WorldWideScience

Sample records for surface modified substrates

  1. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    Science.gov (United States)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  2. Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.M.G.; Benetoli, L.O. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Licínio, M.A. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Zoldan, V.C. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Santos-Silva, M.C. [Department of Clinical Analysis, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Assreuy, J. [Department of Pharmacology, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Pasa, A.A. [Department of Physical, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Debacher, N.A. [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil); Soldi, V., E-mail: vsoldi@pq.cnpq.br [Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianopolis (Brazil)

    2013-04-01

    The surface properties of biomaterials, such as wettability, polar group distribution, and topography, play important roles in the behavior of cell adhesion and proliferation. Gaseous plasma discharges are among the most common means to modify the surface of a polymer without affecting its properties. Herein, we describe the surface modification of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) films using atmospheric pressure plasma processing through exposure to a dielectric barrier discharge (DBD). After treatment the film surface showed significant changes from hydrophobic to hydrophilic as the water contact angle decreasing from 95° to 37°. All plasma-treated films developed more hydrophilic surfaces compared to untreated films, although the reasons for the change in the surface properties of PS and PMMA differed, that is, the PS showed chemical changes and in the case of PMMA they were topographical. Excellent adhesion and cell proliferation were observed in all films. In vitro studies employing flow cytometry showed that the proliferation of L929 cells was higher in the film formed by a 1:1 mixture of PS/PMMA, which is consistent with the results of a previous study. These findings suggest better adhesion of L929 onto the 1:1 PS/PMMA modified film, indicating that this system is a new candidate biomaterial for tissue engineering. Highlights: ► The PS/PMMA films showed hydrophilic surface after DBD-treatment. ► The 1:1 PS/PMMA modified film is a new substrate for L929 cell proliferation. ► The 1:1 PS/PMMA blend film showed additional 170 × 10{sup 3} cells after treatment. ► The proliferation of cells in the blend film triplicated when compared to control. ► Synergistic effect improves cell proliferation in the blend film.

  3. Evolvement of cell-substrate interaction over time for cells cultivated on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface

    Science.gov (United States)

    Hsu, Chung-Ping; Hsu, Po-Yen; Wu, You-Lin; Hsu, Wan-Yun; Lin, Jing-Jenn

    2012-09-01

    Since cell-substrate interaction is directly related to the traction force of the cell, the cell property can be judged from the imprint it leaves on the soft substrate surface onto which the cell is cultured. In this letter, the evolvement of the cell-substrate interaction over time was observed by cultivating cells on a 3-aminopropyltriethoxysilane (γ-APTES) modified silicon dioxide (SiO2) surface for different periods of time. The cell-substrate interaction property as a function of time can then be found from the post-cell-removal surface morphology profiles determined by atomic force microscopy (AFM). Different surface morphology profiles were found between normal cells and cancer cells. It was found that the cancer cells tend to form deeper trenches along the circumference of the imprints, while the normal cells do not. In addition, our results indicated that normal cells involve cell-substrate interaction mechanisms that are different from those for cancer cells.

  4. Grafted membranes and substrates having surfaces with switchable superoleophilicity and superoleophobicity and applications thereof

    KAUST Repository

    Zhang, Lianbin

    2013-10-10

    Disclosed herein are surface-modified membranes and other surface-modified substrates exhibiting switchable oleophobicity and oleophilicity in aqueous media. These membranes and substrates may be used for variety of applications, including controllable oil/water separation processes, oil spill cleanup, and oil/water purification. Also provided are the making and processing of such surface-modified membranes and other surface-modified substrates.

  5. XPS, XRD and laser Raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Energy Technology Data Exchange (ETDEWEB)

    Silva, William de Melo; Carneiro, Jose Rubens Goncalves, E-mail: williammelosilva@gmail.com [Pontificia Universidade Catolica de Minas Gerais (PUC-MG), Belo Horizonte (Brazil). Dept. de Engenharia Mecanica; Trava-Airoldi, Vladimir Jesus [Associate Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment. (author)

  6. XPS, XRD and laser raman analysis of surface modified of 6150 steel substrates for the deposition of thick and adherent diamond-like carbon coatings

    Directory of Open Access Journals (Sweden)

    William de Melo Silva

    2013-06-01

    Full Text Available Although the 6150 steel has an excellent fatigue and impact resistance, it is unsuitable to operate it when the corrosion is a limited factor. We propose here a sequence of steel pre-treatment by carburizing, carbonitriding and nitriding in order to improve the poor adhesion between Diamond Like-Carbon coatings on steel. This sequence is our attempt to reduce the difference between the coefficients of thermal expansion of steel and DLC through the graded interface. This work demonstrates the quantitative analysis of the molecules present at surface using X-ray photoelectron spectroscopy. The crystallographic structures are investigated by X-ray diffraction which shows the formation of carbides and nitride phases. Raman spectroscopy reveals the carburizing surface characteristics where DLC coating is nucleated and grown at the substrate. At the end of the analysis it is possible to verify which molecules and phases are formed on the steel surface interface after each step of pre-treatment.

  7. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.

    Science.gov (United States)

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2011-01-04

    hypothesis, BSA substrates were chemically modified to reduce the magnitude of the negative charge at pH 8. Chemical modification was accomplished by the amidation of aspartic and glutamic acids to asparagine and glutamine. The ionic strength response of the chemically modified substrate was considerably different than that for the native BSA substrate at an identical pH, consistent with the trend based on substrate surface charge. Consequently, for substrates with a low net surface charge, the maximum achievable catalytic rate of the charge ladder was relatively independent of the solution ionic strength over the range examined; however, at high net substrate surface charge, the maximum rate showed a considerable ionic strength dependence.

  8. Atomically flat single terminated oxide substrate surfaces

    Science.gov (United States)

    Biswas, Abhijit; Yang, Chan-Ho; Ramesh, Ramamoorthy; Jeong, Yoon H.

    2017-05-01

    Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), Nd

  9. Osteoblastic cell behaviour on modified titanium surfaces.

    Science.gov (United States)

    Lukaszewska-Kuska, Magdalena; Wirstlein, Przemysław; Majchrowski, Radomir; Dorocka-Bobkowska, Barbara

    2018-02-01

    extensions and lamelipodia and were oriented in line with the groves left after machining. On the rough substrates, cells were less dispersed and exhibited numerous cytoplasmic extensions, filopodia and interconnections, they were not oriented with respect to the surfaces features. The cell viability of all samples except for Al2O3 decreased after the first day of culture. For all Al2O3, Al2O3 DE and HA samples the viability increased with culture time after an initial reduction. At the end of the culture period the ALP activity was slightly greater on Al2O3 and HA samples compared to the control with the HA DE sample having the same activity as the control. The Al2O3, HA and HA DE ALP samples showed comparable activity and were statistically different from MA and Al2O3 DE samples. In this study, variously treated titanium surfaces were correlated with osteoblastic cell viability, morphology and differentiation in comparison with the plastic and smooth titanium. All examined surfaces were found to be biocompatible. Favourable cell reactions were observed for Al2O3 and HA blasted surfaces. The surface roughness patterns influenced the growth orientation while the surface topography influenced osteoblast morphology. Further animal studies are necessary to compare the in-vivo effect on osseointegration of these modified titanium surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effect of substrate modification on microbial growth on surfaces

    CERN Document Server

    Brown, A A

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process...

  11. Surface control alloy substrates and methods of manufacture therefor

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, Leslie G. (Mendon, MA); Li, Qi (Marlborough, MA); Rupich, Martin W. (Framingham, MA); Thompson, Elliott D. (Coventry, RI); Siegal, Edward J. (Malden, MA); Thieme, Cornelis Leo Hans (Westborough, MA); Annavarapu, Suresh (Brookline, MA); Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  12. Inorganic Surface Modification of Nonwoven Polymeric Substrates

    Science.gov (United States)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  13. Ultrahydrophobic surface modification of polymeric fibers and inorganic substrates

    Science.gov (United States)

    Ramaratnam, Karthik

    The wettability of a solid surface is a very important property, and is governed by both the chemical composition and the geometrical microstructure of the surface. Wettability and repellency are important properties of solid surfaces from both fundamental and practical aspects. The wettability of the solid surface is a characteristic property of materials and strongly depends on both the surface energy and the surface roughness. These properties may be approached by mimicking hydrophobic structures created by nature on lotus leaf surface. The lotus effect is based on surface roughness caused by different microstructures together with the hydrophobic properties of the epicuticular wax. The present study investigates the basic principles involved in the fabrication of lotus-like materials on both fibrous and inorganic substrates utilizing the two essential requirements, surface roughness and hydrophobicity. The surface roughness was created either by a porous or a bumpy profile while the hydrophobicity was achieved by grafting a non-fluorinated hydrophobic polymer. For the porous profiles, polymer blend systems showing phase separation were utilized whereas the bumpy profiles were achieved using nanoparticles such as calcium carbonate, silver, or silica particles. In the last part of the research, functionalization of silica nanoparticles was investigated and the development of a universal modification step to obtain the ultrahydrophobic property is reported. In this approach, the adsorption of the polymer and the nanoparticles to fibers has been optimized and the self-cleaning effect of these fabrics modified with silica nanoparticles has also been demonstrated.

  14. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    International Nuclear Information System (INIS)

    Adhikari, Ananta Raj; Geranpayeh, Tanya; Chu, Wei Kan; Otteson, Deborah C.

    2016-01-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10 12 to 1 × 10 14 ions/cm 2 ), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  15. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  16. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity.

    Science.gov (United States)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-28

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  17. Effect of modified ITO substrate on electrochromic properties of polyaniline films

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Silva, U.; Nicho, M.E.; Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEMor, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos (Mexico); Hu, Hailin [Departamento de Materiales Solares, Centro de Investigacion en Energia, UNAM, Av. Xochicalco S/N, Temixco, 62580, Morelos (Mexico)

    2007-09-22

    In this work, we report the morphological and electrochromic properties of electrochemically synthesized polyaniline (PANI) thin films on bare and modified indium-tin oxide (ITO) glass substrates. In the last case, the surface of ITO glass was covered by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Atomic force microscopy images and perfilometry show that smoother and thinner PANI films were grown on PAPTS-modified ITO substrates. PANI-based electrochromic devices (ECDs) were assembled by using a viscous polymeric electrolyte (PE) of LiClO{sub 4} and polymethyl methacrylate (PMMA) co-dissolved in a mixture of propylene and ethylene carbonate. The architectural design of the devices was glass/ITO/PANI/PE/ITO/glass. A dual ECD was also prepared by collocating a poly(3-methylthiophene) (P3MT) thin film as a complementary electrochromic element. The effect of the PAPTS-modified ITO substrate is reflected in a higher optical transmittance at bleach state and a little less color change at 550 nm of PANI-based ECDs. (author)

  18. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  19. Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate

    Directory of Open Access Journals (Sweden)

    Jiushuai Xu

    2014-04-01

    Full Text Available Copper films were grown on (3-Mercaptopropyltrimethoxysilane (MPTMS, (3-Aminopropyltriethoxysilane (APTES and 6-(3-(triethoxysilylpropylamino-1,3,5- triazine-2,4-dithiol monosodium (TES self-assembled monolayers (SAMs modified acrylonitrile-butadiene-styrene (ABS substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM and X-ray diffraction (XRD. Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111 preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.

  20. Defining the Properties of an Array of -NH2-Modified Substrates for the Induction of a Mature Osteoblast/Osteocyte Phenotype from a Primary Human Osteoblast Population Using Controlled Nanotopography and Surface Chemistry.

    Science.gov (United States)

    Fawcett, Sandra A; Curran, Judith M; Chen, Rui; Rhodes, Nicholas P; Murphy, Mark F; Wilson, Peter; Ranganath, Lakshminarayan; Dillon, Jane P; Gallagher, James A; Hunt, John A

    2017-01-01

    Accelerating the integration of a joint replacement or the healing of a bone fracture, particularly a complicated non-union fracture, would improve patient welfare and decrease healthcare costs. Currently, an autologous bone graft is the gold standard method for the treatment of complicated non-union fractures, but it is not always possible to harvest such a graft. A proactive highly inductive so-called smart material approach is pertinent in these cases. In this study, the surface chemistry of a previously approved material with desirable bulk material properties was modified to investigate its potential as an economical and effective alternative. The objective was to create stable synthetic chemical coatings that could guide cells along the osteogenic lineage required to generate mineralised tissue that would induce and accelerate bone healing. Primary human osteoblast-like cells were cultured in vitro for 7, 14 and 28 days on amine-terminated (chain length in the range 3-11) silane-modified glass surfaces with controlled nanotopography, to determine how surface chemistry and nanotopography change osteoblast function. The materials were characterised using atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle (WCA) and a novel ninhydrin assay. The cells were analysed using qRT-PCR, von Kossa tinctural staining for mineralisation, and visualised using both transmitted white light and electron microscopy. Bone-like nodules, quantified using microscopy, only formed on the short-chain (chain length 3 and 4) amines after 7 days, as did the up-regulation of sclerostin, suggestive of a more mature osteoblast phenotype. In this paper, we report more rapid nodule formation than has previously been observed, without the addition of exogenous factors in the culture medium. This suggests that the coating would improve the integration of implants with bone or be the basis of a smart biomaterial that would accelerate the bone regeneration

  1. Nanostructured surface enhanced Raman scattering substrates for explosives detection

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbaek; Olsen, Jesper Kenneth; Boisen, Anja

    2010-01-01

    Here we present a method for trace detection of explosives in the gas phase using novel surface enhanced Raman scattering (SERS) spectroscopy substrates. Novel substrates that produce an exceptionally large enhancement of the Raman effect were used to amplify the Raman signal of explosives...... molecules adsorbed onto the substrate. The substrates were fabricated in a cleanroom process which only requires two steps to produce well controlled nano-sized high aspect ratio metal pillars. These substrates had superior chemical sensing performance in addition to a more cost effective fabrication...... process compared to existing commercial substrates. Therefore it is believed that these novel substrates will be able to make SERS more applicable in mobile explosives detection systems to be deployed in for example landmine clearance actions....

  2. Influence of substrate surfaces on the growth of organic films

    Science.gov (United States)

    Das, A.; Salvan, G.; Kampen, T. U.; Hoyer, W.; Zahn, D. R. T.

    2003-05-01

    3,4,9,10-Perylene tetracarboxylic dianhydride (PTCDA) films were grown by organic molecular beam deposition (OMBD) under UHV conditions on hydrogen terminated Si(1 0 0) and sulphur passivated GaAs(1 0 0) surfaces. X-ray diffraction (XRD), X-ray reflectivity (XRR), Raman spectroscopy, and atomic force microscopy (AFM) are employed to study the influence of substrate surfaces on the structural properties of the organic films. Both phases of PTCDA, α- and β-polymorphs, are found to grow on both substrates. The substrate surfaces determine the preferential growth of α- and β-phases of PTCDA crystals at room temperature.

  3. Metal substrates with nanometer scale surface roughness for flexible electronics

    Science.gov (United States)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  4. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...

  5. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  6. Solution and interfacial behavior of modified silicone polymers and their interactions with solid substrates

    Science.gov (United States)

    Purohit, Parag

    Surface treatment is very important step in many applications such as fabric finishing, coatings, cosmetics and personal care. Silicone polymers are a class of organic/inorganic materials that show unique properties such as weak intermolecular forces and high flexibility enabling even a very high molecular weight chain to achieve optimal orientation on surfaces. Material properties such as softness, repellency, bounciness and friction can therefore be tailored by using appropriately modified silicone polymers. Despite wide applications, the underlying mechanisms of material modification are unknown and tailoring silicones for applications remains mostly empirical. Thus the objective of this research is to understand the solution and interfacial behavior of functionalized silicone polymers, which govern their performance in material modification. Modified silicones are simultaneously hydrophobic and oleophobic in nature and due to this nearly universal non-compatibility, the studies of these polymers present unusual challenges. Due to this incompatible nature, the functionalized silicone polymers were emulsified into O/W emulsions to study their solution and interfacial properties. The colloidal properties such as electrokinetic and droplet distribution of these emulsions are assumed to play an important role in the observed surface and physical properties of solid substrates (in present study, cellulosic substrates) as well the stability of emulsions itself. To understand the effects of modified silicones on cellulosic substrates a variety of techniques such as frictional analysis, scanning electron microscopy and atomic force microscopy that can probe from macro to nano level were used. It is hypothesized that the size distribution and charge of silicone emulsions as well as the physiochemical conditions such as pH, control silicone conformation which in turn affect the modification of the substrate properties. With bimodal droplet distribution of silicone

  7. Enhanced transparent conducting networks on plastic substrates modified with highly oxidized graphene oxide nanosheets

    Science.gov (United States)

    Woo, Jong Seok; Sin, Dong Hun; Kim, Haena; Jang, Jeong In; Kim, Ho Young; Lee, Geon-Woong; Cho, Kilwon; Park, Soo-Young; Han, Joong Tark

    2016-03-01

    Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge transfer. Moreover, HOGO nanosheets with AgNWs contribute to the efficient thermal joining of AgNW networks on plastic substrates by limiting the thermal embedding of AgNWs into the plastic surface, resulting in efficient decrease of the sheet resistance. Furthermore, flexible organic photovoltaic cells with GO-modified AgNW anodes on a flexible substrate were successfully demonstrated.Atomically thin and two-dimensional graphene oxide (GO) is a very fascinating material because of its functional groups, high transparency, and solution processability. Here we show that highly oxidized GO (HOGO) nanosheets serve as an effective interfacial modifier of transparent conducting films with one-dimensional (1D) silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs). Optically transparent and small-sized GO nanosheets, with minimal sp2 domains, were successfully fabricated by step-wise oxidation and exfoliation of graphite. We demonstrated that under-coated HOGO further decreases the sheet resistance of the SWCNT film top-coated with HOGO by increasing the contact area between the SWCNTs and HOGO nanosheets by generating hole carriers in the SWCNT as a result of charge

  8. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  9. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  10. Structure of cubic polytype indium nitride layers on top of modified sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F.M.; Lozano, J.G.; Garcia, R.; Gonzalez, D. [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica y QI, Universidad de Cadiz, 11510 Puerto Real, Cadiz (Spain); Lebedev, V.; Wang, Ch.Y.; Cimalla, V.; Ambacher, O. [Institute of Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau (Germany)

    2008-07-01

    The occurrence of cubic indium nitride thin layers grown by molecular beam epitaxy on top of c-plane sapphire substrates modified by an intermediate layer of cubic indium oxide is reported. An orientation relationship between the (0001) plane of Al{sub 2}O{sub 3} and both (001) surfaces of body-centered cubic In{sub 2}O{sub 3} and zinc-blende InN is demonstrated by means of electron and X-ray diffraction and by transmission electron microscopy. We propose that the demonstrated approach is able to stabilize the non equilibrium phase of InN (i. e., the cubic polytype) due to a low lattice mismatch together with a four fold surface atomic arrangement of the indium oxide-indium nitride interface. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

    2005-05-01

    The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

  12. Photocatalysis of Modified Transition Metal Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Batzill, Matthias

    2018-02-28

    The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anataseTiO2 samples by pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.

  13. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Science.gov (United States)

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  14. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  15. Preparation of Ag superhydrophobic surface on metal substrates

    Science.gov (United States)

    Li, J. Y.; Lu, S. X.; Xu, W. G.; Duan, Y. Q.; Yang, X. C.; Cheng, Y. Y.; He, G.; Cui, S.

    2018-01-01

    In this work, the facile approaches are developed for preparation the Ag superhydrophobic surfaces (SHSs) on zinc (Zn), copper (Cu) and aluminium (Al) substrates. The water contact angles (WCAs) of the Ag SHSs on Zn, Cu and Al substrates are 167°, 165° and 154°, respectively. Furthermore, the water sliding angle (WSA) of each surface is less than 1°. The morphology and chemical composition of the samples are characterized using scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The as-prepared three kinds of SHSs possess the self-cleaning performance, which can quickly take the chalk away when the water droplets fall down the SHSs. In addition, the superhydrophobicity of the SHSs can well maintain after exposure to the air for 6 months, indicating that the surfaces can sustain good stability.

  16. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    Science.gov (United States)

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  17. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  18. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  19. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  20. Conoscopic interferometry of surface-acoustic-wave substrate crystals.

    Science.gov (United States)

    Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M

    1999-09-01

    Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

  1. Electrochemical fabrication of two-dimensional palladium nanostructures as substrates for surface enhanced Raman scattering.

    Science.gov (United States)

    Li, Yin; Lu, Gewu; Wu, Xufeng; Shi, Gaoquan

    2006-12-07

    Two-dimensional palladium (Pd) nanostructures have been fabricated by electrochemical deposition of Pd onto an indium tin oxide glass substrate modified with a thin flat film of polypyrrole or a nanofibril film of polyaniline. The experimental results demonstrated that the morphology of Pd nanoparticles strongly depended on the properties of conducting polymers and the conditions of electrochemical deposition. Two-dimensional nanostructures composed of flower-like (consisting of staggered nanosheets) or pinecone-like Pd nanoparticles were successfully synthesized. They can be used as substrates for surface-enhanced Raman scattering after partly decomposing the polymer components by heating in air, and the enhancement factor of the substrate composed of flower-like Pd nanoparticles was measured to be as high as 105 for 4-mercaptopyridine.

  2. Investigation of chemically modified barium titanate beads as surface-enhanced Raman scattering (SERS) active substrates for the detection of benzene thiol, 1,2-benzene dithiol, and rhodamine 6G.

    Science.gov (United States)

    Onuegbu, Jonathan; Fu, Anqie; Glembocki, Orest; Pokes, Shaka; Alexson, Dimitri; Hosten, Charles M

    2011-08-01

    SERS active surfaces were prepared by depositing silver films using Tollen's reaction on to barium titanate beads. The SERS activity of the resulting surfaces was probed using two thiols (benzene thiol and 1,2-benzene dithiol) and rhodamine 6G. The intensity of the SERS signal for the three analytes was investigated as a function of silver deposition time. The results indicate that the SERS intensity increased with increasing thickness of the silver film until a maximum signal intensity was achieved; additional silver deposition resulted in a decrease in the SERS intensity for all of the studied molecules. SEM measurement of the Ag coated barium titanate beads, as a function of silver deposition time, indicate that maximum SERS intensity corresponded with the formation of atomic scale islands of silver nanoparticles. Complete silver coverage of the beads resulted in a decreased SERS signal and the most intense SERS signals were observed at deposition times of 30 min for the thiols and 20 min for rhodamine 6G. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  4. Surface modification of polymeric substrates by plasma-based ion implantation

    Science.gov (United States)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  5. A nanoforest structure for practical surface-enhanced Raman scattering substrates

    International Nuclear Information System (INIS)

    Seol, Myeong-Lok; Choi, Sung-Jin; Baek, David J; Ahn, Jae-Hyuk; Choi, Yang-Kyu; Jung Park, Tae; Yup Lee, Sang

    2012-01-01

    A nanoforest structure for surface-enhanced Raman scattering (SERS) active substrates is fabricated and analyzed. The detailed morphology of the resulting structure can be easily controlled by modifying the process parameters such as initial gold layer thickness and etching time. The applicability of the nanoforest substrate as a label-free SERS immunosensor is demonstrated using influenza A virus subtype H1N1. Selective binding of the H1N1 surface antigen and the anti-H1 antibody is directly detected by the SERS signal differences. Simple fabrication and high throughput with strong in-plane hot-spots imply that the nanoforest structure can be a practical sensing component of a chip-based SERS sensing system. (paper)

  6. Effect of Aluminum Substrate Surface Modification on Wettability and Freezing Delay of Water Droplet at Subzero Temperatures

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Thormann, Esben

    2016-01-01

    chemistry but without significantly modifying the surface topography. The freezing delays and water contact angles were measured as a function of the substrate temperature and the results were compared to the predictions of the heterogeneous ice nucleation theory. Although the trends for each sample...

  7. Influence of modified carbon substrate on boron doped ultrananocrystalline diamond deposition

    Science.gov (United States)

    Sizuka Oishi, Silvia; Mieko Silva, Lilian; Cocchieri Botelho, Edson; Cerqueira Rezende, Mirabel; Alves Cairo, Carlos Alberto; Gomes Ferreira, Neidenêi

    2018-02-01

    Boron doped ultrananocrystalline diamond (B-UNCD) growth was studied on modified reticulated vitreous carbon (RVC) produced from poly(furfuryl alcohol) (PFA) resin with sodium hydroxide additions at two different heat treatment temperatures. The different amounts of NaOH in PFA (up to reaching pH values of around 3, 5, 7, and 9) aimed to neutralize the acid catalyst and to increase the PFA storage life. Besides, this procedure was responsible for increasing the oxygen content of RVC samples. Thus, the effect of carbon and oxygen coming from the substrates in addition to their different graphitization indexes on diamond morphology, grain size, preferential growth and boron doping level were investigated by FEG-SEM, x-ray diffraction and Raman spectroscopy. Therefore, B-UNCD films were successfully grown on RVC with pH values of 3, 5, 7, and 9 heat treated at 1000 and 1700 °C. Nonetheless, the higher oxygen amount during B-UNCD growth for samples with pH 7 and 9 heat treated at 1000 °C was responsible for the RVC surface etching and the decrease in the boron concentration of such samples. The cross section images showed that B-UNCD infiltrated at around 0.9 mm in depth of RVC samples while carbon nanowalls were observed mainly on RVC samples heat treated at 1000 °C for all pH range studied.

  8. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  9. Microstructure and surface properties of fibrous and ground cellulosic substrates.

    Science.gov (United States)

    Csiszár, Emília; Fekete, Erika

    2011-07-05

    Cotton and linen fibers were ground in a ball-mill, and the effect of grinding on the microstructure and surface properties of the fibers was determined by combining a couple of simple tests with powerful techniques of surface and structure analysis. Results clearly proved that the effect of grinding on cotton fiber was much less severe than on linen. For both fibers, the degree of polymerization reduced (by 14.5% and 30.5% for cotton and linen, respectively) with a simultaneous increase in copper number. The increased water sorption capacity of the ground substrates was in good agreement with the X-ray results, which proved a less perfect crystalline structure in the ground samples. Data from XPS and SEM-EDS methods revealed that the concentration of oxygen atoms (bonded especially in acetal and/or carbonyl groups) on the ground surfaces increased significantly, resulting in an increase in oxygen/carbon atomic ratio (XPS data: from 0.11 to 0.14 and from 0.16 to 0.29 for cotton and linen, respectively). Although grinding created new surfaces rich in O atoms, the probable higher energy of the surface could not be measured by IGC, most likely due to the limited adsorption of the n-alkane probes on the less perfect crystalline surfaces. © 2011 American Chemical Society

  10. Optically transparent frequency selective surfaces on flexible thin plastic substrates

    Directory of Open Access Journals (Sweden)

    Aliya A. Dewani

    2015-02-01

    Full Text Available A novel 2D simple low cost frequency selective surface was screen printed on thin (0.21 mm, flexible transparent plastic substrate (relative permittivity 3.2. It was designed, fabricated and tested in the frequency range 10-20 GHz. The plane wave transmission and reflection coefficients agreed with numerical modelling. The effective permittivity and thickness of the backing sheet has a significant effect on the frequency characteristics. The stop band frequency reduced from 15GHz (no backing to 12.5GHz with polycarbonate. The plastic substrate thickness beyond 1.8mm has minimal effect on the resonant frequency. While the inner element spacing controls the stop-band frequency, the substrate thickness controls the bandwidth. The screen printing technique provided a simple, low cost FSS fabrication method to produce flexible, conformal, optically transparent and bio-degradable FSS structures which can find their use in electromagnetic shielding and filtering applications in radomes, reflector antennas, beam splitters and polarizers.

  11. Ceramic substrate including thin film multilayer surface conductor

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  12. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo; Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Nam, Jae-Do

    2012-01-01

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  13. Preparation and Wetting Behavior of Lyophobic Surface on Zinc Substrate

    Directory of Open Access Journals (Sweden)

    HAN Xiang-xiang

    2018-03-01

    Full Text Available Micro-nano structure on zinc substrate was fabricated through the combination of chemical etching with hydrochloric acid aqueous solution and hydrothermal reaction. After modification with perfluorooctanoic solution, the lyophobic surface was prepared. The phase composition, microstructure, chemical composition, and wettability of the as-obtained surface were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. The results show that a layer of ZnO nano-rods grows on the surface of the submicrometer structure, and exhibits good resistance to water impact and stability under the combined action of low surface energy material. When hydrochloric acid concentration is 1.0mol/L and hydrothermal reaction temperature is 95℃, the lyophobic surface possesses the best morphology of ZnO nano-rods. The maximum contact angles of distilled water and peanut oil are 154.65° and 144.65°, respectively, and the sliding angle is less than 10°.

  14. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  15. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Science.gov (United States)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  16. Computational Modelling of Catalytic Properties and Modified Substrates of Fungal B-N-Acetylhexosaminidases

    Czech Academy of Sciences Publication Activity Database

    Kulik, Natallia; Slámová, Kristýna

    2011-01-01

    Roč. 8, č. 3 (2011), s. 270-280 ISSN 1570-193X R&D Projects: GA ČR(CZ) GAP207/11/0629; GA ČR GD305/09/H008; GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60870520 Keywords : beta-N-Acetylhexosaminidase * computer modelling * modified substrate Subject RIV: CE - Biochemistry Impact factor: 2.406, year: 2011

  17. 2′-O-methyl nucleotide modified DNA substrates influence the ...

    Indian Academy of Sciences (India)

    2014-07-18

    Jul 18, 2014 ... enzymatic cleavage efficiency for applications in synthetic biology. [Tong Z, Zhao B, Zhao G, Shang H and Guan Y 2014 2′-O-methyl-nucleotide-modified DNA substrates influence the cleavage efficiencies of. BamHI and BglII. J. Biosci. 39 621–630] DOI 10.1007/s12038-014-9466-4. 1. Introduction. Due to ...

  18. Adsorption of Hydrophobically Modified Polyelectrolytes on Hydrophobic Substrates Adsorption de polyélectrolytes modifiés hydrophobiquement sur les substrats hydrophobes

    Directory of Open Access Journals (Sweden)

    Mays J. W.

    2006-12-01

    Full Text Available A series of diblock copolymers, poly (tert-butyl styrene-sodium poly (styrene sulfonate with different molecular weight and percentage of sulfonation have been used to study the effect of polymer structure on its adsorption behavior onto hydrophobically modified silicon wafers. The percentage of the hydrophobic block varies from 3. 6-8. 9%. Previous studies show that salt concentration is very important for the adsorption of such polyelectrolytes onto silica surfaces. Octadecyltriethoxysilane (OTE has been used to modify the silicon wafer which changes the water contact angle from 50° on unmodified silica to 100° to 120°. On this hydrophobic surface, we found that the adsorption of these slightly hydrophobically modified polyelectrolytes is close to the 4/23rd power of salt concentration predicted by a recent model. The grafting density is also consistent with a dependence on the length of the hydrophobic block to the -12/23rd power, and the length of the polyelectrolyte block to the -6/23rd power, predicted by this model. Une série de copolymères à diblocs poly (tert-butyle styrène-sodium (sulfonate de polystyrène de masses moléculaires et pourcentages de sulfonation différents ont été utilisés pour étudier les effets de la structure du polymère sur son pouvoir d'adsorption sur des surfaces de silicium modifiées hydrophobiquement. Le pourcentage du bloc hydrophobe varie de 3,6 à 8,9%. Les études antérieures montrent que la concentration saline est très importante pour l'adsorption de ces polyélectrolytes sur les surfaces de silice. Nous avons utilisé l'octadecyltriéthoxysilane (OTE pour modifier la surface de silicium qui change l'angle de contact de l'eau de 50° sur la silice non modifiée à une valeur comprise entre 100° et 120° sur la silice modifiée. Sur cette surface hydrophobe, nous constatons que l'adsorption de ces polyélectrolytes légèrement modifiés hydrophobiquement est proche de la loi puissance 4

  19. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  20. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  1. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Xia Lixin; Wang Haibo; Wang Jian; Gong Ke; Jia Yi; Zhang Huili; Sun Mengtao

    2008-01-01

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at a power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the ∼1593 cm -1 band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.

  2. The neural substrate for working memory of tactile surface texture.

    Science.gov (United States)

    Kaas, Amanda L; van Mier, Hanneke; Visser, Maya; Goebel, Rainer

    2013-05-01

    Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control. Copyright © 2012 Wiley Periodicals, Inc.

  3. Pool boiling of nanoparticle-modified surface with interlaced wettability

    KAUST Repository

    Hsu, Chin-Chi

    2012-01-01

    This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller. © 2012 Hsu et al.

  4. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  5. Effect of surface cleanliness of aluminium substrates on silicone rubber adhesion

    OpenAIRE

    Petersson, L; Meier, P; Kornmann, X; Hillborg, H

    2011-01-01

    ABSTRACT The aim of the present work was to determine the minimum surface cleanliness of aluminum substrates required for good and reproducible silicone rubber adhesion. Aluminum substrates were prepared, ranging from 'contaminated ' to different degrees of 'cleaned '. The surface energy of the substrates was determined by contact angle measurements. The surfaces were also compared using simplified methods, such as a wettability test or by the use of inks with known surface tension. Silico...

  6. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces

    DEFF Research Database (Denmark)

    Lytken, Ole; Waltenburg, Hanne Neergaard; Chorkendorff, Ib

    2003-01-01

    In order to investigate any influence of steps and possible positive effects of making surface alloys the ammonia synthesis has been investigated over Au modified Fe(111) and Ag and Cu modified Fe(100) single crystals in the temperature range 603-773 K, using a system combining ultra-high vacuum...... and a high-pressure cell. Ammonia was synthesized from a stoichiometric (N-2:3H(2)) gas mixture at a pressure of 2 bar. By deposition of small amounts of An, the ammonia production activity of the Fe(1 1 1) surface can be enhanced. More important, for the gold modified surface, the reaction order in ammonia...

  7. Adsorption of phospholipid bilayers onto pullulan-modified cellulose surfaces

    Science.gov (United States)

    Choi, Heejun; Liu, Zelin; Esker, Alan

    2009-03-01

    1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicle adsorption onto regenerated cellulose and pullulan 4-bromocinnamate (P4BC) modified cellulose surfaces was investigated via surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). P4BC with a degree of substitution (DS) of 0.061 ± 0.002 from UV measurements and 0.058 from ^1H NMR was synthesized from pullulan and 4-bromocinnamic acid to yield P4BC. The deduced thicknesses from SPR for DMPC layers were ˜3.7 nm (bilayer) on regenerated cellulose surfaces and ˜2.1 nm (monolayer) on P4BC modified cellulose surfaces. Qualitative analysis of the QCM-D data also indicated that the DMPC layers on P4BC modified cellulose surfaces were thinner than on regenerated cellulose surfaces.

  8. Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion.

