assess their equivalence. Results Analytically, it may be demonstrated that under the theoretical condition of a narrowband point frequency, the two relations are equivalent. However practical situations deviate from this ideal condition. The correlation between the two techniques varies with time domain moving average window length and for window lengths of 200 ms, 400 ms and 800 ms, the r2 regression statistics (p Conclusions Although theoretically equivalent and experimentally well correlated there are a number of minor discrepancies between the two techniques that are explored. The time domain technique is preferred for short data segments and is better able to quantify the strength of a broad band drive into a single index. The frequency domain measures are more encompassing, providing a complete description of all oscillatory inputs and are better suited to quantifying narrow ranges of descending input into a single index. In general the

  1. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    Science.gov (United States)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    2017-02-01

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev.

  2. PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy C.; Hammond, Glenn E.; Chen, Xingyuan

    2017-02-01

    Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of changes subsurface electrical conductivity, in both the saturated and unsaturated zones, arising from water table changes and from river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotran-dev .

  3. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Directory of Open Access Journals (Sweden)

    Beisser Daniela

    2012-06-01

    Full Text Available Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites and 4,378 edges (reactions. Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from

  4. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control

    Directory of Open Access Journals (Sweden)

    Francesco Aggogeri

    2016-09-01

    Full Text Available This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  5. Space-Time Turbo Trellis Coded Modulation for Wireless Data Communications

    Directory of Open Access Journals (Sweden)

    Welly Firmanto

    2002-05-01

    Full Text Available This paper presents the design of space-time turbo trellis coded modulation (ST turbo TCM for improving the bandwidth efficiency and the reliability of future wireless data networks. We present new recursive space-time trellis coded modulation (STTC which outperform feedforward STTC proposed in by Tarokh et al. (1998 and Baro et al. (2000 on slow and fast fading channels. A substantial improvement in performance can be obtained by constructing ST turbo TCM which consists of concatenated recursive STTC, decoded by iterative decoding algorithm. The proposed recursive STTC are used as constituent codes in this scheme. They have been designed to satisfy the design criteria for STTC on slow and fast fading channels, derived for systems with the product of transmit and receive antennas larger than 3. The proposed ST turbo TCM significantly outperforms the best known STTC on both slow and fast fading channels. The capacity of this scheme on fast fading channels is less than 3 dB away from the theoretical capacity bound for multi-input multi-output (MIMO channels.

  6. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  7. Development of volume rendering module for real-time visualization system

    International Nuclear Information System (INIS)

    Otani, Takayuki; Muramatsu, Kazuhiro

    2000-03-01

    Volume rendering is a method to visualize the distribution of physical quantities in the three dimensional space from any viewpoint by tracing the ray direction on the ordinary two dimensional monitoring display. It enables to provide the interior information as well as the surfacial one by producing the translucent images. Therefore, it is regarded as a very useful means as well as an important one in the analysis of the computational results of the scientific calculations, although it has, unfortunately, disadvantage to need a large amount of computing time. This report describes algorithm and its performance of the volume rendering soft-ware which was developed as an important functional module in the real-time visualization system PATRAS. This module can directly visualize the computed results on BFC grid. Moreover, it has already realized the speed-up in some parts of the software by the use of a newly developed heuristic technique. This report includes the investigation on the speed-up of the software by parallel processing. (author)

  8. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  9. Improved Planning Time and Plan Quality Through Multicriteria Optimization for Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Craft, David L.; Hong, Theodore S.; Shih, Helen A.; Bortfeld, Thomas R.

    2012-01-01

    Purpose: To test whether multicriteria optimization (MCO) can reduce treatment planning time and improve plan quality in intensity-modulated radiotherapy (IMRT). Methods and Materials: Ten IMRT patients (5 with glioblastoma and 5 with locally advanced pancreatic cancers) were logged during the standard treatment planning procedure currently in use at Massachusetts General Hospital (MGH). Planning durations and other relevant planning information were recorded. In parallel, the patients were planned using an MCO planning system, and similar planning time data were collected. The patients were treated with the standard plan, but each MCO plan was also approved by the physicians. Plans were then blindly reviewed 3 weeks after planning by the treating physician. Results: In all cases, the treatment planning time was vastly shorter for the MCO planning (average MCO treatment planning time was 12 min; average standard planning time was 135 min). The physician involvement time in the planning process increased from an average of 4.8 min for the standard process to 8.6 min for the MCO process. In all cases, the MCO plan was blindly identified as the superior plan. Conclusions: This provides the first concrete evidence that MCO-based planning is superior in terms of both planning efficiency and dose distribution quality compared with the current trial and error–based IMRT planning approach.

  10. Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course.

    Science.gov (United States)

    Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas

    2018-03-06

    Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations.

    Science.gov (United States)

    Yuasa, Kenichi; Yotsumoto, Yuko

    2015-01-01

    When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.

  12. Abdicating power for control: a precision timing strategy to modulate function of flight power muscles

    Science.gov (United States)

    Sponberg, S.; Daniel, T. L.

    2012-01-01

    Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272

  13. Perceived arousal of facial expressions of emotion modulates the N170, regardless of emotional category: Time domain and time-frequency dynamics.

    Science.gov (United States)

    Almeida, Pedro R; Ferreira-Santos, Fernando; Chaves, Pedro L; Paiva, Tiago O; Barbosa, Fernando; Marques-Teixeira, João

    2016-01-01

    Findings concerning the emotional modulation of the N170 component of the visual event-related potential are mixed. In the present report we tested the hypothesis that the emotional modulation of the N170 may be driven by the perceived emotional arousal of the stimuli, rather than by specific emotional categories. Fifty-four participants viewed facial expressions of anger, disgust, fear and happiness, plus low arousal neutral faces. All emotional categories were matched in arousal, while stimuli within each category varied parametrically in this dimension. The modulation of the electrocortical activity on the N170 time-window was analyzed in the time domain and via time-frequency decomposition. The effects of emotion and arousal were analyzed separately. In the time domain N170 amplitudes co-varied parametrically with perceived arousal, regardless of emotional category. This modulation was linearly associated with the power of the theta, alpha, and beta frequency bands. Moreover, fear was associated with a trend for increased N170 amplitudes, enhanced alpha power, and increased broad band inter-trial phase coherence. These results support the views that a) the activity in N170 time window is fundamentally modulated by perceived arousal, b) the modulation of the N170 may be the product of an increased evoked response, rather than the result of phase resetting processes, and c) facial expressions of fear retain some processing primacy, that may be related to their increased value as environmental cues. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Some aspects of hydrogen plasma treatment of anti-modulation doped near surface GaAs/AlGaAs single quantum well structures

    International Nuclear Information System (INIS)

    Bumai, Yu.A.; Gobsch, G.; Goldhahn, R.; Stein, N.; Golombek, A.; Nakov, V.; Cheng, T.S.

    1999-01-01

    The MBE grown anti-modulation doped GaAs/AlGaAs structures with near surface single quantum wells were exposed to a DC hydrogen plasma (∼400 eV) and investigated using PL, PLE and PR spectroscopy at 5 K. Strong acceptor related free to bound transition (FB) dominates for quantum well related PL but excitonic features are still observed in PLE spectra. After hydrogen plasma treatment the PL intensity of FB transition from quantum well was strongly increased for above AlGaAs band gap excitation and was unchanged for below AlGaAs one. These results are consistent with atomic hydrogen passivation of deep defects in AlGaAs barriers. At the same time radiative excitonic recombination was quenched by hydrogenation. PLE and PR spectra indicate on a strong increase of electric field in subsurface region of the structure after hydrogenation. The increase of electric field in anti-modulation doped structure after hydrogen plasma treatment is supposed to be due to passivation by atomic hydrogen of surface states that leads to unpinning of Fermi level from mid gap to carbon acceptor level position in GaAs cap layer. It causes the further band bending and surface electric field increase that strongly suppress excitonic recombination in near surface quantum wells

  15. Distinct modulated pupil function system for real-time imaging of living cells.

    Directory of Open Access Journals (Sweden)

    Tomonobu M Watanabe

    Full Text Available Optical microscopy is one of the most contributive tools for cell biology in the past decades. Many microscopic techniques with various functions have been developed to date, i.e., phase contrast microscopy, differential interference contrast (DIC microscopy, confocal microscopy, two photon microscopy, superresolution microscopy, etc. However, person who is in charge of an experiment has to select one of the several microscopic techniques to achieve an experimental goal, which makes the biological assay time-consuming and expensive. To solve this problem, we have developed a microscopic system with various functions in one instrument based on the optical Fourier transformation with a lens system for detection while focusing on applicability and user-friendliness for biology. The present instrument can arbitrarily modulate the pupil function with a micro mirror array on the Fourier plane of the optical pathway for detection. We named the present instrument DiMPS (Distinct optical Modulated Pupil function System. The DiMPS is compatible with conventional fluorescent probes and illumination equipment, and gives us a Fourier-filtered image, a pseudo-relief image, and a deep focus depth. Furthermore, DiMPS achieved a resolution enhancement (pseudo-superresolution of 110 nm through the subtraction of two images whose pupil functions are independently modulated. In maximum, the spatial and temporal resolution was improved to 120 nm and 2 ms, respectively. Since the DiMPS is based on relay optics, it can be easily combined with another microscopic instrument such as confocal microscope, and provides a method for multi-color pseudo-superresolution. Thus, the DiMPS shows great promise as a flexible optical microscopy technique in biological research fields.

  16. Microcanonical rates, gap times, and phase space dividing surfaces

    NARCIS (Netherlands)

    Ezra, Gregory S.; Waalkens, Holger; Wiggins, Stephen

    2009-01-01

    The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the

  17. Real-time High-fidelity Surface Flow Simulation.

    Science.gov (United States)

    Ren, Bo; Yuan, Tailing; Li, Chenfeng; Xu, Kun; Hu, Shi-Min

    2017-06-30

    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach.

  18. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  19. Documentation of the dynamic parameter, water-use, stream and lake flow routing, and two summary output modules and updates to surface-depression storage simulation and initial conditions specification options with the Precipitation-Runoff Modeling System (PRMS)

    Science.gov (United States)

    Regan, R. Steve; LaFontaine, Jacob H.

    2017-10-05

    This report documents seven enhancements to the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS) hydrologic simulation code: two time-series input options, two new output options, and three updates of existing capabilities. The enhancements are (1) new dynamic parameter module, (2) new water-use module, (3) new Hydrologic Response Unit (HRU) summary output module, (4) new basin variables summary output module, (5) new stream and lake flow routing module, (6) update to surface-depression storage and flow simulation, and (7) update to the initial-conditions specification. This report relies heavily upon U.S. Geological Survey Techniques and Methods, book 6, chapter B7, which documents PRMS version 4 (PRMS-IV). A brief description of PRMS is included in this report.

  20. Spatial Attention and Temporal Expectation Under Timed Uncertainty Predictably Modulate Neuronal Responses in Monkey V1

    Science.gov (United States)

    Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka

    2015-01-01

    The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement—there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689

  1. A neutron spectrometer based on the combination of time-of-flight and Larmor modulation

    International Nuclear Information System (INIS)

    Mulder, F.M.; Kreuger, R.; Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.; Van Well, A.A.

    1999-01-01

    A study on the feasibility of neutron beam instrumentation that applies Larmor modulation for incoming, and time-of-flight for scattered wavelength determination (or vice versa) is currently under way at IRI. The instrument resulting from this combination can in principle measure quasi elastic and inelastic scattering with a flexible resolution and dynamic range. An important difference with current spectrometers is that there is no selection of neutron wavelengths for either the incoming beam (direct geometry) or scattered beam (inverted geometry). Therefore much of the available flux is used and there is no a priory selection of the energy transfer range and resolution. This instrument will be mainly applicable for quasi-elastic scattering and complex line shapes that are extended over a broad range in energy transfer. Line shapes can be measured directly in Fourier space, which is often advantageous. Due to signal to noise considerations, this instrument will be less suitable for the determination of weak, discrete energy transfer signals. A requirement for the Larmor modulator is that it can work with a white neutron beam. This can be realised for neutrons having a wavelength above ∼ 0.1 nm by use of 'adiabatic resonance π flippers'. This type of instrument may be applied at the future ESS pulsed neutron source in order to complement current spectrometers. (author)

  2. Reneutralization time of surface silicon ions on a field emitter

    International Nuclear Information System (INIS)

    Mazumder, B; Vella, A; Deconihout, B; Gilbert, M; Schmitz, G

    2010-01-01

    In this work, the lifetime of silicon (Si) ions generated through photoionization of Si surface atoms from a field emitter was measured. Under low-intensity fs laser pulse illumination, a linear dependence of the number of evaporated ions per pulse on the laser intensity was observed. A simple model was developed to explain this linear dependence and to estimate the rate of success of the field evaporation process. It is shown that the number of evaporated ions per pulse depends on the standing field applied to the Si surface, demonstrating the existence of an ionic energy barrier for Si ions. The lifetime of these ions was estimated to be 0.5 ps.

  3. Plasmon Modulation Spectroscopy of Noble Metals to Reveal the Distribution of the Fermi Surface Electrons in the Conduction Band

    Directory of Open Access Journals (Sweden)

    Kentaro Takagi

    2017-12-01

    Full Text Available To directly access the dynamics of electron distribution near the Fermi-surface after plasmon excitation, pump-probe spectroscopy was performed by pumping plasmons on noble-metal films and probing the interband transition. Spectral change in the interband transitions is sensitive to the electron distribution near the Fermi-surface, because it involves the d valence-band to the conduction band transitions and should reflect the k-space distribution dynamics of electrons. For the continuous-wave pump and probe experiment, the plasmon modulation spectra are found to differ from both the current modulation and temperature difference spectra, possibly reflecting signatures of the plasmon wave function. For the femtosecond-pulse pump and probe experiment, the transient spectra agree well with the known spectra upon the excitation of the respective electrons resulting from plasmon relaxation, probably because the lifetime of plasmons is shorter than the pulse duration.

  4. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    Directory of Open Access Journals (Sweden)

    Shogo Kaneko

    2014-01-01

    Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  5. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    Science.gov (United States)

    Kaneko, Shogo; Tomoda, Motonobu; Matsuda, Osamu

    2014-01-01

    We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  6. Evaluation of curing compound application time on concrete surface durability.

    Science.gov (United States)

    2015-03-01

    The effect of curing compound application time after concrete finishing was examined in the study. Times of 30 minutes, 2 hours and 4 hours were considered and repeatability was evaluated with comparisons to a Phase I portion of the study. Scaling re...

  7. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    Many have experienced problems with their Compact Disc player when a disc with a scratch or a finger print is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localisation...

  8. Time Localisation of Surface Defects on Optical Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Wickerhauser, M.V.

    2004-01-01

    Many have experienced problems with their Compact Disc Player when a disc with a scratch or a fingerprint is tried played. One way to improve the playability of discs with such a defect, is to locate the defect in time and then handle it in a special way. As a consequence this time localization...

  9. Extended Delivery Time Analysis for Secondary Packet Transmission With Adaptive Modulation Under Interweave Cognitive Implementation

    KAUST Repository

    Wang, Wen-Jing

    2017-05-02

    Cognitive radio communication can opportunistically access underutilized spectrum for emerging wireless applications. With interweave cognitive implementation, a secondary user (SU) transmits only if primary user does not occupy the channel and waits for transmission otherwise. Therefore, secondary packet transmission involves both transmission periods and waiting periods. The resulting extended delivery time (EDT) is critical to the throughput analysis of secondary system. In this paper, we study the EDT of secondary packet transmission with adaptive modulation under interweave implementation to facilitate the delay analysis of such cognitive radio system. In particular, we propose an analytical framework to derive the probability density functions of EDT considering random-length SU transmission and waiting periods. We also present selected numerical results to illustrate the mathematical formulations and to verify our analytical approach.

  10. Environmental light and time of day modulate subjective liking and wanting.

    Science.gov (United States)

    Itzhacki, Jacob; Te Lindert, Bart H W; van der Meijden, Wisse P; Kringelbach, Morten L; Mendoza, Jorge; Van Someren, Eus J W

    2018-03-05

    Several studies demonstrated effects of light on affect via projections from the retina of the eye to the circadian clock or via projections to areas involved in mood and reward. Few field studies investigated how naturally fluctuating light levels affect positive and negative mood in everyday life, but none addressed two key components of the reward system: wanting and liking. To elucidate diurnal profiles and immediate effects of dynamically changing light intensity in everyday life, subjective wanting and liking were assessed using experience sampling, while continuously monitoring environmental illuminance. Using a smartphone and light sensors, healthy volunteers (n = 27, 14 females, 23.7 ± 3.8 [M ± SD] years of age) were probed for 1 week, 9 times a day, to rate positive and negative mood, and 6 novel dedicated questions each on subjective liking and wanting. The multiband light spectrum was continuously recorded from sensors worn on the chest and intensities were averaged over the intervals between subsequent probes. Mixed effect models were used to evaluate how time of day and light intensity modulated subjective ratings. A total of 1,102 valid observations indicated that liking and wanting peaked around 6 p.m. and increased, respectively, by 13 ± 4% and 11 ± 4% across an individual's range of experienced light intensities. More traditional mood questions were less sensitive to modulation by light intensity. Combined experience sampling and environmental monitoring opens up the possibility for field studies on light in disorders in which the reward system is highly relevant, like addiction, depression and insomnia. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  12. Reconstruction of cloud-free time series satellite observations of land surface temperature

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.; Menenti, M.; Jia, L.; den Ouden, H.

    2012-01-01

    Time series satellite observations of land surface properties, like Land Surface Temperature (LST), often feature missing data or data with anomalous values due to cloud coverage, malfunction of sensor, atmospheric aerosols, defective cloud masking and retrieval algorithms. Preprocessing procedures

  13. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Frøkiær, Hanne; Pestka, J.J.

    2002-01-01

    Dendritic cells (DC) play a pivotal immunoregulatory role in the Th1, Th2, and Th3 cell balance and are present throughout the gastrointestinal tract. Thus, DC may be targets for modulation by gut microbes, including ingested probiotics. In the present study, we tested the hypothesis that species......-driving capacities of the gut DC to be modulated according to composition of gut microflora, including ingested probiotics....

  14. Fasting time duration modulates the onset of insulin-induced hypoglycemic seizures in mice.

    Science.gov (United States)

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Afrin, Mst Rejina; Sreedhar, Remya; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nakamura, Takashi; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi

    2016-09-01

    Fasting (48h) in mice causes resistance to insulin-induced hypoglycemic seizures (IIHS) but in rats fasting (14-16h) predisposes IIHS. So we suspect the duration of fasting may possibly affect the onset of seizures and in this study, we investigated the IIHS by administering 8 Units (U) insulin (INS)/k.g., intraperitoneally to 8 weeks old male C57BL6/J mice. The mice were divided into group 1 (non-fasted), group 2 (6h fasted) and group 3 (24h fasted) and we administered the 8U INS. The first behavioral hypoglycemic seizure symptoms such as jump, clonus or barrel rotations considered as seizure onset and we analyzed the blood glucose level (BGL) and serum beta-hydroxybutyrate (BHB) level. The time of first seizure onset in group 1 was 109.7±4.3min, group 2 was 46.50±3.9min and group 3 was 165.4±13.26min. The seizure onset time in group 2 was significantly decreased compared to group 1. The seizure onset time in group 3 was significantly increased compared to group 1 and group 2. The decreased BGL after INS administration was correlated with the seizure onset time in group 1 and group 2 but not in group 3. The BHB level in group 3 was significantly higher compared to group 1 and 2. Our data show that the fasting time duration significantly modulates the onset of hypoglycemic seizures. The opposite effect of 6h or 24h fasting time duration is likely caused by different BHB levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    International Nuclear Information System (INIS)

    Balvert, Marleen; Gorissen, Bram L; Den Hertog, Dick; Hoffmann, Aswin L

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D 90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2–5 cc. However, this comes at a cost of a reduction in D 90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D 90% against uncertainty in dwell positions for both models. (paper)

  16. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    Science.gov (United States)

    Balvert, Marleen; Gorissen, Bram L.; den Hertog, Dick; Hoffmann, Aswin L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.

  17. Investigation of continuous-time quantum walk via modules of Bose-Mesner and Terwilliger algebras

    International Nuclear Information System (INIS)

    Jafarizadeh, M A; Salimi, S

    2006-01-01

    The continuous-time quantum walk on the underlying graphs of association schemes has been studied, via the algebraic combinatorics structures of association schemes, namely semi-simple modules of their Bose-Mesner and Terwilliger algebras. It is shown that the Terwilliger algebra stratifies the graph into a (d + 1) disjoint union of strata which is different from the stratification based on distance, except for distance regular graphs. In underlying graphs of association schemes, the probability amplitudes and average probabilities are given in terms of dual eigenvalues of association schemes, such that the amplitudes of observing the continuous-time quantum walk on all sites belonging to a given stratum are the same, therefore there are at most (d + 1) different observing probabilities. The importance of association scheme in continuous-time quantum walk is shown by some worked out examples such as arbitrary finite group association schemes followed by symmetric S n , Dihedral D 2m and cyclic groups. At the end it is shown that the highest irreducible representations of Terwilliger algebras pave the way to use the spectral distributions method of Jafarizadeh and Salimi (2005 Preprint quant-ph/0510174) in studying quantum walk on some rather important graphs called distance regular graphs

  18. Flicker-Induced Time Dilation Does Not Modulate EEG Correlates of Temporal Encoding.

    Science.gov (United States)

    Herbst, Sophie K; Chaumon, Maximilien; Penney, Trevor B; Busch, Niko A

    2015-07-01

    In this study, we used EEG to investigate how visual stimulus dynamics (i.e. flicker) affect the mechanisms of duration perception. Previous studies have demonstrated that flickering visual stimuli are judged longer than equally long non-flickering stimuli. We tested whether this effect of flicker on duration judgments is mediated by changes in temporal encoding during the time interval. Here, temporal encoding refers to the perception of the unfolding of time throughout the temporal interval, also termed the "clock stage" in information processing models of interval timing. We hypothesized that if flicker mediates duration perception by affecting temporal encoding, then the dilation-effect should be reflected by neural correlates of temporal encoding. We presented flickering and steady stimuli in a duration bisection task and found that flicker dilated perceived duration. The EEG analysis allowed us to isolate a putative neural correlate of temporal encoding: a modulation of the amplitude of the contingent negative variation (CNV) by stimuli classified as "long" compared to physically identical stimuli classified as "short". However, flicker did not affect the CNV amplitude, suggesting that flicker does not dilate perceived duration by affecting temporal encoding. Possibly, flicker might affect only later stages of temporal processing such as interval comparison or decision making.

  19. Analysis of optimal mixing in open-flow mixers with time-modulated vortex arrays

    Science.gov (United States)

    Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2017-06-01

    In this work, a systematic approach to efficient open flow mixing is introduced, using general theoretical concepts to identify optimized parameters of a deliberately introduced unsteady flow component. The method is applied in detail to two-dimensional (2D) advective mixing in flows resulting from the superposition of a transport flow through a channel and secondary localized cross-flows, here the vortical streaming due to a microbubble array. A simple description of stirring in a steady 2D vortex identifies the characteristic time beyond which vortex stirring becomes ineffective, with slow algebraic decay of the mix-variance. Duty cycling of the vortices introduces flow unsteadiness, for which optimum duty cycling protocols are identified, following analytically from a few selected Eulerian properties of the combined transport and vortex stirring flow. In comparison with experiments and simulations, it is shown that this simple formalism allows for the accurate prediction of optimal advective mixing, exponential in time, in the microbubble streaming case and, by extension, for any open-flow mixer with modulated secondary flow. Taking into account the effect of diffusion, estimated residence times required for complete mixing in such optimized devices are obtained.

  20. Primary sleep enuresis in childhood: polysomnography evidences of sleep stage and time modulation

    Directory of Open Access Journals (Sweden)

    Rubens Reimäo

    1993-03-01

    Full Text Available The objective of this study was to evaluate enuretic events and its relations to sleep stages, sleep cycles and time durations in a selected group of children with primary essential sleep enuresis. We evaluated 18 patients with mean age of 8.2 years old (ranging from 5 to 12 years; 10 were males and 8 females (n.s.. They were referred to the Sleep Disorders Center with the specific complaint of enuresis since the first years of life (primary. Pediatric, urologic and neurologic workup did not show objective abnormalities (essential. The standard all-night polysomnography including an enuresis sensor attached to the shorts in the crotch area was performed. Only enuretic events nights were included. All were drug free patients for two weeks prior to polysomnography. In this report, only one polysomnography per patient was considered. The enuretic events were phase related, occurring predominantly in non-REM (NREM sleep (p<0.05. There was no predominance of enuretic events among the NREM stages (n.s.. A tendency of these events to occur in the first two sleep cycles was detected but may be due to the longer duration of these cycles. The events were time modulated, adjusted to a normal distribution with a mean of 213.4 min of recording time.

  1. Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer

    Science.gov (United States)

    Gao, Zhongming; Liu, Heping; Russell, Eric S.; Huang, Jianping; Foken, Thomas; Oncley, Steven P.

    2016-02-01

    The effects of large eddies on turbulence structures and flux transport were studied using data collected over a flat cotton field during the Energy Balance Experiment 2000 in the San Joaquin Valley of California in August 2000. Flux convergence (FC; larger fluxes at 8.7 m than 2.7 m) and divergence (FD) in latent heat flux (LE) were observed in a disturbed, unstable atmospheric surface layer, and their magnitudes largely departed from the prediction of Monin-Obukhov similarity theory. From our wavelet analysis, it was identified that large eddies affected turbulence structures, scalar distribution, and flux transport differently at 8.7 m and 2.7 m under the FC and FD conditions. Using the ensemble empirical mode decomposition, time series data were decomposed into large eddies and small-scale background turbulence, the time-domain characteristics of large eddies were examined, and the flux contribution by large eddies was also determined quantitatively. The results suggest that large eddies over the frequency range of 0.002 Hz < f < 0.02 Hz (predominantly 300-400 m) enhanced the vertical velocity spectra more significantly at 8.7 m than 2.7 m, leading to an increased magnitude of the cospectra and thus LE at 8.7 m. In the FD case, however, these large eddies were not present and even suppressed in the vertical velocity spectra at 8.7 m. Consequently, the cospectra divergence over the low-frequency ranges primarily caused the LE divergence. This work implies that large eddies may either improve or degrade the surface energy balance closure by increasing or decreasing turbulent fluxes, respectively.