    Science.gov (United States)

    Zhao, Lu; Hu, Yan; Xu, Dawei; Cai, Kaiyong

    2014-07-01

    Orthopedic implants failures are generally related to poor osseointegration and/or bacterial infection in clinical application. Surface functionalization of an implant is one promising alternative for enhancing osseointegration and/or reducing bacterial infection, thus ensuring the long term survival of the implant. In this study, titanium (Ti) substrates were surface functionalized with a polydopamine (PDOP) film as an intermediate layer for post-immobilization of chitosan-lauric acid (Chi-LA) conjugate. Chi-LA conjugate was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen proton nuclear magnetic resonance (NMR) spectrometer, respectively. Lauric acid (LA), a natural saturated fatty acid, was used mainly due to its good antibacterial property. Scanning electron microscopy (SEM) and water contact angle measurements were employed to detect the morphology changes and surface wettability of Ti substrates. The results suggested that Chi-LA conjugate was successfully immobilized onto the surfaces of Ti substrates. In vitro tests confirmed that the cell adhesion, cell viability, intracellular alkaline phosphatase activity and mineralization capacity of osteoblasts were remarkably improved when cultured onto Chi-LA surface functionalized Ti substrates. Antibacterial assay against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) showed that the Chi-LA modified Ti substrates efficiently inhibited the adhesion and growth of bacteria. Overall, this study developed a promising approach to fabricate functional Ti-based orthopedic implants, which could enhance the biological functions of osteoblasts and concurrently reduce bacteria adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    Science.gov (United States)

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt.

  10. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  11. The influence of surface modification on bacterial adhesion to titanium-based substrates.

    Science.gov (United States)

    Lorenzetti, Martina; Dogša, Iztok; Stošicki, Tjaša; Stopar, David; Kalin, Mitjan; Kobe, Spomenka; Novak, Saša

    2015-01-28

    This study examines bacterial adhesion on titanium-substrates used for bone implants. Adhesion is the most critical phase of bacterial colonization on medical devices. The surface of titanium was modified by hydrothermal treatment (HT) to synthesize nanostructured TiO2-anatase coatings, which were previously proven to improve corrosion resistance, affect the plasma protein adsorption, and enhance osteogenesis. The affinity of the anatase coatings toward bacterial attachment was studied by using a green fluorescent protein-expressing Escherichia coli (gfp-E. coli) strain in connection with surface photoactivation by UV irradiation. We also analyzed the effects of surface topography, roughness, charge, and wettability. The results suggested the dominant effects of the macroscopic surface topography, as well as microasperity at the surface roughness scale, which were produced during titanium machining, HT treatment, or both. Macroscopic grooves provided a preferential site for bacteria deposit within the valleys, while the microscopic roughness of the valleys determined the actual interaction surface between bacterium and substrate, resulting in an "interlocking" effect and undesired high bacterial adhesion on nontreated titanium. In the case of TiO2-coated samples, the nanocrystals reduced the width between the microasperities and thus added nanoroughness features. These factors decreased the contact area between the bacterium and the coating, with consequent lower bacterial adhesion (up to 50% less) in comparison to the nontreated titanium. On the other hand, the pronounced hydrophilicity of one of the HT-coated discs after pre-irradiation seemed to enhance the attachment of bacteria, although the increase was not statistically significant (p > 0.05). This observation may be explained by the acquired similar degree of wetting between gfp-E. coli and the coating. No correlation was found between the bacterial adhesion and the ζ-values of the samples in PBS, so the

  12. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, Afrooz, E-mail: afroozlatifi@yahoo.com [Department of Biomaterials, Biomedical Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Imani, Mohammad [Novel Drug Delivery Systems Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad Taghi [Biomaterials Dept., Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran (Iran, Islamic Republic of); Daliri Joupari, Morteza [Animal and Marine Biotechnology Dept., National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965/161, Tehran (Iran, Islamic Republic of)

    2014-11-30

    Highlights: • Stainless steel 316L was surface modified by plasma surface oxidation (PSO) and silicone rubber (SR) coating. • On the PSO substrates, concentration of oxide species was increased ca. 2.5 times comparing to non-PSO substrates. • The surface wettability was improved to 12.5°, in terms of water contact angle, after PSO. • Adhesion strength of SR coating on the PSO substrates was improved by more than two times comparing to non-PSO ones. • After pull-off test, the fractured area patterns for SR coating were dependent on the type of surface modifications received. - Abstract: Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m{sup −1}), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer–metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  14. Effect of interfacial interactions on the initial growth of Cu on clean SiO sub 2 and 3-mercaptopropyltrimethoxysilane-modified SiO sub 2 substrates

    CERN Document Server

    Hu Ming Hui; Tsuji, Y; Okubo, T; Yamaguchi, Y; Komiyama, H

    2002-01-01

    The effect of interfacial interactions on the initial growth of Cu on clean SiO sub 2 and 3-mercaptopropyltrimethoxysilane (MPTMS)-modified SiO sub 2 substrates by sputter deposition was studied using transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. Plasma damage during sputter deposition makes surfaces of MPTMS-modified SiO sub 2 substrates consist of small MPTMS islands several tens of nanometers in diameter and bare SiO sub 2 areas. These MPTMS islands are composed of disordered multilayer MPTMS aggregates. The initial growth behavior of Cu on MPTMS-modified SiO sub 2 substrates differs from that on clean SiO sub 2 substrates, although Cu grows in three-dimensional-island mode on both of them. After a 2.5-monolayer Cu deposition on clean SiO sub 2 substrates, spherical Cu particles were formed at a low number density of 1.3x10 sup 1 sup 6 /m sup 2 and at a long interparticle distance of 5 nm. In contrast, after the same amount of deposition on MP...

  15. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  16. The constitution and microstructure of laser surface-modified metals

    Science.gov (United States)

    Singh, Jogender

    1992-09-01

    The applications oflasers in the processing of metals, ceramics, and semiconductors range from surface glazing of thin films on semiconductors to thick surface cladding on metals. Lasers have the unique capability of rapid heating, melting, and quenching of the substrate, which results in the formation of new engineering materials with metastable microstructures. This article describes the microstructural evolution of laser-glazed and laser-clad alloys treated with a pulse or continuous-wave CO2 laser.

  17. Enhanced printability of thermoplastic polyurethane substrates by silica particles surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, S., E-mail: s.cruz@dep.uminho.pt [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal); Rocha, L.A. [CMEMS, University of Minho, 4804-533 Guimarães (Portugal); Viana, J.C. [IPC/I3N – Institute of Polymers and Composites/Inst. of Nanostructures, Nanomodelling and Nanofabrication, Department Polymer Engineering, University of Minho, 4804-533 Guimarães (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • A new method development for surface treatment of thermoplastic polyurethane (TPU) substrates. • The proposed method increases TPU surface energy (by 45%) and consequently the TPU wettability. • Great increase of the TPU surface roughness (by 621%). • Inkjet printed conductive ink was applied to the surface treated TPU substrate and significant improvements on the printability were obtained. - Abstract: A new method developed for the surface treatment of thermoplastic polymer substrates that increases their surface energies is introduced in this paper. The method is environmental friendly and low cost. In the proposed surface treatment method, nanoparticles are spread over the thermoplastic polyurethane (TPU) flexible substrate surface and then thermally fixed. This latter step allows the nanoparticles sinking-in on the polymer surface, resulting in a higher polymer–particle interaction at their interfacial region. The addition of nanoparticles onto the polymer surface increases surface roughness. The extent of the nanoparticles dispersion and sink-in in the substrate was evaluated through microscopy analysis (SEM). The roughness of the surface treated polymeric substrate was evaluated by AFM analysis. Substrate critical surface tension (ST) was measured by contact angle. In general, a homogeneous roughness form is achieved to a certain level. Great increase of the TPU surface roughness (by 621%) was induced by the propose method. The proposed surface treatment method increased significantly the substrate ST (by 45%) and consequently the TPU wettability. This novel surface treatment of thermoplastic polymers was applied to the inkjet printing of TPU substrates with conductive inks, and significant improvements on the printability were obtained.

  18. Substrate integrated ferrite phase shifters and active frequency selective surfaces

    International Nuclear Information System (INIS)

    Cahill, B.M.

    2002-01-01

    There are two distinct parts to this thesis; the first investigates the use of ferrite tiles in the construction of printed phase shifting transmission lines, culminating in the design of two compact electromagnetic controlled beam steered patch and slot antenna arrays. The second part investigates the use of active frequency selective surfaces (AFSS), which are later used to cover a uPVC constructed enclosure. Field intensity measurements are taken from within the enclosure to determine the dynamic screening effectiveness. Trans Tech G-350 Ferrite is investigated to determine its application in printed microstrip and stripline phase shifting transmission lines. 50-Ohm transmission lines are constructed using the ferrite tile and interfaced to Rogers RT Duroid 5870 substrate. Scattering parameter measurements are made under the application of variable magnetic fields to the ferrite. Later, two types of planar microwave beam steering antennas are constructed. The first uses the ferrites integrated into the Duroid as microstrip lines with 3 patch antennas as the radiating elements. The second uses stripline transmission lines, with slot antennas as the radiating sources etched into the ground plane of the triplate. Beam steering is achieved by the application of an external electromagnet. An AFSS is constructed by the interposition of PIN diodes into a dipole FSS array. Transmission response measurements are then made for various angles of electromagnetic wave incidence. Two states of operation exist: when a current is passed through the diodes and when the diodes are switched off. These two states form a high pass and band stop space filter respectively. An enclosure covered with the AFSS is constructed and externally illuminated in the range 2.0 - 2.8GHz. A probe antenna inside the enclosure positioned at various locations through out the volume is used to establish the effective screening action of the AFSS in 3 dimensional space. (author)

  19. Acrylic acid surface-modified contact lens for the culture of limbal stem cells.

    Science.gov (United States)

    Zhang, Hong; Brown, Karl David; Lowe, Sue Peng; Liu, Guei-Sheung; Steele, David; Abberton, Keren; Daniell, Mark

    2014-06-01

    Surface treatment to a biomaterial surface has been shown to modify and help cell growth. Our aim was to determine the best surface-modified system for the treatment of limbal stem cell deficiency (LSCD), which would facilitate expansion of autologous limbal epithelial cells, while maintaining cultivated epithelial cells in a less differentiated state. Commercially available contact lenses (CLs) were variously surface modified by plasma polymerization with ratios of acrylic acid to octadiene tested at 100% acrylic acid, 50:50% acrylic acid:octadiene, and 100% octadiene to produce high-, mid-, and no-acid. X-ray photoelectron spectroscopy was used to analyze the chemical composition of the plasma polymer deposited layer. Limbal explants cultured on high acid-modified CLs outgrew more cells. Immunofluorescence and RT2-PCR array results indicated that a higher acrylic acid content can also help maintain progenitor cells during ex vivo expansion of epithelial cells. This study provides the first evidence for the ability of high acid-modified CLs to preserve the stemness and to be used as substrates for the culture of limbal cells in the treatment of LSCD.

  20. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  1. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  2. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  3. Growth of pentacene on clean and modified gold surfaces

    International Nuclear Information System (INIS)

    Kaefer, Daniel; Ruppel, Lars; Witte, Gregor

    2007-01-01

    The growth and evolution of pentacene films on gold substrates have been studied. By combining complementary techniques including scanning tunneling microscopy, atomic force microscopy, scanning electron microscopy, near-edge x-ray-absorption fine structure, and x-ray diffraction, the molecular orientation, crystalline structure, and morphology of the organic films were characterized as a function of film thickness and growth parameters (temperature and rate) for different gold substrates ranging from Au(111) single crystals to polycrystalline gold. Moreover, the influence of precoating the various gold substrates with self-assembled monolayers (SAM's) of organothiols with different chemical terminations has been studied. On bare gold the growth of pentacene films is characterized by a pronounced dewetting while the molecular orientation within the resulting crystalline three-dimensional islands depends distinctly on the roughness and cleanliness of the substrate surface. After completion of the first wetting layer where molecules adopt a planar orientation parallel to the surface the molecules continue to grow in a tilted fashion: on Au(111) the long molecular axis is oriented parallel to the surface while on polycrystalline gold it is upstanding oriented and thus parallels the crystalline orientation of pentacene films grown on SiO 2 . On SAM pretreated gold substrates the formation of a wetting layer is effectively suppressed and pentacene grows in a quasi-layer-by-layer fashion with an upstanding orientation leading to rather smooth films. The latter growth mode is observed independently of the chemical termination of the SAM's and the roughness of the gold substrate. Possible reasons for the different growth mechanism as well as consequences for the assignment of spectroscopic data of thin pentacene film are discussed

  4. Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation

    Science.gov (United States)

    Zaniewski, Anna M.; Trimble, Christie J.; Nemanich, Robert J.

    2015-03-01

    Graphene and metal nanoparticle composites are a promising class of materials with unique electronic, optical, and chemical properties. In this work, graphene is used as a reducing surface to grow gold nanoparticles out of solution-based metal precursors. The nanoparticle formation is found to strongly depend upon the graphene substrate selection. The studied substrates include diamond, p-type silicon, aluminum oxide, lithium niobate, and copper. Our results indicate that the chemical properties of graphene depend upon this selection. For example, for the same reaction times and concentration, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. On insulators, nanoparticles preferentially form on folds and edges. Energy dispersive X-ray analysis is used to confirm the nanoparticle elemental makeup.

  5. Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation

    International Nuclear Information System (INIS)

    Zaniewski, Anna M.; Trimble, Christie J.; Nemanich, Robert J.

    2015-01-01

    Graphene and metal nanoparticle composites are a promising class of materials with unique electronic, optical, and chemical properties. In this work, graphene is used as a reducing surface to grow gold nanoparticles out of solution-based metal precursors. The nanoparticle formation is found to strongly depend upon the graphene substrate selection. The studied substrates include diamond, p-type silicon, aluminum oxide, lithium niobate, and copper. Our results indicate that the chemical properties of graphene depend upon this selection. For example, for the same reaction times and concentration, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. On insulators, nanoparticles preferentially form on folds and edges. Energy dispersive X-ray analysis is used to confirm the nanoparticle elemental makeup

  6. Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, Anna M.; Trimble, Christie J.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85281 (United States)

    2015-03-23

    Graphene and metal nanoparticle composites are a promising class of materials with unique electronic, optical, and chemical properties. In this work, graphene is used as a reducing surface to grow gold nanoparticles out of solution-based metal precursors. The nanoparticle formation is found to strongly depend upon the graphene substrate selection. The studied substrates include diamond, p-type silicon, aluminum oxide, lithium niobate, and copper. Our results indicate that the chemical properties of graphene depend upon this selection. For example, for the same reaction times and concentration, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. On insulators, nanoparticles preferentially form on folds and edges. Energy dispersive X-ray analysis is used to confirm the nanoparticle elemental makeup.

  7. AFM surface morphology investigation of ion beam modified polyimide

    Science.gov (United States)

    Švorčík, V.; Arenholz, E.; Rybka, V.; Hnatowicz, V.

    1997-03-01

    Polyimide Upilex R was irradiated with 90 keV N + ions to the fluences of 1 × 10 14-2 × 10 17 cm -2. The surface morphology and the structure of the ion beam modified PI were examined using atomic force microscopy and X-ray difraction. Sheet resistance as a function of the ion fluence and the sample temperature was measured by standard two point technique. Significant changes of the surface morphology and production of graphitic phase in the sample surface layer modified by the ion irradiation were observed. Strong decrease of the sheet resistance (by 11 orders of magnitude) in the ion beam modified samples is connected with progressive carbonization and graphitization of the degraded polymer. Electrical charge transport is mediated by variable-range hopping mechanism. Drastic structural changes initiated by the ion irradiation to high fluences are similar to those observed in polymer pyrolysis.

  8. Surface treatment of glass substrates for the preparation of long-lived carbon stripper foils

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Takekoshi, Eiko

    1981-02-01

    Glass substrates having uniformly distributed microscopic grains on the surfaces are useful to make long-lived carbon stripper foils for heavy ions. A method of surface treatment of glass substrates to form the surface structure is described. This method consists of precipitation of glass components, such as soda, onto the surfaces in a hot and humid atmosphere and a fogging treatment of forming microscopic grains of the precipitated substances. Some results of studies on the treatment conditions are also presented. (author)

  9. Corrosion resistance of surface modified nickel titanium archwires.

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Kumar, A Vinod; Varthini, N Parvatha; Sukumaran, Kalathil; Pawar, Vasant R; Arora, Vimal

    2014-03-01

    To compare the corrosion behavior of commercially available surface modified nickel titanium (NiTi) arch wires with respect to a conventional NiTi and to evaluate its association with surface characteristics. Five types of surface modified arch wires and a conventional NiTi arch wire, all from different manufacturers, were evaluated for their corrosion resistance from breakdown potential in an anodic polarization scan in Ringer's solution. Surface characteristics were determined from scanning electron microscopy, atomic force microscopy, and energy dispersive analysis. One-way analysis of variance and post hoc Duncan's multiple range tests were used to evaluate statistical significance. Surface modified NiTi wires showed significant improvement in corrosion resistance and reduction in surface roughness values. Breakdown potentials increased in the order of group 6 (conventional; 204 mV) corrosion resistance and decreasing surface roughness. However, neither factor could maintain a direct, one-to-one relationship. It meant that the type and nature of coating material can effectively influence the anticorrosive features of NiTi wires, compared with its surface roughness values.

  10. Eutrophication management in surface waters using lanthanum modified bentonite

    DEFF Research Database (Denmark)

    Copetti, Diego; Finsterle, Karin; Marziali, Laura

    2016-01-01

    This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The availa......This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales...

  11. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  12. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    Science.gov (United States)

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  13. Silicalite-1 zeolite membranes on unmodified and modified surfaces ...

    Indian Academy of Sciences (India)

    Administrator

    (Algieri et al 2003). However, a higher value i.e. 20 × 10. –7 mol m. –2 s. –1. Pa. –1 of N2 permeance was found for the membrane prepared on the unmodified support surface. It indicates that the membrane prepared by surface modifi- cation technique has higher interlocking of the crystals and hence a lower degree of ...

  14. Surface functionalized luminescent nanocrystals electrostatically assembled ont a patterned substrate

    NARCIS (Netherlands)

    Corricelli, M.; Comparelli, R.; Depalo, N.; Fanizza, E.; Sadhu, V.B.; Huskens, Jurriaan; Agostiano, A.; Striccoli, M.; Curri, M.L.

    2016-01-01

    Background: In the last decades, the enormous interest in 2/3D nanocrystal (NC) architectures boosted the development of many and diverse techniques which allowed to precisely positioning the nanoparticles on substrates. The tremendous importance of such NC organizations is due to the novel

  15. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    The nanocrystallization of substrate (in this case used SMAT process) can probably improve the reaction-ability of samples and hence causes a significant improvement in the properties of coated samples. As, unlike the common plating techniques, PEO process is among the coating conversion methods and through which.

  16. Surface-modified nanocrystalline ceramics for drug delivery applications.

    Science.gov (United States)

    Kossovsky, N; Gelman, A; Sponsler, E E; Hnatyszyn, H J; Rajguru, S; Torres, M; Pham, M; Crowder, J; Zemanovich, J; Chung, A

    1994-12-01

    Drug delivery systems comprised of various types of carriers have long been the object of pharmacological investigation. The search has been stimulated by the belief that carriers will lead to reduced drug toxicity, dosage requirements, enhanced cellular targeting and improved shelf-life. Among the carriers investigated are complex polymeric carbohydrates, synthetic proteins and liposomal structures. For the past four years, we have been experimenting with a radically new class of carriers comprised of surface-modified nanocrystalline ceramics. While the ceramics provide the structural stability of a largely immutable solid, the surface modification creates a glassy molecular stabilization film to which pharmacological agents may be bound non-covalently from an aqueous phase with minimal structural denaturation. As a consequence of maintained structural integrity and owing to concentration effects afforded by the surfaces of the nanocrystalline materials, drug activity following surface immobilization is preserved. We have used successfully surface-modified nanocrystalline ceramics to deliver viral antigens for the purpose of evoking an immune response, oxygenated haemoglobin for cell respiration and insulin for carbohydrate metabolism. The theoretical principles, technical details and experimental results are reviewed. Surface-modified nanocrystalline materials offer an exciting new approach to the well-recognized challenges of drug delivery.

  17. Silicalite-1 zeolite membranes on unmodified and modified surfaces ...

    Indian Academy of Sciences (India)

    Administrator

    support was observed resulting in a relatively higher dense packing of the crystals during secondary crystal growth process compared to that obtained from the unmodified support. The membrane developed on surface modified support rendered lower permeance value i.e. 9 × 10. –7 mol m. –2 s. –1. Pa. –1 of N2 compared ...

  18. Listeria monocytogenes repellence by enzymatically modified PES surfaces

    NARCIS (Netherlands)

    Veen, van der S.; Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Boom, R.M.; Abee, T.; Schroën, C.G.P.H.

    2015-01-01

    : The effect of enzyme-catalyzed modification of poly(ethersulfone) (PES) on the adhesion and biofilm formation of two Listeria monocytogenes strains is evaluated under static and dynamic flow conditions. PES has been modified with gallic acid, ferulic acid and 4-hydroxybenzoic acid. The surfaces

  19. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  20. Implication of surface modified NZVI particle retention in the porous ...

    Indian Academy of Sciences (India)

    Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle ...

  1. Efficiency of surface modified Ti coated with copper nanoparticles to ...

    Indian Academy of Sciences (India)

    various fields like medical instruments and devices, water treatment and food processing. For better utilization of antimicrobial activity the metal nanoparticles may be com- bined with polymers to form composites [23]. Our pre- vious study also proved the anti-biofouling property of surface modified Ti coated with silver ...

  2. Imaging Analysis of Carbohydrate-Modified Surfaces Using ToF-SIMS and SPRi

    Directory of Open Access Journals (Sweden)

    Manish Dubey

    2010-07-01

    Full Text Available Covalent modification of surfaces with carbohydrates (glycans is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycoarrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of the surface bound carbohydrate moiety. However, the scarcity of analytical methods to characterize carbohydrate-modified surfaces complicates efforts to optimize glycan surface chemistries for specific applications. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS is a surface sensitive technique suited for probing molecular composition at the biomaterial interface. Expanding ToF-SIMS analysis to interrogate carbohydrate-modified materials would increase our understanding of glycan surface chemistries and advance novel tools in the nascent field of glycomics. In this study, a printed glycan microarray surface was fabricated and subsequently characterized by ToF-SIMS imaging analysis. A multivariate technique based on principal component analysis (PCA was used to analyze the ToF-SIMS dataset and reconstruct ToF-SIMS images of functionalized surfaces. These images reveal chemical species related to the immobilized glycan, underlying glycan-reactive chemistries, gold substrates, and outside contaminants. Printed glycoarray elements (spots were also interrogated to resolve the spatial distribution and spot homogeneity of immobilized glycan. The bioavailability of the surface-bound glycan was validated using a specific carbohydrate-binding protein (lectin as characterized by Surface Plasmon Resonance Imaging (SPRi. Our results demonstrate that ToF-SIMS is capable of characterizing chemical features of carbohydrate-modified surfaces and, when complemented with SPRi, can play an enabling role in optimizing glycan microarray fabrication and performance.

  3. Imaging Analysis of Carbohydrate-Modified Surfaces Using ToF-SIMS and SPRi.

    Science.gov (United States)

    Bolles, Kathryn M; Cheng, Fang; Burk-Rafel, Jesse; Dubey, Manish; Ratner, Daniel M

    2010-07-07

    Covalent modification of surfaces with carbohydrates (glycans) is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycoarrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of the surface bound carbohydrate moiety. However, the scarcity of analytical methods to characterize carbohydrate-modified surfaces complicates efforts to optimize glycan surface chemistries for specific applications. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a surface sensitive technique suited for probing molecular composition at the biomaterial interface. Expanding ToF-SIMS analysis to interrogate carbohydrate-modified materials would increase our understanding of glycan surface chemistries and advance novel tools in the nascent field of glycomics. In this study, a printed glycan microarray surface was fabricated and subsequently characterized by ToF-SIMS imaging analysis. A multivariate technique based on principal component analysis (PCA) was used to analyze the ToF-SIMS dataset and reconstruct ToF-SIMS images of functionalized surfaces. These images reveal chemical species related to the immobilized glycan, underlying glycan-reactive chemistries, gold substrates, and outside contaminants. Printed glycoarray elements (spots) were also interrogated to resolve the spatial distribution and spot homogeneity of immobilized glycan. The bioavailability of the surface-bound glycan was validated using a specific carbohydrate-binding protein (lectin) as characterized by Surface Plasmon Resonance Imaging (SPRi). Our results demonstrate that ToF-SIMS is capable of characterizing chemical features of carbohydrate-modified surfaces and, when complemented with SPRi, can play an enabling role in optimizing glycan microarray fabrication and performance.

  4. Method of electrode printing on one or more surfaces of a dielectric substrate

    KAUST Repository

    Neophytou, Marios

    2017-09-14

    Described herein is a method for printing electrodes surfaces of a dielectric substrate. Provided herein is a new method of depositing electrically conductive electrodes of any shape on flexible and/or rigid dielectric substrates/surfaces and devices so produced. In various embodiments, the devices can generate ionic wind, for example to remove dust or other debris or contaminants or to remove ice or humidity from a surface.

  5. Surface morphology modelling for the resistivity analysis of low temperature sputtered indium tin oxide thin films on polymer substrates

    International Nuclear Information System (INIS)

    Yin Xuesong; Tang Wu; Weng Xiaolong; Deng Longjiang

    2009-01-01

    Amorphous or weakly crystalline indium tin oxide (ITO) thin film samples have been prepared on polymethylmethacrylate and polyethylene terephthalate substrates by RF-magnetron sputtering at a low substrate temperature. The surface morphological and electrical properties of the ITO layers were measured by atomic force microscopy (AFM) and a standard four-point probe measurement. The effect of surface morphology on the resistivity of ITO thin films was studied, which presented some different variations from crystalline films. Then, a simplified film system model, including the substrate, continuous ITO layer and ITO surface grain, was proposed to deal with these correlations. Based on this thin film model and the AFM images, a quadratic potential was introduced to simulate the characteristics of the ITO surface morphology, and the classical Kronig-Penney model, the semiconductor electrical theory and the modified Neugebauer-Webb model were used to expound the detailed experimental results. The modelling equation was highly in accord with the experimental variations of the resistivity on the characteristics of the surface morphology.

  6. Titania nanotube arrays surface-modified with ZnO for enhanced photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Nageri, Manoj; Kalarivalappil, Vijila; Vijayan, Baiju K.; Kumar, Viswanathan, E-mail: vkumar10@yahoo.co.in

    2016-05-15

    Highlights: • Heterostructures of TNA/ZnO synthesised through potentiostatic anodisation followed by hydrothermal method. • Evaluation of morphological features of the heterostructure with hydrothermal processing time. • Correlation of photocatalytic activity of the hetrostructure with its morphology and surface texture. - Abstract: Well ordered titanium dioxide nanotube arrays (TNA) of average diameter 129 nm and wall thickness of 25 nm were fabricated through potentiostatic anodisation of titanium (Ti) metal substrates. Such TNA were subsequently surface-modified with various amounts of zinc oxide (ZnO) nanopowders using hydrothermal technique to obtain heterogeneous TNA/ZnO nanostructures. The crystalline phase and surface microstructure of the heterostructures were determined by X-ray diffraction, Raman spectroscopy and scanning electron microscopy respectively. The morphology of the heterostructures strongly depended on the hydrothermal conditions employed. The photocatalytic activity of the heterostructures have also been investigated and correlated with their surface morphology and texture.

  7. Optimized surface topography of thermoplastics blends modified by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Girish M., E-mail: varadgm@gmail.com, E-mail: girish.joshi@vit.ac.in; Sharma, Ajay; Pandey, Mayank; Khutia, Moumita [Polymer Nanocomposite Laboratory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014,Tamilnadu (India); Rao, N. Madhusudhana; Kaleemulla, S. [Thinfilm Laboratory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014,Tamilnadu (India); Kumar, Ramesh C. [Thermal and Automotive Division, School of Mechanical and Building Sciences, VIT University, Vellore-632014,Tamilnadu (India); Deshmukh, R. R. [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain); Cuberes, M. Teresa [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India)

    2016-05-23

    Polyacrilonitrile (PAN)/ Polyvinylfloride (PVDF) blends were modified by loading the graphene (0.5 to 1.5 wt %). The presence of graphene reveals the interesting surface properties. The decrease in surface roughness as function of graphene loading was confirmed by the topographic method of recording (two and three dimensional images) with atomic force microscope (AFM). The blends become smoother in nature due to occupied smaller surface area of graphene. This property may be useful for several applications in the marine, naval, nuclear domain and engineering applications as barrier medium.

  8. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.

    Science.gov (United States)

    Dawood, M K; Zheng, H; Liew, T H; Leong, K C; Foo, Y L; Rajagopalan, R; Khan, S A; Choi, W K

    2011-04-05

    We describe a new method of fabricating large-area, highly scalable, "hybrid" superhydrophobic surfaces on silicon (Si) substrates with tunable, spatially selective adhesion behavior by controlling the morphologies of Si nanowire arrays. Gold (Au) nanoparticles were deposited on Si by glancing-angle deposition, followed by metal-assisted chemical etching of Si to form Si nanowire arrays. These surfaces were chemically modified and rendered hydrophobic by fluorosilane deposition. Au nanoparticles with different size distributions resulted in the synthesis of Si nanowires with very different morphologies (i.e., clumped and straight nanowire surfaces). The difference in nanowire morphology is attributed to capillary force-induced nanocohesion, which is due to the difference in nanowire porosity. The clumped nanowire surface demonstrated the lotus effect, and the straighter nanowires demonstrated the ability to pin water droplets while maintaining large contact angles (i.e., the petal effect). The high contact angles in both cases are explained by invoking the Cassie-Baxter wetting state. The high adhesion behavior of the straight nanowire surface may be explained by a combination of attractive van der Waals forces and capillary adhesion. We demonstrate the spatial patterning of both low- and high-adhesion superhydrophobicity on the same substrate by the simultaneous synthesis of clumped and straight silicon nanowires. The demonstration of hybrid superhydrophobic surfaces with spatially selective, tunable adhesion behavior on single substrates paves the way for future applications in microfluidic channels, substrates for biologically and chemically based analysis and detection where it is necessary to analyze a particular droplet in a defined location on a surface, and as a platform to study in situ chemical mixing and interfacial reactions of liquid pearls.

  9. Investigation the effects of metallic substrate surfaces due to ion-plasma treatment

    International Nuclear Information System (INIS)

    Shulaev, V.M.; Taran, V.S.; Timoshenko, A.I.; Gasilin, V.V.

    2011-01-01

    It has been found correlation between modification effects and duration of ion-plasma cleaning the substrate surface with titanium ions. Experiments were carried out using serial vacuum-arc equipment ''Bulat-6'' at the stationary mode in non-filtered titanium plasma, which contained considerable quantity of evaporated material droplets. The polished cylinder substrates (diameter and height 9,14,20 mm) have been treated. The substrates were manufactured of stainless steel 12X18H10T and non-oxygen copper M00b. The substrates surface roughness after ion-plasma treatment has been investigated with electron microscope JEOL JSM-840 and optic interference non-contact profilograph- profilometer ''Micron-alpha''. According obtained results the surface of copper and stainless steel substrates has been treated to intensive modification, i.e. substrate surface after treatment significantly differs from initial one. During final ion-plasma treatment a number of effects occur: purification from surface oxides is accompanied with metallic surface ''contamination'' by the cathode material macrodroplets, surface micromelting accompanied by roughness increase, the surface layer annealing with noticeable decrease of hardness.

  10. Adhesion of Aeromonas hydrophila to Glass Surfaces Modified with Organosilanes

    Directory of Open Access Journals (Sweden)

    Dorota Kregiel

    2013-01-01

    Full Text Available The aim of this research is to study the adhesive properties of Aeromonas hydrophila to glass surfaces modified using four silanes with different reactive groups, namely (3-glycidoxypropyl diethoxysilane, (3-N,N-dimethyl-3-N-n hexadecylammoniopropyltrimethoxysilane chloride, (3-N,N,N-triethanolammoniopropyltrimethoxysilane chloride, and (3-N,N-dimethyl- 3-N-n-octylammoniopropyltrimethoxysilane chloride. The strain used in the study was A. hydrophila LOCK0968, isolated from the unchlorinated communal water distribution system in Poland. The effect of glass modification after chemical treatment was analyzed using surface tension measurement. The adhesive properties of the bacteria were studied in a water environment with a low concentration of organic compounds, using luminometric and microscopic methods. Additionally, the viability of the adherent bacterial cells was evaluated by counting the colony-forming units. The presence of active compounds in the culture medium after incubation with a modified carrier was verified using the Kirby- -Bauer method. Half of the chemically modified glass surfaces exhibited better characteristics in comparison with native glass. Among the examined modifying agents, (3-N,N,N-triethanolammoniopropyl trimethoxysilane chloride and (3-N,N-dimethyl-3-N-n octylammoniopropyl trimethoxysilane chloride showed the best antiadhesive and antibacterial properties. The most effective glass modification, with (3-N,N,N triethanolammoniopropyltrimethoxysilane chloride, was able to reduce the bacterial cell count by more than three orders of magnitude. The carriers had no significant effect on the viability of the free bacterial cells in the culture medium. Therefore, it can be said that the modified glass surface alone accounts for the antibacterial activity of the active organosilanes.

  11. Fabrication of a superhydrophobic surface on a wood substrate

    Science.gov (United States)

    Wang, Shuliang; Shi, Junyou; Liu, Changyu; Xie, Cheng; Wang, Chengyu

    2011-09-01

    A layer of lamellar superhydrophobic coating was fabricated on a wood surface through a wet chemical process. The superhydrophobic property of the wood surface was measured by contact angle (CA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). An analytical characterization revealed that the microscale roughness of the lamellar particles was uniformly distributed on the wood surface and that a zinc stearate monolayer (with the hydrophobic groups oriented outward) formed on the ZnO surface as the result of the reaction between stearic acid and ZnO. This process transformed the wood surface from hydrophilic to superhydrophobic: the water contact angle of the surface was 151°, and the sliding angle was less than 5°.

  12. A probabilistic approach to measure the strength of bone cell adhesion to chemically modified surfaces.

    Science.gov (United States)

    Rezania, A; Thomas, C H; Healy, K E

    1997-01-01

    Patterned surfaces with alternating regions of amino silanes [N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS)] and alkyl silanes [dimethyldichlorosilane (DMS)] have been used to alter the kinetics of spatial distribution of cells in vitro. In particular, we have previously observed the preferential spatial distribution of bone cells on the EDS regions of EDS/ DMS patterned surfaces (10). In this study, we examined whether the mechanism of spatial distribution of cells on the EDS regions was adhesion mediated. Homogeneous layers of EDS and DMS were immobilized on quartz substrates and characterized by contact angle. X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The strength of bone cell attachment to the modified substrates was examined using a radial flow apparatus, within either 20 min or 2 hr of cell incubation in the presence of serum. A Weibull distribution was chosen to characterize the strength of cell-substratum adhesion. Within 20 min of cell exposure, the strength of adhesion was significantly larger on EDS and clean surfaces, compared with DMS surfaces (p < 0.001). Within 2 hr of cell incubation, there was no statistical difference between the strength of cell adhesion to EDS, DMS, and clean surfaces. The results of this study suggest that the surface chemistry mediates adhesion-based spatial cell arrangement through a layer of adsorbed serum proteins.