  2. Efficacy of a New Ocular Surface Modulator in Restoring Epithelial Changes in an In Vitro Model of Dry Eye Syndrome.

    Science.gov (United States)

    Barabino, Stefano; De Servi, Barbara; Aragona, Salvatore; Manenti, Demetrio; Meloni, Marisa

    2017-03-01

    So far tear substitutes have demonstrated a limited role in restoring ocular surface damage in dry eye syndrome (DES). The aim of this study was to assess the efficacy of a new ocular surface modulator in an in vitro model of human corneal epithelium (HCE) damaged by severe osmotic stress mirroring the features of dry eye conditions. A reconstructed HCE model challenged by the introduction of sorbitol in the culture medium for 16 h was used to induce an inflammatory pathway and to impair the tight junctions integrity determining a severe modification of the superficial layer ultrastructure. At the end of the overnight stress period in the treated HCE series, 30 μl of the ocular surface modulator (T-LysYal, Sildeha, Switzerland) and of hyaluronic acid (HA) in the control HCE series were applied for 24 h. The following parameters were quantified: scanning electron microscopy (SEM), trans-epithelial electrical resistance (TEER), immunofluorescence analysis of integrin β1 (ITG-β1), mRNA expression of Cyclin D-1 (CCND1), and ITG-β1. In the positive control after the osmotic stress the HCE surface damage was visible at the ultrastructural level with loss of cell-cell interconnections, intercellular matrix destruction, and TEER reduction. After 24 h of treatment with T-LysYal, HCE showed a significant improvement of the ultrastructural morphological organization and increased expression of ITG-β1 at the tissue level when compared to positive and control series. A significant increase of mRNA expression for ITG-β1 and CCND1 was shown in the HA-treated cells compared to T-LysYal. TEER measurement showed a significant reduction in all groups after 16 h without modifications after the treatment period. This study has shown the possibility of a new class of agents denominated ocular surface modulators to restore corneal cells damaged by dry eye conditions. Further in vivo studies are certainly necessary to confirm these results.

  3. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    Science.gov (United States)

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  5. Increasing the time resolution of a pulse width modulator in a class D power amplifier by using delay lines

    Science.gov (United States)

    Weber, M.; Vennemann, T.; Mathis, W.

    2014-11-01

    In this paper, we present a method to increase the time resolution of a pulse width modulator by using delay lines. The modulator is part of an open loop class D power amplifier, which uses the ZePoC algorithm to code the audio signal which is amplified in the class D power stage. If the time resolution of the pulse width modulator is high enough, ZePoC could also be used to build an high accuracy AC power standard, because of its open loop property. With the presented method the time resolution theoretically could be increased by a factor of 16, which means here the time resolution will be enhanced from 5 ns to 312.5 ps.

  6. Surface Explorations : 3D Moving Images as Cartographies of Time

    NARCIS (Netherlands)

    Verhoeff, N.|info:eu-repo/dai/nl/241603471

    2016-01-01

    Moving images of travel and exploration have a long history. In this essay I will examine how the trope of navigation in 3D moving images can work towards an intimate and haptic encounter with other times and other places – elsewhen and elsewhere. The particular navigational construction of space in

  7. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.

    Science.gov (United States)

    De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-12-01

    Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8}  M_{⊙} by setting the axion mass to m_{B}∼10^{-22}  eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5  months)^{-1}(m_{B}/10^{-22}  eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150  pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400  nsec/(m_{B}/10^{-22}  eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  8. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current

    DEFF Research Database (Denmark)

    Angelo, Kamilla; Jespersen, Thomas; Grunnet, Morten

    2002-01-01

    The function of the KCNE5 (KCNE1-like) protein has not previously been described. Here we show that KCNE5 induces both a time- and voltage-dependent modulation of the KCNQ1 current. Interaction of the KCNQ1 channel with KCNE5 shifted the voltage activation curve of KCNQ1 by more than 140 m......V in the positive direction. The activation threshold of the KCNQ1+KCNE5 complex was +40 mV and the midpoint of activation was +116 mV. The KCNQ1+KCNE5 current activated slowly and deactivated rapidly as compared to the KCNQ1+KCNE1 at 22 degrees C; however, at physiological temperature, the activation time constant...... of the KCNQ1+KCNE5 current decreased fivefold, thus exceeding the activation rate of the KCNQ1+KCNE1 current. The KCNE5 subunit is specific for the KCNQ1 channel, as none of other members of the KCNQ-family or the human ether a-go-go related channel (hERG1) was affected by KCNE5. Four residues...

  9. Graphene assisted effective hole-extraction on In2O3:H/CH3NH3PbI3 interface: Studied by modulated surface spectroscopy

    Science.gov (United States)

    Vinoth Kumar, Sri Hari Bharath; Muydinov, Ruslan; Kol'tsova, Tat‘yana; Erfurt, Darja; Steigert, Alexander; Tolochko, Oleg; Szyszka, Bernd

    2018-01-01

    Charge separation in CH3NH3PbI3 (MAPbI3) films deposited on a hydrogen doped indium oxide (In2O3:H) photoelectrode was investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. It was found that In2O3:H reproducibly extracts photogenerated-holes from MAPbI3 films. The oxygen-plasma treatment of the In2O3:H surface is suggested to be a reason for this phenomenon. Introducing graphene interlayer increased charge separation nearly 6 times as compared to that on the In2O3:H/MAPbI3 interface. Furthermore, it is confirmed by SPV spectroscopy that the defects of the MAPbI3 interface are passivated by graphene.

  10. The ethics of measuring and modulating consciousness: the imperative of minding time.

    Science.gov (United States)

    Fins, Joseph J

    2009-01-01

    Using time as an over-arching metaphor, and drawing upon resources in the sciences, humanities, and the history of medicine, the author addresses the neuroethics of measuring and modulating consciousness. Static and evolving views of time dating to the Ancients are contrasted and applied to severe brain injury. These temporal worldviews are tracked progressively in the philosophies of Democritus and Heraclitus, Hippocrates and Galen, and the neurosurgeon, Wilder Penfield on into the modern era as they relate to current perceptions related to disorders of consciousness. These disorders, typified by the vegetative and minimally conscious states, can be viewed as either fixed and immutable or in flux depending upon social currents and scientific knowledge. Variable perspectives are examined in light of right-to-die cases involving permanently vegetative patients like Quinlan and Schiavo and contrasting "late" recoveries involving patients in the minimally conscious state. The author suggests that disorders of consciousness should not be viewed categorically as static entities but rather assessed as a reflection of a synchrony of time and biology that we are just beginning to understand. He stresses the relationship of temporality to clinical evaluation, diagnosis assessment, and prognostication and their association to new methods in functional neuroimaging. These time stamps have profound implications for systems of care and reimbursement mechanisms, which often mistakenly conflates futility with chronicity. This conflation is increasingly being challenged by patients who emerge from the minimally conscious state after conventional temporal expectations for improvement had transpired. These cases often referred to as "late emergences" point to the importance of better understanding the natural history of these conditions and the tempo of associated recoveries.

  11. Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator

    Science.gov (United States)

    Li, Xuan; Zhao, Shanghong; Li, Yongjun; Zhu, Zihang; Qu, Kun; Li, Tao; Hu, Dapeng

    2018-03-01

    A method for photonic generation of a linearly chirped microwave waveform using a frequency-sweeping laser and a dual-polarization modulator is proposed and investigated. A frequency-sweeping continuous-wave light is generated from the laser and then sent to the modulator. In the modulator, one part of the light is modulated with an RF signal to generate a frequency-shifting optical signal, while another part of the light is passed through a polarization rotator to rotate the polarization to an orthogonal direction. At the output of the modulator, the two optical signals are combined with orthogonal polarizations, and then injected into a polarization delay device to introduce a time delay. After combining the two optical signals for heterodyning, a linearly chirped waveform can be generated. The bandwidth, time duration, chirp rate and sign, central frequency of the generated waveform can be tuned independently and flexibly, furthermore, frequency doubling for the central frequency can be achieved in the waveform generation. A simulation is demonstrated to verify the proposed scheme, a linearly chirped microwave pulse with up or down chirp, central frequency of 20 or 40 GHz, bandwidth of 20 GHz, time duration of 500 ns, time-bandwidth product (TBWP) of 10000 is obtained.

  12. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications.

    Science.gov (United States)

    Behzadi, Kobra; Baghelani, Masoud

    2014-05-01

    This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  13. Design of an ultra low power third order continuous time current mode ΣΔ modulator for WLAN applications

    Directory of Open Access Journals (Sweden)

    Kobra Behzadi

    2014-05-01

    Full Text Available This paper presents a third order continuous time current mode ΣΔ modulator for WLAN 802.11b standard applications. The proposed circuit utilized feedback architecture with scaled and optimized DAC coefficients. At circuit level, we propose a modified cascade current mirror integrator with reduced input impedance which results in more bandwidth and linearity and hence improves the dynamic range. Also, a very fast and precise novel dynamic latch based current comparator is introduced with low power consumption. This ultra fast comparator facilitates increasing the sampling rate toward GHz frequencies. The modulator exhibits dynamic range of more than 60 dB for 20 MHz signal bandwidth and OSR of 10 while consuming only 914 μW from 1.8 V power supply. The FoM of the modulator is calculated from two different methods, and excellent performance is achieved for proposed modulator.

  14. Investigating the time-dependent zeta potential of wood surfaces.

    Science.gov (United States)

    Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin

    2018-05-15

    This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. X-ray free electron laser as a real-time probe of chemistry on surfaces

    International Nuclear Information System (INIS)

    Katayama, Tetsuo; Ogasawara, Hirohito

    2015-01-01

    X-ray free electron laser has opened up new possibilities for the study of surface chemical reactions on ultrafast time scale. This article reviews the recent work on the desorption of a molecule from a surface, which is one of the most fundamental surface chemical process. (author)

  16. Ozone time scale decomposition and trend assessment from surface observations

    Science.gov (United States)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  17. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  18. Real-Time Evaluation of 26-GBaud PAM-4 Intensity Modulation and Direct Detection Systems for Data-Center Interconnects

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Griesser, Helmut; Wei, Jinlong

    2016-01-01

    Real-time transmission with 26-GBaud PAM-4 as a promising modulation format for data-center interconnects with operation in C-band is evaluated. For an OSNR penalty below 2 dB a dispersion tolerance of up to 10 km of SSMF is achieved......Real-time transmission with 26-GBaud PAM-4 as a promising modulation format for data-center interconnects with operation in C-band is evaluated. For an OSNR penalty below 2 dB a dispersion tolerance of up to 10 km of SSMF is achieved...

  19. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    is decreased at higher fundamental frequency due to change in on-state time from the change in output frequency. The junction temperature is estimated using the on-state collector-emitter voltage of the IGBT module. Lower output frequency is thermally a higher stressing zone for wind power converters, hence......This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature...

  20. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Science.gov (United States)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  1. Double parametric resonance for matter-wave solitons in a time-modulated trap

    International Nuclear Information System (INIS)

    Baizakov, Bakhtiyor; Salerno, Mario; Filatrella, Giovanni; Malomed, Boris

    2005-01-01

    We analyze the motion of solitons in a self-attractive Bose-Einstein condensate, loaded into a quasi-one-dimensional parabolic potential trap, which is subjected to time-periodic modulation with an amplitude ε and frequency Ω. First, we apply the variational approximation, which gives rise to decoupled equations of motion for the center-of-mass coordinate of the soliton, ξ(t), and its width a(t). The equation for ξ(t) is the ordinary Mathieu equation (ME) (it is an exact equation that does not depend on the adopted ansatz), the equation for a(t) being a nonlinear generalization of the ME. Both equations give rise to the same map of instability zones in the (ε,Ω) plane, generated by the parametric resonances (PRs), if the instability is defined as the onset of growth of the amplitude of the parametrically driven oscillations. In this sense, the double PR is predicted. Direct simulations of the underlying Gross-Pitaevskii equation give rise to a qualitatively similar but quantitatively different stability map for oscillations of the soliton's width a(t). In the direct simulations, we identify the soliton dynamics as unstable if the instability (again, realized as indefinite growth of the amplitude of oscillations) can be detected during a time comparable with, or smaller than, the lifetime of the condensate (therefore accessible to experimental detection). Two-soliton configurations are also investigated. It is concluded that multiple collisions between solitons are elastic, and they do not affect the instability borders

  2. Detection of biochemical reactions by a surface plasmon resonance senor based on polarization interferometry and angle modulation

    Science.gov (United States)

    Hu, Zhaoxu; Chong, Xinyuan; Ma, Suihua; Li, Yao; He, Yonghong; Guo, Jihua

    2009-08-01

    A surface plasmon resonance (SPR) bio-sensing system has been developed. The system is based on polarization interferometry and angel modulation. In this paper, we apply it in the biological detection. We use the DNA fragment of Escherichia coli (Bacterial 16S rDNA universal primer) as bioprobe and . The process that analyte attach with the bioprobe, and coli DNA as analyte, get a resolution about 2.7× 10-6RI and 0.18nM/L in coli DNA detection.

  3. Determining appropriate timing of adaptive radiation therapy for nasopharyngeal carcinoma during intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Huang, Huixian; Lu, Heming; Feng, Guosheng; Jiang, Hailan; Chen, Jiaxin; Cheng, Jinjian; Pang, Qiang; Lu, Zhiping; Gu, Junzhao; Peng, Luxing; Deng, Shan; Mo, Ying; Wu, Danling; Wei, Yinglin

    2015-01-01

    To determine appropriate timing of an adaptive radiation therapy (ART) replan by evaluating anatomic and dosimetric changes of target volumes and organs at risk (OARs) during intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC). Nineteen NPC patients were recruited. Each patient had repeat computed tomography (CT) scans after each five fractions and at treatment completion. Automatic re-contouring the targets and OARs by using deformable registration algorithm was conducted through CT-CT fusion. Anatomic changes were assessed by comparing the initial CT and repeated CT. Hybrid plans with re-contouring were generated and the dose-volume histograms (DVH) of the hybrid plan and the original plan were compared. Progressive volume reductions in gross target volume for primary disease (GTVnx), gross target volume for involved lymph nodes (GTVnd), and parotids were observed over time. Comparing with the original plan, each hybrid plan had no significant difference in homogeneity index (HI) for all the targets. Some parameters for planning target volumes for primary disease and high-risk clinical target volume (PTVnx and PTV1, respectively) improved significantly, notably starting from the 10th fraction. These parameters included mean dose (Dmean), dose to 95 % of the volume (D95), percentage of the volume receiving 95 % of the prescription dose (V95), and conformity index (CI) for PTVnx, and Dmean, D95, and CI for PTV1. The dosimetric parameters for PTVnd remained the same in general except for D95 and V95 which had significant improvement at specific time points; whereas for PTV2, similar trend of dosimetric changes was also observed. Dose to some OARs increased significantly at some time points. There were significant anatomic and dosimetric changes in the targets and OARs. The target dose coverage in the hybrid plans did not get worse, but overdose occurred in some critical structures. Significant dosimetric changes should be considered as a

  4. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  5. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  6. Binary pseudo-random gratings and arrays for calibration of the modulation transfer function of surface profilometers: recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Soldate, Paul; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wanye R.; Takacs, Peter Z.; Voronov, Dmitry L.; Yashchuk, Valeriy V.

    2009-07-07

    The major problem of measurement of a power spectral density (PSD) distribution of the surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments. The MTF tends to distort the PSD at higher spatial frequencies. It has been suggested [Proc. SPIE 7077-7, (2007), Opt. Eng. 47 (7), 073602-1-5 (2008)] that the instrumental MTF of a surface profiler can be precisely measured using standard test surfaces based on binary pseudo-random (BPR) patterns. In the cited work, a one dimensional (1D) realization of the suggested method based on use of BPR gratings has been demonstrated. Here, we present recent achievements made in fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. The 2D BPRAs were used as standard test surfaces for 2D MTF calibration of the MicromapTM-570 interferometric microscope with all available objectives. The effects of fabrication imperfections on the efficiency of calibration are also discussed.

  7. In Situ Nondestructive Analysis of Kalanchoe pinnata Leaf Surface Structure by Polarization-Modulation Infrared Reflection-Absorption Spectroscopy.

    Science.gov (United States)

    Hama, Tetsuya; Kouchi, Akira; Watanabe, Naoki; Enami, Shinichi; Shimoaka, Takafumi; Hasegawa, Takeshi

    2017-12-14

    The outermost surface of the leaves of land plants is covered with a lipid membrane called the cuticle that protects against various stress factors. Probing the molecular-level structure of the intact cuticle is highly desirable for understanding its multifunctional properties. We report the in situ characterization of the surface structure of Kalanchoe pinnata leaves using polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Without sample pretreatment, PM-IRRAS measures the IR spectra of the leaf cuticle of a potted K. pinnata plant. The peak position of the CH 2 -related modes shows that the cuticular waxes on the leaf surface are mainly crystalline, and the alkyl chains are highly packed in an all-trans zigzag conformation. The surface selection rule of PM-IRRAS revealed the average orientation of the cuticular molecules, as indicated by the positive and negative signals of the IR peaks. This unique property of PM-IRRAS revealed that the alkyl chains of the waxes and the main chains of polysaccharides are oriented almost perpendicular to the leaf surface. The nondestructive, background-free, and environmental gas-free nature of PM-IRRAS allows the structure and chemistry of the leaf cuticle to be studied directly in its native environment.

  8. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinenghi, E., E-mail: edoardo.martinenghi@polimi.it; Di Sieno, L.; Contini, D.; Dalla Mora, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Sanzaro, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Pifferi, A. [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-07-15

    We present the design and preliminary characterization of the first detection module based on Silicon Photomultiplier (SiPM) tailored for single-photon timing applications. The aim of this work is to demonstrate, thanks to the design of a suitable module, the possibility to easily exploit SiPM in many applications as an interesting detector featuring large active area, similarly to photomultipliers tubes, but keeping the advantages of solid state detectors (high quantum efficiency, low cost, compactness, robustness, low bias voltage, and insensitiveness to magnetic field). The module integrates a cooled SiPM with a total photosensitive area of 1 mm{sup 2} together with the suitable avalanche signal read-out circuit, the signal conditioning, the biasing electronics, and a Peltier cooler driver for thermal stabilization. It is able to extract the single-photon timing information with resolution better than 100 ps full-width at half maximum. We verified the effective stabilization in response to external thermal perturbations, thus proving the complete insensitivity of the module to environment temperature variations, which represents a fundamental parameter to profitably use the instrument for real-field applications. We also characterized the single-photon timing resolution, the background noise due to both primary dark count generation and afterpulsing, the single-photon detection efficiency, and the instrument response function shape. The proposed module can become a reliable and cost-effective building block for time-correlated single-photon counting instruments in applications requiring high collection capability of isotropic light and detection efficiency (e.g., fluorescence decay measurements or time-domain diffuse optics systems).

  9. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  10. Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop

    Science.gov (United States)

    Patterson, Colin J.; Shiri, Samira; Bird, James C.

    2017-02-01

    Liquid drops can bounce when they impact non-wetting surfaces. Recently, studies have demonstrated that the time that the bouncing drop contacts a superhydrophobic surface can be reduced by incorporating ridged macrotextures on the surface. Yet the existing models aimed at explaining this phenomenon offer incompatible predictions of the contact time when a drop impacts multiple intersecting macrotextures, or spokes. Furthermore, it is unclear whether the effects of the macrotexture on the drop hydrodynamics extend to non-wetting surfaces in which direct contact is avoided by a thin vapor layer. Here we demonstrate that the phenomenon observed for macrotextured, superhydrophobic surfaces extends to macrotextured, wettable surfaces above the Leidenfrost temperature. We show that the number of droplets and overall residence time both depend on the number of intersecting spokes. Finally, we compare and contrast our results with mechanistic models to rationalize various elements of the phenomenon.

  11. Increase in data capacity utilising dimensions of wavelength, space, time, polarisation and multilevel modulation using a single laser

    DEFF Research Database (Denmark)

    Clausen, Anders; Hu, Hao; Ye, Feihong

    2015-01-01

    Increasing the capacity of optical networks while have the objective of lowering the total consumed energy per bit is challenging. By exploiting several dimensions, i.e. wavelength, space, time, polarisation and multilevel modulation simultaneously, a single laser can offer formidable capacity pe...

  12. The Effects of Textisms on Learning, Study Time, and Instructional Perceptions in an Online Artificial Intelligence Instructional Module

    Science.gov (United States)

    Beasley, Robert; Bryant, Nathan L.; Dodson, Phillip T.; Entwistle, Kevin C.

    2013-01-01

    The purpose of this study was to investigate the effects of textisms (i.e., abbreviated spellings, acronyms, and other shorthand notations) on learning, study time, and instructional perceptions in an online artificial intelligence instructional module. The independent variable in this investigation was experimental condition. For the control…

  13. Design of the data management system for hard X-ray modulation telescope based on real-time Linux

    International Nuclear Information System (INIS)

    Jia Tao; Zhang Zhi

    2004-01-01

    Hard X-ray Modulation Telescope is an electronic subsystem, the data management system for capturing the data of the telescope, then managing and transferring them. The data management system also deals with the communication with the satellite. Because of these functions, it needs highly steady quality and good real-time performance. This paper describes the design of the system. (authors)

  14. The Effect of Nano-ZnO Surface Wettability on Modulating Protein Adsorption

    Science.gov (United States)

    Hu, Qian; Ding, Yadan; Shao, Hong; Cong, Tie; Yang, Xiaoguang; Hong, Xia

    2017-07-01

    Although surface wettability plays a major role in regulating protein adsorption and nanostructured ZnO has shown great potential in various biomedical fields, few reports have examined the influence of nano-ZnO surface wettability on protein adsorption. Herein, we explored the adsorption behavior of bovine serum albumin (BSA) on the superhydrophilic, hydrophilic, hydrophobic and superhydrophobic nano-ZnO surfaces. The adsorption amount of BSA increased with increase of hydrophilicity because of increased adsorption sites on the hydrophilic surface. The protein adsorption was proved to occur along with the desorption and conformational changes by well-fitted kinetic adsorption curves with the Spreading Particle Model and Fourier transformation infrared spectral analysis. The rates of BSA adsorption and desorption increased with hydrophobicity of the ZnO surfaces, which was considered to be related with the energy barrier created by water bound to the ZnO surfaces via hydrogen bonding. The rate of conformational change varied in a complex way, which might be influenced by the surface wettability of ZnO and some other factors. The present work may open up a new avenue to design nano-bio interfacial materials for advanced biological study and clinical applications.

  15. Modulation of Jaw Muscle Motor Response and Wake-Time Parafunctional Tooth Clenching With Music.

    Science.gov (United States)

    Cioffi, Iacopo; Sobhani, Mona; Tenenbaum, Howard C; Howard, Alicia; Freeman, Bruce V; Thaut, Michael

    2018-02-28

    To evaluate the effects of Guided Music Listening (GML) on masticatory muscles and on the amplitude of wake-time tooth clenching in individuals with higher vs lower frequency of clenching episodes. The electromyographic (EMG) activity of the right masseter was recorded during three 20-minute music (relaxing, stress/tension, and favorite) tasks and a control no-music task in 10 (mean age ± standard deviation [SD] = 21.4 ± 3.0 years) and 11 (22.6 ± 2.9 years) healthy volunteers with higher (HP) vs lower (LP) frequency of tooth-clenching episodes, respectively. EMG episodes greater than 10% of the maximum voluntary contraction (EMG activity of the masseter during tooth clenching) and below 10% (EMG activity during rest) were analyzed. Nonparametric tests were used to assess between-group and within-group (between-task) differences in primary outcome measures. In both groups, EMG activity during rest was the greatest during the stress/tension task, and it was the lowest during the favorite task in the LP group and the relaxing task in the HP group (all P < .001). In the HP group, the amplitude of clenching episodes was significantly lower during the favorite and stress/tension tasks than during the relaxing task (all P < .05), while in the LP group, it was significantly lower during the stress/tension task than during the control task (P = .001). The experiment did not affect the frequency or duration of clenching episodes. GML modulates masticatory muscle activity. The response to GML depends on the frequency of clenching and the type of music.

  16. The modulation of simple reaction time by the spatial probability of a visual stimulus

    Directory of Open Access Journals (Sweden)

    Carreiro L.R.R.

    2003-01-01

    Full Text Available Simple reaction time (SRT in response to visual stimuli can be influenced by many stimulus features. The speed and accuracy with which observers respond to a visual stimulus may be improved by prior knowledge about the stimulus location, which can be obtained by manipulating the spatial probability of the stimulus. However, when higher spatial probability is achieved by holding constant the stimulus location throughout successive trials, the resulting improvement in performance can also be due to local sensory facilitation caused by the recurrent spatial location of a visual target (position priming. The main objective of the present investigation was to quantitatively evaluate the modulation of SRT by the spatial probability structure of a visual stimulus. In two experiments the volunteers had to respond as quickly as possible to the visual target presented on a computer screen by pressing an optic key with the index finger of the dominant hand. Experiment 1 (N = 14 investigated how SRT changed as a function of both the different levels of spatial probability and the subject's explicit knowledge about the precise probability structure of visual stimulation. We found a gradual decrease in SRT with increasing spatial probability of a visual target regardless of the observer's previous knowledge concerning the spatial probability of the stimulus. Error rates, below 2%, were independent of the spatial probability structure of the visual stimulus, suggesting the absence of a speed-accuracy trade-off. Experiment 2 (N = 12 examined whether changes in SRT in response to a spatially recurrent visual target might be accounted for simply by sensory and temporally local facilitation. The findings indicated that the decrease in SRT brought about by a spatially recurrent target was associated with its spatial predictability, and could not be accounted for solely in terms of sensory priming.

  17. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes

    2011-01-01

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle copyright planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% γ criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  18. Impact of gantry rotation time on plan quality and dosimetric verification. Volumetric modulated arc therapy (VMAT) vs. intensity modulated radiotherapy (IMRT)

    Energy Technology Data Exchange (ETDEWEB)

    Pasler, Marlies; Wirtz, Holger; Lutterbach, Johannes [Gemeinschaftspraxis fuer Strahlentherapie Singen-Friedrichshafen, Singen (Germany)

    2011-12-15

    To compare plan quality criteria and dosimetric accuracy of step-and-shoot intensity-modulated radiotherapy (ss-IMRT) and volumetric modulated arc radiotherapy (VMAT) using two different gantry rotation times. This retrospective planning study based on 20 patients was comprised of 10 prostate cancer (PC) and 10 head and neck (HN) cancer cases. Each plan contained two target volumes: a primary planning target volume (PTV) and a boost volume. For each patient, one ss-IMRT plan and two VMAT plans at 90 s (VMAT90) and 120 s (VMAT120) per arc were generated with the Pinnacle {sup copyright} planning system. Two arcs were provided for the PTV plans and a single arc for boost volumes. Dosimetric verification of the plans was performed using a 2D ionization chamber array placed in a full scatter phantom. VMAT reduced delivery time and monitor units for both treatment sites compared to IMRT. VMAT120 vs. VMAT90 increased delivery time and monitor units in PC plans without improving plan quality. For HN cases, VMAT120 provided comparable organs at risk sparing and better target coverage and conformity than VMAT90. In the VMAT plan verification, an average of 97.1% of the detector points passed the 3 mm, 3% {gamma} criterion, while in IMRT verification it was 98.8%. VMAT90, VMAT120, and IMRT achieved comparable treatment plans. Slower gantry movement in VMAT120 plans only improves dosimetric quality for highly complex targets.

  19. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  20. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.

    Science.gov (United States)

    Grad, S; Loparic, M; Peter, R; Stolz, M; Aebi, U; Alini, M

    2012-04-01

    Functional cartilage tissue engineering aims to generate grafts with a functional surface, similar to that of authentic cartilage. Bioreactors that stimulate cell-scaffold constructs by simulating natural joint movements hold great potential to generate cartilage with adequate surface properties. In this study two methods based on atomic force microscopy (AFM) were applied to obtain information about the quality of engineered graft surfaces. For better understanding of the molecule-function relationships, AFM was complemented with immunohistochemistry. Bovine chondrocytes were seeded into polyurethane scaffolds and subjected to dynamic compression, applied by a ceramic ball, for 1h daily [loading group 1 (LG1)]. In loading group 2 (LG2), the ball additionally oscillated over the scaffold, generating sliding surface motion. After 3 weeks, the surfaces of the engineered constructs were analyzed by friction force and indentation-type AFM (IT-AFM). Results were complemented and compared to immunohistochemical analyses. The loading type significantly influenced the mechanical and histological outcomes. Constructs of LG2 exhibited lowest friction coefficient and highest micro- and nanostiffness. Collagen type II and aggrecan staining were readily observed in all constructs and appeared to reach deeper areas in loaded (LG1, LG2) compared to unloaded scaffolds. Lubricin was specifically detected at the top surface of LG2. This study proposes a quantitative AFM-based functional analysis at the micrometer- and nanometer scale to evaluate the quality of cartilage surfaces. Mechanical testing (load-bearing) combined with friction analysis (gliding) can provide important information. Notably, sliding-type biomechanical stimuli may favor (re-)generation and maintenance of functional articular surfaces and support the development of mechanically competent engineered cartilage. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights

  1. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Czech Academy of Sciences Publication Activity Database

    Levy, Yoann; Derrien, Thibault; Bulgakova, Nadezhda M.; Gurevich, E.L.; Mocek, Tomáš

    2016-01-01

    Roč. 374, Jun (2016), s. 157-164 ISSN 0169-4332 R&D Projects: GA MŠk ED2.1.00/01.0027 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : LIPSS * modulated temperature relaxation * two-temperature model * nano-melting Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.387, year: 2016

  2. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    Science.gov (United States)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  3. Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Directory of Open Access Journals (Sweden)

    Mamgain Hitesh

    2009-10-01

    Full Text Available Abstract Background Imaging tools such as scanning electron microscope (SEM and atomic force microscope (AFM can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections. Methods We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK 293, human breast cancer (MCF-7 and mouse melanoma (B16F1 cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM and scanning electron microscopy (SEM. The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies. Results Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins. Conclusion Tumor suppressor

  4. Signal acquisition module design for multi-channel surface magnetic resonance sounding system.

    Science.gov (United States)

    Lin, Tingting; Chen, Wuqiang; Du, Wenyuan; Zhao, Jing

    2015-11-01

    To obtain a precise 2D/3D image of fissure or karst water, multi-channel magnetic resonance sounding (MRS) systems using edge-to-edge or overlapping receiving coils are needed. Thus, acquiring a nano-volt signal for a small amount of the aquifer and suppressing the mutual coupling between adjacent coils are two important issues for the design of the signal acquisition module in the system. In the present study, we propose to use a passive low pass filter, consisted of a resistance (R) and capacitance (C), to inhibit the mutual coupling effects of the coils. Four low-noise operational amplifiers LT1028, OPA124, AD745, and OP27 were compared with respect to achieving the lowest system noise. As a result, 3 pieces of LT1028 were chosen and connected in parallel to serve as preamplifier, with a sensitivity of 1.4 nV/√Hz at 2 kHz. Experimental results are presented for 2D MRS groundwater investigations conducted in the suburb of Changchun, China. The inversion result is consistent with the result of drilling log, suggesting that the signal acquisition module is well developed.

  5. Study of surfaces and surface layers on high temperature materials after short-time thermal loads

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-11-01

    Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de

  6. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  7. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  8. Tailoring hydrogel surface properties to modulate cellular response to shear loading.

    Science.gov (United States)

    Meinert, Christoph; Schrobback, Karsten; Levett, Peter A; Lutton, Cameron; Sah, Robert L; Klein, Travis J

    2017-04-01

    Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage. Excessive mechanical loading is believed to be a major risk factor inducing pathogenesis of articular cartilage and other load-bearing tissues. Yet, the mechanisms leading to increased transmission of mechanical stimuli to cells embedded in the tissue remain largely unexplored. Here, we demonstrate that the tribological properties of loadbearing tissues regulate cellular behaviour by governing the magnitude of mechanical deformation arising from physiological tissue

  9. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents.

    Science.gov (United States)

    Wrzecionko, Erik; Minařík, Antonín; Smolka, Petr; Minařík, Martin; Humpolíček, Petr; Rejmontová, Petra; Mráček, Aleš; Minaříková, Magda; Gřundělová, Lenka

    2017-02-22

    A new approach to polystyrene surface treatment via the time-sequenced dispensing of good and poor solvent mixtures on the rotating surface of treated substrate is presented in this study. It is demonstrated that the variation of the sequencing together with other variables (e.g., temperature and solvent concentration) affects the size and depth of pores evolving on the polystyrene surface. A model of the surface pore creation, associated with the viscoelastic phase separation, surface tension, and secondary flows caused by temperature variations and the rapid evaporation of the good solvent is proposed. Experimental results of profilometric, goniometric, and optical measurements show that this approach enables the simple and quick preparation of surfaces with various numbers, diameters, and depths of individual pores, which ultimately affects not only the wetting characteristics of the surfaces but also the fate of cells cultivated there. The presented method allows the easy preparation of a large number of structured substrates for effective cell cultivation and proliferation.

  10. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    Science.gov (United States)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have

  11. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenyang [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Cheung, Yam [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas 75390 (United States); Sawant, Amit [Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas, 75390 and Department of Radiation Oncology, University of Maryland, College Park, Maryland 20742 (United States); Ruan, Dan, E-mail: druan@mednet.ucla.edu [Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095 and Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced

  12. ΔF508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter.

    Science.gov (United States)

    Phuan, Puay-Wah; Veit, Guido; Tan, Joseph-Anthony; Roldan, Ariel; Finkbeiner, Walter E; Haggie, Peter M; Lukacs, Gergely L; Verkman, Alan S

    2018-03-01

    The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin-Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z' factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC 50 . Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain.

  13. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  14. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    Directory of Open Access Journals (Sweden)

    Olivia Koenig

    2017-02-01

    Full Text Available Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs or messenger RNAs (mRNAs to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid (PLGA resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis.

  15. an investigation of time installation of x surface me estigation of time

    African Journals Online (AJOL)

    eobe

    Keywords: Time, cost, risk, project, x-ray machines. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Project management as defined by the Bri standard Institute “'is a unique set of co activities, with definite starting and finishing po undertaken by an individual or organization specific objectives within defined ...

  16. an investigation of time installation of x surface me estigation of time

    African Journals Online (AJOL)

    eobe

    discrete [8], linear-continuo. [10], non-linear convex [11 discrete) [12] cost functions. the problem, the relation among the tim defined as discrete functions. This mean project activity, different modes of available and for each mode a different is possible. On the contrary, for th version, the relation among the time, co is defined ...

  17. Photonic integrated single-sideband modulator / frequency shifter based on surface acoustic waves

    DEFF Research Database (Denmark)

    Barretto, Elaine Cristina Saraiva; Hvam, Jørn Märcher

    2010-01-01

    Optical frequency shifters are essential components of many systems. In this paper, a compact integrated optical frequency shifter is designed making use of the combination of surface acoustic waves and Mach-Zehnder interferometers. It has a very simple operation setup and can be fabricated in st...

  18. Effects of photovoltaic module soiling on glass surface resistance and potential-induced degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Burton, Patrick; Hendrickson, Alexander

    2015-01-01

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60°C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when ...

  19. The modulation of cell surface cAMP receptors from Dictyostelium disscoideum by ammonium sulfate

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1985-01-01

    Dictyostelium discoideum cells contain a heterogeneous population of cell surface cAMP receptors with components possessing different affinities (Kd between 15 and 450 nM) and different off-rates of the cAMP-receptor complex (t½ between 0.7 and 150 s). The association of cAMP to the receptor and the

  20. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Frøkiær, Hanne; Pestka, J.J.

    2002-01-01

    in the capacity to induce IL-12 and TNF-a production in the DC. Similar but less pronounced differences were observed among lactobacilli in the induction of IL-6 and IL-10. Although all strains up-regulated surface MHC class II and B7-2 (CD86), which is indicative of DC maturation, those lactobacilli...

  1. Surface-Borne Time-of-Reception Measurements (STORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  2. Time-kill profiles and cell-surface morphological effects of crude ...

    African Journals Online (AJOL)

    MK1201 mycelial extract on the viability and cell surface morphology of methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Methods: Time-kill assays were conducted by incubating test ...

  3. System Level Design of a Continuous-Time Delta-Sigma Modulator for Portable Ultrasound Scanners

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Færch, Kjartan; Jørgensen, Ivan Harald Holger

    2015-01-01

    these requirements, a fourth order, 1-bit modulator with optimal zero placing is used. An analysis shows that the thermal noise from the resistors and operational transconductance amplifier is not a limiting factor due to the low required SNR, leading to an inherently very low-power implementation. Furthermore...

  4. Magnetic field topographical survey by magneto-optical space-time light modulators

    Science.gov (United States)

    Levy, Sergey V.; Ostrovsky, Andrey S.; Agalidy, Yu. S.

    1993-12-01

    Utilization of magneto-optical spacing light modulators based on Bi-substituted monocrystalline ferrite-garnet films for spatially distributed magnetic field measurements is discussed. Numerous variants of magnetic field topographical survey for different types (audio & video ...) of magnetic signalogramms geometrical parameters control are described. Special usages for magnetic signalogramms criminalistics examination and faint amplitude signalogramms visualization are described too.

  5. "Scaffolding" of Action Learning within a Part-Time Management Development Module

    Science.gov (United States)

    Joesbury, Mark

    2015-01-01

    This Account of Practice describes the introduction and development of action learning within a level 5 module of "Communications at Work" delivered as part of a Business & Technology Education Council (BTEC) Professional Certificate in Management (CMS) between 2005/2006 and 2009/2010. This will commence with a personal narrative and…

  6. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules

    International Nuclear Information System (INIS)

    Jordehi, Ahmad Rezaee

    2016-01-01

    Highlights: • A modified PSO has been proposed for parameter estimation of PV cells and modules. • In the proposed modified PSO, acceleration coefficients are changed during run. • The proposed modified PSO mitigates premature convergence problem. • Parameter estimation problem has been solved for both PV cells and PV modules. • The results show that proposed PSO outperforms other state of the art algorithms. - Abstract: Estimating circuit model parameters of PV cells/modules represents a challenging problem. PV cell/module parameter estimation problem is typically translated into an optimisation problem and is solved by metaheuristic optimisation problems. Particle swarm optimisation (PSO) is considered as a popular and well-established optimisation algorithm. Despite all its advantages, PSO suffers from premature convergence problem meaning that it may get trapped in local optima. Personal and social acceleration coefficients are two control parameters that, due to their effect on explorative and exploitative capabilities, play important roles in computational behavior of PSO. In this paper, in an attempt toward premature convergence mitigation in PSO, its personal acceleration coefficient is decreased during the course of run, while its social acceleration coefficient is increased. In this way, an appropriate tradeoff between explorative and exploitative capabilities of PSO is established during the course of run and premature convergence problem is significantly mitigated. The results vividly show that in parameter estimation of PV cells and modules, the proposed time varying acceleration coefficients PSO (TVACPSO) offers more accurate parameters than conventional PSO, teaching learning-based optimisation (TLBO) algorithm, imperialistic competitive algorithm (ICA), grey wolf optimisation (GWO), water cycle algorithm (WCA), pattern search (PS) and Newton algorithm. For validation of the proposed methodology, parameter estimation has been done both for

  7. Development and evaluation of a time-dependent radiographic technology by using a muon read out module

    Science.gov (United States)

    Kusagaya, T.; Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2012-04-01

    We will present a real-time monitoring system for cosmic-ray muon radiography as an application of a readout module developed by T. Uchida et al [1,2]. The readout module was developed originally for probing the internal structure of volcanoes in 2008 [3]. Its features are small in size, low power consumption, and the capability to access remotely via Ethernet. The current statistics data of cosmic-ray muons can be read from a PC placed far from the module at anytime. By using this feature, we constructed a real-time monitoring system. As a test experiment, we observed fluid movement in a cylinder with a diameter of 112 meters water equivalent. In this work, we succeeded to resolve the fluid movement in the cylinder. We varied the fluid level inside the cylinder and measured the muon intensity. We found that the muon intensity correlates inversely with the fluid level: the muon intensity increases for the lower fluid level and decreases for the higher fluid level. Although the time resolution of muon radiography was sufficient to resolve changes in the fluid level, an adequate time window has to be chosen for different operating conditions. We anticipate that this system will be applicable to exploring high-speed phenomena in a gigantic object.

  8. Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level

    Directory of Open Access Journals (Sweden)

    Matic Herman

    2012-01-01

    Full Text Available High-efficiency solar cells and modules exhibit strong capacitive character resulting in limited speed of transient responses. A too fast I-V curve measurement can thus introduce a significant error due to its internal capacitances. This paper analyses the I-V curve error of a measured solar cell or module in light of scan time and irradiance level. It rests on a two-diode solar cell model extended by two bias-dependent capacitances, modelling the junction, and the diffusion capacitance. A method for determination of all extended model parameters from a quasistatic I-V curve and open-circuit voltage decay measurement is presented and validated. Applicability of the extended model and the developed parameter extraction method to PV modules is demonstrated and confirmed. SPICE simulations of the extended model are used to obtain the I-V curve error versus scan time dependence and the I-V curve hysteresis. Determination of the optimal scan time is addressed, and finally the influence of the irradiance level on the I-V curve scan time and error is revealed. The method is applied but is not limited to three different wafer-based silicon solar cell types.

  9. Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Ali; Fawzy, Yasser H.A. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) (Egypt); Bek, Alpan, E-mail: bek@metu.edu.tr [Physics Department, Middle East Technical University (METU), Ankara (Turkey); Abdel-Hamid, Hassan M. [Diagnostic Radiology Department, Applied Medical Sciences Faculty, Jazan University (Saudi Arabia); El-Oker, Mohamed M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2013-04-01

    Polytetrafluoroethylene (PTFE) films were irradiated under vacuum with 3 keV Argon ions (Ar{sup +}) and fluences ranging from 0.5 × 10{sup 18} to 2 × 10{sup 18} ions/cm{sup 2}. Ion induced PTFE surface modifications of structural, morphological and wettability nature were studied by means of Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, atomic force microscopy and force spectroscopy, and contact angle measurements. FTIR analysis indicated defluorination of PTFE due to the rupture of C–C and C–F bonds. The values of droplet contact angle of the irradiated samples decreased gradually with the increasing ion flux, and were found to be very sensitive to the environmental humidity under which the measurements were made. The experimental results show that the surface chemical bond, morphology, and wettability of irradiated PTFE samples depend closely on the argon ion flux.

  10. Salivary pellicles equalise surfaces' charges and modulate the virulence of Candida albicans biofilm.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Williams, David; Senna, Plínio Mendes; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José

    2016-06-01

    Numerous environmental factors influence the pathogenesis of Candida biofilms and an understanding of these is necessary for appropriate clinical management. To investigate the role of material type, pellicle and stage of biofilm development on the viability, bioactivity, virulence and structure of C. albicans biofilms. The surface roughness (SR) and surface free energy (SFE) of acrylic and titanium discs was measured. Pellicles of saliva, or saliva supplemented with plasma, were formed on acrylic and titanium discs. Candida albicans biofilms were then generated for 1.5 h, 24h, 48 h and 72 h. The cell viability in biofilms was analysed by culture, whilst DNA concentration and the expression of Candida virulence genes (ALS1, ALS3 and HWP1) were evaluated using qPCR. Biofilm metabolic activity was determined using XTT reduction assay, and biofilm structure analysed by Scanning Electron Microscopy (SEM). Whilst the SR of acrylic and titanium did not significantly differ, the saliva with plasma pellicle increased significantly the total SFE of both surface. The number of viable microorganisms and DNA concentration increased with biofilm development, not differing within materials and pellicles. Biofilms developed on saliva with plasma pellicle surfaces had significantly higher activity after 24h and this was accompanied with higher expression of virulence genes at all periods. Induction of C. albicans virulence occurs with the presence of plasma proteins in pellicles, throughout biofilm growth. To mitigate such effects, reduction of increased plasmatic exudate, related to chronic inflammatory response, could aid the management of candidal biofilm-related infections. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2012-01-01

    Roč. 32, č. 4 (2012), s. 743-754 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : ozone * surface DBD * synthetic air * nitrogen oxides * production efficiency Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.728, year: 2012 http://www.springerlink.com/content/h7p1j46381150510/fulltext. pdf

  12. Influence of Power Modulation on Ozone Production Using an AC Surface Dielectric Barrier Discharge in Oxygen

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Pekárek, S.; Prukner, Václav

    2010-01-01

    Roč. 30, č. 5 (2010), s. 607-617 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA202/09/0176 Institutional research plan: CEZ:AV0Z20430508 Keywords : Ozone * Surface DBD * Oxygen * Production efficiency Subject RIV: BL - Plasma and Gas Disc harge Physics Impact factor: 1.798, year: 2010 http://www.springerlink.com/content/28539775w5243513/

  13. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  14. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  15. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  16. Modulating the Partitioning of Microparticles in a Polyethylene Glycol (PEG-Dextran (DEX Aqueous Biphasic System by Surface Modification

    Directory of Open Access Journals (Sweden)

    Chang Kyu Byun

    2018-02-01

    Full Text Available Aqueous two-phase systems (ATPSs or aqueous biphasic systems are useful for biological separation/preparation and cell micropatterning. Specifically, aqueous two-phase systems (ATPSs are not harmful to cells or biomaterials; therefore, they have been used to partition and isolate these materials from others. In this study, we suggest chemically modifying the surface of target materials (micro/nanoparticles, for example with polymers, such as polyethylene glycol and dextran, which are the same polymer solutes as those in the ATPS. As a simple model, we chemically coated polyethylene glycol or dextran to the surface of polystyrene magnetic particles and observed selective partitioning of the surface modified particles to the phase in which the same polymer solutes are dominant. This approach follows the principle “like dissolves like” and can be expanded to other aqueous biphasic or multiphasic systems while consuming fewer chemicals than the conventional modulation of hydrophobicities of solute polymers to control partitioning in aqueous biphasic or multiphasic systems.

  17. New superjuction LDMOS with surface and bulk electric field modulation by buffered step doping and multi floating buried layers

    Science.gov (United States)

    Cao, Zhen; Duan, Baoxing; Yuan, Song; Shi, Tongtong; Yang, Yintang

    2017-11-01

    A new superjunction lateral double diffused MOSFET with surface and bulk electric field modulation (SBEFM SJ-LDMOS) by applying of multiple floating buried layers and buffered step doping is proposed in this paper. The Multiple N-type floating buried layers are embedded in P-substrate, to reduce the amount of field crowding at N+/N-buffer/P-substrate junction by spreading the vertical depletion layer, which effectively improves the bulk electric field distribution in SJ-LDMOS, and the N+/N-buffer/P-substrate junction and the auxiliary MFB layers/substrate junctions jointly sustain a high vertical breakdown voltage (BV). In addition, based on the buffered step doping layer under the SJ layer, a uniform lateral electric field at the drift region surface of the device is obtained. Therefore, the bulk and surface electric field are both optimized simultaneously in SBEFM SJ-LDMOS. Simulated results show that compared with the conventional Buffered SJ-LDMOS and BSD SJ-LDMOS, the proposed SBEFM SJ-LDMOS improves BV by 131.7% and 80.4%, respectively, at the same drift region length and with low specific ON-resistance (RON,sp). SBEFM SJ-LDMOS exhibits excellent performance with the power figure-of-merit (FOM=BV2/RON,sp) of 13.07 MW/cm2.

  18. Mie scattering in the time domain. Part 1. The role of surface waves.

    Science.gov (United States)

    Lock, James A; Laven, Philip

    2011-06-01

    We computed the Debye series p=1 and p=2 terms of the Mie scattered intensity as a function of scattering angle and delay time for a linearly polarized plane wave pulse incident on a spherical dielectric particle and physically interpreted the resulting numerical data. Radiation shed by electromagnetic surface waves plays a prominent role in the scattered intensity. We determined the surface wave phase and damping rate and studied the structure of the p=1,2 surface wave glory in the time domain.

  19. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  20. Thin concentrator photovoltaic module with micro-solar cells which are mounted by self-align method using surface tension of melted solder

    Science.gov (United States)

    Hayashi, Nobuhiko; Terauchi, Masaharu; Aya, Youichirou; Kanayama, Shutetsu; Nishitani, Hikaru; Nakagawa, Tohru; Takase, Michihiko

    2017-09-01

    We are developing a thin and lightweight CPV module using small size lens system made from poly methyl methacrylate (PMMA) with a short focal length and micro-solar cells to decrease the transporting and the installing costs of CPV systems. In order to achieve high conversion efficiency in CPV modules using micro-solar cells, the micro-solar cells need to be mounted accurately to the irradiated region of the concentrated sunlight. In this study, we have successfully developed self-align method thanks to the surface tension of the melted solder even utilizing commercially available surface-mounting technology (SMT). Solar cells were self-aligned to the specified positions of the circuit board by this self-align method with accuracy within ±10 µm. We actually fabricated CPV modules using this self-align method and demonstrated high conversion efficiency of our CPV module.

  1. REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management

    Science.gov (United States)

    Guan, M.; Yu, D.; Wilby, R.

    2016-12-01

    Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.

  2. A mixed-interval multi-pulse position modulation scheme for real-time visible light communication system

    Science.gov (United States)

    Mao, Luhong; Li, Cheng; Li, Honglei; Chen, Xiongbin; Mao, Xurui; Chen, Hongda

    2017-11-01

    In the paper, a mixed-interval multi-pulse position modulation (MI-MPPM) scheme for visible light communication (VLC) system is theoretical proposed and implemented on field programmable gate array (FPGA). It has better bandwidth efficiency than PPM and MPPM. And it has better anti-jamming than MPPM. A real-time VLC link based on phosphorescent white LED is also built to measure the performance of the proposed MI-MPPM scheme. The data rate of 104 Mbps in our VLC system under the distance of 60 cm could be achieved, and bit error rate is 3 . 81 × 10-5. As far as we know, it is the highest data rate that can be achieved in continuous real-time VLC system with phosphorescent white LED based on PPM and its derivative modulation. The performance of VLC system under different distances, advantages and the possible application scenarios of MI-MPPM are also discussed.

  3. Real-Time Observation of Surface Bond Breaking with an X-ray Laser

    DEFF Research Database (Denmark)

    Dell'Angela, M.; Anniyev, T.; Beye, M.

    2013-01-01

    Surface Molecules Not Quite Desorbing The dynamics of molecules desorbing from or adsorbing on surfaces requires that molecules rapidly gain or lose a large amount or translational and rotational energy to enter or leave the gas phase. An intermediate precursor state has long been invoked in which...... molecules interact weakly with the surface but translate along it and exchange energy without forming localized surface bonds. Dell'Angela et al. (p. 1302) found evidence for such a state in changes in x-ray absorption and emission spectra of CO molecules adsorbed on a ruthenium surface after optical...... excitation rapidly heated the surface. The use of a free electron laser provided high time resolution for x-ray spectroscopy studies. Density function theory and modeling of high temperature states revealed a state that forms from molecules that have not overcome the desorption barrier during heating...

  4. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    International Nuclear Information System (INIS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-01-01

    Electronic transitions at interfaces between MoO 3 layers and organic layers of C 60 , SubPc, MgPc, and nano-composite layers of SubPc:C 60 and MgPc:C 60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO 3 /organic layer interfaces with a separation of holes towards MoO 3 . The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (E HL ) of C 60 , SubPc, and MgPc and the effective E HL of SubPc:C 60 and MgPc:C 60 were measured. The offsets between the LUMO (ΔE L ) or HOMO (ΔE H ) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C 60 , respectively, and to −0.33 or 0.67 eV for MgPc:C 60 , respectively. Exponential tails below E HL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states

  5. Nematic ordering in a cell with modulated surface anchoring: effects of flexoelectricity.

    Science.gov (United States)

    Barbero, G; Skacej, G; Alexe-Ionescu, A L; Zumer, S

    1999-07-01

    We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates, characterized by a periodically varying anchoring easy axis. If the periodicity lambda is smaller than the Debye screening length l(D) and the nematic material possesses flexoelectric properties, it is necessary to take into account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual director field is determined. In this framework, for small deviations from the homeotropic alignment we have derived analytical expressions for the tilt angle (theta) and the electrical potential. To establish a connection with experimentally observable quantities, we have related the theta profile to the average and investigated its behavior for different values of lambda, the flexoelectric coefficient, and the anchoring strength w. Our results indicate that in a nematic with pronounced flexoelectric properties for small enough lambda, a kind of subsurface deformation appears, which substantially decreases . Therefore, effects of flexoelectricity cannot be neglected in treating nematic cells with modulated anchoring which allows bistable ordering.

  6. Nematic ordering in a cell with modulated surface anchoring: Effects of flexoelectricity

    Science.gov (United States)

    Barbero, G.; Skačej, G.; Alexe-Ionescu, A. L.; Žumer, S.

    1999-07-01

    We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates, characterized by a periodically varying anchoring easy axis. If the periodicity λ is smaller than the Debye screening length lD and the nematic material possesses flexoelectric properties, it is necessary to take into account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual director field is determined. In this framework, for small deviations from the homeotropic alignment we have derived analytical expressions for the tilt angle (θ) and the electrical potential. To establish a connection with experimentally observable quantities, we have related the θ profile to the average and investigated its behavior for different values of λ, the flexoelectric coefficient, and the anchoring strength w. Our results indicate that in a nematic with pronounced flexoelectric properties for small enough λ, a kind of subsurface deformation appears, which substantially decreases . Therefore, effects of flexoelectricity cannot be neglected in treating nematic cells with modulated anchoring which allows bistable ordering.

  7. Correlation between processing conditions of Cu2ZnSn(SxSe1-x)4 and modulated surface photovoltage

    Science.gov (United States)

    Lin, X. Z.; Dittrich, Th.; Fengler, S.; Lux-Steiner, M. Ch.; Ennaoui, A.