  13. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    bonding (ARB)6 and surface mechanical attrition treatment. (SMAT).7. The basic principles of SMAT process is insertion of severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. Through SMAT process, hard balls with particular dimensions and materials hit in par- ticular directions to the ...

  14. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    International Nuclear Information System (INIS)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-01-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  15. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    Science.gov (United States)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-09-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  16. Effect of surface cleanliness of aluminium substrates on silicone rubber adhesion

    Science.gov (United States)

    Petersson, L.; Meier, P.; Kornmann, X.; Hillborg, H.

    2011-01-01

    The aim of this work was to determine the minimum surface cleanliness of aluminium substrates required for good and reproducible silicone rubber adhesion. Aluminium substrates were prepared, ranging from 'contaminated' to different degrees of 'cleaned'. The surface energy of the substrates was determined by contact angle measurements. The surfaces were also compared using simplified methods, such as a wettability test or by the use of inks with known surface tension. Silicone rubber was then compression moulded onto the cleaned and primed substrates. The silicone rubber adhesion was then evaluated by lap-shear testing, before and after ageing. The ageing step consisted of immersion of samples in boiling water for 100 h to evaluate the hydrolytic stability of the interfaces. The failure modes after lap-shear testing were determined using optical microscopy and scanning electron microscopy and were divided into three different categories: cohesive failure, adhesive failure or a mixture thereof. Energy dispersive x-ray mapping was useful in clarifying the failure modes by determining the position of the primer, which contained Ti. It was concluded that in order to obtain a strong and stable interface, exhibiting mainly cohesive failure between the aluminium substrate and silicone rubber, the surface energy of the substrate before priming should be >45 mJ m-2, including a polar component of >10 mJ m-2. This corresponded to a hydrophobicity class of the substrate of >=6, according to IEC 62073.

  17. Asperity Interaction and Substrate Deformation in Statistical Summation Models of Contact Between Rough Surfaces

    NARCIS (Netherlands)

    Vakis, Antonis I.

    A method is proposed to account for asperity interaction and bulk substrate deformation in models that utilize statistical summation of asperity forces to characterize contact between rough surfaces. Interaction deformations of noncontacting asperities are calculated based on the probability that

  18. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose.

    Science.gov (United States)

    Andresen, Martin; Stenstad, Per; Møretrø, Trond; Langsrud, Solveig; Syverud, Kristin; Johansson, Leena-Sisko; Stenius, Per

    2007-07-01

    We have prepared potentially permanent antimicrobial films based on surface-modified microfibrillated cellulose (MFC). MFC, obtained by disintegration of bleached softwood sulfite pulp in a homogenizer, was grafted with the quaternary ammonium compound octadecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride (ODDMAC) by a simple adsorption-curing process. Films prepared from the ODDMAC-modified MFC were characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) and tested for antibacterial activity against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. The films showed substantial antibacterial capacity even at very low concentrations of antimicrobial agent immobilized on the surface. A zone of inhibition test demonstrated that no ODDMAC diffused into the surroundings, verifying that the films were indeed of the nonleaching type.

  19. In situ diazonium-modified flexible ITO-coated PEN substrates for the deposition of adherent silver-polypyrrole nanocomposite films.

    Science.gov (United States)

    Samanta, Soumen; Bakas, Idriss; Singh, Ajay; Aswal, Dinesh K; Chehimi, Mohamed M

    2014-08-12

    In this paper, we report a simple and versatile process of electrografting the aryl multilayers onto indium tin oxide (ITO)-coated flexible poly(ethylene naphthalate) (PEN) substrates using a diazonium salt (4-pyrrolylphenyldiazonium) solution, which was generated in situ from a reaction between the 4-(1H-pyrrol-1-yl)aniline precursor and sodium nitrite in an acidic medium. The first aryl layer bonds with the ITO surface through In-O-C and Sn-O-C bonds which facilitate the formation of a uniform aryl multilayer that is ∼8 nm thick. The presence of the aryl multilayer has been confirmed by impedance spectroscopy as well as by electron-transfer blocking measurements. These in situ diazonium-modified ITO-coated PEN substrates may find applications in flexible organic electronics and sensor industries. Here we demonstrate the application of diazonium-modified flexible substrates for the growth of adherent silver/polpyrrole nanocomposite films using surface-confined UV photopolymerization. These nanocomposite films have platelet morphology owing to the template effect of the pyrrole-terminated aryl multilayers. In addition, the films are highly doped (32%). This work opens new areas in the design of flexible ITO-conductive polymer hybrids.

  20. A histochemical method using a substrate of beta-glucuronidase for detection of genetically modified papaya.

    Science.gov (United States)

    Wakui, Chiseko; Akiyama, Hiroshi; Watanabe, Takahiro; Fitch, Maureen M; Uchikawa, Seiji; Ki, Masami; Takahashi, Kunihiko; Chiba, Ryoko; Fujii, Akemi; Hino, Akihiro; Maitani, Tamio

    2004-02-01

    A histochemical assay for detecting genetically modified (GM) papaya (derived from Line 55-1) is described. GM papaya, currently undergoing a safety assessment in Japan, was developed using a construct that included a beta-glucuronidase (GUS) reporter gene linked to a virus coat protein (CP) gene. Histochemical assay was used to visualize the blue GUS reaction product from transgenic seed embryos. Twelve embryos per fruit were extracted from the papaya seeds using a surgical knife. The embryos were incubated with the substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide (X-Gluc) in a 96-well microtiter plate for 10-15 hours at 37 degrees C. Seventy-five percent of GM papaya embryos should turn blue theoretically. The histochemical assay results were completely consistent with those from a qualitative polymerase chain reaction (PCR) method developed by this laboratory. Furthermore, the method was validated in a five-laboratory study. The method for detection of GM papaya is rapid and simple, and does not require use of specialized equipment.

  1. Corrosion resistance of the AISI 304, 316 and 321 stainless steel surfaces modified by laser

    Science.gov (United States)

    Szubzda, B.; Antończak, A.; Kozioł, P.; Łazarek, Ł.; Stępak, B.; Łęcka, K.; Szmaja, A.; Ozimek, M.

    2016-02-01

    The article presents the analysis results of the influence of laser fluence on physical and chemical structure and corrosion resistance of stainless steel surfaces modified by irradiating with nanosecond-pulsed laser. The study was carried out for AISI 304, AISI 316 and AISI 321 substrates using Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence (10÷400 J/cm2). The electrochemical composition (by EDX) and surface morphology (by SEM) of the prepared surfaces were carried out. Finally, corrosion resistance was analyzed by a potentiodynamic electrochemical test. The obtained results showed very high corrosion resistance for samples made by fluency of values lower than 100 J/cm2. In this case, higher values of corrosion potentials and breakdown potentials were observed. A correlation between corrosion phenomena, the range of laser power (fluence) and the results of chemical and structural tests were also found.

  2. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    Science.gov (United States)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  3. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  4. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  5. Micro/nano engineering on stainless steel substrates to produce superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beckford, Samuel; Zou Min, E-mail: mzou@uark.edu

    2011-12-30

    Creating micro-/nano-scale topography on material surfaces to change their wetting properties has been a subject of much interest in recent years. Wenzel in 1936 and Cassie and Baxter in 1944 proposed that by microscopically increasing the surface roughness of a substrate, it is possible to increase its hydrophobicity. This paper reports the fabrication of micro-textured surfaces and nano-textured surfaces, and the combination of both on stainless steel substrates by sandblasting, thermal evaporation of aluminum, and aluminum-induced crystallization (AIC) of amorphous silicon (a-Si). Meanwhile, fluorinated carbon films were used to change the chemical composition of the surfaces to render the surfaces more hydrophobic. These surface modifications were investigated to create superhydrophobic surfaces on stainless steel substrates. The topography resulting from these surface modifications was analyzed by scanning electron microscopy and surface profilometry. The wetting properties of these surfaces were characterized by water contact angle measurement. The results of this study show that superhydrophobic surfaces can be produced by either micro-scale surface texturing or nano-scale surface texturing, or the combination of both, after fluorinated carbon film deposition.

  6. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  7. Effect of laser modified surface microtopochemistry on endothelial cell growth.

    Science.gov (United States)

    Duncan, A C; Rouais, F; Lazare, S; Bordenave, L; Baquey, Ch

    2007-02-15

    The introduction of microelectronics technology in the area of biological sciences has brought forth previously unforeseeable applications such as DNA or protein biochips, miniaturized, multiparametric biosensors for high performance multianalyte assays, DNA sequencing, biocomputers, and substrates for controlled cell growth (i.e. tissue engineering). We developed and investigated a new method using "cold" excimer laser beam technology combined with microlithographical techniques to create surfaces with well defined 3D microdomains in order to delineate critical microscopic surface features governing cell-material interactions. Microfabricated surfaces with microgrooves 30-3 microm deep, 10 - 1 microm wide spaced 30 microm apart were obtained with micron resolution, by "microsculpturing" polymer model surfaces using a computer controlled laser KrF excimer beam coupled with a microlithographic projection technique. The laser beam after exiting a mask was focused onto the polymer target surface via an optical setup allowing for a 10-fold reduction of the mask pattern. Various 3D micropatterned features were obtained at the micron level. Reproducible submicron features could also be obtained using this method. Subsequently, model human umbilical endothelial cells (HUVEC) were cultured on the laser microfabricated surfaces in order to study the effects of specific microscopic surface features on cell deposition and orientation. Cell deposition patterns were found to be microstructure dependant, and showed cell orientation dependency for features in the cell range dimension, a behaviour significantly different from that of a previously studied cell model (osteoprogenitor cell). This model may be a promising in so far as it is very rapid (a time frame less than a second per square centimeter of micropatterned surface) and provides further insights into the effects of surface microtopography on cell response with possible applications in the field of biosensors

  8. Laser writing of single-crystalline gold substrates for surface enhanced Raman spectroscopy

    Science.gov (United States)

    Singh, Astha; Sharma, Geeta; Ranjan, Neeraj; Mittholiya, Kshitij; Bhatnagar, Anuj; Singh, B. P.; Mathur, Deepak; Vasa, Parinda

    2017-07-01

    Surface enhanced Raman scattering (SERS) spectroscopy, a powerful contemporary tool for studying low-concentration analytes via surface plasmon induced enhancement of local electric field, is of utility in biochemistry, material science, threat detection, and environmental studies. We have developed a simple, fast, scalable, and relatively low-cost optical method of fabricating and characterizing large-area, reusable and broadband SERS substrates with long storage lifetime. We use tightly focused, intense infra-red laser pulses to write gratings on single-crystalline, Au (1 1 1) gold films on mica which act as SERS substrates. Our single-crystalline SERS substrates compare favourably, in terms of surface quality and roughness, to those fabricated in poly-crystalline Au films. Tests show that our SERS substrates have the potential of detecting urea and 1,10-phenantroline adulterants in milk and water, respectively, at 0.01 ppm (or lower) concentrations.

  9. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    Science.gov (United States)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  10. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  11. Synthesis and Evaluation of Zeolite Surface-Modified Perlite

    Directory of Open Access Journals (Sweden)

    Kasai Makoto

    2017-01-01

    Full Text Available Perlite is volcanic glass mainly composed of amorphous aluminum silicate, mainly composed SiO2 and Al2O3 with less impurities such as heavy metals. Amorphous (glassy perlite is used in lightweight aggregate and insulation. In addition, it has also been used as a filter aid by grinding the expanded perlite. However, it has not been used as environmental cleanup materials, because the ion exchange capacity of the perlite is very low. In this study, we tried to synthesize the hybrid filter aid with chemical adsorption capacity by synthesizing the zeolite on the surface of the perlite. As a result, by using the hydrothermal synthesis method, zeolite surface modified perlite was synthesized in which the LTA type zeolites were generated on the surface of the perlite.

  12. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  13. Deposition of silver nanoleaf film onto chemical vapor deposited diamond substrate and its application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jianwen [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China); College of Chemistry and Chemical Engineering, Jishou University, Jishou, Hunan Province, 416000 (China); Tian Ruhai [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China); Zhi Jinfang [Laboratory of Organic Optoelectronic Functional Materials and Molecular Engineering, Technical Institute of Physics and Chemistry and Graduate University of Chinese Academy of Sciences, No. 2, Beiyitiao, Zhong-guan-cun, Haidian District, Beijing, 100080 (China)], E-mail: zhi-mail@mail.ipc.ac.cn

    2008-04-30

    An approach for simultaneously synthesizing and immobilizing silver nanoleaves (SNLs) on {gamma}-mercaptopropyltrimethyoxysilane (MPTS)-modified chemical vapor deposited (CVD) diamond film surface has been developed. As-grown diamond film surface was oxidized by exposing to UV irradiation in oxygen gas atmosphere, and then the oxygen-terminated diamond film was dipped into a methanol solution of MPTS to form a self-assembled MPTS monolayer on the diamond film surface. SNLs were then deposited on diamond film surfaces by an electroless process. The morphology of SNL film was characterized by scanning electron microscopy. The thickness of SNL layer deposited onto the CVD diamond substrate increased with increasing the deposition time and the formation mechanism of SNL films was also discussed. Their performance as surface-enhanced Raman scattering (SERS) substrates was evaluated by using rhodamine 6G (R6G) as the probe molecule. Compared with self-assembled silver nanoparticle film and silver film from the mirror reaction, the SERS signal of R6G was obviously improved on the SNL films.

  14. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.

    Science.gov (United States)

    Kogje, Anushree B; Ghosalkar, Anand

    2017-06-01

    Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5' and 3' delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L -1  h -1 ) over the control strain XP (81 mg L -1  h -1 ). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L -1  h -1 and titre of 47 g L -1 of xylitol at 12 g L -1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol -1 ) was significantly lower than glucose (23.7 mol mol -1 ). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.

  15. Paper based Flexible and Conformal SERS Substrate for Rapid Trace Detection on Real-world Surfaces

    Science.gov (United States)

    Singamaneni, Srikanth; Lee, Chang; Tian, Limei

    2011-03-01

    One of the important but often overlooked considerations in the design of surface enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. We demonstrate a novel SERS substrate based on common filter paper adsorbed with gold nanorods, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates. We demonstrate the detection of trace amounts of analyte (140 pg spread over 4 cm2) by simply swabbing the surface under investigation with the novel SERS substrate. The hierarchical fibrous structure of paper serves as a 3D vasculature for easy uptake and transport of the analytes to the electromagnetic hot spots in the paper. Simple yet highly efficient and cost effective SERS substrate demonstrated here brings SERS based trace detection closer to real-world applications. We acknowledge the financial support from Center for Materials Innovation at Washington University.

  16. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  17. Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber

    International Nuclear Information System (INIS)

    Bagheri, H.; Ayazi, Z.; Sistani, H.

    2011-01-01

    A new technique is introduced for preparation of an unbreakable fiber using gold wire as a substrate for solid phase microextraction (SPME). A gold wire is used as a solid support, onto which a first film is deposited that consists of a two-dimensional polymer obtained by hydrolysis of a self-assembled monolayer of 3-(trimethoxysilyl)-1-propanthiol. This first film is covered with a layer of 3-(triethoxysilyl)-propylamine. Next, a stationary phase of oxidized multi-walled carbon nanotubes was chemically bound to the surface. The synthetic strategy was verified by Fourier transform infrared spectroscopy and scanning electron microscopy. Thermal stability of new fiber was examined by thermogravimetric analysis. The applicability of the novel coating was verified by its employment as a SPME fiber for isolation of diazinon and fenthion, as model compounds. Parameters influencing the extraction process were optimized to result in limits of detection as low as 0.2 ng mL -1 for diazinon, and 0.3 ng mL -1 for fenthion using the time-scheduled selected ion monitoring mode. The method was successfully applied to real water, and the recoveries for spiked samples were 104% for diazinon and 97% for fenthion. (author)

  18. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  19. Flexible Surface Acoustic Wave Device with AlN Film on Polymer Substrate

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2012-01-01

    Full Text Available Surface acoustic wave device with c-axis-oriented aluminum nitride (AlN piezoelectric thin films on polymer substrates can be potentially used for development of flexible sensors, flexible microfluidic applications, microsystems, and lab-on-chip systems. In this work, the AlN films have been successfully deposited on polymer substrates using the DC reactive magnetron-sputtering method at room temperature, and the XRD, SEM, and AFM methods reveal that low deposition pressure is beneficial to the highly c-axis-oriented AlN film on polymer substrates. Studies toward the development of AlN thin film-based flexible surface acoustic wave devices on the polymer substrates are initiated and the experimental and simulated results demonstrate the devices showing the acoustic wave velocity of 9000–10000 m/s, which indicate the AlN lamb wave.

  20. Electron microscopy of an aluminum layer grown on the vicinal surface of a gallium arsenide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I. [National Research University of Electronic Technology “MIET” (Russian Federation); Kazakov, I. P. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Seibt, M. [Universität Göttingen, IV. Physikalisches Institut (Germany)

    2015-03-15

    A thin Al layer grown by molecular-beam epitaxy on a misoriented GaAs (100) substrate is studied by transmission electron microscopy. Electron diffraction data and bright-field, dark-field, and high-resolution images show that, in the layer, there are Al grains of three types of crystallographic orientation: Al (100), Al (110), and Al (110)R. The specific structural features of the interfaces between the differently oriented grains and substrate are studied by digital processing of the high-resolution images. From quantitative analysis of the dark-field images, the relative content and sizes of the differently oriented grains are determined. It is found that atomic steps at the substrate surface cause an increase in the fraction and sizes of Al (110)R grains and a decrease in the fraction of Al (100) grains, compared to the corresponding fractions and sizes in the layer grown on a singular substrate surface.

  1. Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Siegel Jakub

    2011-01-01

    Full Text Available Abstract This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BFD from the solutions with various concentrations. BFD was also used for preparation of sandwich structures with Au or Ag nanoparticles by two different procedures. Results showed that PTFE can be used for fabrication of SERS active substrate with easy handle properties at low cost. This substrate was sufficient for the measurement of SERS spectrum of BFD even at 10-8 mol/l concentration.

  2. Modified Critical State Two-Surface Plasticity Model for Sands

    DEFF Research Database (Denmark)

    Sørensen, Kris Wessel; Nielsen, Søren Kjær; Shajarati, Amir

    This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation presented by Manzari and Dafalias (1997) and has the ability to correctly model...... the stress-strain response of sands. The model is versatile and can be used to simulate drained and undrained conditions, due to the fact that the model can efficiently calculate change in void ratio as well as pore pressure. The objective of the constitutive model is to investigate if the numerical...

  3. Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Raczkowska, Joanna, E-mail: joanna.raczkowska@uj.edu.pl [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Prauzner-Bechcicki, Szymon [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Lukes, Jaroslav; Sepitka, Josef [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague (Czech Republic); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Reymonta 19, 30-049 Kraków (Poland); Awsiuk, Kamil [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Paluszkiewicz, Czesława; Pabijan, Joanna; Lekka, Małgorzata [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Budkowski, Andrzej [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland)

    2016-12-15

    Highlights: • Series of PDMS substrates with monotonically tuned elasticity were produced. • Method to estimate PDMS stiffness based on AFM force-distance curves was shown. • No change in surface properties of PDMS other than elasticity was demonstrated. • MTT performed for cancer cells showed impact of PDMS elasticity on cells behavior. - Abstract: Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent.

  4. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    Science.gov (United States)

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  5. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    Science.gov (United States)

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  6. Polymer nanopillar-gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes.

    Science.gov (United States)

    Picciolini, Silvia; Mehn, Dora; Morasso, Carlo; Vanna, Renzo; Bedoni, Marzia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Prosperi, Davide; Tresoldi, Cristina; Ciceri, Fabio; Gramatica, Furio

    2014-10-28

    In our study, 2D nanopillar arrays with plasmonic crystal properties are optimized for surface-enhanced Raman spectroscopy (SERS) application and tested in a biochemical assay for the simultaneous detection of multiple genetic leukemia biomarkers. The special fabrication process combining soft lithography and plasma deposition techniques allows tailoring of the structural and chemical parameters of the crystal surfaces. In this way, it has been possible to tune the plasmonic resonance spectral position close to the excitation wavelength of the monochromatic laser light source in order to maximize the enhancing properties of the substrate. Samples are characterized by scanning electron microscopy and reflectance measurements and tested for SERS activity using malachite green. Besides, as the developed substrate had been prepared on a simple glass slide, SERS detection from the support side is also demonstrated. The optimized substrate is functionalized with thiol-modified capture oligonucleotides, and concentration-dependent signal of the target nucleotide is detected in a sandwich assay with labeled gold nanoparticles. Gold nanoparticles functionalized with different DNA and various Raman reporters are applied in a microarray-based assay recognizing a disease biomarker (Wilms tumor gene) and housekeeping gene expressions in the same time on spatially separated microspots. The multiplexing performance of the SERS-based bioassay is illustrated by distinguishing Raman dyes based on their complex spectral fingerprints.

  7. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, Simferopol, 95007 (Ukraine); Kotov, V.A. [V.A. Kotelnikov Institute of Radio Engineering and Electronics, RAS, 11 Mohovaya Street, Moscow, 125009 (Russian Federation); Balabanov, D.E. [Moscow Institute of Physics and Technology, Dolgoprudny, 141700 (Russian Federation); Sharay, I.V.; Salyuk, O.Y. [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine); Vasiliev, M. [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027 (Australia); Golub, V.O., E-mail: v_o_golub@yahoo.com [Institute of Magnetism, NAS of Ukraine, 03142, Kiev (Ukraine)

    2014-07-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd{sub 3}Ga{sub 5}O{sub 12} substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar{sup +} ion beams is a result of the substrate surface amorphization caused by the ion bombardment.

  8. Modification of Bi:YIG film properties by substrate surface ion pre-treatment

    International Nuclear Information System (INIS)

    Shaposhnikov, A.N.; Prokopov, A.R.; Karavainikov, A.V.; Berzhansky, V.N.; Mikhailova, T.V.; Kotov, V.A.; Balabanov, D.E.; Sharay, I.V.; Salyuk, O.Y.; Vasiliev, M.; Golub, V.O.

    2014-01-01

    Highlights: • Effects of substrates ion beam treatment on magnetoptical properties Bi:YIG films. • Substrate surface damage results in sign inversion of the magneto-optical effects. • Atomically smooth films growth takes place on low energy ions treated substrates. • High energy ions treatment results in selective nucleation mechanism of the growth. - Abstract: The effect of a controlled ion beam pre-treatment of (1 1 1)-oriented Gd 3 Ga 5 O 12 substrates on the magneto-optical properties and surface morphology of the ultrathin bismuth-substituted yttrium–iron garnet films with a composition Bi 2.8 Y 0.2 Fe 5 O 12 was studied. It has been shown that the observed sign inversion of magneto-optical effects (Faraday rotation and magnetic circular dichroism) observed in films that were deposited on the GGG substrate pre-treated by 1 keV and 4 keV Ar + ion beams is a result of the substrate surface amorphization caused by the ion bombardment

  9. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.

    Science.gov (United States)

    Lee, Chang H; Hankus, Mikella E; Tian, Limei; Pellegrino, Paul M; Singamaneni, Srikanth

    2011-12-01

    We report a novel surface enhanced Raman scattering (SERS) substrate platform based on a common filter paper adsorbed with plasmonic nanostructures that overcomes many of the challenges associated with existing SERS substrates. The paper-based design results in a substrate that combines all of the advantages of conventional rigid and planar SERS substrates in a dynamic flexible scaffolding format. In this paper, we discuss the fabrication, physical characterization, and SERS activity of our novel substrates using nonresonant analytes. The SERS substrate was found to be highly sensitive, robust, and amiable to several different environments and target analytes. It is also cost-efficient and demonstrates high sample collection efficiency and does not require complex fabrication methodologies. The paper substrate has high sensitivity (0.5 nM trans-1,2-bis(4-pyridyl)ethene (BPE)) and excellent reproducibility (~15% relative standard deviation (RSD)). The paper substrates demonstrated here establish a novel platform for integrating SERS with already existing analytical techniques such as chromatography and microfluidics, imparting chemical specificity to these techniques.

  10. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications.

    Science.gov (United States)

    Paladini, F; Picca, R A; Sportelli, M C; Cioffi, N; Sannino, A; Pollini, M

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    Science.gov (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  12. Design and fabrication of substrates with microstructures for bio-applications through the modified optical disc process

    Science.gov (United States)

    Chiu, Kuo-Chi; Chang, Sheng-Li; Huang, Chu-Yu; Guan, Hann-Wen

    2011-05-01

    The modified optical disc process has been investigated and demonstrated to enable fast prototyping in fabricating molds and replicating substrates with various microstructures including micro-chambers and micro-channels. A disc-like microfluidic device was created and the testing results showed good performance in bonding and packaging. The switching of the nozzle-like micro-valve was also validated to work well. Furthermore, the relevant procedures of liquid samples loading, separating and mixing were also accomplished through food experiments.

  13. Interaction of surface-modified silica nanoparticles with clay minerals

    Directory of Open Access Journals (Sweden)

    Cigdem Omurlu

    2016-05-01

    Full Text Available Abstract In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate, cationic (quaternary ammonium (quat, and nonionic (polyethylene glycol (PEG surfactant. We employed ultraviolet–visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  14. Modified Contact Line Dynamics about a Surface-Piercing Hydrofoil

    Science.gov (United States)

    Grivel, Morgane; Jeon, David; Gharib, Morteza

    2016-11-01

    The contact line around a surface-piercing hydrofoil is modified by introducing alternating hydrophobic and hydrophilic bands along one side of the body. These bands are either aligned perpendicular or parallel to the flow direction. The other side of the hydrofoil is un-patterned and retains its original, uniformly hydrophilic properties. The hydrofoil is mounted onto air bearings, such that it can freely move side-to-side in the water tunnel. A force sensor is attached to the setup via a universal joint in order to measure the forces acting on the body for several Reynolds numbers (ranging from 104 to 105) and angles of attack (ranging from -10o to 10o) . Cameras are also used to record the resulting flow structures and free surface elevation. The generation of wave trains and an altered free-surface elevation (also associated with the generation of surface waves) are observed over a wide range flow conditions. Force measurements elucidate how introducing these flow features impacts the forces acting on the hydrofoil, specifically with regards to the generation of lateral forces due to the asymmetric wetting conditions on either side of the hydrofoil. Work is funded by ONR Grant N00014-11-1-0031 and NSF GRFP Grant DGE-1144469.

  15. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  16. Flavonoid-modified surfaces: multifunctional bioactive biomaterials with osteopromotive, anti-inflammatory, and anti-fibrotic potential.

    Science.gov (United States)

    Córdoba, Alba; Satué, María; Gómez-Florit, Manuel; Hierro-Oliva, Margarita; Petzold, Christiane; Lyngstadaas, Staale P; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2015-03-11

    Flavonoids are small polyphenolic molecules of natural origin with antioxidant, anti-inflammatory, and antibacterial properties. Here, a bioactive surface based on the covalent immobilization of flavonoids taxifolin and quercitrin on titanium substrates is presented, using (3-aminopropyl)triethoxysilane (APTES) as coupling agent. FTIR and XPS measurements confirm the grafting of the flavonoids to the surfaces. Using 2-aminoethyl diphenylborinate (DPBA, a flavonoid-specific dye), the modified surfaces are imaged by fluorescence microscopy. The bioactivity of the flavonoid-modified surfaces is evaluated in vitro with human umbilical cord derived mesenchymal stem cells (hUC-MSCs) and human gingival fibroblasts (HGFs) and compared to that of simple flavonoid coatings prepared by drop casting. Flavonoid-modified surfaces show anti-inflammatory and anti-fibrotic potential on HGF. In addition, Ti surfaces covalently functionalized with flavonoids promote the differentiation of hUC-MSCs to osteoblasts--enhancing the expression of osteogenic markers, increasing alkaline phosphatase activity and calcium deposition; while drop-casted surfaces do not. These findings could have a high impact in the development of advanced implantable medical devices like bone implants. Given the broad range of bioactivities of flavonoid compounds, these surfaces are ready to be explored for other biomedical applications, e.g., as stent surface or tumor-targeted functionalized nanoparticles for cardiovascular or cancer therapies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The interplay between surface charging and microscale roughness during plasma etching of polymeric substrates

    Science.gov (United States)

    Memos, George; Lidorikis, Elefterios; Kokkoris, George

    2018-02-01

    The surface roughness developed during plasma etching of polymeric substrates is critical for a variety of applications related to the wetting behavior and the interaction of surfaces with cells. Toward the understanding and, ultimately, the manipulation of plasma induced surface roughness, the interplay between surface charging and microscale roughness of polymeric substrates is investigated by a modeling framework consisting of a surface charging module, a surface etching model, and a profile evolution module. The evolution of initially rough profiles during plasma etching is calculated by taking into account as well as by neglecting charging. It is revealed, on the one hand, that the surface charging contributes to the suppression of root mean square roughness and, on the other hand, that the decrease of the surface roughness induces a decrease of the charging potential. The effect of charging on roughness is intense when the etching yield depends solely on the ion energy, and it is mitigated when the etching yield additionally depends on the angle of ion incidence. The charging time, i.e., the time required for reaching a steady state charging potential, is found to depend on the thickness of the polymeric substrate, and it is calculated in the order of milliseconds.

  18. Correlation between beam on Winkler-Pasternak foundation and beam on elastic substrate medium with inclusion of microstructure and surface effects

    International Nuclear Information System (INIS)

    Limkatanyu, Suchart; Ponbunyanon, Paitoon; Prachasaree, Woraphot; Kuntiyawichai, Kittisak; Kwon, Min Ho

    2014-01-01

    A novel beam-elastic substrate element with inclusion of microstructure and surface energy effects is proposed in this paper. The modified couple stress theory is employed to account for the microstructure-dependent effect of the beam bulk material while GurtinMurdoch surface theory is used to capture the surface energy-dependent size effect. Interaction mechanism between the beam and the surrounding substrate medium is represented by the Winkler foundation model. The governing differential equilibrium and compatibility equations of the beam-elastic substrate system are consistently derived based on virtual displacement and virtual force principles, respectively. Both essential and natural boundary conditions of the system are also obtained. Two modified Tonti's diagrams are presented to provide the big picture of both displacement-based and force-based formulations of the system. Due to similarity between the current problem and the one related to the beam on Winkler-Pasternak foundation, the so-called 'natural' beam-Winkler-Pasternak foundation element coined by the authors is employed to perform two numerical simulations to study the characteristics and behaviors of a beam substrate system with inclusion of microstructure and surface effects.

  19. Preparation of Stable Superhydrophobic Coatings on Wood Substrate Surfaces via Mussel-Inspired Polydopamine and Electroless Deposition Methods

    Directory of Open Access Journals (Sweden)

    Kaili Wang

    2017-06-01

    Full Text Available Mussel-inspired polydopamine (PDA chemistry and electroless deposition approaches were used to prepare stable superhydrophobic coatings on wood surfaces. The as-formed PDA coating on a wood surface exhibited a hierarchical micro/nano roughness structure, and functioned as an “adhesive layer” between the substrate and a metallic film by the metal chelating ability of the catechol moieties on PDA, allowing for the formation of a well-developed micro/nanostructure hierarchical roughness. Additionally, the coating acted as a stable bridge between the substrate and hydrophobic groups. The morphology and chemical components of the prepared superhydrophobic wood surfaces were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FT-IR spectroscopy, and X-ray photoelectron spectroscopy (XPS. The PDA and octadecylamine (OA modified surface showed excellent superhydrophobicity with a water contact angle (CA of about 153° and a rolling angle (RA of about 9°. The CA further increased to about 157° and RA reduced to about 5° with the Cu metallization. The superhydrophobic material exhibited outstanding stability in harsh conditions including ultraviolet aging, ultrasonic washing, strong acid-base and organic solvent immersion, and high-temperature water boiling. The results suggested that the PDA/OA layers were good enough to confer robust, degradation-resistant superhydrophobicity on wood substrates. The Cu metallization was likely unnecessary to provide significant improvements in superhydrophobic property. However, due to the amazing adhesive capacity of PDA, the electroless deposition technique may allow for a wide range of potential applications in biomimetic materials.

  20. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    Science.gov (United States)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  1. Surface-modified low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Beom; Holme, Timothy P. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Guer, Turgut M. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2011-12-20

    This paper reports both experimental and theoretical results of the role of surface modification on the oxygen reduction reaction in low-temperature solid oxide fuel cells (LT-SOFC). Epitaxial ultrathin films of yttria-doped ceria (YDC) cathode interlayers (<10-130 nm) are grown by pulsed laser deposition (PLD) on single-crystalline YSZ(100). Fuel cell current-voltage measurements and electrochemical impedance spectroscopy are performed in the temperature range of 350 C {approx} 450 C. Quantum mechanical simulations of oxygen incorporation energetics support the experimental results and indicate a low activation energy of only 0.07 eV for YDC, while the incorporation reaction on YSZ is activated by a significantly higher energy barrier of 0.38 eV. Due to enhanced oxygen incorporation at the modified Pt/YDC interface, the cathodic interface resistance is reduced by two-fold, while fuel cell performance shows more than a two-fold enhancement with the addition of an ultrathin YDC interlayer at the cathode side of an SOFC element. The results of this study open up opportunities for improving cell performance, particularly of LT-SOFCs by adopting surface modification of YSZ surface with catalytically superior, ultrathin cathodic interlayers. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.

    Science.gov (United States)

    Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H

    2012-04-09

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

  3. Silver-coated Si nanograss as highly sensitive surface-enhanced Raman spectroscopy substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing; Kuo, Huei Pei; Hu, Min; Li, Zhiyong; Williams, R.S. [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Ou, Fung Suong [Hewlett-Packard Laboratories, Information and Quantum Systems Laboratory, Palo Alto, CA (United States); Rice University, Department of Applied Physics, Houston, TX (United States); Stickle, William F. [Hewlett-Packard Company, Advanced Diagnostic Lab, Corvallis, OR (United States)

    2009-09-15

    We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area ({proportional_to}1 cm x 1 cm) with an average EF (enhancement factor) of 4.2 x 10{sup 8} for 4-mercaptophenol probe molecules. (orig.)

  4. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  5. Influence of ZnSe:Te substrate's surface morphology on their optical properties

    Directory of Open Access Journals (Sweden)

    Makhniy V. P.

    2016-12-01

    Full Text Available The authors have experimentally established, that etching of ZnSe:Te substrates in CrO3:HCl=2:1 and H2SO4:H2O2=3:1 solutions leads to formation of mirror and matte surfaces. Analysis of the topogram obtained by an atomic power microscope showed that matte surface is a set of equally oriented pyramids with basis size 2-5 μm and each of them is association of nanopyramids with 10-100 nm lateral size. In such samples wide photoluminescence band at 2.7-3.8 eV is a result of dimensional quantization in smaller nanocrystals. The latter also causes an observed decrease of transmission coefficient of substrates with matte surface in comparison to those with mirror surface owing to increase of light scattering processes.