    2013-04-01

    Cu2ZnSn(SxSe1-x)4 (CZTSSe) layers deposited from multi-component nanoparticle inks were characterized by modulated surface photovoltage (SPV) spectroscopy to investigate the effect of annealing conditions. The SPV signals increased strongly with decreasing sulfur content. Band gaps were obtained in terms of SPV onset energy. A diffusion length of above 1 μm was estimated for photo-generated electrons at x = 0.28. The band gap increased with increasing x showing an anomaly in the range of 0.5 < x < 1. The results suggested that an excess of selenium is required for the formation of a photo-active phase reliable for efficient Cu2ZnSn(SxSe1-x)4-based solar cells.

  8. Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train.

    Science.gov (United States)

    Caraquitena, José; Beltrán, Marta; Llorente, Roberto; Martí, Javier; Muriel, Miguel A

    2011-03-15

    We propose and analyze a novel (to our knowledge) approach to implement the spectral self-imaging effect of optical frequency combs. The technique is based on time-domain multilevel phase-only modulation of a periodic optical pulse train. The method admits both infinite- and finite-duration periodic pulse sequences. We show that the fractional spectral self-imaging effect allows one to reduce by an integer factor the comb frequency spacing. Numerical simulation results support our theoretical analysis.

  9. Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train

    OpenAIRE

    Caraquitena Sales, José; Beltrán, Marta; Llorente, Roberto; Martí Sendra, Javier; Muriel, Miguel A.

    2011-01-01

    We propose and analyze a novel (to our knowledge) approach to implement the spectral self-imaging effect of optical frequency combs. The technique is based on time-domain multilevel phase-only modulation of a periodic optical pulse train. The method admits both infinite- and finite-duration periodic pulse sequences. We show that the fractional spectral self-imaging effect allows one to reduce by an integer factor the comb frequency spacing. Numerical simulation results support our theoretical...

  10. A real time integrated environment for Motorola 680xx-based VME and FASTBUS modules

    International Nuclear Information System (INIS)

    Berg, D.; Heinicke, P.; MacKinnon, B.; Nicinski, T.; Oleynik, G.

    1989-05-01

    The Software Components Group pSOS operating system kernel and pROBE debugger have been extended to support the Fermilab PAN-DA system for a variety of Motorola 680xx-based VME and FASTBUS modules. These extensions include: a multi-tasking, reentrant implementation of Microtec C/Pascal; a serial port driver for terminal I/O and data transfer; a message reporting facility; and enhanced debugging tools. 5 refs., 1 fig

  11. A real time integrated environment for Motorola 680chichi-based VME and FASTBUS modules

    International Nuclear Information System (INIS)

    Berg, D.; Heinicke, P.; MacKinnon, B.; Nicinski, T.; Oleynik, G.

    1989-01-01

    The Software Components Group rhoSOS operating system kernel and rhoROBE debugger have been extended to support the Fermilab PAN-DA system for a variety of Motorola 680chichi-based VME and FASTBUS modules. These extensions include: a multi-tasking, reentrant implementation of Microtec (2) C/Pascal; a serial port driver for terminal I/O and data transfer; a message reporting facility; and enhanced debugging tools

  12. Nanomechanics and sodium permeability of endothelial surface layer modulated by hawthorn extract WS 1442.

    Directory of Open Access Journals (Sweden)

    Wladimir Peters

    Full Text Available The endothelial glycocalyx (eGC plays a pivotal role in the physiology of the vasculature. By binding plasma proteins, the eGC forms the endothelial surface layer (ESL which acts as an interface between bloodstream and endothelial cell surface. The functions of the eGC include mechanosensing of blood flow induced shear stress and thus flow dependent vasodilation. There are indications that levels of plasma sodium concentrations in the upper range of normal and beyond impair flow dependent regulation of blood pressure and may therefore increase the risk for hypertension. Substances, therefore, that prevent sodium induced endothelial dysfunction may be attractive for the treatment of cardiovascular disease. By means of combined atomic force-epifluorescence microscopy we studied the impact of the hawthorn (Crataegus spp. extract WS 1442, a herbal therapeutic with unknown mechanism of action, on the mechanics of the ESL of ex vivo murine aortae. Furthermore, we measured the impact of WS 1442 on the sodium permeability of endothelial EA.hy 926 cell monolayer. The data show that (i the ESL contributes by about 11% to the total endothelial barrier resistance for sodium and (ii WS 1442 strengthens the ESL resistance for sodium up to about 45%. This mechanism may explain some of the vasoprotective actions of this herbal therapeutic.

  13. Implementation of a real-time automatic onset time detection for surface electromyography measurement systems using NI myRIO

    Directory of Open Access Journals (Sweden)

    Lersviriyanantakul Chaiwat

    2016-01-01

    Full Text Available For using surface electromyography (sEMG in various applications, the process consists of three parts: an onset time detection for detecting the first point of movement signals, a feature extraction for extracting the signal attribution, and a feature classification for classifying the sEMG signals. The first and the most significant part that influences the accuracy of other parts is the onset time detection, particularly for automatic systems. In this paper, an automatic and simple algorithm for the real-time onset time detection is presented. There are two main processes in the proposed algorithm; a smoothing process for reducing the noise of the measured sEMG signals and an automatic threshold calculation process for determining the onset time. The results from the algorithm analysis demonstrate the performance of the proposed algorithm to detect the sEMG onset time in various smoothing-threshold equations. Our findings reveal that using a simple square integral (SSI as the smoothing-threshold equation with the given sEMG signals gives the best performance for the onset time detection. Additionally, our proposed algorithm is also implemented on a real hardware platform, namely NI myRIO. Using the real-time simulated sEMG data, the experimental results guarantee that the proposed algorithm can properly detect the onset time in the real-time manner.

  14. A probabilistic method for the estimation of ocean surface currents from short time series of HF radar data

    Science.gov (United States)

    Guérin, Charles-Antoine; Grilli, Stéphan T.

    2018-01-01

    We present a new method for inverting ocean surface currents from beam-forming HF radar data. In contrast with the classical method, which inverts radial currents based on shifts of the main Bragg line in the radar Doppler spectrum, the method works in the temporal domain and inverts currents from the amplitude modulation of the I and Q radar time series. Based on this principle, we propose a Maximum Likelihood approach, which can be combined with a Bayesian inference method assuming a prior current distribution, to infer values of the radial surface currents. We assess the method performance by using synthetic radar signal as well as field data, and systematically comparing results with those of the Doppler method. The new method is found advantageous for its robustness to noise at long range, its ability to accommodate shorter time series, and the possibility to use a priori information to improve the estimates. Limitations are related to current sign errors at far-ranges and biased estimates for small current values and very short samples. We apply the new technique to a data set from a typical 13.5 MHz WERA radar, acquired off of Vancouver Island, BC, and show that it can potentially improve standard synoptic current mapping.

  15. RF beam transmission of x-band PAA system utilizing large-area, polymer-based true-time-delay module developed using imprinting and inkjet printing

    Science.gov (United States)

    Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.

    2016-02-01

    Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.

  16. Defining and measuring the mean residence time of lateral surface transient storage zones in small streams

    Science.gov (United States)

    T.R. Jackson; R. Haggerty; S.V. Apte; A. Coleman; K.J. Drost

    2012-01-01

    Surface transient storage (STS) has functional significance in stream ecosystems because it increases solute interaction with sediments. After volume, mean residence time is the most important metric of STS, but it is unclear how this can be measured accurately or related to other timescales and field-measureable parameters. We studied mean residence time of lateral...

  17. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...

  18. Effect of surface-active substance on nasal mucociliary clearance time

    DEFF Research Database (Denmark)

    Outzen, K E; Svane-Knudsen, V

    1993-01-01

    Mucociliary clearance measured by saccharin clearance time is depending on ciliary function and on the physiological characteristics of mucus. The aim of this study was to determine whether the application of surface-active substances changed the mucociliary transport time. Twenty healthy persons...

  19. Long-time stabilization of porous silicon photoluminescence by surface modification

    International Nuclear Information System (INIS)

    Mahmoudi, Be.; Gabouze, N.; Guerbous, L.; Haddadi, M.; Beldjilali, K.

    2007-01-01

    We present results on the photoluminescence (PL) properties of porous silicon (PS) as a function of time. Stabilization of PL from PS has been achieved by replacing silicon-hydrogen bonds terminating the surface with more stable silicon-carbon bonds. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy at intervals of 1 month in ageing time up to 1 year. The position of the maximum PL peak wavelength oscillates between a blue-shift and a red-shift in the 615-660 nm range with time

  20. Interfacial layers from the protein HFBII hydrophobin: dynamic surface tension, dilatational elasticity and relaxation times.

    Science.gov (United States)

    Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex

    2012-06-15

    The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such

  1. Search for time modulations in the decay constant of 40K and 226Ra at the underground Gran Sasso Laboratory

    Science.gov (United States)

    Bellotti, E.; Broggini, C.; Di Carlo, G.; Laubenstein, M.; Menegazzo, R.

    2018-05-01

    Time modulations at per mil level have been reported to take place in the decay constant of several nuclei with period of one year (most cases) but also of about one month or one day. On the other hand, experiments with similar or better sensitivity have been unable to detect any modulation. In this letter we give the results of the activity study of two different sources: 40K and 226Ra. The two gamma spectrometry experiments have been performed underground at the Gran Sasso Laboratory, this way suppressing the time dependent cosmic ray background. Briefly, our measurements reached the sensitivity of 3.4 and 3.5 parts over 106 for 40K and 226Ra, respectively (1 sigma) and they do not show any statistically significant evidence of time dependence in the decay constant. We also give the results of the activity measurement at the time of the two strong X-class solar flares which took place in September 2017. Our data do not show any unexpected time dependence in the decay rate of 40K in correspondence with the two flares. To the best of our knowledge, these are the most precise and accurate results on the stability of the decay constant as function of time.

  2. Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting.

    Science.gov (United States)

    Huo, Shuaidong; Chen, Shizhu; Gong, Ningqiang; Liu, Juan; Li, Xianlei; Zhao, Yuanyuan; Liang, Xing-Jie

    2017-01-18

    Ultrasmall nanoparticles provide us with essential alternatives for designing more efficient nanocarriers for drug delivery. However, the fast clearance of ultrasmall nanoparticles limits their application to some extent. One of the most frequently used compound to slow the clearance of nanocarriers and nanodrugs is PEG, which is also approved by FDA. Nonetheless, few reports explored the effect of the PEGylation of ultrasmall nanoparticles on their behavior in vivo. Herein, we investigated the impact of different PEG grafting level of 2 nm core sized gold nanoparticles on their biological behavior in tumor-bearing mice. The results indicate that partial (∼50%) surface PEGylation could prolong the blood circulation and increase the tumor accumulation of ultrasmall nanoparticles to a maximum extent, which guide us to build more profitable small-sized nanocarriers for drug delivery.

  3. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Etienne; Rogers, John A.; Kim, Seok; Carlson, Andrew

    2016-08-09

    In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.

  4. A comparison of time-of-flight and Larmor modulation neutron powder diffraction at a continuous reactor source

    CERN Document Server

    Mulder, F M

    1999-01-01

    A neutron powder diffraction instrument for application at a continuous reactor source based on time-of-flight (TOF) is compared with an instrument based on Larmor modulation (LM). For instruments with a similar wave-vector resolution (delta q/q=4x10 sup - sup 3) it is found that the signal-to-noise ratios in a TOF experiment are generally better when using a wide wavelength neutron spectrum. This is caused by the fact that the noise in a LM experiment comes from the integrated neutron flux scattered in the detector, while in TOF the noise stems only from the intensity scattered into individual time channels.

  5. Measurement of Relaxation Time of Excess Carriers in Si and CIGS Solar Cells by Modulated Electroluminescence Technique

    Energy Technology Data Exchange (ETDEWEB)

    Khatavkar, Sanchit [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Sanjivani College of Engineering, Kopargaon 423601 India; Muniappan, Kulasekaran [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Kannan, Chinna V. [MoserBaer Photovoltaic Pvt. Ltd., U.P. Greater Noida 201306 India; Kumar, Vijay [MoserBaer Photovoltaic Pvt. Ltd., U.P. Greater Noida 201306 India; Narsimhan, Krishnamachari L. [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Nair, Pradeep R. [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Vasi, Juzer M. [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Contreras, Miguel A. [National Renewable Energy Laboratory, Golden CO 80401 USA; van Hest, Maikel F. A. M. [National Renewable Energy Laboratory, Golden CO 80401 USA; Arora, Brij M. [Indian Institute of Technology Bombay, Powai Mumbai 400076 India; Indian Institute of Technology Goa, Farmagudi Ponda 403401 India

    2017-11-10

    Excess carrier lifetime plays a crucial role in determining the efficiency of solar cells. In this paper, we use the frequency dependence of inphase and quadrature components of modulated electroluminescence (MEL) to measure the relaxation time (decay) of excess carriers. The advantage of the MEL technique is that the relaxation time is obtained directly from the angular frequency at which the quadrature component peaks. It does not need knowledge of the material parameters like mobility, etc., and can be used for any finished solar cells which have detectable light emission. The experiment is easy to perform with standard electrical equipment. For silicon solar cells, the relaxation time is dominated by recombination and hence, the relaxation time is indeed the excess carrier lifetime. In contrast, for the CIGS solar cells investigated here, the relaxation time is dominated by trapping and emission from shallow minority carrier traps.

  6. Effects of Carrier Frequency Offset, Timing Offset, and Channel Spread Factor on the Performance of Hexagonal Multicarrier Modulation Systems

    Directory of Open Access Journals (Sweden)

    Kui Xu

    2009-01-01

    Full Text Available Hexagonal multicarrier modulation (HMM system is the technique of choice to overcome the impact of time-frequency dispersive transmission channel. This paper examines the effects of insufficient synchronization (carrier frequency offset, timing offset on the amplitude and phase of the demodulated symbol by using a projection receiver in hexagonal multicarrier modulation systems. Furthermore, effects of CFO, TO, and channel spread factor on the performance of signal-to-interference-plus-noise ratio (SINR in hexagonal multicarrier modulation systems are further discussed. The exact SINR expression versus insufficient synchronization and channel spread factor is derived. Theoretical analysis shows that similar degradation on symbol amplitude and phase caused by insufficient synchronization is incurred as in traditional cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM transmission. Our theoretical analysis is confirmed by numerical simulations in a doubly dispersive (DD channel with exponential delay power profile and U-shape Doppler power spectrum, showing that HMM systems outperform traditional CP-OFDM systems with respect to SINR against ISI/ICI caused by insufficient synchronization and doubly dispersive channel.

  7. DVimage spatial light modulator: a new real-time interface for the Texas Instruments Discovery 3000 DMD chipset

    Science.gov (United States)

    Saggese, Steven; Thomas, Tudor

    2007-02-01

    This paper will present the development of a new driver board for the Texas Instruments Discovery TM 3000 Micromirror Device (DMD) chipset being offered by Texas Instruments. A requirement of our current research is to have a real-time digital interface to a reflective spatial light modulator to project patterns based upon images obtained via a camera system. As a result, we developed the DVimage TM spatial light modulator driver board based upon the Texas Instruments Discovery TM 3000 chipset. The DVimage TM can be run from any computer through the standard DVI port, can display 8-bit grayscale at 60Hz in real-time and can store 4600 full resolution 1-bit images on the board and display them at a maximum frame rate of 16,300 fps. The board also has programmable sync pins to trigger other systems (e.g. light sources, cameras). An SDK and software examples have been developed to allow for integration into custom applications. This paper will describe the general hardware architecture and software tools along with example applications for this spatial light modulator system.

  8. Time-domain Helmholtz-Kirchhoff integral for surface scattering in a refractive medium.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2017-03-01

    The time-domain Helmholtz-Kirchhoff (H-K) integral for surface scattering is derived for a refractive medium, which can handle shadowing effects. The starting point is the H-K integral in the frequency domain. In the high-frequency limit, the Green's function can be calculated by ray theory, while the normal derivative of the incident pressure from a point source is formulated using the ray geometry and ray-based Green's function. For a corrugated pressure-release surface, a stationary phase approximation can be applied to the H-K integral, reducing the surface integral to a line integral. Finally, a computationally-efficient, time-domain H-K integral is derived using an inverse Fourier transform. A broadband signal scattered from a sinusoidal surface in an upwardly refracting medium is evaluated with and without geometric shadow corrections, and compared to the result from a conventional ray model.

  9. Obtaining time-dependent multi-dimensional dividing surfaces using Lagrangian descriptors

    Science.gov (United States)

    Feldmaier, Matthias; Junginger, Andrej; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-11-01

    Dynamics between reactants and products are often mediated by a rate-determining barrier and an associated dividing surface leading to the transition state theory rate. This framework is challenged when the barrier is time-dependent because its motion can give rise to recrossings across the fixed dividing surface. A non-recrossing time-dependent dividing surface can nevertheless be attached to the TS trajectory resulting in recrossing-free dynamics. We extend the formalism-constructed using Lagrangian Descriptors-to systems with additional bath degrees of freedom. The propagation of reactant ensembles provides a numerical demonstration that our dividing surface is recrossing-free and leads to exact TST rates.

  10. New short-time alignment technique for 70-meter antenna surface panels

    Science.gov (United States)

    Katow, M. S.

    1986-01-01

    With severely limited field modification time for upgrading the 64-m antenna to 70-m diameter, a new shorter time method for aligning the surface panels of the main reflector was needed. For each target on the surface panel, both distance (or range) and elevation angle measurements are made. A new technique for setting the surface panels at zenith look has been devised. This article describes the software required to convert the computed target distortions obtained from the JPL-IDEAS structural analysis computer program (defining the gravity load change from a 45-deg elevation angle to zenith look) into the theodolite reading at zenith look. The technique results in a perfectly shaped reflector at the 45-deg rigging elevation, with acceptable surface error tolerance.

  11. Time-Resolved Photoelectron Spectroscopy of Oxidation on the Ti(0001) Surface

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Yoshiyuki

    2003-03-28

    High-resolution photoelectron spectroscopy using synchrotron radiation was applied for monitoring in real time the oxidation kinetics on the Ti(0001) surface at 405 C with dry O{sub 2} gas. The time evolution of O 1s photoelectron intensity showed a linear uptake curve up to {approx}90 L followed by a sudden saturation up to {approx}160 L and then a restart of the linear increase, indicating that O{sub 2} adsorption obeys a zero-order reaction scheme before and after the saturation. Corresponding to the first linear uptake and saturation, the surface core level shift (SCLS) component of Ti 2p decreased predominantly and disappeared completely, and appeared again after the saturation and remained persistently during TiO{sub 2} growth. Thus the zero-order reaction of O{sub 2} adsorption on the Ti(0001) surface at 405 C is concerned with the metallic Ti layer on the outermost surface.

  12. Deleted in Malignant Brain Tumors 1 (DMBT1 is present in hyaline membranes and modulates surface tension of surfactant

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2007-10-01

    Full Text Available Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1 is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with pulmonary hyaline membranes. The effect of human recombinant DMBT1 on the function of bovine and porcine surfactant was measured by a capillary surfactometer. DMBT1-levels in tracheal aspirates of ventilated preterm and term infants were determined by ELISA. Results Pulmonary DMBT1 was localized in hyaline membranes during respiratory distress syndrome. In vitro addition of human recombinant DMBT1 to the surfactants increased surface tension in a dose-dependent manner. The DMBT1-mediated effect was reverted by the addition of calcium depending on the surfactant preparation. Conclusion Our data showed pulmonary DMBT1 expression in hyaline membranes during respiratory distress syndrome and demonstrated that DMBT1 increases lung surface tension in vitro. This raises the possibility that DMBT1 could antagonize surfactant supplementation in respiratory distress syndrome and could represent a candidate target molecule for therapeutic intervention in neonatal lung disease.

  13. Cell-surface galactosyltransferase acts as a modulator of rat and human acinar cell proliferation.

    Science.gov (United States)

    Humphreys-Beher, M G; Zelles, T; Maeda, N; Purushotham, K R; Cassisi, N; Schneyer, C A

    1990-06-01

    Several physiological parameters were examined for inducing acinar cell proliferation and corresponding increased expression of beta 1-4 galactosyltransferase. In this study, dietary changes causing acinar cell proliferation included the following: the introduction of animals to a liquid diet (causing gland atrophy) followed by re-introduction of solid chow, gustatory stimulation provided by the introduction of 0.5% citric acid to animal drinking water, and removal of the submandibular gland with subsequent reliance on the parotid gland for saliva protein and fluid. Alterations in growth factor levels were produced by injecting animals with a chronic (three-day) regimen of either nerve growth factor (NGF) or epidermal growth factor (EGF). In all cases of acinar cell proliferation in vivo, generated by the above treatments, cell-surface galactosyltransferase was detected along with the unique expression of a 4.5-kb proliferation-associated mRNA. Parotid gland proliferation could be blocked in all cases by the injection of the galactosyltransferase specific modifier protein, alpha-lactalbumin. Propranolol, a beta-adrenergic receptor antagonist, blocked proliferation in all cases except EGF treatment. EGF-induced proliferation could, however, be prevented if the animals were treated with monoclonal antibody to EGF receptor or with the galactosyltransferase modifier alpha-lactalbumin. As a comparison, human parotid tissue samples obtained from neoplastic pleomorphic adenomas, muco-epidermoid carcinoma, adenoid cystic carcinoma, and a bulimia patient were analyzed for galactosyltransferase expression by Northern blot of mRNA and plasma membrane isolation. Elevated levels of galactosyltransferase were found in all neoplastic tissue preparations as well as in the bulimia sample. Amylase synthesis was reduced in samples compared with surrounding normal tissue from the same patient. In vitro cell culturing of pleomorphic adenoma cells in the presence of

  14. Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Zhang, Hongwu

    2017-08-01

    With the omnipresence of silver nanoparticles (AgNPs) in our daily consumer products, their release has raised serious concerns. However, the biochemical mechanisms by which plants counteract the toxicity of nanoparticles are largely unknown. This study investigated the exposure of aquatic Wolffia globosa to ATP-nAg (AgNPs coated with adenosine triphosphate), cit-nAg (AgNPs coated with citrate), and Ag + . Hill reaction activity was basically lost in W. globosa treated with 10mg/L ATP-nAg and Ag + , while the activity was still maintained at 38.7%-38.9% of the respective controls at 10mg/L cit-nAg. The reduction of amounts of chlorophyll and soluble protein were shown in response to the Ag stresses. This was accompanied by the accumulation of sugar in W. globosa treated with cit-nAg. By contrast, the depletion of sugar was recorded after 10mg/L ATP-nAg and Ag + treatments. The superoxide dismutase and peroxidase activities were significantly increased after exposure to 10mg/L ATP-nAg and Ag + , which did not occurred in W. globosa treated with cit-nAg. The ratio between NADPH/NADP + was higher after cit-nAg and Ag + stresses than the respective controls. The accumulation of Ag was found to increase in a concentration-dependent manner. Ag + and ATP-nAg inhibited the uptake of P and K, and promoted the uptake of Fe and Cu. In contrast, cit-nAg only promoted the uptake of Cu. Our results implied that surface coating induced different physiological responses of W. globosa to AgNPs. Based on above results, we speculated that after exposure to cit-nAg, citrate possibly could serve as the substrate for the tricarboxylic acid cycle and accumulated sugar may promote pentose phosphate pathways. For ATP-nAg treatments, ATP would act as an exogenous energy source of plant metabolisms. Our findings demonstrate that surface coating regulates the physiological responses of plants to AgNPs through distinct mechanisms. Copyright © 2017. Published by Elsevier B.V.

  15. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Larsson, Tobias; Keall, P.

    2012-01-01

    of MLC tracking delivery of an inversely optimized arc radiotherapy plan can be improved by incorporating leaf position constraints in the objective function without otherwise affecting the plan quality. The dosimetric robustness may be estimated prior to delivery by evaluating the ALDw of the plan.......Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced...... by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern...

  16. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  17. Modulation of Candida albicans virulence by bacterial biofilms on titanium surfaces.

    Science.gov (United States)

    Cavalcanti, Yuri Wanderley; Wilson, Melanie; Lewis, Michael; Del-Bel-Cury, Altair Antoninha; da Silva, Wander José; Williams, David W

    2016-01-01

    Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (pbiofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

  18. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials.

    Science.gov (United States)

    Bellmann, Susann; Carlander, David; Fasano, Alessio; Momcilovic, Dragan; Scimeca, Joseph A; Waldman, W James; Gombau, Lourdes; Tsytsikova, Lyubov; Canady, Richard; Pereira, Dora I A; Lefebvre, David E

    2015-01-01

    Many natural chemicals in food are in the nanometer size range, and the selective uptake of nutrients with nanoscale dimensions by the gastrointestinal (GI) tract is a normal physiological process. Novel engineered nanomaterials (NMs) can bring various benefits to food, e.g., enhancing nutrition. Assessing potential risks requires an understanding of the stability of these entities in the GI lumen, and an understanding of whether or not they can be absorbed and thus become systemically available. Data are emerging on the mammalian in vivo absorption of engineered NMs composed of chemicals with a range of properties, including metal, mineral, biochemical macromolecules, and lipid-based entities. In vitro and in silico fluid incubation data has also provided some evidence of changes in particle stability, aggregation, and surface properties following interaction with luminal factors present in the GI tract. The variables include physical forces, osmotic concentration, pH, digestive enzymes, other food, and endogenous biochemicals, and commensal microbes. Further research is required to fill remaining data gaps on the effects of these parameters on NM integrity, physicochemical properties, and GI absorption. Knowledge of the most influential luminal parameters will be essential when developing models of the GI tract to quantify the percent absorption of food-relevant engineered NMs for risk assessment. © 2015 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  19. Model Selection and Quality Estimation of Time Series Models for Artificial Technical Surface Generation

    Directory of Open Access Journals (Sweden)

    Matthias Eifler

    2017-12-01

    Full Text Available Standard compliant parameter calculation in surface topography analysis takes the manufacturing process into account. Thus, the measurement technician can be supported with automated suggestions for preprocessing, filtering and evaluation of the measurement data based on the character of the surface topography. Artificial neuronal networks (ANN are one approach for the recognition or classification of technical surfaces. However the required set of training data for ANN is often not available, especially when data acquisition is time consuming or expensive—as e.g., measuring surface topography. Thus, generation of artificial (simulated data becomes of interest. An approach from time series analysis is chosen and examined regarding its suitability for the description of technical surfaces: the ARMAsel model, an approach for time series modelling which is capable of choosing the statistical model with the smallest prediction error and the best number of coefficients for a certain surface. With a reliable model which features the relevant stochastic properties of a surface, a generation of training data for classifiers of artificial neural networks is possible. Based on the determined ARMA-coefficients from the ARMAsel-approach, with only few measured datasets many different artificial surfaces can be generated which can be used for training classifiers of an artificial neural network. In doing so, an improved calculation of the model input data for the generation of artificial surfaces is possible as the training data generation is based on actual measurement data. The trained artificial neural network is tested with actual measurement data of surfaces that were manufactured with varying manufacturing methods and a recognition rate of the according manufacturing principle between 60% and 78% can be determined. This means that based on only few measured datasets, stochastic surface information of various manufacturing principles can be extracted

  20. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  1. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy.