  6. Methods to introduce sub-micrometer, symmetry-breaking surface corrugation to silicon substrates to increase light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eon; Hoard, Brittany R.; Han, Sang M.; Ghosh, Swapnadip

    2018-04-10

    Provided is a method for fabricating a nanopatterned surface. The method includes forming a mask on a substrate, patterning the substrate to include a plurality of symmetry-breaking surface corrugations, and removing the mask. The mask includes a pattern defined by mask material portions that cover first surface portions of the substrate and a plurality of mask space portions that expose second surface portions of the substrate, wherein the plurality of mask space portions are arranged in a lattice arrangement having a row and column, and the row is not oriented parallel to a [110] direction of the substrate. The patterning the substrate includes anisotropically removing portions of the substrate exposed by the plurality of spaces.

  7. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    Directory of Open Access Journals (Sweden)

    Sharma Vipul

    2017-01-01

    Full Text Available Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  8. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Thieu Thi Tien [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Faculty of Chemical Engineering and Food Technology, Ba Ria-Vung Tau University, Vung Tau (Viet Nam); Mahesh, K.P.O. [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lin, Pao-Hung [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tai, Yian, E-mail: ytai@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2017-05-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.

  9. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    International Nuclear Information System (INIS)

    Vo, Thieu Thi Tien; Mahesh, K.P.O.; Lin, Pao-Hung; Tai, Yian

    2017-01-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.

  10. Improved Composites Using Crosslinked, Surface-Modified Carbon Nanotube Materials

    Science.gov (United States)

    Baker, James Stewart

    2014-01-01

    Individual carbon nanotubes (CNTs) exhibit exceptional tensile strength and stiffness; however, these properties have not translated well to the macroscopic scale. Premature failure of bulk CNT materials under tensile loading occurs due to the relatively weak frictional forces between adjacent CNTs, leading to poor load transfer through the material. When used in polymer matrix composites (PMCs), the weak nanotube-matrix interaction leads to the CNTs providing less than optimal reinforcement.Our group is examining the use of covalent crosslinking and surface modification as a means to improve the tensile properties of PMCs containing carbon nanotubes. Sheet material comprised of unaligned multi-walled carbon nanotubes (MWCNT) was used as a drop-in replacement for carbon fiber in the composites. A variety of post-processing methods have been examined for covalently crosslinking the CNTs to overcome the weak inter-nanotube shear interactions, resulting in improved tensile strength and modulus for the bulk sheet material. Residual functional groups from the crosslinking chemistry may have the added benefit of improving the nanotube-matrix interaction. Composites prepared using these crosslinked, surface-modified nanotube sheet materials exhibit superior tensile properties to composites using the as received CNT sheet material.

  11. Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development.

    Science.gov (United States)

    Guex, A G; Kocher, F M; Fortunato, G; Körner, E; Hegemann, D; Carrel, T P; Tevaearai, H T; Giraud, M N

    2012-04-01

    Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  13. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Paladini, F.; Picca, R.A.; Sportelli, M.C.; Cioffi, N.; Sannino, A.; Pollini, M.

    2015-01-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag 2 O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  14. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  15. STUDY OF SURFACE MODIFIED POLYMERS IN THE MODIFICATION OF NANOMATERIALS

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available The comparative study of change of surface tension of solutions of some commercial rubbers before and after thermal ageing technique du-Nui, analyzed the features of change of surface tension of solutions of various rubbers in the presence of a mixture of fullerenes. Calculations of the Gibbs energy and the analysis of the obtained data to predict the behavior of polymer systems when changes are made to mix of fullerenes in a wide concentration range. When comparing the results of changes in Gibbs energy and the surface tension in fluids rubbers shown that mentioned above in solutions of elastomers aged, than the control. This fact confirms the initial chapeau of physic-chemical interactions of molecules fullerenes by segments of the Kuna and end groups of the polymer chains, as it is known that when thermal-oxidative degradation of rubbers, respectively the number of segments of the Kuna and branched loose ends of macromolecules that are free to react with fullerenes in solution, free from spatial constraints. A comparative analysis of the interaction of rubbers with different chemical composition with double branches has shown that it is easier to just react and has minimum energy polibutadien interaction that has to do with lack of branching and no radicals in its structure and in the backbone chain. The maximum energy of interaction with Fullerenes have SBS rubber because it has large styrene blocks in the main polymer chain that causes the spatial constraints to direct contact with fullerene molecules, you can assume that the interaction is only low-molecular fraction of Fullerenes mixture, possessing the necessary dimensions. As a result of the study shows that the application of the method of separation ring (Du-Nui allows you to predict the properties of rubber with modified nanomaterial’s with minimal labor costs.

  16. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  17. Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements.

    Science.gov (United States)

    An, Rong; Huang, Liangliang; Mineart, Kenneth P; Dong, Yihui; Spontak, Richard J; Gubbins, Keith E

    2017-05-21

    In this work, we present a statistical mechanical analysis to elucidate the molecular-level factors responsible for the static and dynamic properties of polymer films. This analysis, which we term conformal sites theory, establishes that three dimensionless parameters play important roles in determining differences from bulk behavior for thin polymer films near to surfaces: a microscopic wetting parameter, α wx , defined as the ratio of polymer-substrate interaction to polymer-polymer interaction; a dimensionless film thickness, H*; and dimensionless temperature, T*. The parameter α wx introduced here provides a more fundamental measure of wetting than previous metrics, since it is defined in terms of intermolecular forces and the atomic structure of the substrate, and so is valid at the nanoscale for gas, liquid or solid films. To test this theoretical analysis, we also report atomic force microscopy measurements of the friction coefficient (μ), adhesion force (F A ) and glass transition temperature (T g ) for thin films of two polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on two planar substrates, graphite and silica. Both the friction coefficient and the glass transition temperature are found to increase as the film thickness decreases, and this increase is more pronounced for the graphite than for the silica surface. The adhesion force is also greater for the graphite surface. The larger effects encountered for the graphite surface are attributed to the fact that the microscopic wetting parameter, α wx , is larger for graphite than for silica, indicating stronger attraction of polymer chains to the graphite surface.

  18. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    Science.gov (United States)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  20. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Science.gov (United States)

    Schaubroeck, David; Vercammen, Yannick; Van Vaeck, Luc; Vanderleyden, Els; Dubruel, Peter; Vanfleteren, Jan

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the 'grafting to' method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  1. Antireflective grassy surface on glass substrates with self-masked dry etching

    Science.gov (United States)

    Song, Young Min; Park, Gyeong Cheol; Kang, Eun Kyu; Yeo, Chan Il; Lee, Yong Tak

    2013-12-01

    Although recently developed bio-inspired nanostructures exhibit superior optic performance, their practical applications are limited due to cost issues. We present highly transparent glasses with grassy surface fabricated with self-masked dry etch process. Simultaneously generated nanoclusters during reactive ion etch process with simple gas mixture (i.e., CF4/O2) enables lithography-free, one-step nanostructure fabrication. The resulting grassy surfaces, composed of tapered subwavelength structures, exhibit antireflective (AR) properties in 300 to 1,800-nm wavelength ranges as well as improved hydrophilicity for antifogging. Rigorous coupled-wave analysis calculation provides design guidelines for AR surface on glass substrates.

  2. Design and Discovery of New Combinations of Mutant DNA Polymerases and Modified DNA Substrates.

    Science.gov (United States)

    Rosenblum, Sydney L; Weiden, Aurora G; Lewis, Eliza L; Ogonowsky, Alexie L; Chia, Hannah E; Barrett, Susanna E; Liu, Mira D; Leconte, Aaron M

    2017-04-18

    Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  4. Friction of hydrogels with controlled surface roughness on solid flat substrates.

    Science.gov (United States)

    Yashima, Shintaro; Takase, Natsuko; Kurokawa, Takayuki; Gong, Jian Ping

    2014-05-14

    This study investigated the effect of hydrogel surface roughness on its sliding friction against a solid substrate having modestly adhesive interaction with hydrogels under small normal pressure in water. The friction test was performed between bulk polyacrylamide hydrogels of varied surface roughness and a smooth glass substrate by using a strain-controlled rheometer with parallel-plates geometry. At small pressure (normal strain 1.4-3.6%), the flat surface gel showed a poor reproducibility in friction. In contrast, the gels with a surface roughness of 1-10 μm order showed well reproducible friction behaviors and their frictional stress was larger than that of the flat surface hydrogel. Furthermore, the flat gel showed an elasto-hydrodynamic transition while the rough gels showed a monotonous decrease of friction with velocity. The difference between the flat surface and the rough surface diminished with the increase of the normal pressure. These phenomena are associated with the different contact behaviors of these soft hydrogels in liquid, as revealed by the observation of the interface using a confocal laser microscope.

  5. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires

    International Nuclear Information System (INIS)

    Neretina, S; Devenyi, G A; Preston, J S; Mascher, P; Hughes, R A; Sochinskii, N V

    2008-01-01

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires

  6. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  7. Improvement of organic solar cells by flexible substrate and ITO surface treatments

    International Nuclear Information System (INIS)

    Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.

    2010-01-01

    In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 x 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density (J sc ) and 92.7% enhancement in conversion efficiency (η) over the untreated solar cell are obtained.

  8. Evaluation of Surface Cleaning Procedures for CTGS Substrates for SAW Technology with XPS

    Directory of Open Access Journals (Sweden)

    Erik Brachmann

    2017-11-01

    Full Text Available A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

  9. A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Alibeji, Naji; Kirsch, Nicholas; Dicianno, Brad E; Sharma, Nitin

    2017-08-01

    A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used an ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance. In this paper, a dynamic surface control (DSC) approach was used to design a PID-based NMES controller that compensates for EMD in the activation dynamics. Because the muscle activation is unmeasurable, a model based estimator was used to estimate the muscle activation in realtime. The Lyapunov stability analysis confirmed that the newly developed controller achieves semi-global uniformly ultimately bounded (SGUUB) tracking for the musculoskeletal system. Experiments were performed on two able-bodied subjects and one spinal cord injury subject using a modified leg extension machine. These experiments illustrate the performance of the new controller and compare it to a previous PID-DC controller that did not consider muscle activation dynamics in the control design. These experiments support our hypothesis that a control design that includes muscle activation improves the NMES control performance.

  10. Full-wave analysis of superconducting microstrip lines on anisotropic substrates using equivalent surface impedance approach

    International Nuclear Information System (INIS)

    Lee, L.H.; Lyons, W.G.; Orlando, T.P.; Ali, S.M.

    1993-01-01

    A computationally efficient full-wave technique is developed to analyze single and coupled superconducting microstrip lines on anisotropic substrates. The optic axis of the dielectric is in the plane of the substrate at an arbitrary angle with respect to the propagation direction. A dyadic Green's function for layered, anisotropic media is used to formulate an integral equation for the current in the strips. To increase the efficiency of the method, the superconducting strips are replaced by equivalent surface impedances which account for the loss and kinetic inductance of the superconductors. The validity of this equivalent surface impedance (ESI) approach is verified by comparing the calculated complex propagation constant and characteristic impedance for superconducting microstrip lines on an isotropic substrate to measured results, and to numerical results by the more rigorous volume-integral equation method. The results calculated using the ESI approach for perfectly conducting coupled lines on an anisotropic substrate agree with the results by the finite-difference time-domain method. This efficient ESI technique is then used to study the effects of the optic axis orientation and the strip width on the characteristics of single and coupled superconducting microstrip lines on M-plane sapphire. The effects of the line separation and operating temperature on the coupled lines are also investigated

  11. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    Science.gov (United States)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  12. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  13. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.

    Science.gov (United States)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-03-03

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (Raman spectroelectrochemistry. The SEC system includes a nanostructured Au surface that serves dual roles as the electrochemical working electrode (WE) and SERS substrate, a microfabricated Pt counter electrode (CE), and an external Ag/AgCl reference electrode (RE). The nanostructured Au WE enables highly sensitive in situ SERS spectroscopy through large and reproducible SERS enhancements, which eliminates the need for resonant wavelength matching of the laser excitation source with the electronic absorption of the target molecule. The new SEC analysis system has the merits of wide applicability to target molecules, small sample volume, and a low detection limit. We demonstrate in situ SERS spectroelectrochemistry measurements of the metalloporphyrin hemin showing shifts of the iron oxidation marker band ν4 with the nanostructured Au working electrode under precise potential control.

  14. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques Using RDX and C-4

    Science.gov (United States)

    Miller, C. J.; Yoder, T. S.

    2010-06-01

    Explosive trace detection equipment has been deployed to airports for more than a decade. During this time, the need for standardized procedures and calibrated trace amounts for ensuring that the systems are operating properly and detecting the correct explosive has been apparent but a standard representative of a fingerprint has been elusive. Standards are also necessary to evaluate instrumentation in the laboratories during development and prior to deployment to determine sample throughput, probability of detection, false positive/negative rates, ease of use by operator, mechanical and/or software problems that may be encountered, and other pertinent parameters that would result in the equipment being unusable during field operations. Since many laboratories do not have access to nor are allowed to handle explosives, the equipment is tested using techniques aimed at simulating the actual explosives fingerprint. This laboratory study focused on examining the similarities and differences in three different surface contamination techniques that are used to performance test explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples and to offer scenarios where each contamination technique is applicable. The three techniques used were dry transfer deposition of standard solutions using the Transportation Security Laboratory’s (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards onto substrates, and fingerprinting of actual explosives onto substrates. RDX was deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each substrate type using each contamination technique. The substrate types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that

  15. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces

    Directory of Open Access Journals (Sweden)

    Gbureck Uwe

    2007-07-01

    Full Text Available Abstract Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl-propylamine (APMS, N- [3-(Trimethoxysilylpropyl]ethylenediamine (Diamino-APMS and N1- [3-(Trimethoxy-silyl-propyl]diethylenetriamine (Triamino-APMS. The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV shifted into the positive range (> + 40 mV after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug

  16. Fabrication and characterization of surface barrier detector from commercial silicon substrate

    International Nuclear Information System (INIS)

    Silva, Julio Batista Rodrigues

    2016-01-01

    In this work it was developed radiation detectors silicon surface barrier that were capable of detecting the presence of gamma radiation from a low energy of iodine-125 seeds used in brachytherapy treatments. >From commercial silicon substrates detectors were developed, one sequence left of chemical treatments to the surfaces of these substrates with the intention of minimizing the possible noise generated, validation of the samples obtained as diodes, ensuring detector characteristics and effective use as detector for Iodine-125 radioactive sources with energy of about 25 keV and Americium-251 with energy on the order of 59 keV. Finished performing the analysis of the obtained energy spectra and so it was possible to observe the ability of these detectors to measure the energy from these seeds. (author)

  17. Tuning the adhesion between polyimide substrate and MWCNTs/epoxy nanocomposite by surface treatment

    Science.gov (United States)

    Bouhamed, Ayda; Kia, Alireza Mohammadian; Naifar, Slim; Dzhagan, Volodymyr; Müller, Christian; Zahn, Dietrich R. T.; Choura, Slim; Kanoun, Olfa

    2017-11-01

    MWCNTs/epoxy nanocomposite thin films are coated on the polyimide (PI) flexible substrate, to be used as a strain sensor. Previous studies showed that the adhesion between polyimide and other materials are very poor. In this work, two approaches, oxygen plasma cleaning and simple solvent cleaning are performed for activation of the polyimide surface. In order to understand the impact of both cleaning techniques, the physicochemical properties of PI are measured and characterized using contact angle measurements (CAMs), X-ray photoelectron spectroscopy(XPS), and atomic force microscopy (AFM). In addition, the adhesion properties of PI/[MWCNTs/epoxy] systems by varying surface treatment time are investigated and evaluated using force-distance measurements by AFM. The results illustrate that the activated surface exhibits higher surface energy for oxygen plasma cleaning in comparison with the solvent cleaning method. The improvement can be related to the increase of oxygen concentration, which is accompanied by the enhancement of the polar component to 53.79 mN/m due to the formation of functional groups on the surface and the change of the substrate surface roughness from 1.72 nm to 15.5 nm. As a result, improved adhesion was observed from force-distance measurement between PI/[MWCNTs/epoxy] systems due to oxygen plasma effects.

  18. A ferromagnetic ground state for Mn-Co surface ordered alloy on Co(001) substrate

    International Nuclear Information System (INIS)

    M'Passi-Mabiala, B.; Meza-Aguilar, S.; Demangeat, C.

    2001-07-01

    Recent Low-energy electron diffraction experiments concerning submonolayer Mn coverage on Co/Cu(001) substrates displayed a well-defined Mn 0.5 Co 0.5 surface ordered alloy. Through the Magneto-optic Kerr effect and X-ray magnetic circular dichroism a ferromagnetic coupling between Mn and Co was obtained. Ab initio density functional theory within generalized gradient approximation is able to explain these results. (author)

  19. Fabrication and Characterization of the US Army Research Laboratory Surface Enhanced Raman Scattering (SERS) Substrates

    Science.gov (United States)

    2017-12-04

    enhancement. The chemical enhancement occurs when there is a charge transfer resonance between the molecule and the metalized surface. These effects can also...various genes, chemical warfare species, bacteria,60,108–114 diagnostic markers, environmental pollutants , glucose monitoring,102,115 and stress...Inspired Materials 5 1.2 US Army-Relevant Applications of SERS-Hazard Detection 7 1.3 Assessing SERS Substrate: ARL/Edgewood Chemical Biological

  20. Substrate Wetting Under the Conditions of Drop Free Falling on a Heated Surface

    Directory of Open Access Journals (Sweden)

    Batischeva Ksenia A.

    2015-01-01

    Full Text Available We conducted an experimental study of a heated substrate wetting by drops of distilled water under the conditions of their free-falling. The studies were conducted using a shadow system, which consists of a light source, lens and high-speed video camera. It was found that the maximum wetted area of drop is directly proportional to its volume. The main ranges of evolution of distilled water drop behavior on the heated surface (change of geometry at contact with the surface have been conditionally divided.

  1. Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Ho, Ho Pui; Lee, Rebecca K.Y.

    2009-01-01

    We present a study on the surface-enhanced Raman scattering (SERS) properties of Ag nanoparticle island substrates (NIS) and their applications for target oligonucleotide (OND) detection. It has been found that the surface nanostructure of NIS samples can be controlled with a good degree...... on the use of the detection OND with or without the gold nanoparticle (Au-NP). Our results confirm that, when the detection OND is coupled to the Au-NP, a better sensitivity for the target OND detection, in terms of a wider dynamic range and a lower detection limit (0:4 fM versus 1nM without Au-NP), would...

  2. Observation of surface-plasmon-polariton transmission through a silver film sputtered on a photorefractive substrate

    International Nuclear Information System (INIS)

    Chen Jing; Li Yudong; Lu Wenqiang; Qi Jiwei; Cui Guoxin; Liu Hongbing; Xu Jingjun; Sun Qian

    2007-01-01

    The diffraction of holographic gratings in a photorefractive iron-doped lithium niobate (LiNbO 3 :Fe) crystal, on which surface a silver film was sputtered, was experimentally investigated. Besides the Bragg diffraction, an additional diffraction was observed. The experimental results present evidence of surface-plasmon-polariton (SPP) transmission through the silver film on the photorefractive substrate. The excitation of SPPs is speculated to be due to the corrugations of the silver film, which are caused by the photorefractive and the converse piezoelectric effect in the LiNbO3:Fe sample

  3. On-surface manipulation of atom substitution between cobalt phthalocyanine and the Cu(111) substrate

    DEFF Research Database (Denmark)

    Shen, Kongchao; Narsu, Bai; Ji, Gengwu

    2017-01-01

    (DFT). Interestingly, the scenario of atom exchange is discovered at the interface at room temperature (RT), namely the substitution of the cobalt atom in CoPc by a surface Cu adatom. Moreover, thermal annealing enhances the substitution process considerably which is demonstrated to be complete...... at about 573 K. As revealed by DFT calculations, the driving force for the observed interface transmetalation is most probably provided by the initial strong molecular-substrate interaction between Co atoms and the Cu(111) surface, the external thermodynamic energy gained from thermal sublimation...

  4. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Miller; T.S. Yoder

    2010-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

  5. Degradation-by-design: Surface modification with functional substrates that enhance the enzymatic degradation of carbon nanotubes.

    Science.gov (United States)

    Sureshbabu, Adukamparai Rajukrishnan; Kurapati, Rajendra; Russier, Julie; Ménard-Moyon, Cécilia; Bartolini, Isacco; Meneghetti, Moreno; Kostarelos, Kostas; Bianco, Alberto

    2015-12-01

    Biodegradation of carbon-based nanomaterials has been pursued intensively in the last few years, as one of the most crucial issues for the design of safe, clinically relevant conjugates for biomedical applications. In this paper it is demonstrated that specific functional molecules can enhance the catalytic activity of horseradish peroxidase (HRP) and xanthine oxidase (XO) for the degradation of carbon nanotubes. Two different azido coumarins and one cathecol derivative are linked to multi-walled carbon nanotubes (MWCNTs). These molecules are good reducing substrates and strong redox mediators to enhance the catalytic activity of HRP. XO, known to metabolize various molecules mainly in the mammalian liver, including human, was instead used to test the biodegradability of MWCNTs modified with an azido purine. The products of the biodegradation process are characterized by transmission electron microscopy and Raman spectroscopy. The results indicate that coumarin and catechol moieties have enhanced the biodegradation of MWCNTs compared to oxidized nanotubes, likely due to the capacity of these substrates to better interact with and activate HRP. Although azido purine-MWCNTs are degraded less effectively by XO than oxidized nanotubes, the data uncover the importance of XO in the biodegradation of carbon-nanomaterials leading to their better surface engineering for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition.

    Science.gov (United States)

    Liu, Yan; Li, Shuyi; Wang, Yaming; Wang, Huiyuan; Gao, Ke; Han, Zhiwu; Ren, Luquan

    2016-09-15

    Superamphiphobic (both superhydrophobic and superoleophobic) surfaces have attracted great interests in the fundamental research and practical application. This research successfully fabricated the superamphiphobic surfaces by combining the nickel plating process and modification with perfluorocaprylic acid. The cooperation of hierarchical micro-nano structures and perfluorocaprylic acid with low surface energy plays an important role in the formation of superamphiphobic surfaces. The contact angles of water/oil have reached up to 160.2±1°/152.4±1°, respectively. Contrast with bare substrate, the electrochemical measurements of superamphiphobic surfaces, not only the EIS measurement, but also potentiodynamic polarization curves, all revealed that, the surface corrosion inhibition was improved significantly. Moreover, superamphiphobic surfaces exhibited superior stability in the solutions with a large pH range, also could maintain excellent performance after storing for a long time in the air. This method is easy, feasible and effective, and could be used to fabricate large-area mutli-functional surface. Such a technique will develop a new approach to fabricate superamphiphobic surfaces on different engineering materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Microstructure of Ni/WC surface composite on a copper substrate

    International Nuclear Information System (INIS)

    Song Wenming; Yang Guirong; Lu Jinjun; Hao Yuan

    2007-01-01

    This paper reports the researching work which investigated the microstructure and hardness of the surface infiltrated composite (WC/Ni) layers produced on copper substrates. The surface infiltrated composite layers were produced by a vacuum infiltration casting technique (VICT) using Ni-based composite powder with different WC particles content as raw materials. With an appropriate choice of processing condition, a compact infiltrated layer was achievable and this was conformed through a scanning electron microstructure (SEM). The infiltrated layer includes a surface composite layer and a transition layer, and the thickness of the transition layer decreases with the increasing content of WC. The surface macro-hardness and micro-hardness of the infiltrated layer had been evaluated. The macro-hardness of the layer is about HRC60.0 and the distribution of micro-hardness presents gradient change. The average micro-hardness of the infiltrated layer is about HV800

  8. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  9. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris) with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents.

    Science.gov (United States)

    Aguilar, Oscar; Hernández-Brenes, Carmen

    2015-12-14

    Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO), is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE) enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease) to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity.

  10. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents

    Directory of Open Access Journals (Sweden)

    Oscar Aguilar

    2015-12-01

    Full Text Available Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO, is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity.

  11. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    Science.gov (United States)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  12. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)

  13. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography

    CSIR Research Space (South Africa)

    Cordeiro, N

    2011-01-01

    Full Text Available Inverse gas chromatography (IGC) is a suitable method to determine surface energy of natural fibres when compared to wetting techniques. In the present study, the surface properties of raw and modified lignocellulosic fibres have been investigated...

  14. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy.

    Science.gov (United States)

    Sharma, Bhavya; Cardinal, M Fernanda; Ross, Michael B; Zrimsek, Alyssa B; Bykov, Sergei V; Punihaole, David; Asher, Sanford A; Schatz, George C; Van Duyne, Richard P

    2016-12-14

    We report here the first fabrication of aluminum film-over nanosphere (AlFON) substrates for UV surface-enhanced resonance Raman scattering (UVSERRS) at the deepest UV wavelength used to date (λ ex = 229 nm). We characterize the AlFONs fabricated with two different support microsphere sizes using localized surface plasmon resonance spectroscopy, electron microscopy, SERRS of adenine, tris(bipyridine)ruthenium(II), and trans-1,2-bis(4-pyridyl)-ethylene, SERS of 6-mercapto-1-hexanol (as a nonresonant molecule), and dielectric function analysis. We find that AlFONs fabricated with the 210 nm microspheres generate an enhancement factor of approximately 10 4-5 , which combined with resonance enhancement of the adsorbates provides enhancement factors greater than 10 6 . These experimental results are supported by theoretical analysis of the dielectric function. Hence our results demonstrate the advantages of using AlFON substrates for deep UVSERRS enhancement and contribute to broadening the SERS application range with tunable and affordable substrates.

  15. Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy

    KAUST Repository

    Cai, Qiran

    2015-01-01

    Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement. This journal is © the Owner Societies 2015.

  16. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyoshi, Yoshifumi; Nemoto, Takashi; Kurata, Hiroki, E-mail: kurata@eels.kuicr.kyoto-u.ac.jp

    2017-04-15

    In this study, electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM) was used to investigate surface plasmons in a single silver nanoparticle (NP) on a magnesium oxide substrate, employing an incident electron trajectory parallel to the substrate surface. This parallel irradiation allowed a direct exploration of the substrate effects on localized surface plasmon (LSP) excitations as a function of the distance from the substrate. The presence of the substrate was found to lower the symmetry of the system, such that the resonance energies of LSPs were dependent on the polarization direction relative to the substrate surface. The resulting mode splitting could be detected by applying different electron trajectories, providing results similar to those previously obtained from optical studies using polarized light. However, the LSP maps obtained by STEM-EELS analysis show an asymmetric intensity distribution with the highest intensity at the top surface of the NP (that is, far from the substrate), a result that is not predicted by optical simulations. We show that modifications of the applied electric field by the substrate cause this asymmetric intensity distribution in the LSP maps.

  17. Characteristics of surface modified Ti-6Al-4V alloy by a series of YAG laser irradiation

    Science.gov (United States)

    Zeng, Xian; Wang, Wenqin; Yamaguchi, Tomiko; Nishio, Kazumasa

    2018-01-01

    In this study, a double-layer Ti (C, N) film was successfully prepared on Ti-6Al-4V alloy by a series of YAG laser irradiation in nitrogen atmosphere, aiming at improving the wear resistance. The effects of laser irradiation pass upon surface chemical composition, microstructures and hardness were investigated. The results showed that the surface chemicals were independent from laser irradiation pass, which the up layer of film was a mixture of TiN and TiC0.3N0.7, and the down layer was nitrogen-rich α-Ti. Both the surface roughness and hardness increased as raising the irradiation passes. However, surface deformation and cracks happened in the case above 3 passes' irradiation. The wear resistance of laser modified sample by 3 passes was improved approximately by 37 times compared to the as received substrate. Moreover, the cytotoxic V ion released from laser modified sample was less than that of as received Ti-6Al-4V alloy in SBF, suggesting the potentiality of a new try to modify the sliding part of Ti-based hard tissue implants in future biomedical application.

  18. Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

    International Nuclear Information System (INIS)

    An, Wei; Zhu, Tong; Zhu, QunZhi

    2014-01-01

    When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. -- Highlights: ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate

  19. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    Poly (ether sulfone) (PES) 50 kDa membranes were surface modified by irradiation with UV light (254 nm) in the presence of N-vinyl-2-pyrrolidine (NVP), 2-acrylamidoglycolic acid monohydrate (AAG) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AAP). The surfaces of the modified membranes were c...

  20. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to modify starch structure exploring potentials to extensively increase the number of branch points in starch. Amylose is an important...... constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution...... by the molar mass rather that the branching density of the glucan per se . Our data demonstrate that a higher amylose content in the substrate starch efficiently produces α-1,6 glucosidic linkages and that the present of amylose generates a higher Μw and more resistant product than amylopectin. The combination...

  1. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  2. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    Science.gov (United States)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  3. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  4. High flux nanofiltration membranes based on layer-by-layer assembly modified electrospun nanofibrous substrate

    Science.gov (United States)

    Xu, Guo-Rong; Liu, Xiao-Yu; Xu, Jian-Mei; Li, Lu; Su, Hui-Chao; Zhao, He-Li; Feng, Hou-Jun

    2018-03-01

    Herein, high flux nanofiltration (NF) membranes were fabricated by combined procedures of electrospinning, layer-by-layer (LBL) assembly, and phase inversion. The membranes displayed three-dual structure constituted polyether sulfone (PES) coating layer, LBL assembly modified electrospun polyester (PET) nanofibrous mats, and non-woven supports. High flux NF membranes thus prepared are characterized by ultrathin phase inversion layer (∼10 μm) while that of conventional membranes are 100-150 μm, implying that very high flux could be expected. Various factors including electrospinning conditions, chitosan (CHI)/alginate (ALG) concentration, PES concentration, exposed time, coagulating temperature, thermal treatment, and sulfonated poly ether ketone (SPEEK) content were systematically investigated. Structures of the membranes were characterized by field emission scanning electron microscopy (FESEM), mechanical properties test, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and static contact angle measurements. The separation experiments indicated that thus prepared membranes exhibited high flux of as high as ∼75 L m-2 h-1 with Mg SO4 rejection of ∼80%.

  5. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  6. Multi-scale cell/surface interaction on modified titanium aluminum vanadium surfaces

    Science.gov (United States)

    Chen, Jianbo

    This dissertation presents a series of experimental studies of the effects of multi-scale cell/surface interactions on modified Ti-6Al-4V surfaces. These include laser-grooved surfaces; porous structures and RGD-coated laser-grooved surfaces. A nano-second DPSS UV lasers with a Gaussian pulse energy profile was used to introduce the desired micro-groove geometries onto Ti-6Al-4V surfaces. This was done without inducing micro-cracks or significant changes in surface chemistry within the heat affected zones. The desired 8-12 mum groove depths and widths were achieved by the control of pulse frequency, scan speed, and the lens focal length that controls spot size. The interactions between human osteosarcoma (HOS) cells and laser-grooved Ti-6Al-4V surfaces were investigated after 48 hours of cell culture. The cell behavior, including cell spreading, alignment and adhesion, was elucidated using scanning electronic microscopy (SEM), immuno-fluorescence staining and enzymatic detachment. Contact guidance was shown to increase as grooved spacing decreased. For the range of micro-groove geometries studied, micro-grooves with groove spacings of 20 mum provided the best combination of cell orientation and adhesion. Short-term adhesion experiments (15 mins to 1 day) also revealed that there is a positive correlation between cell orientation and cell adhesion. Contact guidance on the micro-grooved surfaces is shown to be enhanced by nano- and micro-scale asperities that provide sites for the attachment of lamellopodia during cell locomotion and spreading. Contact guidance is also promoted by the geometrical confinement provided by laser grooves. An experimental study of initial cell spreading and ingrowth into Ti-6Al-4V porous structures was also carried out on porous structures with different pore sizes and geometries. A combination of SEM, the tetrazolium salt (MTT) colorimetric assay and enzymatic detachment were used to study cell spreading and adhesion. The extent of cell

  7. Micro and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma

    NARCIS (Netherlands)

    George, A.; Stawski, T.M.; Unnikrishnan, S.; Veldhuis, S.A.; Elshof, J.E. ten

    2012-01-01

    A simple and cost effective methodology for large area micro and nanopatterning of a wide range of functional materials on flexible substrates is presented. A hydrophobic-hydrophilic chemical contrast was patterned on surfaces of various flexible plastic substrates using molds and shadow masks with

  8. Micro- and nanopatterning of functional materials on flexible plastic substrates via site-selective surface modification using oxygen plasma

    NARCIS (Netherlands)

    George, A.; Stawski, Tomasz; Unnikrishnan, S.; Veldhuis, Sjoerd; ten Elshof, Johan E.

    2012-01-01

    A simple and cost effective methodology for large area micro and nanopatterning of a wide range of functional materials on flexible substrates is presented. A hydrophobic-hydrophilic chemical contrast was patterned on surfaces of various flexible plastic substrates using molds and shadow masks with

  9. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng, E-mail: liupeng79@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Zhao, Yongchun; Yan, Ying; Hu, Yan; Yang, Weihu [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Cai, Kaiyong, E-mail: kaiyong_cai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2015-10-01

    To mimic extracellular microenvironment of endothelial cell, a bioactive multilayered structure of gelatin/chitosan pair, embedding with vascular endothelial growth factor (VEGF), was constructed onto NiTi alloy substrate surface via a layer-by-layer assembly technique. The successful fabrication of the multilayered structure was demonstrated by scanning electron microscopy, atomic force microscopy, contact angle measurement, attenuated total reflection-fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The growth behaviors of endothelial cells on various NiTi alloy substrates were investigated in vitro. Cytoskeleton observation, MTT assay, and wound healing assay proved that the VEGF-embedded multilayer structure positively stimulated adhesion, proliferation and motogenic responses of endothelial cells. More importantly, the present system promoted the nitric oxide production of endothelial cells. The approach affords an alternative to construct extracellular microenvironment for improving surface endothelialization of a cardiovascular implant. - Highlights: • Biofunctional multilayer films mimicking extracellular microenvironment were successfully fabricated. • Multilayered structure stimulated the biological responses of endothelial cells. • The approach affords an efficient approach for surface endothelialization of stent implant.

  10. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates

    Science.gov (United States)

    Afferrante, L.; Carbone, G.

    2018-01-01

    In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid–solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid–solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie–Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.

  11. X-ray Multilayers and Thin-Shell Substrate Surface-Figure Correction

    Science.gov (United States)

    Windt, David

    We propose a comprehensive experimental research program whose two main goals are (a) to improve the performance of hard X-ray multilayer coatings and (b) to develop a high-throughput method to correct mid-frequency surface errors in thin-shell mirror substrates. Achieving these goals will enable the cost-effective construction of light- weight, highly-nested X-ray telescopes having greater observational sensitivity, wider energy coverage, and higher angular resolution than can be achieved at present. The realization of this technology will thus benefit the development of a variety of Explorer- class NASA X-ray astronomy missions now being formulated for both the soft and hard X-ray bands, and will enable the construction of future facility-class X-ray missions that will require both high sensitivity and high resolution. Building on the success of our previous APRA-funded research, we plan to investigate new thin-film growth techniques, new materials, and new aperiodic coating designs in order to develop new hard X-ray multilayers that have higher X-ray reflectance, wider energy response, lower film stress, and good stability, and that can be produced more quickly, at reduced cost. Additionally, we propose to build upon our extensive experience in sub-nm film-thickness control using velocity modulation and masked deposition techniques, and in the recent development of low-roughness, low-stress films grown by reactive sputtering, in order to develop new methods for correcting mid-frequency surface errors in thin-shell mirror substrates using both differential deposition and ion-beam figuring, either alone or in combination. These two surface-correction techniques already being used for sub-nm figuring of precision optics in a variety of disciplines, including diffraction-limited EUV lithography and synchrotron applications requiring sub-micron focusing are ideally suited for controlling mm-scale surface errors in the thin-shell substrates used for astronomical X

  12. The substrate effect in electron energy-loss spectroscopy of localized surface plasmons in gold and silver nanoparticles

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Christensen, Thomas; Beleggia, Marco

    2017-01-01

    , as in optical measurements, the substrate material can modify the acquired signal. Here, we have investigated how the EELS signal recorded from supported silver and gold spheroidal nanoparticles at different electron beam impact parameter positions is affected by the choice of a dielectric substrate material......Electron energy-loss spectroscopy (EELS) has become increasingly popular for detailed characterization of plasmonic nanostructures, owing to the unparalleled spatial resolution of this technique. The typical setup in EELS requires nanoparticles to be supported on thin substrates. However...