    Science.gov (United States)

    Liu, Wei; Wang, Zhuguang; Fu, Li; Leblanc, Roger M; Yan, Elsa C Y

    2013-12-03

    Cell membranes are crucial to many biological processes. Because of their complexity, however, lipid bilayers are often used as model systems. Lipid structures influence the physical properties of bilayers, but their interplay, especially in multiple-component lipid bilayers, has not been fully explored. Here, we used the Langmuir-Blodgett method to make mono- and bilayers of 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L-serine (POPS) as well as their 1:1 binary mixtures. We studied the fluidity, stability, and rigidity of these structures using sum frequency generation (SFG) spectroscopy combined with analyses of surface pressure-area isotherms, compression modulus, and stability. Our results show that single-component bilayers, both saturated and unsaturated, may not be ideal membrane mimics because of their low fluidity and/or stability. However, the binary saturated and unsaturated DPPG/POPG and DPPG/POPS systems show not only high stability and fluidity but also high resistance to changes in surface pressure, especially in the range of 25-35 mN/m, the range typical of cell membranes. Because the ratio of saturated to unsaturated lipids is highly regulated in cells, our results underline the possibility of modulating biological properties using lipid compositions. Also, our use of flat optical windows as solid substrates in SFG experiments should make the SFG method more compatible with other techniques, enabling more comprehensive future surface characterizations of bilayers.

  2. Examining how land surface effects modulate rainfall in the eastern Amazon Basin

    Science.gov (United States)

    Fitzjarrald, D.; Cohen, J. P.

    2009-05-01

    In the Amazon, it is important to apportion rainfall by storm type. In the eastern Amazon (approximately from Belém to Santarém) rainfall associated with large instability lines produces nearly half of the total, and this is complemented by that produced by rainfall from local convective systems. Our recent observational studies in the indicate that the relative importance of the nocturnal squall lines is exaggerated if one relies solely on data from the climate stations along the Amazon River channel. River breezes inhibit convective rainfall near the main channel, but in some areas river proximity effects lead to enhanced nocturnal rainfall of squall origin. Moreover, enhanced rainfall to the north of the Amazon main channel could be the result of orographic uplift. In this study we complement a limited climatological study of instability lines with two mesoscale model (Brazilian version of RAMS, B-RAMS) case studies to examine the effects of topography and river proximity on rain producing mechanisms in the eastern Amazon Basin. Two numerical experiments were done to examine the relative importance of these two rain-producing mechanisms in the region. In each, three nested grids were used. Results from the prototype simulation for the propagating squall line were compared with GOES images, NCEP reanalyses, and data from the LBA-ECO surface station network near Santarém (approximately 55°W). In this case we also examined the role of topography on squall line development by performing a sensitivity test of the case study squall development with and without topography. The locally-dominated convection study was based on a case of slack easterlies during cold frontal penetration into the western Amazon region.

  3. Corticostriatal field potentials are modulated at delta and theta frequencies during interval-timing task in rodents

    Directory of Open Access Journals (Sweden)

    Eric B Emmons

    2016-04-01

    Full Text Available Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording local field potentials in medial frontal cortex or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1-4 Hz and theta activity (4-8 Hz primarily in rodent medial frontal cortex. We observed delta activity across temporal intervals in medial frontal cortex and dorsomedial striatum. Rewarded responses were associated with increased delta activity in medial frontal cortex. Activity in theta bands in medial frontal cortex and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action.

  4. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    Science.gov (United States)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  5. Differential down-modulation of HLA-G and HLA-A2 or -A3 cell surface expression following human cytomegalovirus infection.

    Science.gov (United States)

    Pizzato, Nathalie; Garmy-Susini, Barbara; Le Bouteiller, Philippe; Lenfant, Françoise

    2004-06-01

    During pregnancy, the non-classical major histocompatibility complex (MHC) class I HLA-G molecule is specifically expressed in trophoblast cells at the materno-fetal interface and may exert a local control of the immune response against viral infections. Human cytomegalovirus (HCMV) infection, which is the major cause of congenital defects, encodes multiple glycoproteins (US2, US3, US6, US10 and US11) that interrupt the MHC class I pathway of antigen presentation. The effect of some of these unique short (US) proteins on HLA-G expression has been previously studied, but little is known about the modulation of HLA-G cell surface expression during the course of HCMV infection which ensures expression of all of these US proteins. Using flow cytometry analysis, HLA-G cell surface expression was evaluated in HCMV-infected U373-HLA-G transfectant cells and compared with the modulation of the endogenous classical HLA-A2 molecules. The results indicated that HCMV infection down-modulated HLA-G cell surface expression, but later after infection and to a lesser extent than HLA-A2. Using various HLA-G/HLA-A2 chimeras, we showed that the unique structure of HLA-G cytoplasmic tail was partly involved in the resistance of HLA-G to viral down-modulation. Such limited down-modulation of HLA-G may have functional consequences in term of innate immunity against congenital HCMV infection.

  6. Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol

    Science.gov (United States)

    Woo, Simon S.; Veregge, John R.; Gao, Jay L.; Clare, Loren P.; Mills, David

    2012-01-01

    The Proximity-1 Space Link Interleaved Time Synchronization (PITS) protocol provides time distribution and synchronization services for space systems. A software prototype implementation of the PITS algorithm has been developed that also provides the test harness to evaluate the key functionalities of PITS with simulated data source and sink. PITS integrates time synchronization functionality into the link layer of the CCSDS Proximity-1 Space Link Protocol. The software prototype implements the network packet format, data structures, and transmit- and receive-timestamp function for a time server and a client. The software also simulates the transmit and receive-time stamp exchanges via UDP (User Datagram Protocol) socket between a time server and a time client, and produces relative time offsets and delay estimates.

  7. Tests of modulated intensity small angle scattering in time of flight mode

    Science.gov (United States)

    Brandl, G.; Lal, J.; Carpenter, J.; Crow, L.; Robertson, L.; Georgii, R.; Böni, P.; Bleuel, M.

    2012-03-01

    We report results of tests of the MISANS technique at the CG-1D beamline at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterized MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS).

  8. Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging.

    Science.gov (United States)

    Cheung, Shane; O'Shea, Donal F

    2017-12-01

    Directed self-assemblies in water are known as the most efficient means of forming complex higher ordered structures in nature. Here we show a straightforward and robust method for particle assembly which utilises the amphiphilic tri-block co-polymer poloxamer-188 and a hydrophobic fluorophore as the two designer components, which have a built-in ability to convey spatial and temporal information about their surroundings to an observer. Templating of particle self-assembly is attributed to interactions between the fluorophore and hydrophobic segment of the poloxamer. Particle fluorescence in water is quenched but can be induced to selectively switch on in response to temperature, surface adsorption and cellular uptake. The ability of the particles to dynamically modulate emission intensity can be exploited for selective labelling and real-time imaging of drug crystal surfaces, natural fibres and insulin fibrils, and cellular delivery. As particle solutions are easily prepared, further applications for this water-based NIR-fluorescent paint are anticipated.

  9. Analytical formulation for modulation of time-resolved dynamical Franz-Keldysh effect by electron excitation in dielectrics

    Science.gov (United States)

    Otobe, T.

    2017-12-01

    Analytical formulation of subcycle modulation (SCM) of dielectrics including electron excitation is presented. The SCM is sensitive to not only the time-resolved dynamical Franz-Keldysh effect (Tr-DFKE) [T. Otobe et al., Phys. Rev. B 93, 045124 (2016), 10.1103/PhysRevB.93.045124], which is the nonlinear response without the electron excitation, but also the excited electrons. The excited electrons enhance the modulation with even harmonics of pump laser frequency, and generate the odd-harmonics components. The new aspect of SCM is a consequence of (i) the interference between the electrons excited by the pump laser and those excited by the probe-pulse laser and (ii) oscillation of the generated wave packed by the pump laser. When the probe- and pump-pulse polarizations are parallel, the enhancement of the even harmonics and the generation of the odd-harmonics modulation appear. However, if the polarizations are orthogonal, the effect arising from the electron excitations becomes weak. By comparing the parabolic and cosine band models, I found that the electrons under the intense laser field move as quasifree particles.

  10. Time-frequency analysis of short-lasting modulation of EEG induced by TMS during wake, sleep deprivation and sleep

    Directory of Open Access Journals (Sweden)

    Paolo eManganotti

    2013-11-01

    Full Text Available The occurrence of dynamic changes in spontaneous electroencephalogram (EEG rhythms in the awake state or sleep is highly variable. These rhythms can be externally modulated during transcranial magnetic stimulation (TMS with a perturbation method to trigger oscillatory brain activity. EEG-TMS co-registration was performed during standard wake, during wake after sleep deprivation and in sleep in 6 healthy subjects. Dynamic changes in the regional neural oscillatory activity of the cortical areas were characterized using time-frequency analysis based on the wavelet method, and the modulation of induced oscillations were related to different vigilance states. A reciprocal synchronizing/desynchronizing effect on slow and fast oscillatory activity was observed in response to focal TMS after sleep deprivation and sleep. We observed a sleep-related slight desynchronization of alpha mainly over the frontal areas, and a widespread increase in theta synchronization. These findings could be interpreted as proof of the interference external brain stimulation can exert on the cortex, and how this could be modulated by the vigilance state. Potential clinical applications may include evaluation of hyperexcitable states such as epilepsy or disturbed states of consciousness such as minimal consciousness.

  11. HARDENING OF CRANE RAILS BY PLASMA DISCRETE-TIME SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    S. S. Samotugin

    2017-01-01

    Full Text Available Crane wheels and rails are subjected to intensive wear in the process of operation. Therefore, improvement of these components’ performance can be considered a task of high importance. A promising direction in this regard is surface treatment by highly concentrated energy flows such as laser beams or plasma jets. This thesis suggests that the use of gradient plasma surface treatment can improve the performance of crane rails. A research was conducted, according to which hardened zones were deposited on crane rails under different treatment modes. Microhardness was measured both at the surface and in depth using custom-made microsections. The article includes the results of study of plasma surface hardening effects on wear resistance of crane rails. Change of plasma surface treatment parameters (current, plasma torch movement speed, argon gas flow rate allows for desired steel hardness and structure, while the choice of optimal location for hardened zones makes it possible to significantly improve wear resistance and crack resistance. As a result of plasma surface hardening, the fine-grained martensite structure is obtained with mainly lamellar morphology and higher hardness rate compared toinduction hardening or overlaying. Wear test of carbon steels revealed that plasma surfacing reduces abrasive wear rate compared to the irinitial state by 2 to 3 times. Enough sharp boundary between hardened and non-hardened portions has a positive effect on the performance of parts under dynamic loads, contributing to the inhibition of cracks during the transition from solid to a soft metal. For carbon and low alloy rail steels, the properties achieved by plasma surface hardening can effectively replace induction hardening or overlaying.The mode range for plasma surface treatment that allow sobtaining a surface layer with certain operating properties has been determined.

  12. Surface contact stimulates the just-in-time deployment of bacterial adhesins.

    Science.gov (United States)

    Li, Guanglai; Brown, Pamela J B; Tang, Jay X; Xu, Jing; Quardokus, Ellen M; Fuqua, Clay; Brun, Yves V

    2012-01-01

    The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive. © 2011 Blackwell Publishing Ltd.

  13. Comparison of time-dependent changes in the surface hardness of different composite resins

    Science.gov (United States)

    Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek

    2013-01-01

    Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724

  14. Tunable true-time delay of a microwave photonic signal realized by cross gain modulation in a semiconductor waveguide

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2011-01-01

    We experimentally demonstrate the realization of a tunable true-time delay for microwave signals by exploiting cross gain modulation among counter-propagating optical beams in a semiconductor optical amplifier. Broadband operation from ∼5 to ∼35 GHz is observed. The physical effect originates from...... the combination of carrier dynamics and propagation effects, and the experimental results are well accounted for by a numerical model. We find that, in contrast to the case of the co-propagating beams, the bandwidth is not limited by the lifetime of excited carriers. The trade-off between the magnitude...

  15. Time-lapse reveals that osteoclasts can move across the bone surface while resorbing

    DEFF Research Database (Denmark)

    Søe, Kent; Delaissé, Jean-Marie

    2017-01-01

    resulting in the formation of clusters of round pits. However, very importantly, we also demonstrate that more than half of the osteoclasts moved laterally, displacing their extracellular bone-resorbing compartment over the bone surface without disassembling and reconstructing it, thereby generating long......Bone erosion both demands that the osteoclast resorbs bone matrix and moves over the bone surface. It is widely accepted that these two activities alternate, because they are considered mutually exclusive since resorption is believed to involve an immobilizing seal to the bone surface. However......, clear real-time observations are still lacking. Herein, we used specific markers and time-lapse to monitor live the spatiotemporal generation of resorption events by osteoclasts cultured on bone slices. In accordance with the current view, we found alternating episodes of resorption and migration...

  16. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    Science.gov (United States)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  17. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithm...

  18. Ambient Surface Analysis of Organic Monolayers using Direct Analysis in Real Time Orbitrap Mass Spectrometry

    NARCIS (Netherlands)

    Manova, R.K.; Joshi, S.; Debrassi, A.; Bhairamadgi, N.S.; Roeven, E.; Gagnon, J.; Tahir, M.N.; Claassen, F.W.; Scheres, L.M.W.; Wennekes, T.; Schroën, C.G.P.H.; Beek, van T.A.; Zuilhof, H.; Nielen, M.W.F.

    2014-01-01

    A better characterization of nanometer-thick organic layers (monolayers) as used for engineering surface properties, biosensing, nanomedicine, and smart materials will widen their application. The aim of this study was to develop direct analysis in real time high-resolution mass spectrometry

  19. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    NARCIS (Netherlands)

    Gagarina, Elena; van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is

  20. Greenhouse gas emissions from beef feedlot surface materials as affected by diet, moisture, temperature, and time

    Science.gov (United States)

    A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open lot, pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distil...

  1. A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data

    NARCIS (Netherlands)

    Metz, Markus; Andreo, V.; Neteler, Markus

    2017-01-01

    Temperature time series with high spatial and temporal resolutions are important for several applications. The new MODIS Land Surface Temperature (LST) collection 6 provides numerous improvements compared to collection 5. However, being remotely sensed data in the thermal range, LST shows gaps in

  2. A method for calculating the time-dependent surface temperature of a cylinder containing radioactive waste

    International Nuclear Information System (INIS)

    Fynbo, P.B.

    1981-02-01

    A method is described by which the surface temperature of a steel cylinder containing radioactive waste can be calculated. The method assumes a time-dependent continuous line source in cylindrical symmetry and it applies Laplace transformation. The resultant laplace transform is approximated and then inverted (by convolution). The method is computationally fast and future generalisations to similar problems are suggested. (author)

  3. Time course of attentional modulation in the frontal eye field during curve tracing

    NARCIS (Netherlands)

    Khayat, P. S.; Pooresmaeili, A.; Roelfsema, P. R.

    2009-01-01

    Neurons in the frontal eye fields (FEFs) register incoming visual information and select visual stimuli that are relevant for behavior. Here we investigated the timing of the visual response and the timing of selection by recording from single FEF neurons in a curve-tracing task that requires shifts

  4. Time Course of Attentional Modulation in the Frontal Eye Field During Curve Tracing

    NARCIS (Netherlands)

    Khayat, P.S.; Pooresmaeili, A.; Roelfsema, P.R.

    2009-01-01

    Neurons in the frontal eye fields (FEFs) register incoming visual information and select visual stimuli that are relevant for behavior. Here we investigated the timing of the visual response and the timing of selection by recording from single FEF neurons in a curve-tracing task that requires shifts

  5. Motor preparation is modulated by the resolution of the response timing information.

    Science.gov (United States)

    Carlsen, Anthony N; Mackinnon, Colum D

    2010-03-31

    In the present experiment, the temporal predictability of response time was systematically manipulated to examine its effect on the time course of motor pre-programming and release of the intended movement by an acoustic startle stimulus. Participants performed a ballistic right wrist extension task in four different temporal conditions: 1) a variable foreperiod simple RT task, 2) a fixed foreperiod simple RT task, 3) a low resolution countdown anticipation-timing task, and 4) a high resolution anticipation-timing task. For each task, a startling acoustic stimulus (124dB) was presented at several intervals prior to the "go" signal ("go" -150ms, -500ms, and -1500ms). Results from the startle trials showed that the time course of movement pre-programming was affected by the temporal uncertainty of the imperative "go" cue. These findings demonstrate that the resolution of the timing information regarding the response cue has a marked effect on the timing of movement preparation such that under conditions of low temporal resolution, participants plan the movement well in advance in accordance with the anticipated probability of onset of the cue, whereas movement preparation is delayed until less than 500ms prior to response time when continuous temporal information is provided. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Affective modulation of response timing in ADHD: The impact of reinforcement valence and magnitude

    NARCIS (Netherlands)

    Luman, M.; Oosterlaan, J.; Sergeant, J.A.

    2008-01-01

    The present study investigated the impact of reinforcement valence and magnitude on response timing in children with ADHD. Children were required to estimate a 1-s interval, and both the median response time (response tendency) and the intrasubject-variability (response stability) were investigated.

  7. Modulation of response timing in ADHD, effects of reinforcement valence magnitude

    NARCIS (Netherlands)

    Luman, M.; Oosterlaan, J.; Sergeant, J.A.

    2008-01-01

    The present study investigated the impact of reinforcement valence and magnitude on response timing in children with ADHD. Children were required to estimate a 1-s interval, and both the median response time (response tendency) and the intrasubject-variability (response stability) were investigated.

  8. Intensity modulated radiation therapy with field rotation--a time-varying fractionation study.

    Science.gov (United States)

    Dink, Delal; Langer, Mark P; Rardin, Ronald L; Pekny, Joseph F; Reklaitis, Gintaras V; Saka, Behlul

    2012-06-01

    This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.

  9. Modulation of physiological hemostasis by irrigation solution: comparison of various irrigation solutions using a mouse brain surface bleeding model.

    Science.gov (United States)

    Fujita, Yasutaka; Doi, Kazuhisa; Harada, Daisuke; Kamikawa, Shuji

    2010-04-01

    Intraoperative bleeding often obscures the surgical field and may cause neurological damage. The irrigation fluids used during surgery might affect physiological hemostasis because they modulate the extracellular fluid composition of the bleeding area directly. The authors therefore investigated the influence of irrigation fluid on hemostasis in a mouse brain surface bleeding model. The cerebral cortices of ddY strain mice were exposed under irrigation with normal saline, lactated Ringer (LR) solution, or artificial CSF (ACF-95). To investigate the influence of electrolytes, calcium, potassium, or both were also added to the saline. After 10 minutes of irrigation at 100 ml/hour, sequential photographs of the surgical area were taken with a microscope, and the number of bleeding points was counted visually. Irrigation and counting were performed in a masked manner. There were significantly more bleeding points after irrigation with normal saline than with ACF-95; LR solution had a similar effect on physiological hemostasis as ACF-95. Saline augmented with calcium or potassium and calcium was superior to normal saline in terms of hemostasis. The authors demonstrated that the irrigation fluid used in neurosurgery affects bleeding at the surgical site. To avoid surgical site bleeding, ACF-95 and LR solution should be used as irrigation fluids instead of normal saline. The calcium and potassium content of irrigation solutions seems to be important in hemostasis.

  10. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    Science.gov (United States)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  11. Photoinduced charge dissociation and transport at P3HT/ITO interfaces: studied by modulated surface spectroscopy

    International Nuclear Information System (INIS)

    Rujisamphan, Nopporn; Supasai, Thidarat; Dittrich, Thomas

    2016-01-01

    Results of a temperature dependence study of photoinduced charge separation across P3HT nanocrystals at P3HT/ITO interfaces have been investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. The SPV measurements were correlated with the crystalline sizes of P3HT nanocrystals determined by grazing incidence X-ray diffraction (GIXRD). The crystalline sizes of P3HT nanocrystals were varied systematically by progressive heating/cooling cycles identical for SPV and GIXRD measurements. Photovoltage signals, indication of photoinduced charge dissociation in space, at the P3HT/ITO interface were collected, and electrons were separated across the first monolayer of P3HT nanocrystals at the P3HT/ITO interface due to band bending. The activation energies for quenching of the in-phase and phase-shifted by 90 SPV signals were 0.7 and 0.6 eV, respectively. Thermal activation of the formation of P3HT nanocrystals was of the same order as the enthalpy of fusion of ideal crystals from regioregular P3HT. A schematic drawing of photoinduced charge separation at the P3HT/ITO is proposed. (orig.)

  12. Photoinduced charge dissociation and transport at P3HT/ITO interfaces: studied by modulated surface spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rujisamphan, Nopporn [King Mongkut' s University of Technology Thonburi, Department of Physics, Faculty of Science, Bangkok (Thailand); Institute of Heterogeneous Materials, Helmholtz Center Berlin for Materials and Energy, Berlin (Germany); Supasai, Thidarat [Kasetsart University, Department of Materials Science, Faculty of Science, Bangkok (Thailand); Dittrich, Thomas [Institute of Heterogeneous Materials, Helmholtz Center Berlin for Materials and Energy, Berlin (Germany)

    2016-02-15

    Results of a temperature dependence study of photoinduced charge separation across P3HT nanocrystals at P3HT/ITO interfaces have been investigated by modulated surface photovoltage (SPV) spectroscopy in a fixed capacitor arrangement. The SPV measurements were correlated with the crystalline sizes of P3HT nanocrystals determined by grazing incidence X-ray diffraction (GIXRD). The crystalline sizes of P3HT nanocrystals were varied systematically by progressive heating/cooling cycles identical for SPV and GIXRD measurements. Photovoltage signals, indication of photoinduced charge dissociation in space, at the P3HT/ITO interface were collected, and electrons were separated across the first monolayer of P3HT nanocrystals at the P3HT/ITO interface due to band bending. The activation energies for quenching of the in-phase and phase-shifted by 90 SPV signals were 0.7 and 0.6 eV, respectively. Thermal activation of the formation of P3HT nanocrystals was of the same order as the enthalpy of fusion of ideal crystals from regioregular P3HT. A schematic drawing of photoinduced charge separation at the P3HT/ITO is proposed. (orig.)

  13. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  14. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2010-07-26

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  15. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  16. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays (Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)) has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer (Nucl. Instr. and Meth. A616, 172 (2010)). Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  17. Chemical analysis and surface morphology of enamel following ozone application with different concentrations and exposure times

    Directory of Open Access Journals (Sweden)

    Iman I. Elsayad

    2011-04-01

    Full Text Available This study aimed to determine the effect of different ozone concentrations applied with different exposure times on the chemical composition and the surface morphology of enamel. Twenty human mandibular molars were divided into four groups according to ozone concentration and exposure times. Group A received 90 μg of ozone/ml oxygen for 1 min, group B received 90 μg of ozone/ml oxygen for 2 min, group C received 120 μg of ozone/ml oxygen for 1 min and group D received 120 μg of ozone/ml oxygen for 2 min. The ozone source was from a medical ozone generator equipped with a device to adjust the concentration. Buccal surfaces of teeth were tested before and after ozone application so that each tooth served as a control for itself, using Environmental Scanning Electron Microscope (ESEM connected to an Electron Dispersive Analytical X-ray (EDAX. Changes in calcium and phosphorus percentage levels were recorded and the Ca/P ratio was calculated. The values were statistically analyzed using the one-way ANOVA test with a level of significance set at P ⩽ 0.05. No statistical significant difference was found between the control and the tested groups in minerals content or ratio as P > 0.05. ESEM images showed enamel surface roughness with 2 min ozone exposure times. High ozone concentration with prolonged exposure time does not change the chemical composition of enamel. Applying ozone for 2 min alters the surface morphology of enamel causing variable degrees of roughness. Using high ozone concentrations with prolonged exposure times for caries reversal or prevention and for bleaching may be contraindicated if this changes the surface morphology of enamel.

  18. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    Science.gov (United States)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  19. Hydration water dynamics around a protein surface: a first passage time approach

    Science.gov (United States)

    Sharma, Shivangi; Biswas, Parbati

    2018-01-01

    A stochastic noise-driven dynamic model is proposed to study the diffusion of water molecules around a protein surface, under the effect of thermal fluctuations that arise due to the collision of water molecules with the surrounding environment. The underlying dynamics of such a system may be described in the framework of the generalized Langevin equation, where the thermal fluctuations are assumed to be algebraically correlated in time, which governs the non-Markovian behavior of the system. Results of the calculations of mean-square displacement and the velocity autocorrelation function reveal that the hydration water around the protein surface follows subdiffusive dynamics at long times. Analytical expressions for the first passage time distribution, survival probability, mean residence time and mean first passage time of water molecules are derived for different boundary conditions, to analyze hydration water dynamics under the effect of thermally correlated noise. The results depict a unimodal distribution of the first passage time unlike Brownian motion. The survival probability of hydration water follows a stretched exponential decay for both boundary conditions. The mean residence time of the hydration water molecule for different initial positions increases with increase in the complexity/heterogeneity of the surrounding environment for both boundary conditions. The mean first passage time of the water molecule to reach the absorbing/reflecting boundary follows an asymptotic power law with respect to the thickness of the hydration layer, and increases with increase in the complexity/heterogeneity of the environment.

  20. The Fast Simulation of Scattering Characteristics from a Simplified Time Varying Sea Surface

    Directory of Open Access Journals (Sweden)

    Yiwen Wei

    2015-01-01

    Full Text Available This paper aims at applying a simplified sea surface model into the physical optics (PO method to accelerate the scattering calculation from 1D time varying sea surface. To reduce the number of the segments and make further improvement on the efficiency of PO method, a simplified sea surface is proposed. In this simplified sea surface, the geometry of long waves is locally approximated by tilted facets that are much longer than the electromagnetic wavelength. The capillary waves are considered to be sinusoidal line superimposing on the long waves. The wavenumber of the sinusoidal waves is supposed to satisfy the resonant condition of Bragg waves which is dominant in all the scattered short wave components. Since the capillary wave is periodical within one facet, an analytical integration of the PO term can be performed. The backscattering coefficient obtained from a simplified sea surface model agrees well with that obtained from a realistic sea surface. The Doppler shifts and width also agree well with the realistic model since the capillary waves are taken into consideration. The good agreements indicate that the simplified model is reasonable and valid in predicting both the scattering coefficients and the Doppler spectra.

  1. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma.

    Science.gov (United States)

    Qian, Kun; Pan, Hong; Li, Yinglong; Wang, Guomin; Zhang, Jue; Pan, Jie

    2016-01-01

    The changes of denture base acrylic resin surface properties under cold plasma and the relationships with time were investigated. Cold plasma treated the specimens for 30 s, 60 s, 90 s, and 120 s, respectively. Water contact angles were measured immediately after the treatment, 48 h, 15 days and 30 days later. Surface roughness was measured with 3-D laser scanning microscope. Candida albicans adherence was evaluated by CFU counting. Chemical composition was monitored by X-ray photoelectron spectroscopy analysis. Water contact angle reduced after treated for 30 s. No changes were observed with time prolonged, except the durability. There were no differences in roughness among all groups. However, treatment groups showed significantly lower C. albicans adherence. XPS demonstrated a decrease in C/O, and this reduction was affected by treatment time. Cold plasma was an effective means of increasing hydrophilicity of acrylic resin and reducing C. albicans adherence without affecting physical properties.

  2. A real-time mobile web-based module promotes bidirectional feedback and improves evaluations of the surgery clerkship.

    Science.gov (United States)

    Wagner, Justin P; Tillou, Areti; Nguyen, David K; Agopian, Vatche G; Hiatt, Jonathan R; Chen, David C

    2015-01-01

    We implemented a real-time mobile web-based reporting module for students in our surgery clerkship and evaluated its effect on student satisfaction and perceived abuse. Third-year medical students in the surgery clerkship received surveys regarding intimidation, perceived abuse, satisfaction with clerkship resources, and interest in a surgical career. Survey data were analyzed to assess differences after implementing the mobile reporting system and to identify independent predictors of perceived abuse. With the reporting module, students perceived less intimidation by residents (P < .001) and by faculty (P = .008), greater satisfaction reporting feedback (P < .001), and greater interest in surgical careers (P = .003). Perceived abuse decreased without reaching statistical significance (P = .331). High ratings of intimidation by faculty independently predicted perceived abuse (odds ratio = 1.3), and satisfaction with anonymous reporting was a negative predictor (odds ratio = .2). A mobile web-based system for real-time reporting fosters open communication and bidirectional feedback and promotes greater satisfaction with the surgery clerkship and interest in a surgical career. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Levitation time measurement of water drops on the surface of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lee, Younghee [Sungkyunkwan University, Suwon (Korea, Republic of); Cho, Hoonyoung [Dongguk University, Seoul (Korea, Republic of)

    2011-06-15

    The levitation of water drops on the surface of liquid nitrogen is studied. The water drop evaporates the liquid nitrogen, which makes a nitrogen vapor film between the water drop and the surface of the liquid nitrogen. The temperature of the drop falls from the initial temperature of the drop to the melting temperature and then eventually reaches the Leidenfrost temperature at which an ice sphere falls into the liquid nitrogen. The floating time of the water drop on the surface of liquid nitrogen corresponds to how long the temperature of the water drop takes to go from the initial temperature to the Leidenfrost temperature. We measured the floating time of the water drop on the surface of the liquid nitrogen as a function of the size of the drop and the initial temperature of the drop. The floating time increases linearly with increasing drop size and increases linearly with increasing initial temperature of drop, which can be explained reasonably well by assuming uniform cooling of the drop by heat conduction.

  4. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  5. Real-time three-dimensional surface measurement by color encoded light projection

    International Nuclear Information System (INIS)

    Chen, S. Y.; Li, Y. F.; Guan, Q.; Xiao, G.

    2006-01-01

    Existing noncontact methods for surface measurement suffer from the disadvantages of poor reliability, low scanning speed, or high cost. The authors present a method for real-time three-dimensional data acquisition by a color-coded vision sensor composed of common components. The authors use a digital projector controlled by computer to generate desired color light patterns. The unique indexing of the light codes is a key problem and is solved in this study so that surface perception can be performed with only local pattern analysis of the neighbor color codes in a single image. Experimental examples and performance analysis are provided

  6. From Massively Parallel Algorithms and Fluctuating Time Horizons to Nonequilibrium Surface Growth

    International Nuclear Information System (INIS)

    Korniss, G.; Toroczkai, Z.; Novotny, M. A.; Rikvold, P. A.

    2000-01-01

    We study the asymptotic scaling properties of a massively parallel algorithm for discrete-event simulations where the discrete events are Poisson arrivals. The evolution of the simulated time horizon is analogous to a nonequilibrium surface. Monte Carlo simulations and a coarse-grained approximation indicate that the macroscopic landscape in the steady state is governed by the Edwards-Wilkinson Hamiltonian. Since the efficiency of the algorithm corresponds to the density of local minima in the associated surface, our results imply that the algorithm is asymptotically scalable. (c) 2000 The American Physical Society

  7. Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem

    Science.gov (United States)

    Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin

    2017-07-01

    In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.

  8. Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

    Science.gov (United States)

    Sharma, Shivanjli; Fergus, John

    2017-01-01

    To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure

  9. Order of stimulus presentation modulates interference in Stroop matching tasks: a reaction time study

    OpenAIRE

    Caldas, Ariane Leão; David, Isabel de Paula Antunes; Portes, Paula Martins; Portugal, Anna Carolina de Almeida; Machado-Pinheiro, Walter

    2015-01-01

    In the classic Stroop effect, the time spent to name the color of an incongruent stimulus (GREEN in blue) is longer than the time necessary to name the color of a congruent stimulus (BLUE in blue). In the “Stroop matching task”, volunteers are instructed to compare attributes of two stimuli, in which one of them is necessarily a Stroop stimulus. Our aim was to investigate whether the order of stimulus presentation can explain some contradictory results and reveal the imposition of high-order ...

  10. Shortening Delivery Times of Intensity Modulated Proton Therapy by Reducing Proton Energy Layers During Treatment Plan Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands); Kooy, Hanne M. [F. H. Burr Proton Therapy Center, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam (Netherlands)

    2015-06-01

    Purpose: To shorten delivery times of intensity modulated proton therapy by reducing the number of energy layers in the treatment plan. Methods and Materials: We have developed an energy layer reduction method, which was implemented into our in-house-developed multicriteria treatment planning system “Erasmus-iCycle.” The method consisted of 2 components: (1) minimizing the logarithm of the total spot weight per energy layer; and (2) iteratively excluding low-weighted energy layers. The method was benchmarked by comparing a robust “time-efficient plan” (with energy layer reduction) with a robust “standard clinical plan” (without energy layer reduction) for 5 oropharyngeal cases and 5 prostate cases. Both plans of each patient had equal robust plan quality, because the worst-case dose parameters of the standard clinical plan were used as dose constraints for the time-efficient plan. Worst-case robust optimization was performed, accounting for setup errors of 3 mm and range errors of 3% + 1 mm. We evaluated the number of energy layers and the expected delivery time per fraction, assuming 30 seconds per beam direction, 10 ms per spot, and 400 Giga-protons per minute. The energy switching time was varied from 0.1 to 5 seconds. Results: The number of energy layers was on average reduced by 45% (range, 30%-56%) for the oropharyngeal cases and by 28% (range, 25%-32%) for the prostate cases. When assuming 1, 2, or 5 seconds energy switching time, the average delivery time was shortened from 3.9 to 3.0 minutes (25%), 6.0 to 4.2 minutes (32%), or 12.3 to 7.7 minutes (38%) for the oropharyngeal cases, and from 3.4 to 2.9 minutes (16%), 5.2 to 4.2 minutes (20%), or 10.6 to 8.0 minutes (24%) for the prostate cases. Conclusions: Delivery times of intensity modulated proton therapy can be reduced substantially without compromising robust plan quality. Shorter delivery times are likely to reduce treatment uncertainties and costs.

  11. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    International Nuclear Information System (INIS)

    Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X

    2015-01-01

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable

  12. Simulation of time-dependent energy modulation by wake fields and its impact on gain in the VUV free electron laser of the TESLA Test Facility

    CERN Document Server

    Reiche, S

    2000-01-01

    For shorter bunches and narrower undulator gaps the interaction between the electrons in the bunch and the wake fields becomes so large that the FEL amplification is affected. For a typical vacuum chamber of an X-ray or VUV Free Electron Laser three major sources of wake fields exist: a resistance of the beam pipe, a change in the geometric aperture and the surface roughness of the beam pipe. The generated wake fields, which move along with the electrons, change the electron energy and momentum, depending on the electron longitudinal and transverse position. In particular, the accumulated energy modulation shifts the electrons away from the resonance condition. Based on an analytic model the energy loss by the wake fields has been incorporated into the time-dependent FEL simulation code GENESIS 1.3. For the parameters of the TESLA Test Facility the influence of the bunch length, beam pipe diameter and surface roughness has been studied. The results are presented in this paper.

  13. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Calvo, Gabriel F.

    2009-01-01

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions

  14. Formulation of the Reynolds equation on a time-dependent lubrication surface

    Science.gov (United States)

    Stupkiewicz, S.

    2016-01-01

    The Reynolds equation, which describes the lubrication effect arising through the interaction of two physical surfaces that are separated by a thin fluid film, is formulated with respect to a continuously evolving third surface that is described by a time-dependent curvilinear coordinate system. The proposed formulation essentially addresses lubrication mechanics at interfaces undergoing large deformations and a priori satisfies all objectivity requirements, neither of which are features of the classical Reynolds equation. As such, this formulation may be particularly suitable for non-stationary elastohydrodynamic lubrication problems associated with soft interfaces. The ability of the formulation to capture finite-deformation effects and the influence of the choice of the third surface are illustrated through analytical examples. PMID:27118926

  15. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  16. Relationship Between the Surface Area to Volume Ratio and Temperature across Geologic Time in Ostracods

    Science.gov (United States)

    Jackson, C.; Zaroff, S.; Heim, N. A.; Payne, J.

    2014-12-01

    In 1877 Joseph Allen proposed that endothermic terrestrial organisms would have lower surface area to volume ratios (SAVR) in colder climates and higher SAVRs in warmer climates. With a smaller surface area compared to volume, organisms can retain more heat in cold climates. We tested to see if this principle applied to ostracods, a type of ectothermic marine invertebrate. We hypothesised that Allen's rule applies to ostracods, as Allen's rule has been demonstrated in frogs (Alho 2011), which are also ectotherms . We used the linear dimensions of the three major carapace axes of ostracod holotypes to estimate the SAVR. We compared ostracod SAVRs with paleotemperatures from Royer et al. (2004). We found that there was a correlation between surface area and temperature; it is a small, but statistically significant correlation (adj. R2=0.0167). This means that as temperature increased, the SAVR also increased. We also found a negative correlation between ostracod SAVR to geologic time(adj. R2=0.0114), which shows us that as time has gone on, ostracod SAVR has decreased. We then plotted the correlation coefficient of SAVR to temperature over geologic time to explore trends in the strength of Allen's rule. For most of time there was no relationship but during the Devonian, Allen's Rule did explain the trend. In short, temperature does explain some of the correlation between the SAVR and temperature, but it is likely there were other environmental factors affecting this relationship.

  17. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.

    Science.gov (United States)

    Mishra, Himanshu; Schrader, Alex M; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N

    2016-03-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, nonuniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 1 × 10(-7) to 1 × 10(-4) m. Under saturated vapor conditions, we found that in the short term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θ(SDT) = 140 ± 3°, was accurately described by the Cassie-Baxter model (predicted θ(SDT) = 137°); however, after 90 min, θ(SDT) fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θ(SDT) to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θ(SDT) to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights

  18. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  19. Incorporating Geodectic Processing Modules into a Real-Time Earthworm Environment to Enhance NOAA's Tsunami Warning Capability

    Science.gov (United States)

    Macpherson, K. A.

    2017-12-01

    The National Oceanographic and Atmospheric Administration's National and Pacific Tsunami Warning Centers currently rely on traditional seismic data in order to detect and evaluate potential tsunamigenic earthquakes anywhere on the globe. The first information products disseminated by the centers following a significant seismic event are based solely on seismically-derived earthquake locations and magnitudes, and are issued within minutes of the earthquake origin time. Thus, the rapid and reliable determination of the earthquake magnitude is a critical piece of information needed by the centers to generate the appropriate alert levels. However, seismically-derived magnitudes of large events are plagued by well-known problems, particularly during the first few minutes following the origin time; near-source broad-band instruments may go off scale, and magnitudes tend to saturate until sufficient teleseismic data arrive to represent the long-period signal that characterizes large events. However, geodetic data such as high-rate Global Positioning System (hGPS) displacements and seismogeodetic data that is a combination of collocated hGPS and accelerometer data do not suffer from these limitations. These sensors stay on scale, even for large events, and they record both dynamic and static displacements that may be used to estimate magnitude without saturation. Therefore, there is an ongoing effort to incorporate these data streams into the operations of the tsunami warning centers to enhance current magnitude determination capabilities, and eventually, to invert the geodetic displacements for mechanism and finite-fault information. These later quantities will be useful for tsunami modeling and forecasting. The tsunami warning centers rely on the Earthworm system for real-time data acquisition, so we have developed Earthworm modules for the Magnitude from Peak Ground Displacement (MPGD) algorithm, developed at the University of Washington and the University of California

  20. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  1. Effects of contact time and concentration on bactericidal efficacy of 3 disinfectants on hard nonporous surfaces.

    Science.gov (United States)

    Hong, Yingying; Teska, Peter J; Oliver, Haley F

    2017-11-01

    This study investigated the influence of contact time and concentration on bactericidal efficacy of 3 types of disinfectants (accelerated hydrogen peroxide [AHP], quaternary ammonium compounds [Quats], and sodium hypochlorite) on stainless steel surfaces using Environmental Protection Agency procedure MB-25-02. We found that bactericidal efficacy was not reduced at contact times or concentrations immediate lower than label use values, but all 3 disinfectants were significantly less bactericidal at significantly lower than label use contact times and concentrations. Overall, the bactericidal efficacy of the sodium hypochlorite disinfectant was most tolerant to the decreases of contact times and concentrations, followed closely by AHP disinfectant, and Quat disinfectant was most affected by contact time and concentration. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Saipan 2005 Sea Surface Temperature and Meteorological Enhanced Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site Saipan, CNMI (15.2375N, 145.72283W) ARGOS Buoy ID 26105 Time series data from this mooring provide high resolution sea surface temperature, and surface...

  3. MODIS/Aqua Near Real Time (NRT) Surface Reflectance Daily L2G Global 250m SIN Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — The MODIS Near Real Time (NRT) Surface Reflectance products are an estimate of the surface spectral reflectance as it would be measured at ground level in the...

  4. Rose Island, American Samoa, 2006 Sea Surface Temperature and Meterological Standard Mooring - CRED CREWS Near Real Time and Historical Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site - Rose Island, American Samoa, -14.5514, -168.16018 ARGOS ID 27267 Time series data from this mooring provide high resolution sea surface temperature, surface...

  5. Updating Landsat time series of surface-reflectance composites and forest change products with new observations

    Science.gov (United States)

    Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.

    2017-12-01

    The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time

  6. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  7. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  8. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    Science.gov (United States)

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  9. Laser intensity modulated real time monitoring cell growth sensor for bioprocess applications

    Science.gov (United States)

    Kishore, P.; Babu, P. Ravindra; Devi, V. Rama; Maunika, T.; Soujanya, P.; Kishore, P. V. N.; Dinakar, D.

    2016-04-01

    This article proposes an optical method for monitoring the growth of Escherichia coli in Luria Bertani medium and Saccharomyces cereviciae in YPD. Suitable light is selected which on interaction with the analyte under consideration, gets adsorption / scattered. Required electronic circuitry is designed to drive the laser source and to detect the intensity of light using Photo-detector. All these components are embedded and arranged in a proper way and monitored the growth of the microbs in real time. The sensors results are compared with standard techniques such as colorimeter, Nephelometer and hemocytometer. The experimental results are in good agreement with the existed techniques and well suitable for real time monitoring applications of the growth of the microbs.

  10. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra-fraction......Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra....... The over all goals of the studies in this thesis were to evaluate clinical gains of intrafraction motion management with MLC tracking, to investigate which patients that would benefit from this kind of treatment as well as what treatment plans that can be used with this technique....

  11. Adaptive Multicarrier Modulation: A Convenient Framework for Time-Frequency Processing in Wireless Communications

    OpenAIRE

    Keller, T.; Hanzo, L.

    2000-01-01

    A historical perspective of orthogonal frequency-division multiplexing (OFDM) is given with reference to its literature. Its advantages and disadvantages are reviewed, and its performance is characterized over highly dispersive channels. The effects of both time- and frequency-domain synchronization errors are quantified, and a range of solutions proposed in the recent literature are re-viewed. One of the main objectives of this review is to highlight the recent thinking behind adaptive bit a...

  12. Interactive Learning Modules: Enabling Near Real-Time Oceanographic Data Use In Undergraduate Education

    Science.gov (United States)

    Kilb, D. L.; Fundis, A. T.; Risien, C. M.

    2012-12-01

    The focus of the Education and Public Engagement (EPE) component of the NSF's Ocean Observatories Initiative (OOI) is to provide a new layer of cyber-interactivity for undergraduate educators to bring near real-time data from the global ocean into learning environments. To accomplish this, we are designing six online services including: 1) visualization tools, 2) a lesson builder, 3) a concept map builder, 4) educational web services (middleware), 5) collaboration tools and 6) an educational resource database. Here, we report on our Fall 2012 release that includes the first four of these services: 1) Interactive visualization tools allow users to interactively select data of interest, display the data in various views (e.g., maps, time-series and scatter plots) and obtain statistical measures such as mean, standard deviation and a regression line fit to select data. Specific visualization tools include a tool to compare different months of data, a time series explorer tool to investigate the temporal evolution of select data parameters (e.g., sea water temperature or salinity), a glider profile tool that displays ocean glider tracks and associated transects, and a data comparison tool that allows users to view the data either in scatter plot view comparing one parameter with another, or in time series view. 2) Our interactive lesson builder tool allows users to develop a library of online lesson units, which are collaboratively editable and sharable and provides starter templates designed from learning theory knowledge. 3) Our interactive concept map tool allows the user to build and use concept maps, a graphical interface to map the connection between concepts and ideas. This tool also provides semantic-based recommendations, and allows for embedding of associated resources such as movies, images and blogs. 4) Education web services (middleware) will provide an educational resource database API.

  13. Effect of temperature, curing time, and filler composition on surface microhardness of composite resins

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Papadopoulos, Constantinos; Koliniotou-Koumpia, Eugenia

    2015-01-01

    Aim: The aim of this study was to evaluate the microhardness of two composite resins when subjected to three different temperatures and three different light-curing times. Materials and Methods: Two composites were used; Filtek Z250 and Grandio. Three different temperatures (23, 37, and 55oC) were used, utilizing a composite warmer. The heated samples were immediately injected into cylindrical molds (6 mm × 2 mm) and the top surface of the specimens was polymerized for 10, 20, and 40 sec, using a Quartz-Tungsten-Halogen light-curing unit (QTH LCU). Vickers microhardness measurements were performed from both the top and bottom surface of the specimens, following dry storage for 24 hours in the dark. Statistical analysis were performed using one-way analysis of variance (ANOVA) and Tukey post-hoc test at a level of significance of a = 0.05. Results: The results indicated that there was an increase in microhardness as the temperature of the composite was increased for either the top or the bottom surface (P 0.05). Conclusions: Temperature of composites affects their surface microhardness. Also, light-curing time influence microhardness values of the composites tested. PMID:25829688

  14. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  15. Time-frequency modulation of ERD and EEG coherence in robot-assisted hand performance.

    Science.gov (United States)

    Formaggio, Emanuela; Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Gandolfi, Marialuisa; Geroin, Christian; Smania, Nicola; Fiaschi, Antonio; Manganotti, Paolo

    2015-03-01

    A better understanding of cortical modifications related to movement preparation and execution after robot-assisted training could aid in refining rehabilitation therapy protocols for stroke patients. Electroencephalography (EEG) modifications of cortical activity in healthy subjects were evaluated using time-frequency event-related EEG and task-related coherence (TRCoh). Twenty-one channel EEG was recorded in eight subjects during protocols of active, passive, and imagined movements. The subjects performed robot-assisted tasks using the Bi-Manu-Track robot-assisted arm trainer. We applied time-frequency event-related synchronization/desynchronization (ERS/ERD) and TRCoh approaches to investigate where movement-related decreases in power were localized and to study the functional relationships between areas. Our results showed ERD of sensorimotor (SM) area over the contralateral side before the movement and bilateral ERD during execution of the movement. ERD during passive movements was similar in topography to that observed during voluntary movements, but without pre-movement components. No significant difference in time course ERD was observed among the three types of movement over the two SM areas. The TRCoh topography was similar for active and imagined movement; before passive movement, the frontal regions were uncoupled from the SM regions and did not contribute to task performance. This study suggests new perspectives for the evaluation of brain oscillatory activity and the neurological assessment of motor performance by means of quantitative EEG to better understand the planning and execution of movement.

  16. Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Scott, Allison C; Penney, Trevor B; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has a long-term facilitative effect on the interval-timing ability and temporal memory of the offspring. Here, we examined whether prenatal-choline supplementation has modality-specific effects on duration discrimination in aged (20 mo) male rats. Adult offspring of rats that were given sufficient choline in their chow (CON: 1.1 g/kg) or supplemental choline added to their drinking water (SUP: 3.5 g/kg) during embryonic days (ED) 12-17 were trained and tested on a two-modality (auditory and visual signals) duration bisection procedure (2 s vs. 8 s). Intensity (high vs. low) of the auditory and visual timing signals was systematically manipulated across test sessions such that all combinations of signal intensity by modality were tested. Psychometric response functions indicated that prenatal-choline supplementation systematically increased sensitivity to auditory signals relative to visual signals, thereby magnifying the modality effect that sounds are judged to be longer than lights of equivalent duration. In addition, sensitivity to signal duration was greater in rats given prenatal-choline supplementation, particularly at low intensities of both the auditory and visual signals. Overall, these results suggest that prenatal-choline supplementation impacts interval timing by enhancing the differences in temporal integration between auditory and visual stimuli in aged subjects.

  17. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    Science.gov (United States)

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Asymmetrical modulation of time perception by increase versus decrease in coherence of motion.

    Science.gov (United States)

    Karşılar, Hakan; Balcı, Fuat

    2016-11-01

    Stimulus properties are known to affect duration judgments. In this study, we tested the effect of motion coherence levels in randomly moving dots on the perceived duration of these stimuli. In Experiments 1 and 2 we tested participants on a temporal reproduction task, using stimuli with varying degrees of motion coherence as the to-be-timed stimuli. Our results in both experiments showed that increasing motion coherence from the encoded (i.e. the first) to the reproduced (i.e. the second) stimulus leads to longer reproduction times. These effects were primarily additive in nature, and their magnitude increased with the difference between the coherence levels in the encoding versus reproduction (decoding) phases. This effect was not mirrored when there was a decrease in motion coherence. Experiment 3 tested if the differential number of exploratory saccadic eye-movements during encoding and reproduction predicted these effects. The behavioral findings of Experiment 1 and 2 were replicated in the third experiment, and the change in the number of eye movements from encoding to reproduction predicted the reproduction time when there was an increase in motion coherence. These results are explained by the effect of attention on the latency to initiate temporal integration that is only manifested when there is an increase in the level of motion coherence.

  19. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  20. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    Science.gov (United States)

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  1. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC.

    Science.gov (United States)

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-08-26

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming.

  2. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    Science.gov (United States)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  3. Optional part-time and longer GP training modules in GP practices associated with more trainees becoming GPs - a cohort study in Switzerland.

    Science.gov (United States)

    Studerus, Lara; Ahrens, Regina; Häuptle, Christian; Goeldlin, Adrian; Streit, Sven

    2018-01-05

    Switzerland, like many other countries, has a shortage of General Practitioners (GPs). Optional GP training modules in GP practices were offered during the at least 5-year GP training program to increase student and trainee interest in becoming a GP. The training modules had not yet been evaluated. We determined how many Swiss GP trainees became practicing GPs after they completed optional training modules, and if longer modules were associated with higher rates of GP specialization. In this population-based cohort study, we included GP trainees who chose an optional GP training module in GP practice, provided by the Foundation to Promote Training in General Practice (WHM) between 2006 and 2015. GP trainees were invited to complete an online survey to assess the primary outcome (becoming a practicing GP by 2016). Data on non-responders was collected via an internet search. We calculated univariate time-to-event curves to become a practicing GP, stratified by trainee's gender, length, part-time training, and number of years after graduation until training modules were completed. We used a multivariate model to adjust for characteristics of participants, training, and satisfaction with training modules. We assessed primary outcome for 351 (92.1%) of 381 former GP trainees who participated in a WHM program between 2006 and 2015. Of these 218 (57%) were practicing GPs by 2016. When focusing on the trainees who had completed training between 2006 and 2010, the rate of practicing GPs was even 73%. Longer (p = 0.018) and part-time training modules (p = 0.003) were associated with higher rates of being a practicing GP. Most (81%) practicing GPs thought their optional GP training module was (very) important in their choice of specialty. GP trainees who spent more time training in a GP practice, or who trained part-time were more likely to become practicing GPs. Most (80%) rated their training module as (very) important in their choice of career, highlighting that

  4. Timing of Late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    Zachariasen, J.; Berryman, K.R.; Langridge, R.M.; Prentice, C.; Rymer, M.; Stirling, M.W.; Villamor, P.

    2006-01-01

    Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ± 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. (author). 44 refs., 10 figs., 1 tab

  5. A 1-V 60-μW 85-dB dynamic range continuous-time third-order sigma-delta modulator

    International Nuclear Information System (INIS)

    Li Yuanwen; Qi Da; Dong Yifeng; Xu Jun; Ren Junyan

    2009-01-01

    A 1-V third order one-bit continuous-time (CT) EA modulator is presented. Designed in the SMIC mixed-signal 0.13-μm CMOS process, the modulator utilizes active RC integrators to implement the loop filter. An efficient circuit design methodology for the CT ΣΔ modulator is proposed and verified. Low power dissipation is achieved through the use of two-stage class A/AB amplifiers. The presented modulator achieves 81.4-dB SNDR and 85-dB dynamic range in a 20-kHz bandwidth with an over sampling ratio of 128. The total power consumption of the modulator is only 60 μW from a 1-V power supply and the prototype occupies an active area of 0.12 mm 2 . (semiconductor integrated circuits)

  6. Fast time-of-flight camera based surface registration for radiotherapy patient positioning.

    Science.gov (United States)

    Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli

    2012-01-01

    This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the

  7. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.

    Science.gov (United States)

    Katsanos, Nicholas A; Kapolos, John; Gavril, Dimitrios; Bakaoukas, Nicholas; Loukopoulos, Vassilios; Koliadima, Athanasia; Karaiskakis, George

    2006-09-15

    The reversed-flow gas chromatography (RF-GC) technique has been applied to measure the adsorption entropy over time, when gaseous pentane is adsorbed on the surface of two solids (gamma-alumina and a silica supported rhodium catalyst) at 393.15 and 413.15K, respectively. Utilizing experimental chromatographic data, this novel methodology also permits the simultaneous measurement of the local adsorption energy, epsilon, local equilibrium adsorbed concentration, c(s)(*), and local adsorption isotherm, theta(p, T, epsilon) in a time resolved way. In contrast with other inverse gas chromatographic methods, which determine the standard entropy at zero surface coverage, the present method operates over a wide range of surface coverage taking into account not only the adsorbate-adsorbent interaction, but also the adsorbate-adsorbate interaction. One of the most interesting observations of the present work is the fact that the interaction of n-pentane is spontaneous on the Rh/SiO(2) catalyst for a very short time interval compared to that on gamma-Al(2)O(3). This can explain the different kinetic behavior of each particular gas-solid system, and it can be attributed to the fact that large amounts of n-C(5)H(12) are present on the active sites of the Rh/SiO(2) catalyst compared to those on gamma-Al(2)O(3), as the local equilibrium adsorbed concentration values, c(s)(*), indicate.