  13. Effects of Surface Electron Doping and Substrate on the Superconductivity of Epitaxial FeSe Films.

    Science.gov (United States)

    Zhang, W H; Liu, X; Wen, C H P; Peng, R; Tan, S Y; Xie, B P; Zhang, T; Feng, D L

    2016-03-09

    Superconductivity in FeSe is greatly enhanced in films grown on SrTiO3 substrates, although the mechanism behind remains unclear. Recently, surface potassium (K) doping has also proven able to enhance the superconductivity of FeSe. Here, by using scanning tunneling microscopy, we compare the K doping dependence of the superconductivity in FeSe films grown on two substrates: SrTiO3 (001) and graphitized SiC (0001). For thick films (20 unit cells (UC)), the optimized superconducting (SC) gaps are of similar size (∼9 meV) regardless of the substrate. However, when the thickness is reduced to a few UC, the optimized SC gap is increased up to ∼15 meV for films on SrTiO3, whereas it remains unchanged for films on SiC. This clearly indicates that the FeSe/SrTiO3 interface can further enhance the superconductivity, beyond merely doping electrons. Intriguingly, we found that this interface enhancement decays exponentially as the thickness increases, with a decay length of 2.4 UC, which is much shorter than the length scale for relaxation of the lattice strain, pointing to interfacial electron-phonon coupling as the likely origin.

  14. Surface-Wettability Patterning for Distributing High-Momentum Water Jets on Porous Polymeric Substrates.

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Dodge, Richard; Yu, Lisha; Megaridis, Constantine M

    2018-02-07

    Liquid jet impingement on porous materials is particularly important in many applications of heat transfer, filtration, or in incontinence products. Generally, it is desired that the liquid not penetrate the substrate at or near the point of jet impact, but rather be distributed over a wider area before reaching the back side. A facile wettability-patterning technique is presented, whereby a water jet impinging orthogonally on a wettability-patterned nonwoven substrate is distributed on the top surface and through the porous matrix, and ultimately dispensed from prespecified points underneath the sample. A systematic approach is adopted to identify the optimum design that allows for a uniform distribution of the liquid on horizontally mounted substrates of ∼50 cm 2 area, with minimal or no spilling over the sample edges at jet flow rates exceeding 1 L/min. The effect of the location of jet impingement on liquid distribution is also studied, and the design is observed to perform well even under offset jet impact conditions.

  15. Silicalite-1 zeolite membranes on unmodified and modified surfaces

    Indian Academy of Sciences (India)

    Silicalite-1 zeolite membranes were prepared hydrothermally on the porous ceramic supports, both unmodified and modified with 3-aminopropyl triethoxysilane (APTES) as a coupling agent following ex situ (secondary) crystal growth process. The microstructure of the membranes was examined by scanning electron ...

  16. Modified surface testing method for large convex aspheric surfaces based on diffraction optics.

    Science.gov (United States)

    Zhang, Haidong; Wang, Xiaokun; Xue, Donglin; Zhang, Xuejun

    2017-12-01

    Large convex aspheric optical elements have been widely applied in advanced optical systems, which have presented a challenging metrology problem. Conventional testing methods cannot satisfy the demand gradually with the change of definition of "large." A modified method is proposed in this paper, which utilizes a relatively small computer-generated hologram and an illumination lens with certain feasibility to measure the large convex aspherics. Two example systems are designed to demonstrate the applicability, and also, the sensitivity of this configuration is analyzed, which proves the accuracy of the configuration can be better than 6 nm with careful alignment and calibration of the illumination lens in advance. Design examples and analysis show that this configuration is applicable to measure the large convex aspheric surfaces.

  17. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses.

    Science.gov (United States)

    Style, Robert W; Boltyanskiy, Rostislav; Che, Yonglu; Wettlaufer, J S; Wilen, Larry A; Dufresne, Eric R

    2013-02-08

    Droplets deform soft substrates near their contact lines. Using confocal microscopy, we measure the deformation of silicone gel substrates due to glycerol and fluorinated-oil droplets for a range of droplet radii and substrate thicknesses. For all droplets, the substrate deformation takes a universal shape close to the contact line that depends on liquid composition, but is independent of droplet size and substrate thickness. This shape is determined by a balance of interfacial tensions at the contact line and provides a novel method for direct determination of the surface stresses of soft substrates. Moreover, we measure the change in contact angle with droplet radius and show that Young's law fails for small droplets when their radii approach an elastocapillary length scale. For larger droplets the macroscopic contact angle is constant, consistent with Young's law.

  18. Alignment of liquid crystals : on geometrically and chemically modified surfaces

    NARCIS (Netherlands)

    Zhang, J.

    2013-01-01

    This thesis consists of two main parts. The first part describes a new model to explain the complex role of surface materials and surface geometry in the liquid crystal (LC) alignment, which has been a subject of intensive debate over the last 40 years. The second part presents a potentially cost

  19. Detection of Prohibited Fish Drugs Using Silver Nanowires as Substrate for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Jia Song

    2016-09-01

    Full Text Available Surface-enhanced Raman scattering or surface-enhanced Raman spectroscopy (SERS is a promising detection technology, and has captured increasing attention. Silver nanowires were synthesized using a rapid polyol method and optimized through adjustment of the molar ratio of poly(vinyl pyrrolidone and silver nitrate in a glycerol system. Ultraviolet-visible spectrometry, X-ray diffraction, and transmission electron microscopy were used to characterize the silver nanowires. The optimal silver nanowires were used as a SERS substrate to detect prohibited fish drugs, including malachite green, crystal violet, furazolidone, and chloramphenicol. The SERS spectra of crystal violet could be clearly identified at concentrations as low as 0.01 ng/mL. The minimum detectable concentration for malachite green was 0.05 ng/mL, and for both furazolidone and chloramphenicol were 0.1 μg/mL. The results showed that the as-prepared Ag nanowires SERS substrate exhibits high sensitivity and activity.

  20. Design and fabrication of non silicon substrate based MEMS energy harvester for arbitrary surface applications

    International Nuclear Information System (INIS)

    Balpande, Suresh S.; Pande, Rajesh S.

    2016-01-01

    Internet of Things (IoT) uses MEMS sensor nodes and actuators to sense and control objects through Internet. IOT deploys millions of chemical battery driven sensors at different locations which are not reliable many times because of frequent requirement of charging & battery replacement in case of underground laying, placement at harsh environmental conditions, huge count and difference between demand (24 % per year) and availability (energy density growing rate 8% per year). Energy harvester fabricated on silicon wafers have been widely used in manufacturing MEMS structures. These devices require complex fabrication processes, costly chemicals & clean room. In addition to this silicon wafer based devices are not suitable for curved surfaces like pipes, human bodies, organisms, or other arbitrary surface like clothes, structure surfaces which does not have flat and smooth surface always. Therefore, devices based on rigid silicon wafers are not suitable for these applications. Flexible structures are the key solution for this problems. Energy transduction mechanism generates power from free surrounding vibrations or impact. Sensor nodes application has been purposefully selected due to discrete power requirement at low duty cycle. Such nodes require an average power budget in the range of about 0.1 microwatt to 1 mW over a period of 3-5 seconds. Energy harvester is the best alternate source in contrast with battery for sensor node application. Novel design of Energy Harvester based on cheapest flexible non silicon substrate i.e. cellulose acetate substrate have been modeled, simulated and analyzed on COMSOL multiphysics and fabricated using sol-gel spin coating setup. Single cantilever based harvester generates 60-75 mV peak electric potential at 22Hz frequency and approximately 22 µW power at 1K-Ohm load. Cantilever array can be employed for generating higher voltage by replicating this structure. This work covers design, optimization, fabrication of

  1. Copper hexacyanoferrate formation on the modified silica surface with DAB-Am-16 dendrimer

    International Nuclear Information System (INIS)

    Carmo, Devaney R. do; Gabriel Junior, Suelino; Bicalho, Urquisa O.; Paim, Leonardo L.

    2009-01-01

    The dendrimer hexadecamine poly(propylene)imine (DAB-Am-16) of third generation (G-3) was anchored on the silica gel surface. The modified silica interact easily with Cu 2+ and then with hexacyanoferrate to form copper hexacyanoferrate. The modified silica was characterized by following techniques: nuclear magnetic resonance (NMR), infrared (FTIR), energy dispersive X-ray (EDX) and cyclic voltammetry. As application of the composite obtained, the modified silica containing copper hexacyanoferrate (CuHCFSD) was tested for a voltammetric determination of nitrite using a graphite paste modified electrode. The modified graphite paste electrode can be applied also to the determination of others biological substances with success. (author)

  2. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Directory of Open Access Journals (Sweden)

    Chundong Liu

    Full Text Available To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti surfaces modified with strontium (Sr for bone implant applications.Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts.The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes.These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  3. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Science.gov (United States)

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  4. Influence of surface physicochemistry and morphology of TA6V substrates on the mechanical resistance of thin layers of alumina

    International Nuclear Information System (INIS)

    Abgrall, E.; Desmaison, J.; Haure, T.; Tixier, C.; Jonnard, P.

    2004-01-01

    Substrate surface preparation before chemical vapor deposition is an important step for the adhesion. This study describes the influence of the temperature and the RF bias during in-situ argon plasma treatment on TA6V substrates just before plasma enhanced chemical vapor deposition (PECVD) of alumina. Substrates were treated under oxygen plasma without introducing aluminum precursor during 90 seconds under process PECVD conditions that were later used for coatings development. The surface of the samples is analyzed by electron induced X-ray emission spectroscopy to study the physicochemical environment around the aluminum atoms. Atomic force microscopy (AFM) allowed to show the treatment impact on the surface morphology of the substrates. Coatings were characterized by the multicracking 4-point bending test. The results pointed out that the polarization value has a minor effect, whereas the temperature has a major influence. (orig.)

  5. Surface activity and molecular characteristics of cuttlefish skin gelatin modified by oxidized linoleic acid

    NARCIS (Netherlands)

    Aewsiri, T.; Benjakul, S.; Visessanguan, W.; Wierenga, P.A.; Gruppen, H.

    2011-01-01

    Surface activity and molecular changes of cuttlefish skin gelatin modified with oxidized linoleic acid (OLA) prepared at 60, 70 and 80 °C at different times were investigated. Modification of gelatin with OLA could improve surface activity of resulting gelatin as evidenced by the decreased surface

  6. Modulating Protein Adsorption on Oxygen Plasma Modified Polysiloxane Surfaces

    International Nuclear Information System (INIS)

    Marletta, G.

    2006-01-01

    In the present paper we report the study on the adsorption behaviour of three model globular proteins, Human Serum Albumin, Lactoferrin and Egg Chicken Lysozyme onto both unmodified surfaces of a silicon-based polymer and the corresponding plasma treated surfaces. In particular, thin films of hydrophobic polysiloxane (about 90 degree of static water contact angle, WCA) were converted by oxygen plasma treatment at reduced pressure into very hydrophilic phases of SiOx (WCA less than 5 degree). The kinetics of protein adsorption processes were investigated by QCM-D technique, while the chemical structure and topography of the protein adlayer have been studied by Angular resolved-XPS and AFM respectively. It turned out that Albumin and Lysozyme exhibited the opposite preferential adsorption respectively onto the hydrophobic and hydrophilic surfaces, while Lactoferrin did not exhibit significant differences. The observed protein behaviour are discussed both in terms of surface-dependent parameters, including surface free energy and chemical structure, and in terms of protein-dependent parameters, including charge as well as the average molecular orientation in the adlayers. Finally, some examples of differential adsorption behaviour of the investigated proteins are reported onto nanopatterned polysiloxane surfaces consisting of hydrophobic nanopores surrounded by hydrophilic (plasma-treated) matrix and the reverse

  7. Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA)

    Energy Technology Data Exchange (ETDEWEB)

    Kalhori, Ebrahim Mohammadi, E-mail: zarrabi62@yahoo.com [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, P.O. Box No: 31485/561, Alborz, Karaj (Iran, Islamic Republic of); Yetilmezsoy, Kaan, E-mail: yetilmez@yildiz.edu.tr [Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul (Turkey); Uygur, Nihan, E-mail: uygur.n@gmail.com [Department of Environmental Engineering, Faculty of Engineering, Adiyaman University, 02040 Altinsehir, Adiyaman (Turkey); Zarrabi, Mansur, E-mail: mansor62@gmail.com [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, P.O. Box No: 31485/561, Alborz, Karaj (Iran, Islamic Republic of); Shmeis, Reham M. Abu, E-mail: r.abushmeis@yahoo.com [Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, PO Box 140753, code 11814, Amman (Jordan)

    2013-12-15

    Lightweight Expanded Clay Aggregate (LECA) modified with an aqueous solution of magnesium chloride MgCl{sub 2} and hydrogen peroxide H{sub 2}O{sub 2} was used to remove Cr(VI) from aqueous solutions. The adsorption properties of the used adsorbents were investigated through batch studies, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Fluorescence Spectroscopy (XRF), and Fourier Transform Infrared (FTIR) spectroscopy. The effect created by magnesium chloride on the modification of the LECA surface was greater than that of hydrogen peroxide solution and showed a substantial increase in the specific surface area which has a value of 76.12 m{sup 2}/g for magnesium chloride modified LECA while the values of 53.72 m{sup 2}/g, and 11.53 m{sup 2}/g were found for hydrogen peroxide modified LECA and natural LECA, respectively. The extent of surface modification with enhanced porosity in modified LECA was apparent from the recorded SEM patterns. XRD and FTIR studies of themodified LECA surface did not show any structural distortion. The adsorption kinetics was found to follow the modified Freundlich kinetic model and the equilibrium data fitted the Sips and Dubinin-Radushkevich equations better than other models. Maximum sorption capacities were found to be 198.39, 218.29 and 236.24 mg/g for natural LECA, surface modified LECA with H{sub 2}O{sub 2} and surface modified LECA with MgCl{sub 2}, respectively. Adsorbents were found to have only a weak effect on conductivity and turbidity of aqueous solutions. Spent natural and surface modified LECA with MgCl{sub 2} was best regenerated with HCl solution, while LECA surface modified with H{sub 2}O{sub 2} was best regenerated with HNO{sub 3} concentrated solution. Thermal method showed a lower regeneration percentage for all spent adsorbents.

  8. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    International Nuclear Information System (INIS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate. (paper)

  9. Chemical switches and logic gates based on surface modified semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, Szacilowski; Wojciech, Macyk [Jagiellonian Univ., Dept. of Chemistry, Krakow (Poland)

    2006-02-15

    Photoelectrochemical properties of multicomponent photo-electrodes based on titanium dioxide and cadmium sulfide powders modified with hexacyanoferrate complexes have been examined. Photocurrent responses were recorded as functions of applied potential and photon energy. Surprisingly, the photocurrent can be switched between positive and negative values as a result of potential or photon energy changes. This new effect called Photo Electrochemical Photocurrent Switching (PEPS) opens a possibility of new chemical switches and logic gates construction. Boolean logic analysis and a tentative mechanism of the device are discussed. (authors)

  10. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    International Nuclear Information System (INIS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-01-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  11. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, Abed; Mohammadi, Aliasghar, E-mail: amohammadi@sharif.edu [Sharif University of Technology, Department of Chemical and Petroleum Engineering (Iran, Islamic Republic of)

    2016-09-15

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil–water interface properties and oil recovery is examined. Oil–water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  12. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    Science.gov (United States)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  13. Synthesis of silver particles on copper substrates using ethanol-based solution for surface-enhanced Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-03-01

    Full Text Available The displacement reaction of AgNO3 and copper metal is an effective and economical way to fabricate Ag-Cu surface enhanced Raman scattering (SERS substrates. Aqueous solutions of AgNO3 are usually used for substrate preparation. In this work, a new method for Ag-Cu SERS substrate preparation is proposed, which uses an ethanol solution rather than an aqueous AgNO3 solution. Analysis of the surface morphologies of sample substrates by field emission scanning electron microscopy (FESEM showed that the silver nanoparticles prepared by this new method were more regular than those prepared in the traditional aqueous solution. The SERS spectra of Rhodamine 6G (R6G adsorbed on these Ag-Cu substrates were then investigated and compared. It was found that the Ag-Cu substrates prepared by this method provide significant improvements in Raman signal sensitivity and large-area uniformity. The enhancement factor of this new substrate is about 330 times higher than that prepared using an aqueous AgNO3 solution under identical experimental conditions. It was also found that 70% of the original sensitivity of the substrate remains after 15 days of exposure to air.

  14. In Vitro Analysis of Fibronectin-Modified Titanium Surfaces

    Science.gov (United States)

    Chang, Yu-Chi; Lee, Wei-Fang; Feng, Sheng-Wei; Huang, Haw-Ming; Lin, Che-Tong; Teng, Nai-Chia; Chang, Wei Jen

    2016-01-01

    Background Glow discharge plasma (GDP) procedure is an effective method for grafting various proteins, including albumin, type I collagen, and fibronectin, onto a titanium surface. However, the behavior and impact of titanium (Ti) surface modification is yet to be unraveled. Purpose The purpose of this study is to evaluate and analyze the biological properties of fibronectin-grafted Ti surfaces treated by GDP. Materials and Methods Grade II Ti discs were initially cleaned and autoclaved to obtain original specimens. Subsequently, the specimens were GDP treated and grafted with fibronectin to form Ar-GDP (Argon GDP treatment only) and GDP-fib (fibronectin coating following GDP treatment) groups. Blood coagulation test and MG-63 cell culture were performed to evaluate the biological effects on the specimen. Results There was no significant difference between Ar-GDP and GDP-fib groups in blood compatibility analysis. While in the MTT test, cellular proliferation was benefited from the presence of fibronectin coating. The numbers of cells on Ar-GDP and GDP-fib specimens were greater than those in the original specimens after 24 h of culturing. Conclusions GDP treatment combined with fibronectin grafting favored MG-63 cell adhesion, migration, and proliferation on titanium surfaces, which could be attributed to the improved surface properties. PMID:26731536

  15. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    have been made with model systems of poly(ether ether ketone) (PEEK) films as they can easily be functionalized [1]. Moreover, the inert material polypropylene has successfully beel! activated using a photochemical method [2]. Different polymers including PEG-like matenals have been investigated...... when the PEEK films were modified. The surface roughness should either be unchanged or decreased as it 'will affect the protein adsorption [3]. 1. O. Noiset, C. Henneuse, Y.-J. Schneider, J. Marchand-Brynaert Macromolecules 30 (1997) 540-548 2. J. Huang, H. Murata, R.R. Koepsel, A.J. Russell, K...

  16. Novel surface display system for proteins on non-genetically modified gram-positive bacteria

    NARCIS (Netherlands)

    Bosma, T; Kanninga, R; Neef, J; Audouy, SAL; van Roosmalen, ML; Steen, A; Buist, G; Kok, J; Kuipers, OP; Robillard, G; Leenhouts, K

    A novel display system is described that allows highly efficient immobilization of heterologous proteins on bacterial surfaces in applications for which the use of genetically modified bacteria is less desirable. This system is based on nonliving and non-genetically modified gram-positive bacterial

  17. Physico-chemical characterisation of surface modified particles for inhalation.

    Science.gov (United States)

    Stank, Katharina; Steckel, Hartwig

    2013-05-01

    Surface modification of drugs for inhalation is a possibility to influence interparticulate forces. This can be necessary to achieve a sufficient aerosolisation during powder inhalation as the cohesiveness of the micronised drug can be reduced. In addition, the interaction with propellants in pressurised metered dose inhaler can be changed. This can be used to improve the physical stability of the suspension based formulations. A dry particle coating process was used for the alteration of particle surfaces. The blending of micronised salbutamol sulphate (SBS) with different concentrations of magnesium stearate (Mgst) or glycerol monostearate (GMS) was followed by co-milling with an air jet mill. The powder properties were characterised by SEM, EDX, laser diffraction, BET and inverse gas chromatography. Physical mixtures generated by Turbula blending were compared to co-milled samples. A slight particle size reduction was determined. The Mgst deposition on SBS particles was detected by EDX measurements. The dispersive surface energy of SBS is lowered and the energy distribution is more homogenous for the co-milled samples. This study proves the application of co-milling for surface modification in the inhalation area. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Efficiency of surface modified Ti coated with copper nanoparticles to ...

    Indian Academy of Sciences (India)

    Abstract. Titanium (Ti) used as condenser material in nuclear power plants encounter severe biofouling in marine environment which in turn affects the efficiency of the metal. To reduce the biofouling by marine microorganisms, surface modification of the Ti was carried out by anodization process to obtain nanotubes ...

  19. Surface characterization of silver and palladium modified glassy ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. In this work, the influence of silver and palladium on the surface of undoped, boron doped and phosphorus doped glassy carbon has been studied. The silver and palladium concentrations in solution, after metal deposition, were measured by atomic absorption spectrophotometer. The morphology of metal coatings.

  20. Modified ADM1 for modelling an UASB reactor laboratory plant treating starch wastewater and synthetic substrate load tests.

    Science.gov (United States)

    Hinken, L; Huber, M; Weichgrebe, D; Rosenwinkel, K-H

    2014-11-01

    A laboratory plant consisting of two UASB reactors was used for the treatment of industrial wastewater from the wheat starch industry. Several load tests were carried out with starch wastewater and the synthetic substrates glucose, acetate, cellulose, butyrate and propionate to observe the impact of changing loads on gas yield and effluent quality. The measurement data sets were used for calibration and validation of the Anaerobic Digestion Model No. 1 (ADM1). For a precise simulation of the detected glucose degradation during load tests with starch wastewater and glucose, it was necessary to incorporate the complete lactic acid fermentation into the ADM1, which contains the formation and degradation of lactate and a non-competitive inhibition function. The modelling results of both reactors based on the modified ADM1 confirm an accurate calculation of the produced gas and the effluent concentrations. Especially, the modelled lactate effluent concentrations for the load cases are similar to the measurements and justified by literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modified hot-conditioning of PHT system surfaces of PHWRs

    International Nuclear Information System (INIS)

    Venkateswaran, G.

    1997-01-01

    The increased awareness on the importance of controlling activity transport and radiation buildup on out-of-core surfaces of water cooled nuclear reactors is leading to a host of measures both from chemistry as well as engineering sides being undertaken. Passivation of the surfaces of structural materials is one such. Pressurised Heavy Water Reactors of CANDU design use large surface area of carbon steel alloy in the Primary Heat Transport System. Hot-conditioning of the PHT system with deoxygenated light water at temperatures ≅ 473 - 523 K during commissioning stage is done to form a protective magnetite film on the surfaces of carbon steel essentially to guard this material from corrosion during the intervening period between initial commissioning and first fuel loading and achieving nuclear heat. However, a need is felt to improve the quality of this magnetite film and control the crud release so that the twin objectives of controlling the corrosion of carbon steel and reducing a possible deposition of corrosion products on surfaces of fuel clad could be achieved. Laboratory static autoclave investigations have been carried out on the formation of protective magnetite film on carbon steel at 473 K, pH 10 (pH at 298 K) deoxygenated aqueous solutions of chelants like HEDTA, DTPA, NTA apart from EDTA. Additionally, influence of AVT chemicals like hydrazine, cyclohexylamine, morpholine and additives like glucose, boric acid has been studied. The data have been compared with the standard procedure of hot-conditioning namely with simple LiOH. It is found that chelants increase the base metal loss but the oxide formed is more protective than the one formed under simple LiOH treatment. The efficiency of passivation is greatly enhanced by hydrazine and boric acid while it is adversely affected by glucose. AVT chemicals acts as effective corrosion inhibitors. (author). 14 refs, 2 figs, 4 tabs

  2. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  3. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate

    International Nuclear Information System (INIS)

    D’Antonio, Palma; Vincenzo Inchingolo, Alessio; Perna, Giuseppe; Capozzi, Vito; Stomeo, Tiziana; De Vittorio, Massimo; Magno, Giovanni; Grande, Marco; Petruzzelli, Vincenzo; D’Orazio, Antonella

    2012-01-01

    In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal–dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip. (paper)

  4. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Feng, Haitao [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Lin, Feng [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Yabin [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Wang, Liping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Yaping [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China); Li, Wu, E-mail: liwu2016@126.com [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai (China); Key Lab of Comprehensive and Highly Efficient Utilization of Salt Lake Resource, Chinese Academy of Science, Xining 810008, Qinghai (China)

    2016-08-15

    Highlights: • Superhydrophobic surface was fabricated by black chromium electrodeposition and stearic acid modification. • The reaction process is simple, and of low cost, and no special instrument or environment is needed. • The obtained superhydrophobic surface presents good water repellency, and performs well at corrosion resistance. - Abstract: The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 10{sup 6} Ω cm{sup −2}) and excellent corrosion protection efficiency (99.94%).

  5. Cell-surface interactions involving immobilized magnetite nanoparticles on flat magnetic substrates.

    Science.gov (United States)

    Loichen, Juliane; Hartmann, Uwe

    2009-09-01

    A new method to affect cells by cell-surface interaction is introduced. Biocompatible magnetic nanobeads are deposited onto a biocompatible magnetic thin layer. The particles are composed of small magnetite crystals embedded in a matrix which can be functionalized by different molecules, proteins or growth factors. The magnetic interaction between surface and beads prevents endocytosis if the setup is utilized for cell culturing. The force acting between particles and magnetic layer is calculated by a magnetostatic approach. Biocompatibility is ensured by using garnet layers which turned out to be nontoxic and stable under culturing conditions. The garnet thin films exhibit spatially and temporally variable magnetic domain configurations in changing external magnetic fields and depending on their thermal pretreatment. Several patterns and bead deposition methods as well as the cell-surface interactions were analyzed. In some cases the cells show directed growth. Theoretical considerations explaining particular cell behavior on this magnetic material involve calculations of cell growth on elastic substrates and bending of cell membranes.

  6. Periodic array-based substrates for surface-enhanced infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Mayerhöfer Thomas G.

    2018-01-01

    Full Text Available At the beginning of the 1980s, the first reports of surface-enhanced infrared spectroscopy (SEIRS surfaced. Probably due to signal-enhancement factors of only 101 to 103, which are modest compared to those of surface-enhanced Raman spectroscopy (SERS, SEIRS did not reach the same significance up to date. However, taking the compared to Raman scattering much larger cross-sections of infrared absorptions and the enhancement factors together, SEIRS reaches about the same sensitivity for molecular species on a surface in terms of the cross-sections as SERS and, due to the complementary nature of both techniques, can valuably augment information gained by SERS. For the first 20 years since its discovery, SEIRS relied completely on metal island films, fabricated by either vapor or electrochemical deposition. The resulting films showed a strong variance concerning their structure, which was essentially random. Therefore, the increase in the corresponding signal-enhancement factors of these structures stagnated in the last years. In the very same years, however, the development of periodic array-based substrates helped SEIRS to gather momentum. This development was supported by technological progress concerning electromagnetic field solvers, which help to understand plasmonic properties and allow targeted design. In addition, the strong progress concerning modern fabrication methods allowed to implement these designs into practice. The aim of this contribution is to critically review the development of these engineered surfaces for SEIRS, to compare the different approaches with regard to their performance where possible, and report further gain of knowledge around and in relation to these structures.

  7. Imaging Analysis of Carbohydrate-Modified Surfaces Using ToF-SIMS and SPRi

    OpenAIRE

    Bolles, Kathryn M.; Cheng, Fang; Burk-Rafel, Jesse; Dubey, Manish; Ratner, Daniel M.

    2010-01-01

    Covalent modification of surfaces with carbohydrates (glycans) is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycoarrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of the surface bound carbohydrate moiety. However, the scarcity of analytical methods to characterize carbohydrate-modified surfaces complicates efforts to optimize glycan surface ch...

  8. Modified expression of surface glyconjugates in stored human platelets

    International Nuclear Information System (INIS)

    Dhar, A.; Ganguly, P.

    1987-01-01

    Platelets are anucleated cells which play an important part in blood coagulation and thrombosis. These cells may be stored in the blood bank for only 4/5 days. In order to improve the storage of platelets, it is essential to first understand the changes in these cells due to storage. In this work, human platelets were stored in autologous plasma at 4 0 or 22 0 and their surface changes were monitored with three lectins - wheat germ afflutinin (WGA), concanavalin A (Con A) and lentil lectin (LL). Blood was drawn from healthy donors and platelet rich plasma (PRP) was collected by slow speed centrifugation. Platelets stored at either temperature for different times showed increased sensitivity to agglutination by WGA after 34-48 hrs. Lectins, Con A and LL, which were not agglutinating to fresh platelets readily caused agglutination after 48-72 hrs. The platelets stored for 25 hrs or longer period were insensitive to thrombin but showed enhanced aggregation with WGA. Labelling of surface glycoconjugates of stored platelets with 3 H-boro-hydride revealed progressive loss of a glycoprotein of Mr 150,000 (GPIb infinity) together with the appearance of components of Mr 69,000; Mr 60,000; Mr 25,000. New high molecular weight glycoproteins were also detected only in stored platelets. The author studies clearly indicate that modification or altered expression of platelets surface glycoproteins may be one factor of storage related dysfunction of platelets

  9. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  10. Influence of substrate microstructure and surface finish on cracking and delamination response of TiN-coated cemented carbides

    OpenAIRE

    Yang, Jing; Odén, Magnus; Johansson-Joesaar, Mats P.; Llanes, L.

    2016-01-01

    The cracking and delamination of TiN-coated hardmetals (WC-Co cemented carbides) when subjected to Brale indentation were studied. Experimental variables were substrate microstructure related to low (6 wt% Co) and medium (13 wt% Co) binder content, and surface finishes associated with grinding and polishing stages before film deposition. Brale indentation tests were conducted on both coated and uncoated hardmetals. Emphasis has been placed on assessing substrate microstructure and subsurface ...

  11. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing

    Science.gov (United States)

    Wang, Yuhong; Wang, Mingli; Shen, Lin; Sun, Xin; Shi, Guochao; Ma, Wanli; Yan, Xiaoya

    2018-04-01

    Natural dragonfly wing (DW), as a template, was deposited on noble metal sliver (Ag) nanoislands by magnetron sputtering to fabricate a flexible, low-cost, large-scale and environment-friendly surface-enhanced Raman scattering (SERS) substrate (Ag/DW substrate). Generally, materials with regular surface nanostructures are chosen for the templates, the selection of our new material with irregular surface nanostructures for substrates provides a new idea for the preparation of high-performance SERS-active substrates and many biomimetic materials. The optimum sputtering time of metal Ag was also investigated at which the prepared SERS-active substrates revealed remarkable SERS activities to 4-aminothiophenol (4-ATP) and crystal violet (CV). Even more surprisingly, the Ag/DW substrate with such an irregular template had reached the enhancement factor (EF) of ∼1.05 × 105 and the detection limit of 10-10 M to 4-ATP. The 3D finite-different time-domain (3D-FDTD) simulation illustrated that the "hot spots" between neighbouring Ag nanoislands at the top of pillars played a most important role in generating electromagnetic (EM) enhancement and strengthening Raman signals.

  12. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  13. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhong [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  14. Glass carbon surface modified by the fluorine ion irradiation

    International Nuclear Information System (INIS)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-01-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word “TIRI”. The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ∼ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  15. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  16. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite.

    Science.gov (United States)

    Murugan, R; Ramakrishna, S

    2004-07-01

    Surface modification and coupling of therapeutic molecules, tetracycline, onto coralline hydroxyapatite (CHA) and their in vitro evaluations were described in this study. Initially, CHA was graft polymerized with glycidylmethacrylate (GMA) using redox initiators and subsequently coupled to tetracycline through epoxy groups. The CHA grafted with polyGMA (CHA-g-PGMA) was characterized by Fourier transform infrared spectroscopy and powder X-ray diffraction (XRD) for proof of grafting. The absorption peaks pertaining to epoxy and ester carbonyl groups were observed for the graft polymer due to PGMA grafting. The XRD results signified that there was no secondary phase in the apatite lattice and crystallinity was also not affected by grafting, which suggested that the PGMA chains were grafted only on the surface of CHA. Drug loading and releasing was evaluated and found that CHA-g-PGMA exhibited higher loading efficiency than CHA. The in vitro release of tetracycline was performed in phosphate buffered saline under physiological condition and the release profiles showed that the tetracycline-containing graft polymer releases the drug for prolonged period as compared to CHA. Based on the experimental results, CHA-g-PGMA appears to be a promising biomaterial for drug delivery.

  17. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  18. Investigation of the effects of misfit strain on barium strontium titanate thin films deposited on base metal substrates by a modified phenomenological model

    Science.gov (United States)

    Dong, Hanting; Li, Hongfang; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong

    2017-10-01

    The Landau-Devonshire phenomenological model, which has been utilized to investigate epitaxial barium strontium titanate (BST) thin films, was modified to investigate the effects of misfit strain on the dielectric properties of polycrystalline BST thin films deposited on base metal substrates. The modification considers the relaxation of lattice misfit stress resulting from the formation of in-plane misfit dislocations. The modified lattice misfit strain was calculated by referring to the ferroelectric critical grain size. Moreover, the misfit strain and dielectric properties of BST thin films with different structures and substrates were investigated by the models. It was found that the measured dielectric constant and tunability of BST thin films on different metal substrates overall agreed with the computed data. In addition, the good agreement was also observed for sandwich-like structural BST thin films deposited on LNO buffered stainless steel plates. Our results indicated that the modified L-D models might be utilized to predict dielectric properties of polycrystalline BST thin films for varied substrates and multilayer structures.

  19. Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties

    Directory of Open Access Journals (Sweden)

    Liang BL

    2007-01-01

    Full Text Available AbstractInAs/GaAs heterostructures have been simultaneously grown by molecular beam epitaxy on GaAs (100, GaAs (100 with a 2° misorientation angle towards [01−1], and GaAs (n11B (n = 9, 7, 5 substrates. While the substrate misorientation angle increased from 0° to 15.8°, a clear evolution from quantum dots to quantum well was evident by the surface morphology, the photoluminescence, and the time-resolved photoluminescence, respectively. This evolution revealed an increased critical thickness and a delayed formation of InAs quantum dots as the surface orientation departed from GaAs (100, which was explained by the thermal-equilibrium model due to the less efficient of strain relaxation on misoriented substrate surfaces.

  20. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte

    2013-01-01

    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...... during bio-operation at elevated temperatures. In contrast, PMMA, PDMS and COP microfluidic devices required specific surface treatment....

  1. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  2. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    Science.gov (United States)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  3. In vitro leukocyte adhesion to modified polyurethane surfaces. II. Effect of wettability

    NARCIS (Netherlands)

    Bruil, Anton; Bruil, A.; Brenneisen, L.M.; Brenneisen, Laura M.; Terlingen, Johannes G.A.; Terlingen, J.G.A.; Beugeling, T.; Beugeling, Tom; van Aken, W.G.; Feijen, Jan

    1994-01-01

    The influence of substrate wettability on leukocyte adhesion was studied using a series of polyurethane films with different surface wettabilities, prepared by a two step gas plasma modification procedure. In the first step the films were made hydrophobic by exposure to a tetrafluoromethane plasma.

  4. Cellular interactions of surface modified nanoporous silicon particles.

    Science.gov (United States)

    Bimbo, Luis M; Sarparanta, Mirkka; Mäkilä, Ermei; Laaksonen, Timo; Laaksonen, Päivi; Salonen, Jarno; Linder, Markus B; Hirvonen, Jouni; Airaksinen, Anu J; Santos, Hélder A

    2012-05-21

    In this study, the self-assembly of hydrophobin class II (HFBII) on the surface of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles was investigated. The HFBII-coating converted the hydrophobic particles into more hydrophilic ones, improved the particles' cell viability in both HT-29 and Caco-2 cell lines compared to uncoated particles, and enhanced the particles' cellular association. The amount of HFBII adsorbed onto the particles was also successfully quantified by both the BCA assay and a HPLC method. Importantly, the permeation of a poorly water-soluble drug, indomethacin, loaded into THCPSi particles across Caco-2 monolayers was not affected by the protein coating. In addition, (125)I-radiolabelled HFBII did not extensively permeate the Caco-2 monolayer and was found to be stably adsorbed onto the THCPSi nanoparticles incubated in pH 7.4, which renders the particles the possibility for further track-imaging applications. The results highlight the potential of HFBII coating for improving wettability, increasing biocompatibility and possible intestinal association of PSi nanoparticulates for drug delivery applications.

  5. Surface modified alginate microcapsules for 3D cell culture

    Science.gov (United States)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  6. Eco-friendly aqueous core surface-modified nanocapsules.

    Science.gov (United States)

    Carbone, C; Musumeci, T; Lauro, M R; Puglisi, G

    2015-01-01

    In this work, positively charged nanocapsules have been developed for potential ocular delivery exploiting the deposition of PLA onto the droplet surface of a W/O nanoemulsion prepared by the reversed procedure of the PIT method. PLA in combination with different amounts of various oils and surfactants have been studied in order to select the best formulation for polymeric nanocapsule preparation. The traditional visual observation together with the Turbiscan(®) technology were exploited in order to identify the best combination of polymer/oil for nanocapsule preparation. Two different primary surfactants (Span(®) 60 and Span(®) 80) have been tested to select their influence on the field of existence of the nanoemulsion by the construction of the pseudoternary phase diagrams. Cationic hybrid NC have been prepared by the addition of a coating layer of DDAB. The physico-chemical and morphological properties of all the prepared nanocapsules have been evaluated and compared by PCS, DSC and AFM. Therefore, positively charged nanocapsules can be easily prepared by a simple eco-friendly technique that exploits biocompatible materials avoiding a large input of mechanical energy as a potential ocular delivery systems for hydrophilic compounds or gene materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan

    Science.gov (United States)

    Haddadi, Azita; Hamdy, Samar; Ghotbi, Zahra; Samuel, John; Lavasanifar, Afsaneh

    2014-09-01

    Mannan (MN) is the natural ligand for mannose receptors, which are widely expressed on dendritic cells (DCs). The purpose of this study was to assess the effect of formulation parameters on the immunogenicity of MN-decorated poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to stimulate DC phenotypic as well as functional maturation. For this purpose, NPs were formulated from either ester-terminated or COOH-terminated PLGA. Incorporation of MN in NPs was achieved through encapsulation, physical adsorption or chemical conjugation. Murine bone marrow derived DCs (BMDCs) were treated with various NP formulations and assessed for their ability to up-regulate DC cell surface markers, secrete immunostimulatory cytokines and to activate allogenic T cell responses. DCs treated with COOH-terminated PLGA-NPs containing chemically conjugated MN (MN-Cov-COOH) have shown superior performance in improving DC biological functions, compared to the rest of the formulations tested. This may be attributed to the higher level of MN incorporation in the former formulation. Incorporation of MN in PLGA NPs through chemical conjugation can lead to enhanced DC maturation and stimulatory function. This strategy may be used to develop more effective PLGA-based vaccine formulations.

  8. A Biomedical Surface Enhanced Raman Scattering Substrate: Functionalized Three-Dimensional Porous Membrane Decorated with Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Li Yuan

    2015-01-01

    Full Text Available We fabricated a simple, cheap, and functional surface enhanced Raman scattering substrate for biomedical application. Hot spots between two close silver nanoparticles distributed in the skeleton of a three-dimensional porous membrane, especially in the pores, were formed. The dual poles of micropores in the membrane were discussed. The pores could protect the silver nanoparticles in the pores from being oxidized, which makes the membrane effective for a longer period of time. In addition, Staphylococcus aureus cells could be trapped by the micropores and then the Raman signal became stronger, indicating that the functional surface enhanced Raman scattering substrate is reliable.

  9. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  10. Kinetics of enzyme action on surface-attached substrates: a practical guide to progress curve analysis in any kinetic situation.

    Science.gov (United States)

    Anne, Agnès; Demaille, Christophe

    2012-10-16

    In the present work, exact kinetic equations describing the action of an enzyme in solution on a substrate attached to a surface have been derived in the framework of the Michaelis-Menten mechanism but without resorting to the often-used steady-state approximation. The here-derived kinetic equations are cast in a workable format, allowing us to introduce a simple and universal procedure for the quantitative analysis of enzyme surface kinetics that is valid for any kinetic situation. The results presented here should allow experimentalists studying the kinetics of enzyme action on immobilized substrates to analyze their data in a perfectly rigorous way.

  11. Californium-252 plasma desorption mass analysis of proteins adsorbed on polymer and modified-polymer surfaces

    International Nuclear Information System (INIS)

    Hill, J.C.

    1987-01-01

    A new Cf-252 plasma desorption mass spectrometer has been built specifically for the analysis of large biomolecules. This mass spectrometer was used to investigate the interactions between proteins adsorbed onto polymer surfaces and how the chemical nature of the polymer surface influences the production of stable, gas-phase molecule ions. Chemical modification of the polymer surfaces was achieved by means of ultra-violet irradiation, resulting in the production of a more hydrophilic surface. Analysis of a series of model compounds adsorbed onto modified and non-modified polymer surfaces indicates that the wettability of the surface is an important influence in the production of stable molecular ions. This information was then utilized to aid in the analysis of lysozyme, myoglobin, and porcine trypsin

  12. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  13. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  14. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-01-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO 3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 ). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  15. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  16. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  17. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    Energy Technology Data Exchange (ETDEWEB)

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon (UC); (UIC)

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  18. Investigation of surface cleaning procedure of InP:S (1 0 0) substrates by high resolution XPS

    International Nuclear Information System (INIS)

    Adamiec, M.; Talik, E.; Gladki, A.

    2006-01-01

    The angle resolved X-ray photoelectron spectroscopy measurements were used to monitor a level of contamination of the InP:S (1 0 0) substrates during the cleaning processes with deionized water and isopropanol. Some contaminations with carbon and oxygen were found for a broken under ultrahigh vacuum InP:S substrate, indicating the contamination of the crystal during the growth process. The substrates after cleaning with deionized water and isopropanol were contaminated with carbon, oxygen, nitrogen and silicon. Concentration of carbon decreases inwards the substrates while concentration of oxygen is enhanced even in the deeper layers for both processes. The nitrogen concentration is higher for the samples rinsed with water. Roughness of the surfaces is higher for the samples rinsed with water what indicated the AFM measurements

  19. Micro-orientation control of silicon polymer thin films on graphite surfaces modified by heteroatom doping

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, Iwao, E-mail: shimoyama.iwao@jaea.go.jp [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Yuji [Fukushima Administrative Department, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan); Hirao, Norie [Material Science Research Center, Atomic Energy Agency, Tokai-mura 2-4, Naka-gun, Ibaraki 319-1195 (Japan)

    2017-05-31

    Highlights: • Micro-orientation control method for organic polysilane thin films is proposed. • This method utilizes surface modification of graphite using heteroatom doping. • Lying, standing, and random orientations can be freely controlled by this method. • Micro-pattering of a polysilane film with controlled orientations is achieved. - Abstract: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is applied to study orientation structures of polydimethylsilane (PDMS) films deposited on heteroatom-doped graphite substrates prepared by ion beam doping. The Si K-edge NEXAFS spectra of PDMS show opposite trends of polarization dependence for non irradiated and N{sub 2}{sup +}-irradiated substrates, and show no polarization dependence for an Ar{sup +}-irradiated substrate. Based on a theoretical interpretation of the NEXAFS spectra via first-principles calculations, we clarify that PDMS films have lying, standing, and random orientations on the non irradiated, N{sub 2}{sup +}-irradiated, and Ar{sup +}-irradiated substrates, respectively. Furthermore, photoemission electron microscopy indicates that the orientation of a PDMS film can be controlled with microstructures on the order of μm by separating irradiated and non irradiated areas on the graphite surface. These results suggest that surface modification of graphite using ion beam doping is useful for micro-orientation control of organic thin films.

  20. Forensic Sampling and Analysis from a Single Substrate: Surface-Enhanced Raman Spectroscopy Followed by Paper Spray Mass Spectrometry.

    Science.gov (United States)

    Fedick, Patrick W; Bills, Brandon J; Manicke, Nicholas E; Cooks, R Graham

    2017-10-17

    Sample preparation is the most common bottleneck in the analysis and processing of forensic evidence. Time-consuming steps in many forensic tests involve complex separations, such as liquid and gas chromatography or various types of extraction techniques, typically coupled with mass spectrometry (e.g., LC-MS). Ambient ionization ameliorates these slow steps by reducing or even eliminating sample preparation. While some ambient ionization techniques have been adopted by the forensic community, there is significant resistance to discarding chromatography as most forensic analyses require both an identification and a confirmation technique. Here, we describe the use of a paper substrate, the surface of which has been inkjet printed with silver nanoparticles, for surface enhanced Raman spectroscopy (SERS). The same substrate can also act as the paper substrate for paper spray mass spectrometry. The coupling of SERS and paper spray ionization creates a quick, forensically feasible combination.

  1. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    International Nuclear Information System (INIS)

    Varault, S.; Gabard, B.; Crépin, T.; Bolioli, S.; Sokoloff, J.

    2014-01-01

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide

  2. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    Energy Technology Data Exchange (ETDEWEB)

    Varault, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Gabard, B. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); STAE—4, Rue Emile Monso, BP84234, 31030 Toulouse Cedex 4 (France); Crépin, T.; Bolioli, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Sokoloff, J. [Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2014-02-28

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.

  3. Determination of histamine in fish by Surface Enhanced Raman Spectroscopy using silver colloid SERS substrates.

    Science.gov (United States)

    Janči, Tibor; Valinger, Davor; Gajdoš Kljusurić, Jasenka; Mikac, Lara; Vidaček, Sanja; Ivanda, Mile

    2017-06-01

    This study was focused on development of a rapid and sensitive method for histamine determination in fish based on Surface Enhanced Raman Spectroscopy (SERS) using simple and widely available silver colloid SERS substrate. Extraction of histamine with 0.4M perchloric acid and purification with 1-butanol significantly shortened sample preparation (30min) and provided clear SERS spectra with characteristic Raman bands of histamine. Principal component analysis effectively distinguished SERS spectra of fish samples with different histamine content. Partial least square (PLS) regression models confirmed reliability of detection and spectral analysis of histamine with SERS. In histamine concentration range 0-200mgkg -1 , significant in legislative and fish quality control aspects, PLS regression model based on spectral range 1139.9-1643.7cm -1 showed linear trend with R 2 pred =0.962, RPD=7.250. Presented protocol for histamine extraction and purification followed by SERS analysis coupled with chemometric approach, enabled development of rapid and inexpensive method for histamine determination in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Role of the substrate reflectance and surface-bulk treatments in CsI quantum efficiency

    CERN Document Server

    Singh, B K; Nitti, M A; Valentini, A

    2003-01-01

    We have experimentally investigated the following aspects related to the quantum efficiency of CsI photocathodes: the type of substrate, the film thickness and the effect of a 'bulk treatment' during the film growth. We discovered that, using a high reflectivity aluminium substrate, the photoemission of very thin CsI film is enhanced. Our study also revealed that photocathodes become less sensitive to moisture when a negative bias voltage is applied to the substrate during the film deposition process.

  5. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    International Nuclear Information System (INIS)

    Wang, Jian; Gao, Xueli; Wang, Qun; Sun, Haijing; Wang, Xiaojuan; Gao, Congjie

    2015-01-01

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  6. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Xueli, E-mail: gxl_ouc@126.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Wang, Qun; Sun, Haijing; Wang, Xiaojuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Congjie, E-mail: gaocjie@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-11-30

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  7. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  8. Surface Hydrophilicity and Antifungal Properties of TiO2 Films Coated on a Co-Cr Substrate

    Directory of Open Access Journals (Sweden)

    Lijuan Huang

    2017-01-01

    Full Text Available The purpose of this study was to deposit a thin layer of TiO2 on a Co-Cr substrate, serving as a deactivation film protecting the metallic fitting surface. The crystalline structure and surface morphology of the film were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. A scratch tester was used to examine the adhesion strength between the TiO2 film and the Co-Cr substrate. The water contact angles and antifungal efficacy against C. albicans of the TiO2-deposited Co-Cr samples were investigated and further compared with those of uncoated Co-Cr substrates. The results indicated that a pure anatase microstructure and dense and smooth surface texture as well as strong binding to the underlying metallic surface were obtained. The originally hydrophobic Co-Cr alloy surface turned hydrophilic after TiO2 film coating. Most importantly, the TiO2-coated surface showed a superior antifungal capability under UV-irradiation compared to those without TiO2 coating. This work contains meaningful results for the development of a new metallic framework coating with improved hydrophilicity and antifungal properties.

  9. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  10. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    International Nuclear Information System (INIS)

    Honda, Mitsunori; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-01-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds

  11. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes

    International Nuclear Information System (INIS)

    Salinas-Torres, David; Huerta, Francisco; Montilla, Francisco; Morallon, Emilia

    2011-01-01

    An investigation of the electrocatalysis of single-walled carbon nanotubes modified electrodes has been performed in this work. Nanotube-modified electrodes present a surface area much higher than the bare glassy carbon surfaces as determined by capacitance measurements. Several redox probes were selected for checking the reactivity of specific sites at the carbon nanotube surface. The presence of carbon nanotubes on the electrode improves the kinetics for all the reactions studied compared with the bare glassy carbon electrode with variations of the heterogeneous electron transfer rate constant up to 5 orders of magnitude. The most important effects are observed for the benzoquinone/hydroquinone and ferrocene/ferricinium redox couples, which show a remarkable improvement of their electron transfer kinetics on SWCNT-modified electrodes, probably due to strong π-π interaction between the organic molecules and the walls of the carbon nanotubes. For many of the reactions studied, less than 1% of the nanotube-modified electrode surface is transferring charge to species in solution. This result suggests that only nanotube tips are active sites for the electron transfer in such cases. On the contrary, the electroactive surface for the reactions of ferrocene and quinone is higher indicating that the electron transfer is produced also from the nanotube walls.

  13. Surface science and electrochemical studies of metal-modified carbides for fuel cells and hydrogen production

    Science.gov (United States)

    Kelly, Thomas Glenn

    Carbides of the early transition metals have emerged as low-cost catalysts that are active for a wide range of reactions. The surface chemistry of carbides can be altered by modifying the surface with small amounts of admetals. These metal-modified carbides can be effective replacements for Pt-based bimetallic systems, which suffer from the drawbacks of high cost and low thermal stability. In this dissertation, metal-modified carbides were studied for reactions with applications to renewable energy technologies. It is demonstrated that metal-modified carbides possess high activity for alcohol reforming and electrochemical hydrogen production. First, the surface chemistry of carbides towards alcohol decomposition is studied using density functional theory (DFT) and surface science experiments. The Vienna Ab initio Simulation Package (VASP) was used to calculate the binding energies of alcohols and decomposition intermediates on metal-modified carbides. The calculated binding energies were then correlated to reforming activity determined experimentally using temperature programmed desorption (TPD). In the case of methanol decomposition, it was found that tungsten monocarbide (WC) selectively cleaved the C-O bond to produce methane. Upon modifying the surface with a single layer of metal such as Ni, Pt, or Rh, the selectivity shifted towards scission of the C-H bonds while leaving the C-O bond intact, producing carbon monoxide (CO) and H2. High resolution energy loss spectroscopy (HREELS) was used to examine the bond breaking sequence as a function of temperature. From HREELS, it was shown that the surfaces followed an activity trend of Rh > Ni > Pt. The Au-modified WC surface possessed too low of a methanol binding energy, and molecular desorption of methanol was the most favorable pathway on this surface. Next, the ability of Rh-modified WC to break the C-C bond of C2 and C3 alcohols was demonstrated. HREELS showed that ethanol decomposed through an acetaldehyde

  14. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Lingwei Ma

    2017-08-01

    Full Text Available Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.

  15. Nucleation of microcrystalline silicon: on the effect of the substrate surface nature and nano-imprint topography

    International Nuclear Information System (INIS)

    Palmans, J; Faraz, T; Verheijen, M A; Kessels, W M M; Creatore, M

    2016-01-01

    The nucleation of microcrystalline silicon thin-films has been investigated for various substrate natures and topographies. An earlier nucleation onset on aluminium-doped zinc oxide compared to glass substrates has been revealed, associated with a microstructure enhancement and reduced surface energy. Both aspects resulted in a larger crystallite density, following classical nucleation theory. Additionally, the nucleation onset was (plasma deposition) condition-dependent. Therefore, surface chemistry and its interplay with the plasma have been proposed as key factors affecting nucleation and growth. As such, preliminary proof of the substrate nature’s role in microcrystalline silicon growth has been provided. Subsequently, the impact of nano-imprint lithography prepared surfaces on the initial microcrystalline silicon growth has been explored. Strong topographies, with a 5-fold surface area enhancement, led to a reduction in crystalline volume fraction of ∼20%. However, no correlation between topography and microstructure has been found. Instead, the suppressed crystallization has been partially ascribed to a reduced growth flux, limited surface diffusion and increased incubation layer thickness, originating from the surface area enhancement when transiting from flat to nanostructured surfaces. Furthermore, fundamental plasma parameters have been reviewed in relation with surface topography. Strong topographies are not expected to affect the ion-to-growth flux ratio. However, the reduced ion flux (due to increasing surface area) further limited the already weak ion energy transfer to surface processes. Additionally, the atomic hydrogen flux, i.e. the driving force for microcrystalline growth, has been found to decrease by a factor of 10 when transiting from flat to nanostructured topography. This resulted in an almost 6-fold reduction of the hydrogen-to-growth flux ratio, a much stronger effect than the ion-to-growth flux ratio. Since previous studies regarding

  16. Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition

    Energy Technology Data Exchange (ETDEWEB)

    Kunst, S.R.; Cardoso, H.R.P. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Oliveira, C.T. [ICET, University Feevale, RS-239, 2755 Novo Hamburgo, RS (Brazil); Santana, J.A.; Sarmento, V.H.V. [Department of Chemistry, Federal University of Sergipe – UFS, Av. Vereador Olímpio Grande s/n, Centro, Itabaiana, SE (Brazil); Muller, I.L. [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil); Malfatti, C.F., E-mail: celia.malfatti@ufrgs.br [LAPEC, Federal University of Rio Grande do Sul – UFRGS, Avenida Bento Gonçalves, 9500 Porto Alegre, RS (Brazil)

    2014-04-01

    Highlights: • Siloxane–PMMA film was produced by dip-coating on tin plate substrate. • It was evaluated the influence of (TEOS) addition on siloxane–PMMA hybrid films. • Siloxane–PMMA films without TEOS presented a regular coverage and lowest roughness. • The TEOS addition decrease the corrosion resistance of siloxane–PMMA films. • Siloxane–PMMA without TEOS presented is higher durability in the film wear test. - Abstract: The aim of this paper is to study the corrosion resistance of hybrid films. Tin plate was coated with a siloxane–poly (methyl methacrylate) (PMMA) hybrid film prepared by sol–gel route with covalent bonds between the organic (PMMA) and inorganic (siloxane) phases obtained by hydrolysis and polycondensation of 3-(trimethoxysilylpropyl) methacrylate (TMSM) and polymerization of methyl methacrylate (MMA) using benzoyl peroxide (BPO) as a thermic initiator. Hydrolysis reactions were catalyzed by acetic acid solution avoiding the use of chlorine or stronger acids in the film preparation. The effect of the addition of tetraethoxysilane (TEOS) on the protective properties of the film was evaluated. The hydrophobicity of the film was determined by contact angle measurements, and the morphology was evaluated by scanning electron microscopy (SEM) and profilometry. The local nanostructure was investigated by Fourier transform infrared spectroscopy (FT-IR). The electrochemical behavior of the films was assessed by open circuit potential monitoring, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements in a 0.05 M NaCl solution. The mechanical behavior was evaluated by tribology. The results highlighted that the siloxane–PMMA hybrid films modified with acetic acid are promising anti-corrosive coatings that acts as an efficient diffusion barrier, protecting tin plates against corrosion. However, the coating properties were affected by the TEOS addition, which contributed for the thickness increase

  17. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Lee, J.H.; Lim, Y.K.; Yang, H.Y.; Shin, S.W.; Song, M.J.

    2003-01-01

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm 2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  18. Modifying the photodetachment near a metal surface by a weak electric field

    OpenAIRE

    Yang, B. C.; Du, M. L.

    2009-01-01

    We show the photodetachment cross sections of H near a metal surface can be modified using a weak static electric field. The modification is possible because the oscillatory part of the cross section near a metal surface is directly connected with the transit-time and the action of the detached-electron closed-orbit which can be changed systematically by varying the static electric field strength. Photodetachment cross sections for various photon energies and electric field values are calcula...

  19. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    Science.gov (United States)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  20. Construction of wettability gradient surface on copper substrate by controlled hydrolysis of poly(methyl methacrylate–butyl acrylate) films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong, E-mail: Yong.Z@mail.scut.edu.cn [Guangzhou Panyu Polytechnic, Guangzhou 511483 (China); Cheng, Jiang; Yang, Zhuo-ru [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-10-01

    We report a gradient wettability surface on copper slide prepared by a simple controlled ester group hydrolysis procedure of poly(methyl methacrylate–butyl acrylate) [P (MMA-BA)] films coated on the copper substrate. In the method, sodium hydroxide solutions are selected to prepare surface gradient wettability on P (MMA-BA) films. The P (MMA-BA) copolymers with different MMA contents are first synthesized by a conventional free atom radical solution polymerization method. The transfer of surface chemical composition from the ester group to acid salt is achieved by hydrolysis in NaOH solution. The effects of different concentrations of NaOH solution and reaction times on the physicochemical properties of the resulting surfaces are studied. The field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) results show that the varying concentration along the substrate length is only attributed to the hydrolysis reaction of ester groups. The hydrolysis causes insignificant change on the morphology of the original film on the copper substrate. In addition, it is found that the MMA copolymer content has a significant influence on the concentration of ester groups on the outermost surface and thus important for forming the slope gradients.

  1. A study of structure and properties of molecularly thin methanol film using the modified surface forces apparatus.

    Science.gov (United States)

    Zhao, Gutian; Cai, Di; Wu, Gensheng; Tan, Qiyan; Xiang, Li; Zhang, Yin; Xiang, Nan

    2014-11-01

    A novel approach for studying the adsorption and evaporation processes of molecularly thin methanol film by the modified surface forces apparatus (M-SFA) is reported. This method can be used precisely to measure the thickness, morphology, and mechanical properties of the film confined between two mica surfaces in a real-time manner at gas atmosphere. By observing the adsorption and evaporation processes of the methanol molecule, it is found that the first adsorbed layer of the methanol film on the mica surface behaves as a solid-like structure. The thickness of this layer is measured to be about 3.2 Å, approximately equal to the diameter of a methanol molecule. Besides, this first adsorbed layer can carry normalized loads of more than 5.6 atm due to the carrying capacity conserved by the bond of mica-OH. The outer layers of the methanol film are further adsorbed with the increase of the exposure time, which are liquid-like and can be easily eliminated out from the substrate. The present study suggests that the interacting mode between hydroxy and mica is of great potential in material science and biomedical systems. © 2014 Wiley Periodicals, Inc.

  2. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  3. An effective substrate surface decoration to YBCO films by multiphase nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Liu, Min, E-mail: lm@bjut.edu.cn; Suo, Hong-Li; Ye, Shuai; Wu, Zi-Ping; Mao, Lei

    2013-12-15

    Highlights: •We find a new way to solve particles agglomeration ---Multiphase codeposition. •Ce{sub 0.15}/Zr{sub 0.85}O{sub 2} can form high quality multiphase nanoparticles. •Single phase particles ZrO{sub 2} and YSZ have the same pinning performance to YBCO. •A high pinning property in YBCO films are observed from CZO decorated sample. -- Abstract: Three types of nanodots were deposited on the surface of single crystal LaAlO{sub 3}(LAO) substrates before preparing YBCO films. By comparing with different interfacial nanodots, it was found that ZrO{sub 2} and Y{sub 0.15}Zr{sub 0.85}O{sub 2} (YSZ) interfacial nanodots have a similar size, shape, and density as well as distribution so that they have a same and weaker effect on the pinning ability of the YBCO film. However, CeO{sub 2}/ZrO{sub 2} = 0.15/0.85 (CZO) has a different character with a small size, large density and uniform distribution. Especially, CZO interfacial nanodots are the most effective to enhance J{sub c} values of YBCO films in applied magnetic field. At 77 K and 3 T, the J{sub c} value of YBCO film with CZO interfacial nanodots decorating is 12 times of that of pure YBCO. A further research indicated that the high performance was due to multiphase. Besides, the advantages of multiphase nanoparticles are more prominent as increasing the applied magnetic field and temperature.

  4. Optimization of Phospholipase A1 Immobilization on Plasma Surface Modified Chitosan Nanofibrous Mat

    Directory of Open Access Journals (Sweden)

    Zahra Beig Mohammadi

    2016-01-01

    Full Text Available Phospholipase A1 is known as an effective catalyst for hydrolysis of various phospholipids in enzymatic vegetable oil degumming. Immobilization is one of the most efficient strategies to improve its activity, recovery and functional properties. In this study, chitosan-co-polyethylene oxide (90:10 nanofibrous mat was successfully fabricated and modified with atmospheric plasma at different times (2, 6 and 10 min to interact with enzyme molecules. Scanning electron microscopy images revealed that the membranes retained uniform nanofibrous and open porous structures before and after the treatment. PLA1 was successfully immobilized onto the membrane surfaces via covalent bonds with the functional groups of chitosan nanofibrous mat. Response surface methodology was used to optimize the immobilization conditions for reaching the maximum immobilization efficiency. Enzyme concentration, pH, and immobilization time were found to be significant key factors. Under optimum conditions (5.03 h, pH 5.63, and enzyme dosage 654.36 UI, the atmospheric plasma surface modified chitosan nanofibers reached the highest immobilization efficiency (78.50%. Fourier transform infrared spectroscopy of the control and plasma surface-modified chitosan nanofibers revealed the functional groups of nanofibers and their reaction with the enzyme. The results indicated that surface modification by atmospheric plasma induced an increase in PLA1 loading on the membrane surfaces.

  5. Surface modified Al2O3 in fluorinated polyimide/Al2O3 ...

    Indian Academy of Sciences (India)

    the mechanical and thermal properties of polymers (Li et al. 2010). Herein, we wish to report the synthesis and characte- rization of fluorinated PI–Al2O3 nanocomposite films via in situ polymerization using different contents of surface modified Al2O3 nanoparticles as filler and fluorinated PI as the matrix. PI which was used ...

  6. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    NARCIS (Netherlands)

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  7. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions.

    Science.gov (United States)

    Lestari, Maria L A D; Müller, Rainer H; Möschwitzer, Jan P

    2015-03-01

    The role of a surface modifier is important in the formation of stable nanosuspensions. In this study, a simple and systematic screening method for selecting optimum surface modifiers was performed by utilizing a low-energy wet ball milling method. Nine surface modifiers from different classes with different stabilization mechanisms were applied on six different models of active pharmaceutical ingredients (API). Particle size analysis showed that at concentration five times higher than the critical micelle concentration, SDS and sodium cholate (anionic surfactant) showed the highest percent success to produce stable nanosuspensions with particle size smaller than 250 nm. Similar findings were also shown by poloxamer 188 (nonionic surfactant) and hydroxypropylmethylcellulose E5 (polymeric stabilizer) at concentration 1% (w/v) and 0.8% (w/v), respectively. In addition, combinations of anionic surfactant and nonionic surfactant as well as combinations of anionic surfactant and polymeric stabilizer showed high percent success in the formation of stable nanosuspensions. In general, no correlation can be found between the physicochemical characteristics of the model API (molecular weight, melting point, log P, pKa, and crystallinity) with its feasibility to be nanosized. The concentration and the principle of stabilization of surface modifier determine the formation of stable nanosuspensions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  9. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lovygin, M. V., E-mail: lemi@miee.ru; Borgardt, N. I. [National Research University of Electronic Technology “MIET” (Russian Federation); Seibt, M. [Universität Göttingen, IV Physikalisches Institut (Germany); Kazakov, I. P.; Tsikunov, A. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  10. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    Science.gov (United States)

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

  11. Development of gold induced surface plasmon enhanced CIGS absorption layer on polyimide substrate

    Science.gov (United States)

    Park, Seong-Un; Sharma, Rahul; Sim, Jae-Kwan; Baek, Byung Joon; Ahn, Haeng-Kwun; Kim, Jin Soo; Lee, Cheul-Ro

    2013-09-01

    Localized surface plasmon resonance (LSPR) with metal nanoparticles is the promising phenomenon to increase light absorption by trapping light in thin film solar cells. In this study we demonstrate a successful LSPR effect with gold (Au) nanoparticles onto the Cu(In,Ga)Se2 (CIGS) absorption layer. First, the CIGS absorber layers is fabricated onto the Mo coated polyimide (PI) substrate by using two stage process as DC sputtering of CIG thin film followed by the selenization at 400 °C. Finally, the Au nanoparticles are deposited onto the CIGS layer with increasing particles size from 4-15 nm by using sputter coater for 10-120 s. The X-ray diffraction (XRD) patterns confirm the formation of CIGS/Au nanocomposite structure with prominent peak shift of CIGS reflections and increasing intensity for Au phase. The CIGS/Au nanocomposite morphologies with Au particle size distribution uniformity and surface coverage is examined under ultra-high resolution field effect scanning electron microscope (UHR-FESEM). A peak at 176 cm-1 in Raman spectra, associated with the “A1” mode of lattice vibration for the attributed to the pure chalcopyrite structure. The secondary ion mass spectroscopy (SIMS) showed ∼200 nm depth converge of Au nanoparticles into the CIGS absorption layer. The optical properties as transmittance, reflectance and absorbance of CIGS/Au layers were found to expand in the infrared region and the LSPR effect is the most prominent for Au particles (5-7 nm) deposited for 60 s. The absorption coefficient and band gap measurement also confirms that the LSPR effect for 5-7 nm Au particles with band gap improvement from 1.31 to 1.52 eV for CIGS/Au layer as the defect density decreases due to the deposition of Au nanoparticles onto the CIGS layer. Such LSPR effect in CIGS/Au nanocomposite absorption layer will be a key parameter to further improve performance of the solar cell.

  12. Development of gold induced surface plasmon enhanced CIGS absorption layer on polyimide substrate

    International Nuclear Information System (INIS)

    Park, Seong-Un; Sharma, Rahul; Sim, Jae-Kwan; Baek, Byung Joon; Ahn, Haeng-Kwun; Kim, Jin Soo; Lee, Cheul-Ro

    2013-01-01

    Localized surface plasmon resonance (LSPR) with metal nanoparticles is the promising phenomenon to increase light absorption by trapping light in thin film solar cells. In this study we demonstrate a successful LSPR effect with gold (Au) nanoparticles onto the Cu(In,Ga)Se 2 (CIGS) absorption layer. First, the CIGS absorber layers is fabricated onto the Mo coated polyimide (PI) substrate by using two stage process as DC sputtering of CIG thin film followed by the selenization at 400 °C. Finally, the Au nanoparticles are deposited onto the CIGS layer with increasing particles size from 4–15 nm by using sputter coater for 10–120 s. The X-ray diffraction (XRD) patterns confirm the formation of CIGS/Au nanocomposite structure with prominent peak shift of CIGS reflections and increasing intensity for Au phase. The CIGS/Au nanocomposite morphologies with Au particle size distribution uniformity and surface coverage is examined under ultra-high resolution field effect scanning electron microscope (UHR-FESEM). A peak at 176 cm −1 in Raman spectra, associated with the “A1” mode of lattice vibration for the attributed to the pure chalcopyrite structure. The secondary ion mass spectroscopy (SIMS) showed ∼200 nm depth converge of Au nanoparticles into the CIGS absorption layer. The optical properties as transmittance, reflectance and absorbance of CIGS/Au layers were found to expand in the infrared region and the LSPR effect is the most prominent for Au particles (5–7 nm) deposited for 60 s. The absorption coefficient and band gap measurement also confirms that the LSPR effect for 5–7 nm Au particles with band gap improvement from 1.31 to 1.52 eV for CIGS/Au layer as the defect density decreases due to the deposition of Au nanoparticles onto the CIGS layer. Such LSPR effect in CIGS/Au nanocomposite absorption layer will be a key parameter to further improve performance of the solar cell.

  13. Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique

    Science.gov (United States)

    Ivanov, Ilia N; Simpson, John T

    2012-06-26

    A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.

  14. Surface resistance of YBa2Cu3O7 films deposited on LaGaO3 substrates

    International Nuclear Information System (INIS)

    Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Javadi, H.H.S.; Maez, M.A.; Bennett, B.L.; Rusnak, B.; Meyer, E.A.; Arendt, P.N.; Beery, J.G.; Brown, D.R.; Garzon, F.H.; Raistriek, I.D.; Bolmaro, B.; Elliott, N.E.; Rollett, A.D.; Klein, N.; Muller, G.; Orbach, S.; Piel, H.; Josefowicz, J.Y.; Rensch, O.B.; Drabeck, L.; Gruner, G.