  8. Effect of wave-function localization on the time delay in photoemission from surfaces

    International Nuclear Information System (INIS)

    Zhang, C.-H.; Thumm, U.

    2011-01-01

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a latt of attractive Gaussian-shaped core potentials of width σ. The parameter σ/a latt thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of σ/a latt latt > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near σ/a latt =0.3 from relatively large values below σ/a latt ∼0.2 to much smaller delays above σ/a latt ∼0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  9. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    Science.gov (United States)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.

  10. LONG-TIME INVESTIGATION OF CEMENT COMPOSITE MATERIAL WITH MICRONIZED WASTE MARBLE POWDER: DYNAMIC MODULES

    Directory of Open Access Journals (Sweden)

    Zdeněk Prošek

    2017-11-01

    Full Text Available This article focus on “blended cement”. The blended cement was created by using waste marble powder (WMP as a partial replacement for cement. We investigated the influence of WMP on the developing of the dynamic modulus of elasticity and the dynamic shear modulus in time. Four different cement composites with WMP as a partial replacement for cement were studied (5, 10, 15 and 50 wt. % together with reference samples. Dynamic modulus of elasticity was monitored during the first 377 days since manufacture by use of non-destructive testing (resonance method. The results showed that WMP in a small amount had a no effect on the dynamic modulus of elasticity and the dynamic shear modulus.

  11. Simulation of the pressure recovery time in a CLIC standard module

    CERN Document Server

    Costa-Pinto, P

    2008-01-01

    Vacuum pressure inside the CLIC accelerating structures (AS) is crucial for both beam and RF stability. Gas molecules released during RF breakdown must be evacuated from the cells of the AS before the arrival of the next train of particles. Due to its complex geometry, accurate analytical calculations are not viable. In this paper we introduce a calculation method based on the combination of analytical vacuum equations with Monte Carlo test particle simulations, implemented in a PSpice environment via the vacuum-electrical network analogy. Pressure recovery times are calculated for the main gas species released during a breakdown. The number and type of molecules used for the calculation is the result of measurements performed in the DC spark test system.

  12. Real-Time Dynamic MLC Tracking for Intensity Modulated Arc Therapy

    DEFF Research Database (Denmark)

    Falk, Marianne

    -fraction motion management that uses the MLC of the treatment machine to reshape the beam to follow the tumour movements. The 3D MLC tracking algorithm recalculates the planned MLC positions using information about the tumour location from an independent monitoring system and the leaves are adjusted accordingly....... The over all goals of the studies in this thesis were to evaluate clinical gains of intrafraction motion management with MLC tracking, to investigate which patients that would benefit from this kind of treatment as well as what treatment plans that can be used with this technique.......Motion management of intra-fraction tumour motion during radiotherapy treatment can be a challenging task in order to achieve tumour control as well as minimizing the dose to the surrounding healthy tissue. Real-time dynamic multileaf collimator (MLC) tracking is a novel method for intra...

  13. Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Deepika, G; Green, R J; Frazier, R A; Charalampopoulos, D

    2009-10-01

    To investigate the changes in the surface properties of Lactobacillus rhamnosus GG during growth, and relate them with the ability of the Lactobacillus cells to adhere to Caco-2 cells. Lactobacillus rhamnosus GG was grown in complex medium, and cell samples taken at four time points and freeze dried. Untreated and trypsin treated freeze dried samples were analysed for their composition using SDS-PAGE analysis and Fourier transform infrared spectroscopy (FTIR), hydrophobicity and zeta potential, and for their ability to adhere to Caco-2 cells. The results suggested that in the case of early exponential phase samples (4 and 8 h), the net surface properties, i.e. hydrophobicity and charge, were determined to a large extent by anionic hydrophilic components, whereas in the case of stationary phase samples (13 and 26 h), hydrophobic proteins seemed to play the biggest role. Considerable differences were also observed between the ability of the different samples to adhere to Caco-2 cells; maximum adhesion was observed for the early stationary phase sample (13 h). The results suggested that the adhesion to Caco-2 cells was influenced by both proteins and non-proteinaceous compounds present on the surface of the Lactobacillus cells. The surface properties of Lact. rhamnosus GG changed during growth, which in return affected the ability of the Lactobacillus cells to adhere to Caco-2 cells. The levels of adhesion of Lactobacillus cells to Caco-2 cells were influenced by the growth time and reflected changes on the bacterial surface. This study provides critical information on the physicochemical factors that influence bacterial adhesion to intestinal cells.

  14. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training.

    Science.gov (United States)

    Chen, Joyce L; Penhune, Virginia B; Zatorre, Robert J

    2008-02-01

    Much is known about the motor system and its role in simple movement execution. However, little is understood about the neural systems underlying auditory-motor integration in the context of musical rhythm, or the enhanced ability of musicians to execute precisely timed sequences. Using functional magnetic resonance imaging, we investigated how performance and neural activity were modulated as musicians and nonmusicians tapped in synchrony with progressively more complex and less metrically structured auditory rhythms. A functionally connected network was implicated in extracting higher-order features of a rhythm's temporal structure, with the dorsal premotor cortex mediating these auditory-motor interactions. In contrast to past studies, musicians recruited the prefrontal cortex to a greater degree than nonmusicians, whereas secondary motor regions were recruited to the same extent. We argue that the superior ability of musicians to deconstruct and organize a rhythm's temporal structure relates to the greater involvement of the prefrontal cortex mediating working memory.

  15. Effects of urban tree canopy loss on land surface temperature magnitude and timing

    Science.gov (United States)

    Elmes, Arthur; Rogan, John; Williams, Christopher; Ratick, Samuel; Nowak, David; Martin, Deborah

    2017-06-01

    Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this relationship relies on accurate, fine spatial resolution UTC mapping, and on time series analysis of Land Surface Temperatures (LST). The City of Worcester, Massachusetts underwent extensive UTC loss and gain during the relatively brief period from 2008 to 2015, providing a natural experiment to measure the UTC/LST relationship. This paper consists of two elements to this end. First, it presents methods to map UTC in urban and suburban locations at fine spatial resolution (∼0.5 m) using image segmentation of a fused Lidar/WorldView-2 dataset, in order to show UTC change over time. Second, the areas of UTC change are used to explore changes in LST magnitude and seasonal variability using a time series of all available Landsat data for the study area over the eight-year period from 2007 to 2015. Fractional UTC change per unit area was determined using fine resolution UTC maps for 2008, 2010, and 2015, covering the period of large-scale tree loss and subsequent planting. LST changes were measured across a series of net UTC change bins, providing a relationship between UTC net change and LST trend. LST was analyzed for both monotonic trends over time and changes to seasonal magnitude and timing, using Theil-Sen slopes and Seasonal Trend Analysis (STA), respectively. The largest magnitudes of UTC loss occurred in residential neighborhoods, causing increased exposure of impervious (road) and pervious (grass) surfaces. Net UTC loss showed higher monotonic increases in LST than persistence and gain areas. STA indicated that net UTC loss was associated greater difference between 2008 and 2015 seasonal

  16. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization

    Directory of Open Access Journals (Sweden)

    Jorge L. Bernal-Rusiel

    2017-05-01

    Full Text Available In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView, a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.

  17. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization.

    Science.gov (United States)

    Bernal-Rusiel, Jorge L; Rannou, Nicolas; Gollub, Randy L; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E; Pienaar, Rudolph

    2017-01-01

    In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView , a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.

  18. Inferring near surface soil temperature time series from different land uses to quantify the variation of heat fluxes into a shallow aquifer in Austria

    Science.gov (United States)

    Kupfersberger, Hans; Rock, Gerhard; Draxler, Johannes C.

    2017-09-01

    Different land uses exert a strong spatially distributed and temporal varying signal of heat fluxes from the surface in or out of the ground. In this paper we show an approach to quantify the heat fluxes into a groundwater body differentiating between near surface soil temperatures under grass, forest, asphalt, agriculture and surface water bodies and heat fluxes from subsurface structures like heated basements or sewage pipes. Based on observed time series of near surface soil temperatures we establish individual parameters (e.g. shift, moving average) of a simple empirical function that relates air temperature to soil temperature. This procedure is useful since air temperature time series are readily available and the complex energy flux processes at the soil atmosphere interface do not need to be described in detail. To quantify the heat flux from heated subsurface structures that have lesser depths to the groundwater table the 1D heat conduction module SoilTemp is developed. Based on soil temperature time series observed at different depths in a research lysimeter heat conduction and heat storage capacity values are calibrated disregarding their dependence on the water content. With SoilTemp the strong interaction between time series of groundwater temperature and groundwater level, near surface soil temperatures and the basement temperatures in heated buildings could be evaluated showing the dynamic nature of thermal gradients. The heat fluxes from urban areas are calculated considering the land use patterns within a spatial unit by mixing the heat fluxes from basements with those under grass and asphalt. The heat fluxes from sewage pipes and of sewage leakage are shown to be negligible for evaluated pipe diameters and sewage discharges. The developed methodology will allow to parameterize the upper boundary of heat transport models and to differentiate between the heat fluxes from different surface usages and their dynamics into the subsurface.

  19. Semiconductor emitter based 32-channel spectrophotometer module for real-time process measurements

    Science.gov (United States)

    Keranen, Heimo; Malinen, Jouko

    1990-08-01

    A new type of semiconductor emitter based multichannel spectrophotometer has been designed and tested. The spectrophotometer consists of a small electrically conirolled narrow band light source an optical receiver and microprocessor electronics for data processing. The light source is based on a 32-element GaAs and GaAIAs LED chip array which is connected to a diffraction grating and feedback optics. The source is capable of emitting intensity-stabilized single-beam narrow band light pulses. The wavelength of the light pulse can be selected by the electronics without using any moving parts. The optical mechanical and optoelectronic parts of the source have been integrated to form a compact hybrid construction. Main characteristics have been tested with an experimental 32-channel spectrophotometer designed for the wavelength range 810 nm - 1060 nm. Measured wavelength half-power bandwidths are 8 nm and channel separation is 7. 5 nm. A single spectrum scan can be recorded in 8 ms. 64 scans are averaged by the microprocessor electronics and data is transferred to a PC for a multicomponent spectrum analysis program. Output light power level is better than i05 times the averaged detector noise level. The wavelength range used is optimized for near infrared transmittance (NIT) analysis of agricultural products. 1.

  20. Ghrelin induces time-dependent modulation of thermoregulation in the cold.

    Science.gov (United States)

    Tokizawa, Ken; Onoue, Yuki; Uchida, Yuki; Nagashima, Kei

    2012-07-01

    Fasted mice show torpor-like hypothermia in the cold in their inactive phase. The aim of the present study was to elucidate whether leptin and/or ghrelin are involved in this reaction and to identify its neurophysiological mechanisms. In ob/ob mice, which lack leptin, metabolic heat production (oxygen consumption, Vo(2)) was suppressed in 20°C cold in both the light and dark phases, resulting in hypothermia. When wild-type mice received a systemic injection of 8 µg ghrelin in the early light phase, followed by a 2-h cold exposure to 10°C, their core body temperature (T(b)) decreased by 1.7°C, and they displayed a less marked increase in Vo(2) compared with vehicle-injected mice. However, ghrelin injection in the early dark phase resulted in the maintenance of T(b) and increased Vo(2) in the mice, which was similar to the result observed in the vehicle-injected mice. The number of doubly labeled neurons with cFos and neuropeptide Y (NPY) in the suprachiasmatic nucleus was greater in the light phase in the ghrelin-injected mice, which may suggest that ghrelin activates NPY neurons. On the contrary, in the paraventricular nucleus, the counts became greater only when they were exposed to the cold in the dark phase. These results indicate that ghrelin plays an important role in inducing time-dependent changes in thermoregulation in the cold via hypothalamic pathways.

  1. Dynamic engagement of cognitive control modulates recovery from misinterpretation during real-time language processing

    Science.gov (United States)

    Hsu, Nina S.; Novick, Jared M.

    2016-01-01

    Speech unfolds swiftly, yet listeners keep pace by rapidly assigning meaning to what they hear. Sometimes though, initial interpretations turn out wrong. How do listeners revise misinterpretations of language input moment-by-moment, to avoid comprehension errors? Cognitive control may play a role by detecting when processing has gone awry, and then initiating behavioral adjustments accordingly. However, no research has investigated a cause-and-effect interplay between cognitive control engagement and overriding erroneous interpretations in real-time. Using a novel cross-task paradigm, we show that Stroop-conflict detection, which mobilizes cognitive control procedures, subsequently facilitates listeners’ incremental processing of temporarily ambiguous spoken instructions that induce brief misinterpretation. When instructions followed Stroop-incongruent versus-congruent items, listeners’ eye-movements to objects in a scene reflected more transient consideration of the false interpretation and earlier recovery of the correct one. Comprehension errors also decreased. Cognitive control engagement therefore accelerates sentence re-interpretation processes, even as linguistic input is still unfolding. PMID:26957521

  2. Dynamic Engagement of Cognitive Control Modulates Recovery From Misinterpretation During Real-Time Language Processing.

    Science.gov (United States)

    Hsu, Nina S; Novick, Jared M

    2016-04-01

    Speech unfolds swiftly, yet listeners keep pace by rapidly assigning meaning to what they hear. Sometimes, though, initial interpretations turn out to be wrong. How do listeners revise misinterpretations of language input moment by moment to avoid comprehension errors? Cognitive control may play a role by detecting when processing has gone awry and then initiating behavioral adjustments accordingly. However, no research to date has investigated a cause-and-effect interplay between cognitive-control engagement and the overriding of erroneous interpretations in real time. Using a novel cross-task paradigm, we showed that Stroop-conflict detection, which mobilizes cognitive-control procedures, subsequently facilitates listeners' incremental processing of temporarily ambiguous spoken instructions that induce brief misinterpretation. When instructions followed incongruent Stroop items, compared with congruent Stroop items, listeners' eye movements to objects in a scene reflected more transient consideration of the false interpretation and earlier recovery of the correct one. Comprehension errors also decreased. Cognitive-control engagement therefore accelerates sentence-reinterpretation processes, even as linguistic input is still unfolding. © The Author(s) 2016.

  3. Time-resolved PIV of a turbulent boundary layer over a spanwise-oscillating surface

    Science.gov (United States)

    Gouder, Kevin; Morrison, Jonathan

    2012-11-01

    This work reports measurements of a turbulent boundary layer at Reθ ~ 2500, over a resonant spanwise-oscillating surface driven by a linear electromagnetic motor. Time-resolved PIV measurements of velocity are presented and supplemented by hot-wire measurements of velocity and direct drag measurements of friction drag using a drag balance. A maximum of 16% surface friction reduction, as calculated by the diminution of the wall-normal streamwise velocity gradient was obtained. The PIV laser beam was parallel to the plane of the oscillating surface at a height of y+ ~ 15, hence, top-down views of the near-wall turbulence activity and the effect of the surface oscillation on its evolution were obtained. It has been shown that the imposition of a spanwise Stokes-like layer at a non-dimensional period of T+ =Tuτ2 / ν ~ 100 at peak-peak oscillation amplitudes equal to or larger than the mean streak spacing enabled the direct manipulation of the quasi-streamwise near-wall structures and caused fundamental changes in their evolution leading to reductions, for example, in the near-wall values of the mean-square of the streamwise fluctuating velocity component. This work was supported by Qinetiq, Airbus and EPSRC.

  4. Time-resolved PIV measurements of the atmospheric boundary layer over wind-driven surface waves

    Science.gov (United States)

    Markfort, Corey; Stegmeir, Matt

    2017-11-01

    Complex interactions at the air-water interface result in two-way coupling between wind-driven surface waves and the atmospheric boundary layer (ABL). Turbulence generated at the surface plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the ABL promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the ABL by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We employ time-resolved PIV to measure the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field.

  5. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10‑4 J/m2, respectively.

  6. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  7. Simulation of time-dependent free-surface Navier-Stokes flows

    International Nuclear Information System (INIS)

    Muldowney, G.P.

    1989-01-01

    Two numerical methods for simulation of time-dependent free-surface Navier-Stokes flows are developed. Both techniques are based on semi-implicit time advancement of the momentum equations, integral formulation of the spatial problem at each timestep, and spectral-element discretization to solve the resulting integral equation. Central to each algorithm is a boundary-specific solution step which permits the spatial treatment in two dimensions to be performed in O(N 3 ) operations per timestep despite the presence of deforming geometry. The first approach is a domain-integral formulation involving integrals over the entire flow domain of kernel functions which arise in time-differencing the Navier-Stokes equations. The second is a particular-solution formulation which replaces domain integration with an iterative scheme to generate particular velocity and pressure fields on individual elements, followed by a patching step to produce a particular solution continuous over the full domain. Two of the most difficult aspects of viscous free-surface flow simulations, namely time-dependent geometry and nontrivial boundary conditions, are well accommodated by these integral equation techniques. In addition the methods offer spectral accuracy in space and admit arbitrarily high-order discretization in time. For large-scale computations and/or long-term time advancement the domain-integral algorithm must be executed on a supercomputer to deliver results in reasonable processing time. A detailed simulation of gas liquid flow with full resolution of the free phase boundary requires approximately five CPU hours at 80 megaflops

  8. Residence time of contaminants released in surface coal mines: A wind-tunnel study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.S.

    1993-08-01

    The 1990 Clean Air Act Amendments direct the U.S. Environmental Protection Agency to evaluate and modify, as required, existing dispersion models for the prediction of dispersion of dust from surface coal mines. The application of mathematical air pollution dispersion models to the dispersion of dust from surface coal mines requires knowledge of not only the amount of dust generated in the mine, but the fraction of that generated that actually escapes from the mine. The escape fraction can be related to the residence time that released material will remain, on average, within the mine. The concentration in the mine was found to follow an exponential decay function from which an exponential decay time constant (or residence time) was computed for each case. A semi-empirical formula was found that related the residence time to the mine geometry and wind direction quite well. This formula can be used to estimate escape fraction in determining the source strength for the application of mathematical dispersion models.

  9. Quadrature amplitude modulation from basics to adaptive trellis-coded turbo-equalised and space-time coded OFDM CDMA and MC-CDMA systems

    CERN Document Server

    Hanzo, Lajos

    2004-01-01

    "Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.

  10. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Science.gov (United States)

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  11. Entrainment to a real time fractal visual stimulus modulates fractal gait dynamics.

    Science.gov (United States)

    Rhea, Christopher K; Kiefer, Adam W; D'Andrea, Susan E; Warren, William H; Aaron, Roy K

    2014-08-01

    Fractal patterns characterize healthy biological systems and are considered to reflect the ability of the system to adapt to varying environmental conditions. Previous research has shown that fractal patterns in gait are altered following natural aging or disease, and this has potential negative consequences for gait adaptability that can lead to increased risk of injury. However, the flexibility of a healthy neurological system to exhibit different fractal patterns in gait has yet to be explored, and this is a necessary step toward understanding human locomotor control. Fifteen participants walked for 15min on a treadmill, either in the absence of a visual stimulus or while they attempted to couple the timing of their gait with a visual metronome that exhibited a persistent fractal pattern (contained long-range correlations) or a random pattern (contained no long-range correlations). The stride-to-stride intervals of the participants were recorded via analog foot pressure switches and submitted to detrended fluctuation analysis (DFA) to determine if the fractal patterns during the visual metronome conditions differed from the baseline (no metronome) condition. DFA α in the baseline condition was 0.77±0.09. The fractal patterns in the stride-to-stride intervals were significantly altered when walking to the fractal metronome (DFA α=0.87±0.06) and to the random metronome (DFA α=0.61±0.10) (both p<.05 when compared to the baseline condition), indicating that a global change in gait dynamics was observed. A variety of strategies were identified at the local level with a cross-correlation analysis, indicating that local behavior did not account for the consistent global changes. Collectively, the results show that a gait dynamics can be shifted in a prescribed manner using a visual stimulus and the shift appears to be a global phenomenon. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    Science.gov (United States)

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract

  13. Real-time GPU surface curvature estimation on deforming meshes and volumetric data sets.

    Science.gov (United States)

    Griffin, Wesley; Wang, Yu; Berrios, David; Olano, Marc

    2012-10-01

    Surface curvature is used in a number of areas in computer graphics, including texture synthesis and shape representation, mesh simplification, surface modeling, and nonphotorealistic line drawing. Most real-time applications must estimate curvature on a triangular mesh. This estimation has been limited to CPU algorithms, forcing object geometry to reside in main memory. However, as more computational work is done directly on the GPU, it is increasingly common for object geometry to exist only in GPU memory. Examples include vertex skinned animations and isosurfaces from GPU-based surface reconstruction algorithms. For static models, curvature can be precomputed and CPU algorithms are a reasonable choice. For deforming models where the geometry only resides on the GPU, transferring the deformed mesh back to the CPU limits performance. We introduce a GPU algorithm for estimating curvature in real time on arbitrary triangular meshes. We demonstrate our algorithm with curvature-based NPR feature lines and a curvature-based approximation for an ambient occlusion. We show curvature computation on volumetric data sets with a GPU isosurface extraction algorithm and vertex-skinned animations. We present a graphics pipeline and CUDA implementation. Our curvature estimation is up to ~18x faster than a multithreaded CPU benchmark.

  14. Survival times of meter-sized rock boulders on the surface of airless bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-11-01

    Rock boulders are typical features of the surfaces of many airless bodies, so the possibility of estimating their potential survival times may provide insights into the rates of surface-modification processes. As an opening point of this study we employ estimates of the survival times of meter-sized boulders on the surface of the Moon based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age (Basilevsky et al., 2013), and apply them, with necessary corrections, to boulders on other bodies. In this approach the major factor of rock destruction is considered to be impacts of meteorites. However another factor of the rock destruction, thermal fatigue due to day-night cycling, does exist and it was claimed by Delbo et al. (2014) as being more important than meteorite impacts. They concluded this on the basis of known presence of fine material on the surface of small asteroids, claiming that due to extremely low gravity on those bodies, the products of meteorite bombardment should leave these bodies, and thus their presence indicates that the process of thermal fatigue should be much more effective there. Delbo et al. (2014) made laboratory experiments on heating-cooling centimeter-sized samples of chondrites and, applying some assumptions and theoretical modeling concluded that, for example, at 1 AU distance from the Sun, the lifetime of 10 cm rock fragments on asteroids with period of rotation from 2.2 to 6 h should be only ~103 to 104 years (that is ~3.5×106 to 1.5×107 thermal cycles) and the larger the rock, the faster it should be destroyed. In response to those conclusions we assessed the results of earlier laboratory experiments, which show that only a part of comminuted material produced by high-velocity impacts into solid rocks is ejected from the crater while another part is not ejected but stays exposed on the target surface and is present in its subsurface. This means that the presence of

  15. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  16. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation...

  17. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    Science.gov (United States)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  18. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide.

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-03

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  19. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide

    Science.gov (United States)

    Jin, Lin; Wen, Long; Liang, Li; Chen, Qin; Sun, Yunfei

    2018-02-01

    CMOS-compatible plasmonic modulators operating at the telecom wavelength are significant for a variety of on-chip applications. Relying on the manipulation of the transverse magnetic (TM) mode excited on the metal-dielectric interface, most of the previous demonstrations are designed to response only for specific polarization state. In this case, it will lead to a high polarization dependent loss, when the polarization-sensitive modulator integrates to a fiber with random polarization state. Herein, we propose a plasmonic modulator utilizing a metal-oxide indium tin oxide (ITO) wrapped around the silicon waveguide and investigate its optical modulation ability for both the vertical and horizontal polarized guiding light by tuning electro-absorption of ITO with the field-induced carrier injection. The electrically biased modulator with electron accumulated at the ITO/oxide interface allows for epsilon-near-zero (ENZ) mode to be excited at the top or lateral portion of the interface depending on the polarization state of the guiding light. Because of the high localized feature of ENZ mode, efficient electro-absorption can be achieved under the "OFF" state of the device, thus leading to large extinction ratio (ER) for both polarizations in our proposed modulator. Further, the polarization-insensitive modulation is realized by properly tailoring the thickness of oxide in two different stacking directions and therefore matching the ER values for device operating at vertical and horizontal polarized modes. For the optimized geometry configuration, the difference between the ER values of two polarization modes, i.e., the ΔER, as small as 0.01 dB/μm is demonstrated and, simultaneously with coupling efficiency above 74%, is obtained for both polarizations at a wavelength of 1.55 μm. The proposed plasmonic-combined modulator has a potential application in guiding and processing of light from a fiber with a random polarization state.

  20. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Victoria Shalabaeva

    Full Text Available Metabolomics is an emerging field of cell biology that aims at the comprehensive identification of metabolite levels in biological fluids or cells in a specific functional state. Currently, the major tools for determining metabolite concentrations are mass spectrometry coupled with chromatographic techniques and nuclear magnetic resonance, which are expensive, time consuming and destructive for the samples. Here, we report a time resolved approach to monitor metabolite dynamics in cell cultures, based on Surface Enhanced Raman Scattering (SERS. This method is label-free, easy to use and provides the opportunity to simultaneously study a broad range of molecules, without the need to process the biological samples. As proof of concept, NIH/3T3 cells were cultured in vitro, and the extracellular medium was collected at different time points to be analyzed with our engineered SERS substrates. By identifying individual peaks of the Raman spectra, we showed the simultaneous detection of several components of the conditioned medium, such as L-tyrosine, L-tryptophan, glycine, L-phenylalanine, L-histidine and fetal bovine serum proteins, as well as their intensity changes during time. Furthermore, analyzing the whole Raman data set with the Principal Component Analysis (PCA, we demonstrated that the Raman spectra collected at different days of culture and clustered by similarity, described a well-defined trajectory in the principal component plot. This approach was then utilized to determine indirectly the functional state of the macrophage cell line Raw 264.7, stimulated with the lipopolysaccharide (LPS for 24 hours. The collected spectra at different time points, clustered by the PCA analysis, followed a well-defined trajectory, corresponding to the functional change of cells toward the activated pro-inflammatory state induced by the LPS. This study suggests that our engineered SERS surfaces can be used as a versatile tool both for the characterization

  1. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reconstructing surface ocean circulation with129I time series records from corals.