    1989-01-01

    Superconducting films of YBa 2 Cu 3 O 7 deposited onto LaGaO 3 substrates were prepared by e-beam and magnetron sputtering techniques. Surface resistance measurements made at 22 GHz, 86 GHz, and 148 GHz show that these films are superior to those deposited by similar techniques onto SrTiO 3 . Typical surface resistance values measured at 22 GHz and 12 K are ∼2 m(cgom) with the lowest value being 0.2 m(cgom), which is only 2 to 4 times higher than Nb. The surface resistance is proportional to the square of the measuring frequency

  15. In situ surface-enhanced raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan William; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 mu L) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC

  16. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface

    NARCIS (Netherlands)

    Yuan, Tao; Le Thi Ngoc, Loan; van Nieuwkasteele, Jan; Odijk, Mathieu; van den Berg, Albert; Permentier, Hjalmar; Bischoff, Rainer; Carlen, Edwin T

    2015-01-01

    An integrated surface-enhanced Raman scattering (SERS) spectroelectrochemical (SEC) analysis system is presented that combines a small volume microfluidic sample chamber (<100 μL) with a compact three-electrode configuration for in situ surface-enhanced Raman spectroelectrochemistry. The SEC system

  17. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    Science.gov (United States)

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  19. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  20. Effect of cleaning and storage on quartz substrate adhesion and surface energy

    Science.gov (United States)

    Balachandran, Dave; John, Arun

    2014-04-01

    The force of adhesion of 50 nm diameter diamond-like carbon sphere probes to three quartz substrates was measured using an atomic force microscope. The force of adhesion was measured prior to cleaning, within 10 minutes after cleaning, after storage in an N2-purged cabinet, and after storage in an N2-purged vacuum oven. The evaluated cleaning recipes were SC1-like, SPM-like, and HF-based, each followed by ultra-pure deionized water (UPW) rinse and spin drying. The measurements were conducted in a Class 100 clean room at approximately 50% relative humidity. In addition, contact angle measurements were made on three additional quartz substrates using UPW before cleaning, after cleaning, and throughout N2 storage. The adhesion force increased after cleaning as compared to the pre-cleaned state, continued to increase until reaching a maximum after 5 days of N2 storage, and then decreased after 26 days for all three substrates. One substrate was then stored in a vacuum oven for 3 days, and the adhesion force decreased to 46% of the pre-cleaned state. The contact angle was reduced from over 30° before cleaning to 0° immediately after cleaning. During subsequent N2 storage, the contact angle increased to 5° or greater after 18 hours for the substrate cleaned with the HF-based recipe and after 15 days for the substrates cleaned by the SC1-like and SPM-like recipes.

  1. Cd(II) removal on surface-modified activated carbon: equilibrium, kinetics and mechanism.

    Science.gov (United States)

    Liang, Jianjun; Liu, Meiling; Zhang, Yufei

    2016-10-01

    Commercial pulverous activated carbon (AC-0) was modified through two steps: oxidize AC-0 acid firstly, impregnate it with iron using ferric chloride secondly. Orthogonal experiment was conducted then to prepare modified activated carbon with high Cd(II) adsorption capacity (ACNF). Batch adsorption experiments were undertaken to determine the adsorption characteristics of Cd(II) from aqueous solution onto AC-0 and ACNF and the effect of pH, contact time and initial Cd(II) concentration. The results indicate that: the adsorption behavior of Cd(II) on ACNF can be well fitted with Langmuir model, and the maximum adsorption capacity of ACNF was 2.3 times higher than that of AC-0, supporting a monolayer coverage of Cd(II) on the surface. The kinetics of the adsorption process can be described by pseudo-second-order rate equation very well, and the adsorption capacity increased from 0.810 mg/g to 0.960 mg/g after modification. Compared with AC-0, the kinetic parameters of ACNF showed a higher adsorption rate through the aqueous solution to the solid surface and a lower intraparticle diffusion rate. Surface modification resulted in a lower Brunauer-Emmett-Teller (BET) surface area and pore size because of the collapse and blockage of pores, according to the X-ray diffraction (XRD) analysis, while the total number of surface oxygen acid groups increased, and this was supposed to contribute to the enhanced adsorption capacity of modified activated carbon.

  2. The Control of Mesenchymal Stromal Cell Osteogenic Differentiation through Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Niall Logan

    2013-01-01

    Full Text Available Stem cells continue to receive widespread attention due to their potential to revolutionise treatments in the fields of both tissue engineering and regenerative medicine. Adult stem cells, specifically mesenchymal stromal cells (MSCs, play a vital role in the natural events surrounding bone healing and osseointegration through being stimulated to differentiate along their osteogenic lineage and in doing so, they form new cortical and trabecular bone tissue. Understanding how to control, manipulate, and enhance the intrinsic healing events modulated through osteogenic differentiation of MSCs by the use of modified surfaces and biomaterials could potentially advance the fields of both orthopaedics and dentistry. This could be by either using surface modification to generate greater implant stability and more rapid healing following implantation or the stimulation of MSCs ex vivo for reimplantation. This review aims to gather publications targeted at promoting, enhancing, and controlling the osteogenic differentiation of MSCs through biomaterials, nanotopographies, and modified surfaces for use in implant procedures.

  3. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  4. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  5. Modeling of Axially Loaded Nanowires Embedded in Elastic Substrate Media with Inclusion of Nonlocal and Surface Effects

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2013-01-01

    Full Text Available Nonlocal and surface effects are incorporated into a bar-elastic substrate element to account for small-scale and size-dependent effects on axial responses of nanowires embedded in elastic substrate media. The virtual displacement principle, employed to consistently derive the governing differential equation as well as the boundary conditions, forms the core of the displacement-based finite element formulation of the nanowire-elastic substrate element. The element displacement shape functions, analytically derived based on homogeneous solution to the governing differential equilibrium equation of the problem, result in the exact element stiffness matrix and equivalent load vector. Two numerical simulations employing the proposed model are performed to study characteristics and behavior of the nanowire-substrate system. The first simulation involves investigation of responses of the wire embedded in elastic substrate. The second examines influences of several system parameters on the contact stiffness and reveals the size-dependent effect on the effective Young's modulus of the system.

  6. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  7. Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds

    Directory of Open Access Journals (Sweden)

    Nergis Abay

    2016-01-01

    Full Text Available Designing and providing a scaffold are very important for the cells in tissue engineering. Polybutylene succinate (PBS has high potential as a scaffold for bone regeneration due to its capacity in cell proliferation and differentiation. Also, stem cells from 3rd molar tooth germs were favoured in this study due to their developmentally and replicatively immature nature. In this study, porcine dental germ stem cells (pDGSCs seeded PBS scaffolds were used to investigate the effects of surface modification with fibronectin or laminin on these scaffolds to improve cell attachment, proliferation, and osteogenic differentiation for tissue engineering applications. The osteogenic potentials of pDGSCs on these modified and unmodified foams were examined to heal bone defects and the effects of fibronectin or laminin modified PBS scaffolds on pDGSC differentiation into bone were compared for the first time. For this study, MTS assay was used to assess the cytotoxic effects of modified and unmodified surfaces. For the characterization of pDGSCs, flow cytometry analysis was carried out. Besides, alkaline phosphatase (ALP assay, von Kossa staining, real-time PCR, CM-Dil, and immunostaining were applied to analyze osteogenic potentials of pDGSCs. The results of these studies demonstrated that pDGSCs were differentiated into osteogenic cells on fibronectin modified PBS foams better than those on unmodified and laminin modified PBS foams.

  8. Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kanjanakawinkul, Watchara [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Rades, Thomas [School of Pharmacy, University of Otago, Dunedin 9054 (New Zealand); Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen (Denmark); Puttipipatkhachorn, Satit [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand); Pongjanyakul, Thaned, E-mail: thaned@kku.ac.th [Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2013-04-01

    Magnesium aluminum silicate (MAS), a negatively charged clay, and nicotine (NCT), a basic drug, can interact electrostatically to form microparticles. Chitosan (CS) was used for the surface modification of the microparticles, and a lyophilization method was used to preserve the original particle morphology. The microparticles were characterized in terms of their physicochemical properties, NCT content, mucoadhesive properties, and release and permeation across porcine esophageal mucosa. The results showed that the microparticles formed via electrostatic interaction between MAS and protonated NCT had an irregular shape and that their NCT content increased with increasing NCT ratios in the microparticle preparation solution. High molecular weight CS (800 kDa) adsorbed to the microparticle surface and induced a positive surface charge. CS molecules intercalated into the MAS silicate layers and decreased the crystallinity of the microparticles, leading to an increase in the release rate and diffusion coefficient of NCT from the microparticles. Moreover, the microparticle surface modified with CS was found to have higher NCT permeation fluxes and mucoadhesive properties, which indicated the significant role of CS for NCT mucosal delivery. However, the enhancement of NCT permeation and of mucoadhesive properties depended on the molecular weight and concentration of CS. These findings suggest that NCT-MAS microparticle surface modified with CS represents a promising mucosal delivery system for NCT. Highlights: ► Nicotine–magnesium aluminum silicate microparticles were prepared using electrostatic interaction. ► Lyophilization was used for drying and maintaining an original morphology of the microparticles. ► Chitosan (CS) was used for surface modification of the microparticles at acidic pH. ► Surface modification using CS caused an increase in release and permeation of nicotine. ► Microparticle surface-modified with CS presented better mucoadhesive properties.

  9. Integrated Optic Surface Plasmon Resonance Measurements in a Borosilicate Glass Substrate

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2008-11-01

    Full Text Available The surface plasmon resonance (SPR technique is a well-known optical method that can be used to measure the refractive index of organic nano-layers adsorbed on a thin metal film. Although there are many configurations for measuring biomolecular interactions, SPR-based techniques play a central role in many current biosensing experiments, since they are the most suited for sensitive and quantitative kinetic measurements. Here we give some results from the analysis and numerical elaboration of SPR data from integrated optics experiments in a particular borosilicate glass, chosen for its composition offering the rather low refractive index of 1.4701 at 633 nm wavelength. These data regard the flow over the sensing region (metal window of different solutions with refractive indexes in the range of interest (1.3÷1.5 for the detection of contaminants in aqueous solutions. After a discussion of the principles of SPR, of the metal window design optimization by means of optical interaction numerical modeling, and of waveguide fabrication techniques, we give a description of system setup and experimental results. Optimum gold film window thickness and width in this guided-wave configuration has been for the first time derived and implemented on an integrated optic prototype device. Its characterization is given by means of the real time waveguide output intensity measurements, which correspond to the interaction between the sensing gold thin film window and the flowing analyte. The SPR curve was subsequently inferred. Finally, a modified version of the device is reported, with channel waveguides arranged in a Y-junction optical circuit, so that laser source stability requirements are lowered by a factor of 85 dB, making possible the use of low cost sources in practical applications.

  10. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  11. Pencil lead scratches on steel surfaces as a substrate for LIBS analysis of dissolved salts in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jijon, D; Costa, C, E-mail: judijival@hotmail.com [Departamento de Fisica, Escuela Politecnica Nacional, Ladron de Guevara E11-256, Apartado 17-12-866, Quito (Ecuador)

    2011-01-01

    A new substrate for the quantitative analysis of salts dissolved in liquids with Laser-induced Breakdown Spectroscopy (LIBS) is introduced for the first time. A steel surface scratched with HB pencil lead is introduced as a very efficient and sensitive substrate for quantitative analysis of dissolved salts in liquids. In this work we demonstrate the analytical quality of this system with the analysis of the crystalline deposits formed by the dried aqueous solutions of salts. We focused on analytical parameters such as sensitivity and linearity for the salt cations in each case. Four salts were studied (Sr(NO{sub 3}){sub 2}, LiSO{sub 4}, RbCl and BaCl), at nine different concentrations each. To improve linearity and lower the overall error in the calibration curves, we introduce a novel outlier removal method that takes into account the homogeneity of the dry deposits on the analytical surface.

  12. Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge

    International Nuclear Information System (INIS)

    Hao Hui-Ming; Liu Yao-Yao; Zhang Ping; Zhu Ji-Liang; Ye Wen-Jiang; Cai Ming-Lei; Wang Xiao-Yan

    2017-01-01

    The anchoring property of the substrate surface of liquid crystal cells plays an important role in display and nondisplay fields. This property directly affects the deformation of liquid crystal molecules to change the phase difference through liquid crystal cells. In this paper, a test method based on the alternating-current bridge is proposed to determine the capacitance of liquid crystal cells and thus measure the anchoring energy of the substrate surface. The anchoring energy can be obtained by comparing the capacitance–voltage curves of twisted nematic liquid crystal cells with different anchoring properties in experimental and theoretical results simulated on the basis of Frank elastic theory. Compared with the other methods to determine the anchoring energy, our proposed method requires a simple treatment of liquid crystal cells and allows easy and high-accuracy measurements, thereby expanding the test ideas on the performance parameters of liquid crystal devices. (paper)

  13. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.

    2006-01-01

    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements....... There was a clear difference between the films produced below and above the melting point of PEG. For temperatures above the melting point, the polymer material was distributed non-uniformly over the substrate with growths areas, where cluster-like structures merge into large islands of micrometer size....... At these temperatures, the islands in the investigated growth areas cover most of the bottom layer which has a typical height of 50-150 nm. (c) 2005 Elsevier B.V. All rights reserved....

  14. Preparation and optical characterization of lanthanum modified lead zirconate titanate thin films on indium-doped tin oxide-coated glass substrate

    International Nuclear Information System (INIS)

    Khodorov, A.; Gomes, M.J.M.

    2006-01-01

    Lanthanum modified lead zirconate titanate (PLZT) thin films were fabricated on indium-doped tin oxide (ITO)-coated glass substrate by sol-gel method. The structure of the films was characterized with X-ray diffraction and scanning electron microscopy. The optical properties were investigated in the wavelength range of 220-2400 nm. The sample was modelled as a three layer structure on finite substrate, and optical constants of this system were calculated from the transmission and reflection spectra. The calculated dielectric function was fitted with the Drude model in the case of ITO and a sum of Lorentzian oscillators in the case of PLZT films. For PLZT film the anomalous behaviour of imaginary part of dielectric function was observed below the absorption edge. The possible reasons of that behaviour were discussed

  15. Effect of 3 modified fats and a conventional fat on appetite, energy intake, energy expenditure, and substrate oxidation in healthy men

    DEFF Research Database (Denmark)

    Bendixen, H.; Flint, A.; Raben, A.

    2002-01-01

    Background: Different dietary fats are metabolized differently in humans and may influence energy expenditure, substrate oxidation, appetite regulation, and body weight regulation.Objective: We examined the short-term effects of 4 triacylglycerols (test fats) on subjective appetite, ad libitum...... energy intake, meal-induced thermogenesis, and postprandial substrate oxidation.Design: Eleven healthy, normal-weight men (mean age: 25.1 +/-0.5 y) consumed 4 different test fats [conventional fat (rapeseed oil) and 3 modified fats (lipase-structured fat, chemically structured fat, and physically mixed...... fat)] in a randomized, double-blind, crossover design.Results: No significant differences in appetite sensations or ad libitum energy intakes were observed between the 4 test fats. Overall, the 4 fats exerted different effects on energy expenditure (meal effect: P...

  16. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  17. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  18. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    Science.gov (United States)

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  19. Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum.

    Science.gov (United States)

    Choudhury, Samrat Roy; Ghosh, Mahua; Mandal, Amrita; Chakravorty, Dipankar; Pal, Moumita; Pradhan, Saheli; Goswami, Arunava

    2011-04-01

    Surface-modified sulfur nanoparticles (SNPs) of two different sizes were prepared via a modified liquid-phase precipitation method, using sodium polysulfide and ammonium polysulfide as starting material and polyethylene glycol-400 (PEG-400) as the surface stabilizing agent. Surface topology, size distribution, surface modification of SNPs with PEG-400, quantitative analysis for the presence of sulfur in nanoformulations, and thermal stability of SNPs were determined by atomic force microscopy (AFM), dynamic light scattering (DLS) plus high-resolution transmission electron microscopy (HR-TEM), fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray (EDX) spectroscopy, and thermogravimetric analysis (TGA), respectively. A simultaneous study with micron-sized sulfur (S(0)) and SNPs was carried out to evaluate their fungicidal efficacy against Aspergillus niger and Fusarium oxysporum in terms of radial growth, sporulation, ultrastructural modifications, and phospholipid content of the fungal strains using a modified poisoned food technique, spore-germination slide bioassay, environmental scanning electron microscopy (ESEM), and spectrometry. SNPs expressed promising inhibitory effect on fungal growth and sporulation and also significantly reduced phospholipid content. © Springer-Verlag 2011

  20. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  1. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  2. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  3. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    Science.gov (United States)

    Latifi, Afrooz; Imani, Mohammad; Khorasani, Mohammad Taghi; Daliri Joupari, Morteza

    2014-11-01

    Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m-1), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer-metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  4. Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces.

    Science.gov (United States)

    Si, Kae Jye; Guo, Pengzhen; Shi, Qianqian; Cheng, Wenlong

    2015-05-19

    We report on self-assembled nanocube-based plasmene nanosheets as new surface-enhanced Raman scattering (SERS) substrates toward direct identification of a trace amount of drugs sitting on topologically complex real-world surfaces. The uniform nanocube arrays (superlattices) led to low spatial SERS signal variances (∼2%). Unlike conventional SERS substrates which are based on rigid nanostructured metals, our plasmene nanosheets are mechanically soft and optically semitransparent, enabling conformal attachment to real-world solid surfaces such as banknotes for direct SERS identification of drugs. Our plasmene nanosheets were able to detect benzocaine overdose down to a parts-per-billion (ppb) level with an excellent linear relationship (R(2) > 0.99) between characteristic peak intensity and concentration. On banknote surfaces, a detection limit of ∼0.9 × 10(-6) g/cm(2) benzocaine could be achieved. Furthermore, a few other drugs could also be identified, even in their binary mixtures with our plasmene nanosheets. Our experimental results clearly show that our plasmene sheets represent a new class of unique SERS substrates, potentially serving as a versatile platform for real-world forensic drug identification.

  5. Development of the removal technology for toxic heavy metal ions by surface-modified activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Song, Kee Chan; Kim, Kwang Wook; Kim, In Tae; Cho, Il Hoon; Kim, Joon Hyung

    2001-01-01

    Adsorption capacities of both radionuclides(uranium, cobalt) and toxic heavy metals (lead, cadmium and chromium) using double surface-modified activated carbon in wide pH ranges are extensively evaluated. Surface-modified activated carbons are classified as AC(as-received carbon), OAC(single surface-modified carbon with nitric acid solution) and OAC-Na(double surface-modified carbon with various alkali solutions). It is established that optimal condition for the second surface modification of OAC is to use the mixed solution of both NaOH and NaCl with total concentration of 0.1 N based on adsorption efficiencies of uranium and cobalt. Variations of adsorption efficiencies in pH ranges of 2{approx}10 and the adsorption capacities in batch adsorber and fixed bed for removal of both radionuclides and toxic heavy metals using OAC-Na were shown to be superior to that of the AC and OAC even in a low pH range. Capacity factors of OAC-Na for the removal of various metal ions are also excellent to that of AC or OAC. Quantitative analysis of capacity factors for each ions showed that adsorption capacity of OAC-Na increased by 30 times for uranium, 60 times for cobalt, 9 times for lead, 30 times for cadmium, 3 times for chromium compared to that of AC at pH 5, respectively. Adsorption capacity of OAC-Na is comparable to that of XAD-16-TAR used as commercial ion exchange resin.

  6. Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication

    KAUST Repository

    Lydon, Megan E.

    2012-05-03

    A multiscale experimental study of the structural, compositional, and morphological characteristics of aluminosilicate (LTA) and pure-silica (MFI) zeolite materials surface-modified with MgO xH y nanostructures is presented. These characteristics are correlated with the suitability of such materials in the fabrication of LTA/Matrimid mixed-matrix membranes (MMMs) for CO 2/CH 4 separations. The four functionalization methods studied in this work produce surface nanostructures that may appear superficially similar under SEM observation but in fact differ considerably in shape, size, surface coverage, surface area/roughness, degree of attachment to the zeolite surface, and degree of zeolite pore blocking. The evaluation of these characteristics by a combination of TEM, HRTEM, N 2 physisorption, multiscale compositional analysis (XPS, EDX, and ICP-AES elemental analysis), and diffraction (ED and XRD) allows improved understanding of the origin of disparate gas permeation properties observed in MMMs made with four types of surface-modified zeolite LTA materials, as well as a rational selection of the method expected to result in the best enhancement of the desired properties (in the present case, CO 2/CH 4 selectivity increase without sacrificing permeability). A method based on ion exchange of the LTA with Mg 2+, followed by base-induced precipitation and growth of MgO xH y nanostructures, deemed "ion exchange functionalization" here, offers modified particles with the best overall characteristics resulting in the most effective MMMs. LTA/Matrimid MMMs containing ion exchange functionalized particles had a considerably higher CO 2/CH 4 selectivity (∼40) than could be obtained with the other functionalization techniques (∼30), while maintaining a CO 2 permeability of ∼10 barrers. A parallel study on pure silica MFI surface nanostructures is also presented to compare and contrast with the zeolite LTA case. © 2012 American Chemical Society.

  7. Surface adhesion study of La2O3 thin film on Si and glass substrate for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2017-01-01

    Adhesive property can be described as an interchangeably with some ink and substance which was applied to one surface of two separate items that bonded together. Lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent or printing ink. This metal deposit was embedded on Silica (Si) wafer and glass substrate using Magnetron Sputtering technique. The choose of Lanthanum oxide as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer and glass substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). This research will focus on 3 narrow scan regions which are C 1s, O 1s and La 3d. Further discussion of the spectrum evaluation will be discussed in detail. Here, it is proposed that from the adhesive and surface chemical properties of La is the best on glass substrate which suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal in a practice of micro-flexography printing.

  8. A new route to produce efficient surface-enhanced Raman spectroscopy substrates: Gold-decorated CdSe nanowires

    KAUST Repository

    Das, Gobind

    2013-04-13

    Surface-enhanced Raman spectroscopy is a popular tool for the detection of extremely small quantities of target molecules. Au nanoparticles have been very successful in this respect due to local enhancement of the light intensity caused by their plasmon resonance. Furthermore, Au nanoparticles are biocompatible, and target substances can be easily attached to their surface. Here, we demonstrate that Au-decorated CdSe nanowires when employed as SERS substrates lead to an enhancement as large as 105 with respect to the flat Au surfaces. In the case of hybrid metal-CdSe nanowires, the Au nucleates preferably on lattice defects at the lateral facets of the nanowires, which leads to a homogeneous distribution of Au nanoparticles on the nanowire, and to an efficient quenching of the nanowire luminescence. Moreover, the size of the Au nanoparticles can be well controlled via the AuCl3 concentration in the fabrication process. We demonstrate the effectiveness of our SERS substrates with two target substances, namely, cresyl-violet and rhodamine-6G. Au-decorated nanowires can be easily fabricated in large quantities at low cost by wet-chemical synthesis. Furthermore, their deposition onto various substrates, as well as the functionalization of these wires with the target substances, is as straightforward as with the traditional markers. © 2013 Springer Science+Business Media Dordrecht.

  9. The structural and surface properties of natural and modified coal gangue.

    Science.gov (United States)

    Jabłońska, Beata; Kityk, Andriy V; Busch, Mark; Huber, Patrick

    2017-04-01

    A novel application of coal gangue as inexpensive adsorbents is considered in this study. The structural and surface properties of natural and modified gangue were studied via nitrogen adsorption. Four types of samples were studied: natural, modified with H 2 NO 3 and H 2 O 2 and calcined at 250 °C and 600 °C. The specific surface area and porosity of the samples were determined using various methods. The raw material is mainly mesoporous with relatively small specific surface area. The chemical modification enlarged the total pore volume and the specific surface area. The calcination at 250 °C enlarged slightly the pore volume and lowered the specific surface area, but did not cause significant changes in the structural properties. The calcination at 600 °C resulted in a significant increase in pore volume and a decrease in specific surface area. These results suggest that the coal gangue studied here could be used as inexpensive adsorbent in industrial wastewater pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    DEFF Research Database (Denmark)

    Raza, Søren; Yan, Wei; Stenger, Nicolas

    2013-01-01

    the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius–Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response...... of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects. We find that the substrate-based calculations show a similar-sized blueshift as calculations based on a sphere in a homogeneous environment, and that they both agree qualitatively...

  11. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    Science.gov (United States)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  12. Plaque formation on surface modified dental implants. An in vitro study.

    Science.gov (United States)

    Grössner-Schreiber, B; Griepentrog, M; Haustein, I; Müller, W D; Lange, K P; Briedigkeit, H; Göbel, U B

    2001-12-01

    Bacterial adhesion on titanium implant surfaces has a strong influence on healing and long-term outcome of dental implants. Parameters like surface roughness and chemical composition of the implant surface were found to have a significant impact on plaque formation. The purpose of this study was to evaluate the influence of two physical hard coatings on bacterial adhesion in comparison with control surfaces of equivalent roughness. Two members of the oral microflora, Streptococcus mutans and Streptococcus sanguis were used. Commercially pure titanium discs were modified using four different surface treatments: physical vapour deposition (PVD) with either titanium nitride (TiN) or zirconium nitride (ZrN), thermal oxidation and structuring with laser radiation. Polished titanium surfaces were used as controls. Surface topography was examined by SEM and estimation of surface roughness was done using a contact stylus profilometer. Contact angle measurements were carried out to calculate surface energy. Titanium discs were incubated in the respective bacterial cell suspension for one hour and single colonies formed by adhering bacteria were counted by fluorescence microscopy. Contact angle measurements showed no significant differences between the surface modifications. The surface roughness (Ra) of all surfaces examined was between 0.14 and 1.00 microm. A significant reduction of the number of adherent bacteria was observed on inherently stable titanium hard materials such as TiN and ZrN and thermically oxidated titanium surfaces compared to polished titanium. In conclusion, physical modification of titanium implant surfaces such as coating with TiN or ZrN may reduce bacterial adherence and hence improve clinical results.

  13. Effect of 3 modified fats and a conventional fat on appetite, energy intake, energy expenditure, and substrate oxidation in healthy men

    DEFF Research Database (Denmark)

    Bendixen, H.; Flint, A.; Raben, A.

    2002-01-01

    energy intake, meal-induced thermogenesis, and postprandial substrate oxidation.Design: Eleven healthy, normal-weight men (mean age: 25.1 +/-0.5 y) consumed 4 different test fats [conventional fat (rapeseed oil) and 3 modified fats (lipase-structured fat, chemically structured fat, and physically mixed...... fat)] in a randomized, double-blind, crossover design.Results: No significant differences in appetite sensations or ad libitum energy intakes were observed between the 4 test fats. Overall, the 4 fats exerted different effects on energy expenditure (meal effect: P...

  14. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  15. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  16. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1.

    Science.gov (United States)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D

    2014-12-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.

  17. SU-8-Induced Strong Bonding of Polymer Ligands to Flexible Substrates via in Situ Cross-Linked Reaction for Improved Surface Metallization and Fast Fabrication of High-Quality Flexible Circuits.

    Science.gov (United States)

    Hu, Mingjun; Guo, Qiuquan; Zhang, Tengyuan; Zhou, Shaolin; Yang, Jun

    2016-02-01

    On account of in situ cross-linked reaction of epoxy SU-8 with poly(4-vinylpyridine) (P4VP) and its strong reactive bonding ability with different pretreated substrates, we developed a simple universal one-step solution-based coating method for fast surface modification of various objects. Through this method, a layer of P4VP molecules with controllable thickness can be tethered tightly onto substrates with the assistance of SU-8. P4VP molecules possess a lot of pyridine ligands to immobilize transitional metal ions that can behave as the catalyst of electroless copper plating for surface metallization while functioning as the adhesion-promoting layer between the substrate and deposited metal. Attributed to interpenetrated entanglement of P4VP molecules and as-deposited metal, ultrathick (>7 μm) strongly adhesive high-quality copper layer can be formed on flexible substrates without any delamination. Then through laser printer to print toner mask, a variety of designed circuits can be easily fabricated on modified flexible PET substrate.

  18. STUDY OF STABLE NITROGEN FORMS IN NATURAL SURFACE WATERS IN THE PRESENCE OF MINERAL SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Petru Spataru

    2015-12-01

    Full Text Available The influence of substrates on the oxidation of reduced toxic forms of nitrogen in river water was investigated by laboratory modelling. Granite and expended clay accelerate the oxidation of ammonium and nitrite ions from 2 to 4 times. The presence of calcium carbonate in water hinders the oxidation of nitrogen in the polluted water.

  19. Process variations in surface nano geometries manufacture on large area substrates

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2014-01-01

    The need of transporting, treating and measuring increasingly smaller biomedical samples has pushed the integration of a far reaching number of nanofeatures over large substrates size in respect to the conventional processes working area windows. Dimensional stability of nano fabrication processes...

  20. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  1. Etching of GaAs substrates to create As-rich surface

    Indian Academy of Sciences (India)

    WINTEC

    ionized water. Another sample was prepared by treating. GaAs wafer in HCl solution for 10 min. The last sample was treated with HCl solution (1 : 1) for 10 min, then in deionized water for 10 s. After treating with different solutions, these substrates were dried in a stream of dry nitrogen. XPS analysis was carried out in a VG ...

  2. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  3. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Saranwong, N. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inthanon, K. [Human and Animal Cell Technology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W., E-mail: weerah@chiangmai.ac.th [Human and Animal Cell Technology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Nanotechnology Center of Excellence and Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  4. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  5. Electrochromic coatings made of surface modified rutile and anatase pigments: Influence of trisilanol POSS dispersant on electrochromic effect

    International Nuclear Information System (INIS)

    Mihelčič, Mohor; Francetič, Vojmir; Pori, Pavli; Gradišar, Helena; Kovač, Janez; Orel, Boris

    2014-01-01

    Graphical abstract: - Highlights: • Transparent pigmented coatings were deposited from titania dispersions. • Trisilanol POSS was used as dispersant. • Surface modification of pigment particles was established from TEM, TG and IR. • IR spectra studies revealed covalent and H-bond dispersant/pigment interactions. • Electrochromic properties of titanina pigment coatings were shown and discussed. - Abstract: Polyhedral oligomeric silsesqioxanes (POSS) compounds consisting of [RSiO 3/2 ] n groups organized in the form of various polyhedra (T n , n = 3, 6, 8, 10, 12, ….) have not often been used as pigment surface modifiers. Their interactions with pigments are not known in detail and coatings deposited from pigments modified by POSS dispersants are rare. Identification of interactions between a dispersant and the surface of pigments is important from the point of view of obtaining stable pigment dispersions enabling the deposition of optical coatings with high pigment loading, low haze and mechanical integrity. Thin TiO 2 (anatase) pigment coatings (70–260 nm) were deposited from pigment dispersions prepared by milling metatitanic acid (mTiA) powder agglomerates with trisilanol heptaisobutyl silsesquioxane dispersant (trisilanol POSS) in butanol and hexane. The results of TEM, EDAX and TG measurements confirmed the influence of trisilanol POSS dispersant on the formation of a dispersion with a uniform distribution of mTiA and rutile (mTiR) nanoparticles with a size of about 30 ± 5.0 nm and 90 ± 5.0 nm, respectively, as determined from dynamic light scattering (DLS) measurements. The mTiA/trisilanol POSS dispersions with added titanium tetraisopropoxide were deposited on fluorine-doped tin oxide (FTO) coated glass (spin-coating) and indium tin oxide coated polymeric substrate (ITO PET) (coil-coating) and thermally treated at 150 °C. UV–vis spectra, AFM and SEM results showed that the pigment coatings exhibited low haze (up to 6%), low surface

  6. Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells.

    Science.gov (United States)

    Stephanopoulos, Nicholas; Tong, Gary J; Hsiao, Sonny C; Francis, Matthew B

    2010-10-26

    Bacteriophage MS2 was used to construct a targeted, multivalent photodynamic therapy vehicle for the treatment of Jurkat leukemia T cells. The self-assembling spherical virus capsid was modified on the interior surface with up to 180 porphyrins capable of generating cytotoxic singlet oxygen upon illumination. The exterior of the capsid was modified with ∼20 copies of a Jurkat-specific aptamer using an oxidative coupling reaction targeting an unnatural amino acid. The capsids were able to target and selectively kill more than 76% of the Jurkat cells after only 20 min of illumination. Capsids modified with a control DNA strand did not target Jurkat cells, and capsids modified with the aptamer were found to be specific for Jurkat cells over U266 cells (a control B cell line). The doubly modified capsids were also able to kill Jurkat cells selectively even when mixed with erythrocytes, suggesting the possibility of using our system to target blood-borne cancers or other pathogens in the blood supply.

  7. A Modified Critical State Two-surface Plasticity Model for Sand

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Hededal, O.; Ibsen, Lars Bo

    This paper provides background information and documentation for the implementation of a robust plasticity model as a user-subroutine in the commercial finite difference code, FLAC3D by Itasca. The plasticity model presented is equal to the 3 dimensional critical state two-surface plasticity model...... for sands by Manzari et al., but uses a modified multi-axial surface formulation based on a versatile shape function prescribing a family of smooth and convex contours in the π-plane. The model is formulated within the framework of critical state soil mechanics and is capable of accurately simulating...

  8. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao; Hu Dayong; Jin Junhong; Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Li Guang, E-mail: lig@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-01-15

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  9. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  10. Nano-hydroxyapatite colloid suspension coated on chemically modified porous silicon by cathodic bias: a suitable surface for cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alejandra [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Gonzalez, Jerson [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Garcia-Pineres, Alfonso [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Investigacion en Biologia Celular y Molecular (CIBCM), Universidad de Costa Rica, 2060 (Costa Rica); Montero, Mavis L. [Escuela de Quimica, Universidad de Costa Rica, 2060 (Costa Rica); Centro de Electroquimica y Energia Quimica de la Universidad de Costa Rica (CELEQ), Universidad de Costa Rica, 2060 (Costa Rica); Centro de Ciencia e Ingenieria en Materiales (CICIMA), Universidad de Costa Rica, 2060 (Costa Rica)

    2011-06-15

    The properties of porous silicon make it an interesting material for biological applications. However, porous silicon is not an appropriate surface for cell growth. Surface modification is an alternative that could afford a bioactive material. In this work, we report a method to yield materials by modification of the porous silicon surface with hydroxyapatite of nanometric dimensions, produced using an electrochemical process and coated on macroporous silicon substrates by cathodic bias. The chemical nature of the calcium phosphate deposited on the substrates after the experimental process and the amount of cell growth on these surfaces were characterized. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei

    2014-01-01

    degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen...... feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...