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S; Jull, A J Timothy; Russell, Joellen L; Biddulph, Dana; White, Lara; Prouty, Nancy G; Chen, Yue-Gau; Shen, Chuan-Chou; Zhou, Weijian; Lam, Doan Dinh

    2016-12-01

    The long-lived radionuclide 129 I (half-life: 15.7 × 10 6  yr) is well-known as a useful environmental tracer. At present, the global 129 I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129 I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129 I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129 I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129 I record features a sudden increase in 129 I in 1959. The Xisha coral shows similar peak values for 129 I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129 I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129 I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129 I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129 I time series data provide a broad picture of the surface distribution and depth penetration of 129 I in the Pacific Ocean over the past 60 years. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Reconstructing surface ocean circulation with 129I time series records from corals

    Science.gov (United States)

    Chang, Ching-Chih; Burr, George S.; Jull, A. J. Timothy; Russell, Joellen L.; Biddulph, Dana; White, Lara; Prouty, Nancy G.; Chen, Yue-Gau; Chuan-Chou Shen,; Zhou, Weijian; Lam, Doan Dinh

    2016-01-01

    The long-lived radionuclide 129I (half-life: 15.7 × 106 yr) is well-known as a useful environmental tracer. At present, the global 129I in surface water is about 1–2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129I record features a sudden increase in 129I in 1959. The Xisha coral shows similar peak values for 129I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129I time series data provide a broad picture of the surface distribution and depth penetration of 129I in the Pacific Ocean over the past 60 years.

  4. Global-mean surface temperature variability: space-time perspective from rotated EOFs

    Science.gov (United States)

    Chen, Xianyao; Tung, Ka-Kit

    2017-10-01

    The observed global-mean surface temperature (GST) has been warming in the presence of increasing atmospheric concentration of greenhouse gases, but its rise has not been monotonic. Attention has increasingly been focused on the prominent variations about the linear trend in GST, especially on interdecadal and multidecadal time scales. When the sea-surface temperature (SST) and the land- plus-ocean surface temperature (ST) are averaged globally to yield the global-mean SST (GSST) and the GST, respectively, spatial information is lost. Information on both space and time is needed to properly identify the modes of variability on interannual, decadal, interdecadal and multidecadal time scales contributing to the GSST and GST variability. Empirical Orthogonal Function (EOF) analysis is usually employed to extract the space-time modes of climate variability. Here we use the method of pair-wise rotation of the principal components (PCs) to extract the modes in these time-scale bands and obtain global spatial EOFs that correspond closely with regionally defined climate modes. Global averaging these clearly identified global modes allows us to reconstruct GSST and GST, and in the process identify their components. The results are: Pacific contributes to the global mean variation mostly on the interannual time scale through El Nino-Southern Oscillation (ENSO) and its teleconnections, while the Atlantic contributes strongly to the global mean on the multidecadal time scale through the interhemispheric mode called the Atlantic Multidecadal Oscillation (AMO). The Pacific Decadal Oscillation (PDO) has twice as large a variance as the AMO, but its contribution to GST is only 1/10 that of the AMO because of its compensating patterns of cold and warm SST in northwest and northeast Pacific. Its teleconnection pattern, the Pacific/North America (PNA) pattern over land, is also found to be self-cancelling when globally averaged because of its alternating warm and cold centers. The

  5. Antiphase Fermi-surface modulations accompanying displacement excitation in a parent compound of iron-based superconductors

    Science.gov (United States)

    Okazaki, Kozo; Suzuki, Hakuto; Suzuki, Takeshi; Yamamoto, Takashi; Someya, Takashi; Ogawa, Yu; Okada, Masaru; Fujisawa, Masami; Kanai, Teruto; Ishii, Nobuhisa; Itatani, Jiro; Nakajima, Masamichi; Eisaki, Hiroshi; Fujimori, Atsushi; Shin, Shik

    2018-03-01

    We investigate the transient electronic structure of BaFe2As2 , a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photons and observe photoemission intensity oscillation with the frequency of the A1 g phonon which is antiphase between the zone-centered hole Fermi surfaces (FSs) and zone-cornered electron FSs. We attribute the antiphase behavior to the warping in one of the zone-centered hole FSs accompanying the displacement of the pnictogen height and find that this displacement is the same direction as that induced by substitution of P for As, where superconductivity is induced by a structural modification without carrier doping in this system.

  6. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  7. Transient surface photovoltage measurement over 12 orders of magnitude in time

    Science.gov (United States)

    Dittrich, Thomas; Fengler, Steffen; Franke, Michael

    2017-05-01

    The measurement of transient surface photovoltage (SPV) signals in a fixed capacitor arrangement over 12 orders of magnitude in time has been demonstrated for a SnO2:F/TiO2/In2S3 layer system under high vacuum. For this purpose, a high impedance buffer with a bandwidth above 200 MHz and an effective input resistance of 200-700 TΩ has been developed. Fast separation of photo generated charge carriers within ns and very slow relaxation of SPV signals excited with short laser pulses and the measurement of SPV spectra under continuous illumination with a halogen lamp were demonstrated.

  8. Time resolved temperature measurement of polymer surface irradiated by mid-IR free electron laser

    Science.gov (United States)

    Araki, Mitsunori; Chiba, Tomoyuki; Oyama, Takahiro; Imai, Takayuki; Tsukiyama, Koichi

    2017-08-01

    We have developed the time-resolved temperature measurement system by using a radiation thermometer FLIR SC620. Temporal temperature profiles of an acrylic resin surface by the irradiation of infrared free electron laser (FEL) pulse were recorded in an 8 ms resolution to measure an instantaneous temperature rise and decay profile. Under the single-shot condition, a peak temperature defined as the temperature jump from the ambient temperature was found to be proportional to the absorbance. Under the multi-shot condition, the temperature accumulation was found to reach a roughly constant value where the supply and release of the heat is balanced.

  9. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    Science.gov (United States)

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (padhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Implication of discharge pattern of radionuclides in the landscape on surface hydrological pathways and residence times

    International Nuclear Information System (INIS)

    Anders Woerman; Lars Marklund; Xu Shulan; Bjoern Dverstorp

    2005-01-01

    The safety analysis of the final repository of spent nuclear fuel will include large-scale migration behaviour of radionuclides that accidentally leak from the repository in deep bedrock. Physically based models of radionuclides release-processes would typically take into account the flow and transport in the hydrosphere as well as spreading through ecosystems to individual humans. This study addresses the coupling between discharge pattern in the landscape and factors controlling the residence times or radionuclides in the biosphere on land. The overall residence time on land is crucial because it controls the maximum exposure of radioactivity to individual humans. Numerical analysis indicate that variation in topography and quaternary deposits affect the discharge pattern in the landscape for radionuclides that escapes the waste repository in deep bedrock. Those analyses are based on extensive geographical data covering surface topography, stream network characteristics and geological structure on the continental scale of Scandinavia. Results on the discharge pattern in three typical Swedish landscapes are used as a basis for comparative analyses of the residence time distribution in surface hydrological systems for radionuclides that escape the waste repository. The groundwater flow analyses show that pathways of deep groundwater predominantly lead to the stream network, but to some extent also to lakes, wetlands and root uptake. The proportion varies slightly with altitude in the watershed as well as between different watersheds. The residence times in the stream network was based on convoluting the residence times for single discharge points over the entire stream network according to the technique of and data on stream distance distribution. The retardation due to uptake in the hyporheic zone was accounted for using the methods of and estimated sorption properties for Cs-137. The residence time for radionuclides in the hydrological systems of the continent

  11. Interaction of multiple networks modulated by the working memory training based on real-time fMRI

    Science.gov (United States)

    Shen, Jiahui; Zhang, Gaoyan; Zhu, Chaozhe; Yao, Li; Zhao, Xiaojie

    2015-03-01

    Neuroimaging studies of working memory training have identified the alteration of brain activity as well as the regional interactions within the functional networks such as central executive network (CEN) and default mode network (DMN). However, how the interaction within and between these multiple networks is modulated by the training remains unclear. In this paper, we examined the interaction of three training-induced brain networks during working memory training based on real-time functional magnetic resonance imaging (rtfMRI). Thirty subjects assigned to the experimental and control group respectively participated in two times training separated by seven days. Three networks including silence network (SN), CEN and DMN were identified by the training data with the calculated function connections within each network. Structural equation modeling (SEM) approach was used to construct the directional connectivity patterns. The results showed that the causal influences from the percent signal changes of target ROI to the SN were positively changed in both two groups, as well as the causal influence from the SN to CEN was positively changed in experimental group but negatively changed in control group from the SN to DMN. Further correlation analysis of the changes in each network with the behavioral improvements showed that the changes in SN were stronger positively correlated with the behavioral improvement of letter memory task. These findings indicated that the SN was not only a switch between the target ROI and the other networks in the feedback training but also an essential factor to the behavioral improvement.

  12. Time-resolved spatial distribution measurements of pulse-modulated argon plasmas in an inductively coupled plasma reactor

    Science.gov (United States)

    Park, Ji-Hwan; Kim, Dong-Hwan; Kim, Yu-Sin; Chung, Chin-Wook

    2017-05-01

    The time variation of the plasma parameters along with their spatial distributions were measured in pulse-modulated (PM) inductively coupled argon plasma via the phase delay harmonic analysis method (PDHAM). During the initial active-glow, the distributions of both the ion flux and the electron temperature in the plasma bulk have M-shaped profiles due to the antenna geometry. Then, while the plasma is approaching a steady state, the spatial distribution evolves into a profile with a convex shape. The effects of the antenna geometry and the time evolution on the distribution profile are lesser under low gas pressure, and diminish at the wafer level. The diffusion of the charged particles and the nonlocal electron kinetics account for these characteristics. It is observed that the initial distribution of the electron temperature is affected by the electron density distribution of the previous after-glow at the wafer level. The distribution profiles at different pulse frequencies were also measured. At higher pulse frequencies, the distribution profile is more frequently smoothed by diffusion during the after-glow, leading to higher uniformity.

  13. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    NARCIS (Netherlands)

    Romaguera, M.; Vaughan, R. G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F. D.

    2017-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of

  14. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    Science.gov (United States)

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  15. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  16. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    Science.gov (United States)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  17. Bi-stage time evolution of nano-morphology on inductively coupled plasma etched fused silica surface caused by surface morphological transformation

    Science.gov (United States)

    Jiang, Xiaolong; Zhang, Lijuan; Bai, Yang; Liu, Ying; Liu, Zhengkun; Qiu, Keqiang; Liao, Wei; Zhang, Chuanchao; Yang, Ke; Chen, Jing; Jiang, Yilan; Yuan, Xiaodong

    2017-07-01

    In this work, we experimentally investigate the surface nano-roughness during the inductively coupled plasma etching of fused silica, and discover a novel bi-stage time evolution of surface nano-morphology. At the beginning, the rms roughness, correlation length and nano-mound dimensions increase linearly and rapidly with etching time. At the second stage, the roughening process slows down dramatically. The switch of evolution stage synchronizes with the morphological change from dual-scale roughness comprising long wavelength underlying surface and superimposed nano-mounds to one scale of nano-mounds. A theoretical model based on surface morphological change is proposed. The key idea is that at the beginning, etched surface is dual-scale, and both larger deposition rate of etch inhibitors and better plasma etching resistance at the surface peaks than surface valleys contribute to the roughness development. After surface morphology transforming into one-scale, the difference of plasma resistance between surface peaks and valleys vanishes, thus the roughening process slows down.

  18. Investigation of the delay time distribution of high power microwave surface flashover

    Science.gov (United States)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  19. Visualization of Surface Processes over Space and Time using a Long Series of Satellite Based Imagery

    Science.gov (United States)

    Harris, T.; Schafer, R.; Hulslander, D.; O'Connor, A. S.; Wolfe, J.

    2014-12-01

    With the increasing diversity and long temporal record of satellite-based Earth imagery, we have new opportunities to better understand and predict Earth surface processes and activities. Satellite-based imagery is an increasingly important resource for analyzing changes in vegetation and land use, as well as monitoring the evolution of hazards and environmental conditions. A key requirement for exploitation of this imagery is visualization and extraction of multimodal data over space and time. Analysis of this imagery requires four primary components: 1) Assignment of acquisition time, spatial reference, and parameter descriptions, 2) Preprocessing including radiometric calibration, generation of derived parameters such as NDVI, and normalization to a common spatial grid, 3) Cataloging and access for discovering and extracting data through space, parameter, and time, and 4) Visualization techniques including animation, parameter-time, space-time, and space-frequency plots. Using ENVI, we will demonstrate how Landsat, MODIS, and Suomi NPP VIIRS data products can be prepared and visualized for exploring the evolution of processes and activities. Visual animation through a temporal stack of imagery is used to quickly understand trends in urban growth, vegetation, and land use. After exploring the temporal stack of images, spatio-temporal and periodic relationships are visualized using space-time and space-frequency representations of the data. Satellite-based imagery is a primary source of data for understanding global changes over time. To understand processes and activities, it is now increasingly important for data exploitation tools such as ENVI to easily extract data from multiple satellite-based sensors and visualize this multimodal data in both space and time.

  20. Adaptive noise cancelling and time-frequency techniques for rail surface defect detection

    Science.gov (United States)

    Liang, B.; Iwnicki, S.; Ball, A.; Young, A. E.

    2015-03-01

    Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles.

  1. Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth's core surface

    DEFF Research Database (Denmark)

    Gillet, N.; Jault, D.; Finlay, Chris

    2015-01-01

    We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010. Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely, the model errors arising from interactions between unresolved core surface motions and magnetic fields...... between the magnetic field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between 1995 and 2010. We revise down the amplitude of the decade fluctuations...... of the planetary-scale circulation and find that electromagnetic core-mantle coupling is not the main mechanism for angular momentum exchanges on decadal time scales if mantle conductance is 3 × 108 S or lower....

  2. Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes

    Science.gov (United States)

    Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez

    2012-01-01

    Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.

  3. Relevant time- and length scale of touch-down for drops impacting on a heated surface

    Science.gov (United States)

    van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-11-01

    The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.

  4. Technical Note: Reducing the spin-up time of integrated surface water–groundwater models

    KAUST Repository

    Ajami, H.

    2014-06-26

    One of the main challenges in catchment scale application of coupled/integrated hydrologic models is specifying a catchment\\'s initial conditions in terms of soil moisture and depth to water table (DTWT) distributions. One approach to reduce uncertainty in model initialization is to run the model recursively using a single or multiple years of forcing data until the system equilibrates with respect to state and diagnostic variables. However, such "spin-up" approaches often require many years of simulations, making them computationally intensive. In this study, a new hybrid approach was developed to reduce the computational burden of spin-up time for an integrated groundwater-surface water-land surface model (ParFlow.CLM) by using a combination of ParFlow.CLM simulations and an empirical DTWT function. The methodology is examined in two catchments located in the temperate and semi-arid regions of Denmark and Australia respectively. Our results illustrate that the hybrid approach reduced the spin-up time required by ParFlow.CLM by up to 50%, and we outline a methodology that is applicable to other coupled/integrated modelling frameworks when initialization from equilibrium state is required.

  5. LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G.

    2012-03-06

    The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

  6. Forecasting surface water flooding hazard and impact in real-time

    Science.gov (United States)

    Cole, Steven J.; Moore, Robert J.; Wells, Steven C.

    2016-04-01

    Across the world, there is increasing demand for more robust and timely forecast and alert information on Surface Water Flooding (SWF). Within a UK context, the government Pitt Review into the Summer 2007 floods provided recommendations and impetus to improve the understanding of SWF risk for both off-line design and real-time forecasting and warning. Ongoing development and trial of an end-to-end real-time SWF system is being progressed through the recently formed Natural Hazards Partnership (NHP) with delivery to the Flood Forecasting Centre (FFC) providing coverage over England & Wales. The NHP is a unique forum that aims to deliver coordinated assessments, research and advice on natural hazards for governments and resilience communities across the UK. Within the NHP, a real-time Hazard Impact Model (HIM) framework has been developed that includes SWF as one of three hazards chosen for initial trialling. The trial SWF HIM system uses dynamic gridded surface-runoff estimates from the Grid-to-Grid (G2G) hydrological model to estimate the SWF hazard. National datasets on population, infrastructure, property and transport are available to assess impact severity for a given rarity of SWF hazard. Whilst the SWF hazard footprint is calculated in real-time using 1, 3 and 6 hour accumulations of G2G surface runoff on a 1 km grid, it has been possible to associate these with the effective rainfall design profiles (at 250m resolution) used as input to a detailed flood inundation model (JFlow+) run offline to produce hazard information resolved to 2m resolution. This information is contained in the updated Flood Map for Surface Water (uFMfSW) held by the Environment Agency. The national impact datasets can then be used with the uFMfSW SWF hazard dataset to assess impacts at this scale and severity levels of potential impact assigned at 1km and for aggregated county areas in real-time. The impact component is being led by the Health and Safety Laboratory (HSL) within the NHP

  7. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation

    Directory of Open Access Journals (Sweden)

    Micheline eMaire

    2014-03-01

    Full Text Available Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e. state instability in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3. By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5 experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4. These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioural vulnerability.

  8. Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography

    Science.gov (United States)

    Pan, Yudi; Gao, Lingli; Bohlen, Thomas

    2018-05-01

    Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.

  9. Floor Covering and Surface Identification for Assistive Mobile Robotic Real-Time Room Localization Application

    Directory of Open Access Journals (Sweden)

    Michael Gillham

    2013-12-01

    Full Text Available Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms’ flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.

  10. Using time-to-contact information to assess potential collision modulates both visual and temporal prediction networks

    Directory of Open Access Journals (Sweden)

    Jennifer T Coull

    2008-09-01

    Full Text Available Accurate estimates of the time-to-contact (TTC of approaching objects are crucial for survival. We used an ecologically valid driving simulation to compare and contrast the neural substrates of egocentric (head-on approach and allocentric (lateral approach TTC tasks in a fully factorial, event-related fMRI design. Compared to colour control tasks, both egocentric and allocentric TTC tasks activated left ventral premotor cortex/frontal operculum and inferior parietal cortex, the same areas that have previously been implicated in temporal attentional orienting. Despite differences in visual and cognitive demands, both TTC and temporal orienting paradigms encourage the use of temporally predictive information to guide behaviour, suggesting these areas may form a core network for temporal prediction. We also demonstrated that the temporal derivative of the perceptual index tau (tau-dot held predictive value for making collision judgements and varied inversely with activity in primary visual cortex (V1. Specifically, V1 activity increased with the increasing likelihood of reporting a collision, suggesting top-down attentional modulation of early visual processing areas as a function of subjective collision. Finally, egocentric viewpoints provoked a response bias for reporting collisions, rather than no-collisions, reflecting increased caution for head-on approaches. Associated increases in SMA activity suggest motor preparation mechanisms were engaged, despite the perceptual nature of the task.

  11. Repeated application of Modafinil and Levodopa reveals a drug-independent precise timing of spatial working memory modulation.

    Science.gov (United States)

    Bezu, M; Shanmugasundaram, B; Lubec, G; Korz, V

    2016-10-01

    Cognition enhancing drugs often target the dopaminergic system, which is involved in learning and memory, including working memory that in turn involves mainly the prefrontal cortex and the hippocampus. In most animal models for modulations of working memory animals are pre-trained to a certain criterion and treated then acutely to test drugs effects on working memory. Thus, little is known regarding subchronic or chronic application of cognition enhancing drugs and working memory performance. Therefore we trained male rats over six days in a rewarded alternation test in a T-maze. Rats received daily injections of either modafinil or Levodopa (L-Dopa) at a lower and a higher dose 30min before training. Levodopa but not modafinil increased working memory performance during early training significantly at day 3 when compared to vehicle controls. Both drugs induced dose dependent differences in working memory with significantly better performance at low doses compared to high doses for modafinil, in contrast to L-Dopa where high dose treated rats performed better than low dose rats. Strikingly, these effects appeared only at day 3 for both drugs, followed by a decline in behavioral performance. Thus, a critical drug independent time window for dopaminergic effects upon working memory could be revealed. Evaluating the underlying mechanisms contributes to the understanding of temporal effects of dopamine on working memory performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams.

    Science.gov (United States)

    Beddar, Sam; Archambault, Louis; Sahoo, Narayan; Poenisch, Falk; Chen, George T; Gillin, Michael T; Mohan, Radhe

    2009-05-01

    In this study, the authors investigated the feasibility of using a 3D liquid scintillator (LS) detector system for the verification and characterization of proton beams in real time for intensity and energy-modulated proton therapy. A plastic tank filled with liquid scintillator was irradiated with pristine proton Bragg peaks. Scintillation light produced during the irradiation was measured with a CCD camera. Acquisition rates of 20 and 10 frames per second (fps) were used to image consecutive frame sequences. These measurements were then compared to ion chamber measurements and Monte Carlo simulations. The light distribution measured from the images acquired at rates of 20 and 10 fps have standard deviations of 1.1% and 0.7%, respectively, in the plateau region of the Bragg curve. Differences were seen between the raw LS signal and the ion chamber due to the quenching effects of the LS and due to the optical properties of the imaging system. The authors showed that this effect can be accounted for and corrected by Monte Carlo simulations. The liquid scintillator detector system has a good potential for performing fast proton beam verification and characterization.

  13. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  14. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    Science.gov (United States)

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  15. Image-guided radiotherapy in near real time with intensity-modulated radiotherapy megavoltage treatment beam imaging.

    Science.gov (United States)

    Mao, Weihua; Hsu, Annie; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Luxton, Gary; King, Christopher; Xing, Lei; Solberg, Timothy

    2009-10-01

    To utilize image-guided radiotherapy (IGRT) in near real time by obtaining and evaluating the online positions of implanted fiducials from continuous electronic portal imaging device (EPID) imaging of prostate intensity-modulated radiotherapy (IMRT) delivery. Upon initial setup using two orthogonal images, the three-dimensional (3D) positions of all implanted fiducial markers are obtained, and their expected two-dimensional (2D) locations in the beam's-eye-view (BEV) projection are calculated for each treatment field. During IMRT beam delivery, EPID images of the megavoltage treatment beam are acquired in cine mode and subsequently analyzed to locate 2D locations of fiducials in the BEV. Simultaneously, 3D positions are estimated according to the current EPID image, information from the setup portal images, and images acquired at other gantry angles (the completed treatment fields). The measured 2D and 3D positions of each fiducial are compared with their expected 2D and 3D setup positions, respectively. Any displacements larger than a predefined tolerance may cause the treatment system to suspend the beam delivery and direct the therapists to reposition the patient. Phantom studies indicate that the accuracy of 2D BEV and 3D tracking are better than 1 mm and 1.4 mm, respectively. A total of 7330 images from prostate treatments were acquired and analyzed, showing a maximum 2D displacement of 6.7 mm and a maximum 3D displacement of 6.9 mm over 34 fractions. This EPID-based, real-time IGRT method can be implemented on any external beam machine with portal imaging capabilities without purchasing any additional equipment, and there is no extra dose delivered to the patient.

  16. A Comparison and Outline of Tolerances in Performing Optical Time Division Multiplexing using Electro-Absorption Modulators

    Science.gov (United States)

    Owsiak, Mark

    As high bandwidth applications continue to emerge, investigation in technologies that will increase transmission capacity become necessary. Of these technologies, Optical Time Division Multiplexing (OTDM) has been presented as a possible solution, supporting a next generation bit rate of 160 Gbit/s. To perform the demultiplexing task, the use of tandem electro-absorption modulators (EAMs) has been widely studied, and due to its benefits was chosen as the topology of this thesis. To create an effective model of an OTDM system, the vector based mathematical simulation tool MatLab is used. Care was taken to create an accurate representation of an OTDM system, including: the development of a realistic pulse shape, the development of a true pseudo-random bit sequence in all transmitted channels, the optimization of the gating function, and the representation of system penalty. While posing impressive bit rates, various sources of system performance degradation pose issues in an OTDM system, owning to its ultra-narrow pulse widths. The presence of dispersion, timing jitter, polarization mode dispersion, and nonlinear effects, can sufficiently degrade the quality of the received data. This thesis gives a clear guideline to the tolerance an OTDM system exhibits to each of the aforementioned sources of system penalty. The theory behind each impairment is thoroughly discussed and simulated using MatLab. From the simulated results, a finite degree of sensitivity to each source of system penalty is realized. These contributions are of particular importance when attempting to implement an OTDM system in either the laboratory, or the field.

  17. Short-Time Structural Stability of Compressible Vortex Sheets with Surface Tension

    Science.gov (United States)

    Stevens, Ben

    2016-11-01

    Assume we start with an initial vortex-sheet configuration which consists of two inviscid fluids with density bounded below flowing smoothly past each other, where a strictly positive fixed coefficient of surface tension produces a surface tension force across the common interface, balanced by the pressure jump. We model the fluids by the compressible Euler equations in three space dimensions with a very general equation of state relating the pressure, entropy and density such that the sound speed is positive. We prove that, for a short time, there exists a unique solution of the equations with the same structure. The mathematical approach consists of introducing a carefully chosen artificial viscosity-type regularisation which allows one to linearise the system so as to obtain a collection of transport equations for the entropy, pressure and curl together with a parabolic-type equation for the velocity which becomes fairly standard after rotating the velocity according to the interface normal. We prove a high order energy estimate for the non-linear equations that is independent of the artificial viscosity parameter which allows us to send it to zero. This approach loosely follows that introduced by Shkoller et al. in the setting of a compressible liquid-vacuum interface. Although already considered by Coutand et al. [10] and Lindblad [17], we also make some brief comments on the case of a compressible liquid-vacuum interface, which is obtained from the vortex sheets problem by replacing one of the fluids by vacuum, where it is possible to obtain a structural stability result even without surface tension.

  18. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    DEFF Research Database (Denmark)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.

    2017-01-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large...... modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori......-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering....

  19. Local inertial oscillations in the surface ocean generated by time-varying winds

    Science.gov (United States)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  20. Impact of Donor Age, Gender and Handling Time on the DNA Concentration Left on Different Surfaces

    Directory of Open Access Journals (Sweden)

    Branka Gršković

    2014-09-01

    Full Text Available Background: We analyzed the correlation between several factors (donor age and gender, and handling time and trace DNA concentration that participants left on different surfaces (paper, plastic, plastic coated metal while holding items in their hands or rubbing them with their fingers, their palms, and the side of the palm of the dominant hand. Material and Methods: Sixty participants took part in the study. Items were swabbed with a moistened cotton swab. DNA was isolated using the Chelex procedure and quantified by real-time PCR. Results: We found that DNA concentration transferred to an item was independent of the handling time. On the contrary, it was dependent on the item’s texture; the greatest concentration was left on plastic coated metal (PCM and the least on paper. The greatest concentration of trace DNA was left by participants from 35 to 44 years of age. Results of the study showed that men deposit a higher DNA concentration than do women. Conclusion: Item texture, donor age, and gender influence trace DNA concentration. Further investigations are necessary to fully understand the process of DNA transfer from donors to handled items.