  12. Novel nonlinear optical material with poly(3-hexylthiophene) thin film prepared on quartz glass surface modified by self-assembled monolayer

    Science.gov (United States)

    Ochiai, Shizuyasu; Mototani, Suguru; Ramajothi, Jayaraman; Kojima, Kenzo; Mizutani, Teruyoshi

    2008-08-01

    The third-order nonlinear optical properties of regioregular poly(3-hexylthiophene) (RR-P3HT) thin films prepared on fused glass substrate were evaluated. The surface modification by hexamethyldisilazane (HMDS) and octadecyltrichlorosilane (ODTS) was performed on the glass substrate to form self-assembled monolayer (SAM) layers. The formation of SAM layers on the glass substrate increase the contact angle of the solution and the optical property of the RR-P3HT thin films is enhanced due to the excellent orientation and alignment of the thin film. The π-conjugated macromolecule thin films can be prepared by spin-coating and drop-casting methods and the structure and orientation alignment of thin films can be controlled by the solution processing and deposition techniques. The nonlinear optical property, third-harmonic generation of RR-P3HT thin films has been evaluated by Maker-fringe method. The third-order nonlinear optical susceptibilities χ(3) (-3ω ω, ω, ω) of drop-cast RR-P3HT thin films on quartz glass substrate were estimated from optical third-harmonics (TH) intensity measurement. An Nd:YAG laser with a wavelength of 1064 nm, pulse width of 5 ns and a repetition frequency of 10 Hz was used to evaluate the TH intensity. The effect of surface modification of quartz glass substrate by HMDS and ODTS on the RR-P3HT film structure was also investigated. The orientation alignment and crystallinity of the RR-P3HT thin films were evaluated using X-ray diffraction (XRD) and UV-vis absorption spectra. The UV-vis and XRD profile reveals the better orientation and crystallinity of the RR-P3HT thin film after surface modification by HMDS and ODTS. Moreover the incident angle dependences of third harmonic (TH) intensity was measured and the TH intensity of RR-P3HT thin film prepared on glass substrate with SAM layer was found to higher than that of non-treated substrate. The SAM layers significantly enhances the optical property of the material and the third

  13. Thiol-modified gold-coated glass as an efficient hydrophobic substrate for drop coating deposition Raman (DCDR) technique

    Czech Academy of Sciences Publication Activity Database

    Kočišová, E.; Procházka, M.; Šípová, Hana

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1394-1396 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : thiol-modified Au-coated glass * drop coating deposition Raman * liposome Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.969, year: 2016

  14. Intraoperative Evaluation of Body Surface Improvement by an Augmented Reality System That a Clinician Can Modify.

    Science.gov (United States)

    Mitsuno, Daisuke; Ueda, Koichi; Itamiya, Tomoki; Nuri, Takashi; Otsuki, Yuki

    2017-08-01

    Augmented reality (AR) technology that can combine computer-generated images with a real scene has been reported in the medical field recently. We devised the AR system for evaluation of improvements of the body surface, which is important for plastic surgery. We constructed an AR system that is easy to modify by combining existing devices and free software. We superimposed the 3-dimensional images of the body surface and the bone (obtained from VECTRA H1 and CT) onto the actual surgical field by Moverio BT-200 smart glasses and evaluated improvements of the body surface in 8 cases. In all cases, the 3D image was successfully projected on the surgical field. Improvement of the display method of the 3D image made it easier to distinguish the different shapes in the 3D image and surgical field, making comparison easier. In a patient with fibrous dysplasia, the symmetrized body surface image was useful for confirming improvement of the real body surface. In a patient with complex facial fracture, the simulated bone image was useful as a reference for reduction. In a patient with an osteoma of the forehead, simultaneously displayed images of the body surface and the bone made it easier to understand these positional relationships. This study confirmed that AR technology is helpful for evaluation of the body surface in several clinical applications. Our findings are not only useful for body surface evaluation but also for effective utilization of AR technology in the field of plastic surgery.

  15. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  16. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    Science.gov (United States)

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  17. Immunosensing by luminescence reduction in surface-modified microstructured SU-8

    Energy Technology Data Exchange (ETDEWEB)

    Eravuchira, Pinkie Jacob; Baranowska, Malgorzata; Eckstein, Chris [Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007 (Spain); Díaz, Francesc [Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcelí Domingo s/n, Tarragona 43007 (Spain); Llobet, Eduard; Marsal, Lluis F. [Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007 (Spain); Ferré-Borrull, Josep, E-mail: josep.ferre@urv.cat [Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007 (Spain)

    2017-01-15

    Highlights: • The reduction of photoluminescence of SU-8 upon surface modification is reported. • Micropillar structuring of SU-8 surface results in an increased photoluminescence reduction rate (10% glass, 15% silicon). • Photoluminescence reduction rate can be a transduction parameter for the detection of antibody-antigen binding events. • The proposed sensing mechanism can be used to quantify small concentrations of antibody. • Lower limit of detection (LOD) of 28 μg/ml on silicon substrates and 42 μg/ml on glass substrates was achieved. - Abstract: SU-8, an epoxy based negative photoresist is extensively used as a structural material for the fabrication of microelectro-mechanical systems and in microelectronics technology. However, the possible applications of SU-8 for biosensing have not been explored much, mainly because of the photoluminescence SU-8 possesses in the near-UV and visible wavelength ranges which hinders fluorescent labelling of biorecognition events. In this study we demonstrate that photoluminescence of SU-8 can be employed itself as a sensing transduction parameter to produce a tool for immunosensing: the photoluminescence shows a systematic reduction upon modification of its surface chemistry, and in particular upon attachment of an antigen-antibody (aIgG-IgG) pair. We investigate the relation of the amount of reduction of photoluminescence on planar and microstructured surfaces, and we show that microstructuring leads to a higher reduction than a planar surface. Furthermore, we evaluated the dependence of photoluminescence reduction as a function of analyte concentration to prove that this magnitude can be applied to immunosensing.

  18. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    This dissertation examines the modification and characterization of hydrogen-terminated silicon surfaces in organic liquids. Conductive atomic force microscope (cAFM) lithography is used to fabricate structures with sub-100 nm line width on H:Si(111) in n-alkanes, 1-alkenes, and 1-alkanes. Nanopatterning is accomplished by applying a positive (n-alkanes and 1-alkenes) or a negative (1-alkanes) voltage pulse to the silicon substrate with the cAFM tip connected to ground. The chemical and kinetic behavior of the patterned features is characterized using AFM, lateral force microscopy, time-of-flight secondary ion mass spectroscopy (TOF SIMS), and chemical etching. Features patterned in hexadecane, 1-octadecene, and undecylenic acid methyl ester exhibited chemical and kinetic behavior consistent with AFM field induced oxidation. The oxide features are formed due to capillary condensation of a water meniscus at the AFM tip-sample junction. A space-charge limited growth model is proposed to explain the observed growth kinetics. Surface modifications produced in the presence of neat 1-dodecyne and 1-octadecyne exhibited a reduced lateral force compared to the background H:Si(111) substrate and were resistant to a hydrofluoric acid etch, characteristics which indicate that the patterned features are not due to field induced oxidation and which are consistent with the presence of the methyl-terminated 1-alkyne bound directly to the silicon surface through silicon-carbon bonds. In addition to the cAFM patterned surfaces, full monolayers of undecylenic acid methyl ester (SAM-1) and undec-10-enoic acid 2-bromoethyl ester (SAM-2) were grown on H:Si(111) substrates using ultraviolet light. The structure and chemistry of the monolayers were characterized using AFM, TOF SIMS, X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). These combined analyses provide evidence that SAM-1 and SAM-2 form dense monolayers

  19. Surface evolution during crystalline silicon film growth by low-temperature hot-wire chemical vapor deposition on silicon substrates

    Science.gov (United States)

    Richardson, Christine Esber; Park, Young-Bae; Atwater, Harry A.

    2006-06-01

    We investigate the low-temperature growth of crystalline thin silicon films: epitaxial, twinned, and polycrystalline, by hot-wire chemical vapor deposition (HWCVD). Using Raman spectroscopy, spectroscopic ellipsometry, and atomic force microscopy, we find the relationship between surface roughness evolution and (i) the substrate temperature (230-350°C) and (ii) the hydrogen dilution ratio (H2/SiH4=0-480) . The absolute silicon film thickness for fully crystalline films is found to be the most important parameter in determining surface roughness, hydrogen being the second most important. Higher hydrogen dilution increases the surface roughness as expected. However, surface roughness increases with increasing substrate-temperature, in contrast to previous studies of crystalline Si growth. We suggest that the temperature-dependent roughness evolution is due to the role of hydrogen during the HWCVD process, which in this high hydrogen dilution regime allows for epitaxial growth on the rms roughest films through a kinetic growth regime of shadow-dominated etch and desorption and redeposition of growth species.

  20. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  1. Preparation and Surface Analysis of PPY/SDBS Films on Aluminum Substrates

    Directory of Open Access Journals (Sweden)

    Lisete C. Scienza

    2001-09-01

    Full Text Available Polypyrrole films were generated on high purity aluminum substrates under anodic polarization from aqueous electrolytes comprised of pyrrole and sodium dodecylbenzene sulfonate. The methods employed to characterize the polymer films included scanning electron microscopy, Fourier-transform infrared and X-photoelectron spectroscopy and X-ray diffraction. PPY/SDBS films revealed nodular morphology with occasional appearing of "dendrites", high level of protonation, excess of counter-anions ([S]/[N] > [N+]/[N] and high degrees of disorder.

  2. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent...... circular patterns is 30 +/- 5 nm. Silver (30 nm) and gold (15 nm) plasmonic active layers are deposited on the nanostructures subsequently. SERS measurements on different concentrations of acetone vapor ranged from 0.7, 1.5, 3.5, 10.3, 24.5 % and control have been performed with the substrate......-based VOCs detection platform for point-of-care breath analysis, homeland security, chemical sensing and environmental monitoring....

  3. The wetting characteristics and surface tension of some Ni-based alloys on yttria, hafnia, alumina, and zirconia substrates

    Science.gov (United States)

    Kanetkar, C. S.; Kacar, A. S.; Stefanescu, D. M.

    1988-01-01

    The surface tension and wetting characteristics of four commercial Ni-based alloys (UD718, Waspaloy, UD720, and UD520), pure Ni, and three special alloys (Ni-20 percent Cr, Ni-20 percent Cr-1 percent Al, and Ni-20 percent Cr-4 percent Al) on various ceramic substrates (including alumina, zirconia, hafnia, and yttria) were investigated using sessile drop experiments. Most of the systems studied exhibited a nonwetting behavior. Wetting improved with holding time at a given temperature to the point that some systems, such as Ni-20Cr on alumina, Ni-20Cr-4Al on alumina and on yttria, became marginally wetting. Wetting characteristics were apparently related to constitutional undercooling, which in turn could be affected by the metal dissolving some of the substrate during measurements.

  4. PbSe quantum well mid-infrared vertical external cavity surface emitting laser on Si-substrates

    Science.gov (United States)

    Fill, M.; Khiar, A.; Rahim, M.; Felder, F.; Zogg, H.

    2011-05-01

    Mid-infrared vertical external cavity surface emitting lasers based on PbSe/PbSrSe multi-quantum-well structures on Si-substrates are realized. A modular design allows growing the active region and the bottom Bragg mirror on two different Si-substrates, thus facilitating comparison between different structures. Lasing is observed from 3.3 to 5.1 μm wavelength and up to 52 °C heat sink temperature with 1.55 μm optical pumping. Simulations show that threshold powers are limited by Shockley-Read recombination with lifetimes as short as 0.1 ns. At higher temperatures, an additional threshold power increase occurs probably due to limited carrier diffusion length and carrier leakage, caused by an unfavorable band alignment.

  5. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effect of type and loading of surface-modifying agent on mechanical properties of modified geothermal scale powder/stereolithography polymer composite

    Science.gov (United States)

    Tilendo, A. C.; Pajarito, B. B.

    2017-05-01

    This study investigated the effect of stearic acid (SA), glycerol monostearate (GMS) and 3-trimethoxysilylpropyl methacrylate (TSPM) at varied loadings on the hardness and flexural properties of modified geothermal scale powder (GSP)/stereolithography (SLA) polymer composite. TSPM-modified GSP/SLA composite has the highest value of hardness due to increased filler dispersion and crystallinity. Hardness of GSP/SLA composite increases with loading of surface-modifying agent due to increase filler dispersion. Pronounced effect of surface modification to flexural modulus is observed. While low loading of SA and GMS leads to reduction of flexural modulus, increasing loading enhances the said property. Further increase of SA deteriorates the property. TSPM-modified GSP enhances the modulus due to increased crystalline phase of the system owing to TSPM copolymerization. Likewise, addition of SA and GMS increases flexural strength due to efficient reduction of filler agglomerates. However, unreacted TSPM produces weak interfaces and poor adhesion between GSP and SLA matrix.

  7. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  8. Methodology for calculating the volume of condensate droplets on topographically modified, microgrooved surfaces.

    Science.gov (United States)

    Sommers, A D

    2011-05-03

    Liquid droplets on micropatterned surfaces consisting of parallel grooves tens of micrometers in width and depth are considered, and a method for calculating the droplet volume on these surfaces is presented. This model, which utilizes the elongated and parallel-sided nature of droplets condensed on these microgrooved surfaces, requires inputs from two droplet images at ϕ = 0° and ϕ = 90°--namely, the droplet major axis, minor axis, height, and two contact angles. In this method, a circular cross-sectional area is extruded the length of the droplet where the chord of the extruded circle is fixed by the width of the droplet. The maximum apparent contact angle is assumed to occur along the side of the droplet because of the surface energy barrier to wetting imposed by the grooves--a behavior that was observed experimentally. When applied to water droplets condensed onto a microgrooved aluminum surface, this method was shown to calculate the actual droplet volume to within 10% for 88% of the droplets analyzed. This method is useful for estimating the volume of retained droplets on topographically modified, anisotropic surfaces where both heat and mass transfer occur and the surface microchannels are aligned parallel to gravity to assist in condensate drainage.

  9. Surface-modified polymeric pads for enhanced performance during chemical mechanical planarization

    International Nuclear Information System (INIS)

    Deshpande, S.; Dakshinamurthy, S.; Kuiry, S.C.; Vaidyanathan, R.; Obeng, Y.S.; Seal, S.

    2005-01-01

    The chemical mechanical planarization (CMP) process occurs at an atomic level at the slurry/wafer interface and hence slurries and polishing pads play a critical role in their successful implementation. Polyurethane is a commonly used polymer in the manufacturing of CMP pads. These pads are incompatible with some chemicals present in the CMP slurries, such as hydrogen peroxide. To overcome these problems, Psiloquest has developed new Application Specific Pads (ASP). Surface of such pads has been modified by depositing a thin film of tetraethyl orthosilicate using plasma-enhanced chemical vapor deposition (PECVD) process. In the present study, mechanical properties of such coated pads have been investigated using nanoindentation. The surface morphology and the chemistry of the ASP were studied using scanning electron microcopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy techniques. It was observed that mechanical and chemical properties of the pad top surface are a function of the PECVD coating time. Such PECVD-treated pads are found to be hydrophilic and do not require storage in aqueous media during the not-in-use period. The metal removal rate using such surface-modified polishing pads was found to increase linearly with the PECVD coating time

  10. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface.

    Science.gov (United States)

    He, Ronghan; Lu, Yunxiang; Ren, Jianhua; Wang, Zhe; Huang, Junqi; Zhu, Lei; Wang, Kun

    2017-07-01

    Orthopedic implants, using materials such as titanium, are extensively used in clinical surgeries. Despite its popularity, titanium is still inadequate to reliable osseointegration due to aseptic loosing. Fibrous encapsulation on the titanium implant interface prevents osseointegration and leads to the loosing of orthopedic implant. In this study, decorin was loaded on titanium surface by polydopamine film to examine fibrous encapsulation inhibition and bone growth acceleration. The coating of decorin was evaluated by X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. Quantitative analysis showed increased decorin coating on titanium surface when decorin in the loading solution increases. To test the effect of decorin modification, fibroblast and osteoblast cultures were utilized in vitro. The results showed that the functions of fibroblasts (proliferation, migration and collagen synthesis) were significantly attenuated on the decorin-modified surfaces and this anti-fibrous effect could be due to fibrotic gene suppression by decorin. In contrast, osteoblastic activities, such as calcium deposition and alkaline phosphatase (ALP) activity, were enhanced by the modified decorin. These results suggest that decorin coating on titanium surface inhibited proliferation and function of fibroblasts and improved that of osteoblasts. Therefore, this study is potentially useful for enhancing orthopedic implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface

    International Nuclear Information System (INIS)

    Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho

    2005-01-01

    While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm

  12. Effect of Material Composition on Cohesion Characteristics of Styrene-Butadiene-Styrene-Modified Asphalt Using Surface Free Energy

    Directory of Open Access Journals (Sweden)

    Xing-jun Zhang

    2017-01-01

    Full Text Available Styrene-butadiene-styrene- (SBS- modified asphalts were prepared by mixing different base asphalts, SBS modifier, extracting oil, and stabilizing agents. The contact angles between SBS-modified asphalt and distilled water, glycerol, and formamide were detected by the sessile drop method. Based on the surface energy theory, the surface free energy and cohesive power of SBS-modified asphalt were calculated. The influence of the raw materials composition, such as the virgin asphalt and SBS modifier types as well as the extracting oil and stabilizing agent contents, on the cohesive characteristics of SBS-modified asphalt was discussed. The results showed that virgin asphalt was compatible with SBS modifiers to improve cohesiveness. The cohesive power of branched SBS-modified asphalt was larger than that of linear SBS-modified asphalt. The cohesion of SBS-modified asphalt was improved as the SBS modifier and stabilizer contents increased but was reduced for excessive extraction oil contents. The cohesive characteristics of the SBS-modified asphalt were improved by the formation of stable three-dimensional network structures by cross-linking, winding, and grafting among different raw materials.

  13. Nanoscale silicon substrate patterns from self-assembly of cylinder forming poly(styrene)-block-poly(dimethylsiloxane) block copolymer on silane functionalized surfaces.

    Science.gov (United States)

    Borah, Dipu; Cummins, Cian; Rasappa, Sozaraj; Watson, Scott M D; Pike, Andrew R; Horrocks, Benjamin R; Fulton, David A; Houlton, Andrew; Liontos, George; Ntetsikas, Konstantinos; Avgeropoulos, Apostolos; Morris, Michael A

    2017-01-27

    Poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) is an excellent block copolymer (BCP) system for self-assembly and inorganic template fabrication because of its high Flory-Huggins parameter (χ ∼ 0.26) at room temperature in comparison to other BCPs, and high selective etch contrast between PS and PDMS block for nanopatterning. In this work, self-assembly in PS-b-PDMS BCP is achieved by combining hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH) brush surfaces with solvent vapor annealing. As an alternative to standard brush chemistry, we report a simple method based on the use of surfaces functionalized with silane-based self-assembled monolayers (SAMs). A solution-based approach to SAM formation was adopted in this investigation. The influence of the SAM-modified surfaces upon BCP films was compared with polymer brush-based surfaces. The cylinder forming PS-b-PDMS BCP and PDMS-OH polymer brush were synthesized by sequential living anionic polymerization. It was observed that silane SAMs provided the appropriate surface chemistry which, when combined with solvent annealing, led to microphase segregation in the BCP. It was also demonstrated that orientation of the PDMS cylinders may be controlled by judicious choice of the appropriate silane. The PDMS patterns were successfully used as an on-chip etch mask to transfer the BCP pattern to underlying silicon substrate with sub-25 nm silicon nanoscale features. This alternative SAM/BCP approach to nanopattern formation shows promising results, pertinent in the field of nanotechnology, and with much potential for application, such as in the fabrication of nanoimprint lithography stamps, nanofluidic devices or in narrow and multilevel interconnected lines.

  14. On the PEEK composites reinforced by surface-modified nano-silica

    International Nuclear Information System (INIS)

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  15. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    Ivanov, V V; Cornelussen, R A; Heuvell, H B van Linden van den; Spreeuw, R J C

    2004-01-01

    We have observed a distance-dependent absorption linewidth of cold 87 Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  16. Surface-modified yeast cells: A novel eukaryotic carrier for oral application.

    Science.gov (United States)

    Kenngott, Elisabeth E; Kiefer, Ruth; Schneider-Daum, Nicole; Hamann, Alf; Schneider, Marc; Schmitt, Manfred J; Breinig, Frank

    2016-02-28

    The effective targeting and subsequent binding of particulate carriers to M cells in Peyer's patches of the gut is a prerequisite for the development of oral delivery systems. We have established a novel carrier system based on cell surface expression of the β1-integrin binding domain of invasins derived from Yersinia enterocolitica and Yersinia pseudotuberculosis on the yeast Saccharomyces cerevisiae. All invasin derivatives were shown to be effectively expressed on the cell surface and recombinant yeast cells showed improved binding to both human HEp-2 cells and M-like cells in vitro. Among the different derivatives tested, the integrin-binding domain of Y. enterocolitica invasin proved to be the most effective and was able to target Peyer's patches in vivo. In conclusion, cell surface-modified yeasts might provide a novel bioadhesive, eukaryotic carrier system for efficient and targeted delivery of either antigens or drugs via the oral route. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Polydopamine/Cysteine surface modified isoporous membranes with self-cleaning properties

    KAUST Repository

    Shevate, Rahul

    2017-02-03

    The major challenge in membrane filtration is fouling which reduces the membrane performance. Fouling is mainly due to the adhesion of foulants on the membrane surfaces. In this work, we studied the fouling behaviour of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membrane and the mussel inspired polydopamine/L-cysteine isoporous zwitterionic membrane. Polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membranes were fabricated via self-assembly and non-solvent induced phase separation method. Subsequently, the isoporous membrane was modified by a mild mussel-inspired polydopamine (PDA) coating; the isoporous surface structure and the water flux was retained. Zwitterionic L-cysteine was further anchored on the PDA coated membranes via Michael addition reaction at pH 7 and 50 °C to alleviate their antifouling ability with foulants solution. The membranes were thoroughly characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta potential measurements. Contact angle and dynamic scanning calorimetry (DSC) measurements were carried out to examine the hydrophilicity. The pH-responsive behaviour of the modified membrane remains unchanged and antifouling ability after PDA/L-cysteine functionalization was improved. The modified and unmodified isoporous membranes were tested using humic acid and natural organic matter model solutions at 0.5 bar feed pressure.

  18. Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives

    Science.gov (United States)

    Jaynes, William F.; Zartman, Richard E.

    2011-01-01

    Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725

  19. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.

    Science.gov (United States)

    Jallo, Laila J; Dave, Rajesh N

    2015-07-01

    Powder flow involves particle-particle and particle-vessel contacts and separation resulting in electrostatic charging. This important phenomenon was studied for uncoated and dry-coated micronized acetaminophen (MAPAP) as a function of relative humidity. The main hypothesis is that by modifying powder surface energy via dry coating of MAPAP performed using magnetically assisted impaction coating, its charging tendency, flow can be controlled. The examination of the relationship between electrostatic charging, powder flow, and the surface energies of the powders revealed that an improvement in flow because of dry coating corresponded to a decrease in the charging of the particles. A general trend of reduction in both electrostatic charging and dispersive surface energy with dry coating and relative humidity were also observed, except that a divergent behavior was observed at higher relative humidities (≥55% RH). The uncoated powder was found to have strong electron acceptor characteristic as compared with the dry coated. The adhesion energy between the particles and the tubes used for the electrostatic charging qualitatively predicted the decreasing trend in electrostatic charging from plastic tubes to stainless steel. In summary, the surface energies of the powders and the vessel could explain the electrostatic charging behavior and charge reduction because of dry coating. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Suxia Ren

    2017-01-01

    Full Text Available Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN, silver nanoparticles (AgNPs, silicon nanoparticles (SiNPs, and cellulose nanocrystals (CNCs. Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection.

  1. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  2. Characterization of the mechanical and thermal interface of copper films on carbon substrates modified by boron based interlayers

    Science.gov (United States)

    Schäfer, D.; Eisenmenger-Sittner, C.; Chirtoc, Mihai; Kijamnajsuk, P.; Kornfeind, N.; Hutter, H.; Neubauer, E.; Kitzmantel, M.

    2011-01-01

    The manipulation of mechanical and thermal interfaces is essential for the design of modern composites. Amongst these are copper carbon composites which can exhibit excellent heat conductivities if the Cu/C interface is affected by a suitable interlayer to minimize the Thermal Contact Resistance (TCR) and to maximize the adhesion strength between Cu and C. In this paper we report on the effect of boron based interlayers on wetting, mechanical adhesion and on the TCR of Cu coatings deposited on glassy carbon substrates by magnetron sputtering. The interlayers were 5 nm thick and consisted of pure B and B with additions of the carbide forming metals Mo, Ti and Cr in the range of 5 at.% relative to B. The interlayers were deposited by RF magnetron sputtering from either a pure B target or from a composite target. The interlayer composition was checked by Auger Electron Spectroscopy and found to be homogenous within the whole film. The system C-substrate/interlayer/Cu coating was characterized in as deposited samples and samples heat treated for 30 min at 800 °C under High Vacuum (HV), which mimics typical hot pressing parameters during composite formation. Material transport during heat treatment was investigated by Secondary Ion Mass Spectroscopy (SIMS). The de-wetting and hole formation in the Cu coating upon heat treatment were studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The adhesion of the Cu coating was evaluated by mechanical pull-off testing. The TCR was assessed by infrared photothermal radiometry (PTR). A correlation between the adhesion strength and the value of the TCR which was measured by PTR was determined for as deposited as well as for heat treated samples. PMID:22241938

  3. Common Dorsal Stream Substrates for the Mapping of Surface Texture to Object Parts and Visual Spatial Processing.

    Science.gov (United States)

    Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Behrmann, Marlene; Klatzky, Roberta; Ungerleider, Leslie G

    2015-12-01

    Everyday objects are often composed of multiple parts, each with a unique surface texture. The neural substrates mediating the integration of surface features on different object parts are not fully understood, and potential contributions by both the ventral and dorsal visual pathways are possible. To explore these substrates, we collected fMRI data while human participants performed a difference detection task on two objects with textured parts. The objects could either differ in the assignment of the same texture to different object parts ("texture-location") or the types of texture ("texture-type"). In the ventral stream, comparable BOLD activation levels were observed in response to texture-location and texture-type differences. In contrast, in a priori localized spatial processing regions of the dorsal stream, activation was greater for texture-location than texture-type differences, and the magnitude of the activation correlated with behavioral performance. We confirmed the reliance of surface texture to object part mapping on spatial processing mechanisms in subsequent psychophysical experiments, in which participants detected a difference in the spatial distance of an object relative to a reference line. In this task, distracter objects occasionally appeared, which differed in either texture-location or texture-type. Distracter texture-location differences slowed detection of spatial distance differences, but texture-type differences did not. More importantly, the distracter effects were only observed when texture-location differences were presented within whole shapes and not between separated shape parts at distinct spatial locations. We conclude that both the mapping of texture features to object parts and the representation of object spatial position are mediated by common neural substrates within the dorsal visual pathway.

  4. Selective binding of oligonucleotide on TiO{sub 2} surfaces modified by swift heavy ion beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Pérez-Girón, J. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Emerging Viruses Department Heinrich Pette Institute, Hamburg 20251 (Germany); Hirtz, M. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); McAtamney, C.; Bell, A.P. [Advanced Microscopy Laboratory, CRANN, Trinity College Dublin, Dublin 2 (Ireland); Antonio Mas, J. [Laboratorio de Genómica del Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, Campus de Alcorcón 28922, Madrid (Spain); Jaafar, M. [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Luis, O. de [Nanoate, S.L. C/Poeta Rafael Morales 2, San Sebastian de los Reyes, 28702 Madrid (Spain); Departamento de Bioquímica, Fisiología y Genética Molecular, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Campus de Alcorcón, 28922 Madrid (Spain); Fuchs, H. [Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology - KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Physical Institute and Center for Nanotechnology (CeNTech), Wilhelm-Klemm-Straße 10, University of Münster (Germany); and others

    2014-11-15

    We have used swift heavy-ion beam based lithography to create patterned bio-functional surfaces on rutile TiO{sub 2} single crystals. The applied lithography method generates a permanent and well defined periodic structure of micrometre sized square holes having nanostructured TiO{sub 2} surfaces, presenting different physical and chemical properties compared to the surrounding rutile single crystal surface. On the patterned substrates selective binding of oligonucleotides molecules is possible at the surfaces of the holes. This immobilisation process is only being controlled by UV light exposure. The patterned transparent substrates are compatible with fluorescence detection techniques, are mechanically robust, have a high tolerance to extreme chemical and temperature environments, and apparently do not degrade after ten cycles of use. These qualities make the patterned TiO{sub 2} substrates useful for potential biosensor applications.

  5. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  6. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Hee; Bhattarai, Govinda [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Aryal, Santosh [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Nan-Hee [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Tae-Gun [Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Jhee, Eun-Chung [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hak-Yong [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of)

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH{sub 4}). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  7. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Science.gov (United States)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  8. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation

    Science.gov (United States)

    Wang, Henan; Zheng, Yang; Li, Yan; Jiang, Chengbao

    2017-05-01

    Pure Fe was surface-modified by Zn ion implantation to improve the biodegradable behavior and cytocompatibility. Surface topography, chemical composition, corrosion resistance and cytocompatibility were investigated. Atomic force microscopy, auger electron spectroscopy and X-ray photoelectron spectroscopy results showed that Zn was implanted into the surface of pure Fe in the depth of 40-60 nm and Fe2O3/ZnO oxides were formed on the outmost surface. Electrochemical measurements and immersion tests revealed an improved degradable behavior for the Zn-implanted Fe samples. An approximately 12% reduction in the corrosion potential (Ecorr) and a 10-fold increase in the corrosion current density (icorr) were obtained after Zn ion implantation with a moderate incident ion dose, which was attributed to the enhanced pitting corrosion. The surface free energy of pure Fe was decreased by Zn ion implantation. The results of direct cell culture indicated that the short-term (4 h) cytocompatibility of MC3T3-E1 cells was promoted by the implanted Zn on the surface.

  9. Etching of GaAs substrates to create As-rich surface

    Indian Academy of Sciences (India)

    WINTEC

    All the procedures except HCl solution. (1 : 1) produce an As-rich surface. Also, none of the etchants except HF–ethanol solution produce Ga or As- rich (oxide free) surfaces. Optical microscopic study shows different etch pits produced due to etching in different solutions. Keywords. Etching; semi-insulating; XPS spectrum.

  10. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    Science.gov (United States)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  11. Detection of bacterial metabolites through dynamic acquisition from surface enhanced raman spectroscopy substrates integtrated in a centrifugal microfluidic platform

    DEFF Research Database (Denmark)

    Durucan, Onur; Morelli, Lidia; Schmidt, Michael Stenbæk

    2015-01-01

    In this work we present a novel technology that combines the advantages of centrifugal microfluidics with dynamic in-situ Surface Enhanced Raman Spectroscopy (SERS) sensing. Our technology is based on an automated readout system that allows on-line SERS acquisition on a rotating centrifugal...... microfluidic platform with embedded gold nanopillar substrates. While spinning, the disc platform enables dynamic SERS acquisition of multiple chips, significantly reducing time-to-result and improving the reproducibility of the acquired spectra, reducing the fluctuation by a factor of 2....

  12. Fabrication of stable and durable superhydrophobic surface on copper substrates for oil-water separation and ice-over delay.

    Science.gov (United States)

    Guo, Jie; Yang, Fuchao; Guo, Zhiguang

    2016-03-15

    We report a simple and rapid method to fabricate superhydrophobic films on copper substrates via Fe(3+) etching and octadecanethiol (ODT) modification. The etching process can be as short as 5 min and the ODT treatment only takes several seconds. In addition, the whole process is quite flexible in reaction time. The superhydrophobicity of as-prepared surfaces is mechanically durable and chemically stable, which have great performance in oil-water separation and ice-over resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    Science.gov (United States)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  14. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Science.gov (United States)

    Chaudhari, Amol; Duyck, Joke; Braem, Annabel; Vleugels, Jozef; Petite, Hervé; Logeart-Avramoglou, Delphine; Naert, Ignace; Martens, Johan A.; Vandamme, Katleen

    2013-01-01

    Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO2) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery. PMID:28788407

  15. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  16. Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres

    Directory of Open Access Journals (Sweden)

    L. F. Vieira Ferreira

    2007-01-01

    Full Text Available This work reports the use of benzophenone, a very well characterized probe, to study new hosts (i.e., modified celluloses grafted with alkyl chains bearing 12 carbon atoms by surface esterification. Laser-induced room temperature luminescence of air-equilibrated or argon-purged solid powdered samples of benzophenone adsorbed onto the two modified celluloses, which will be named C12-1500 and C12-1700, revealed the existence of a vibrationally structured phosphorescence emission of benzophenone in the case where ethanol was used for sample preparation, while a nonstructured emission of benzophenone exists when water was used instead of ethanol. The decay times of the benzophenone emission vary greatly with the solvent used for sample preparation and do not change with the alkylation degree in the range of 1500–1700 micromoles of alkyl chains per gram of cellulose. When water was used as a solvent for sample preparation, the shortest lifetime for the benzophenone emission was observed; this result is similar to the case of benzophenone adsorbed onto the “normal” microcrystalline cellulose surface, with this latter case previously reported by Vieira Ferreira et al. in 1995. This is due to the more efficient hydrogen abstraction reaction from the glycoside rings of cellulose when compared with hydrogen abstraction from the alkyl chains of the modified celluloses. Triplet-triplet transient absorption of benzophenone was obtained in both cases and is the predominant absorption immediately after laser pulse, while benzophenone ketyl radical formation occurs in a microsecond time scale both for normal and modified celluloses.

  17. Investigations of corrosion on the surface of titanium substrate caused by combined alkaline and heat treatment

    International Nuclear Information System (INIS)

    Jokanović, Vukoman; Vilotijević, Miroljub; Jokanović, Bojan; Jenko, Monika; Anžel, Ivan; Stamenković, Dragoslav; Lazic, Vojkan; Rudolf, Rebeka

    2014-01-01

    Highlights: • Corrosion of titanium implant alloys during alkali and thermal treatment. • AES depth profiling of the oxide layers and their chemical and structural analysis. • Nano-design (nano-belts and fibers) and specific network structure of coatings is promising for biological applications. - Abstract: In this research, the structure changes along the depth of gradient layers of titanium substrate, after etching with NaOH and subsequent thermal treatment at various temperatures between 300 and 800 °C, were investigated by XRD, FTIR and AES. Particularly, the changes of Ti substrate after etching with NaOH, subsequent ionic exchange of Na + with Ca 2+ ions and thermal treatment at 700 °C were analysed. Due to this approach, it was possible to get insight into the chemical changes and changes of Ti oxidation states and consequent phase analysis, along the depth of the titanium oxide coatings. In addition, Secondary Electron Imaging (SEI) showed very interesting nanotopology of all samples. Particularly interesting topology, consisting of very thin nano-designed walls between mutually interconnected pores, was observed for the sample in which Na + were replaced with Ca 2+ ions. This structure might be suitable for deposition of hydroxyapatite by biomimetic or plasma methods and as an appropriate scaffold for cell adhesion and proliferation

  18. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.

    Science.gov (United States)

    Lu, Tai-Yen; Lee, Yang-Chun; Yen, Yu-Ting; Yu, Chen-Chieh; Chen, Hsuen-Li

    2016-03-15

    In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  20. Surface pH of resin-modified glass polyalkenoate (ionomer) cements.

    Science.gov (United States)

    Woolford, M J; Chadwick, R G

    1992-12-01

    The recently developed group of materials known as light-activated, or resin-modified, glass polyalkenoate (ionomer) cements have been produced in response to clinical demands for a command set cavity base material. This study monitored the surface pH of three commercially available resin-modified glass ionomer cements over a 60-min period following either mixing alone or mixing followed by a 30-s exposure to a curing lamp. The results indicate that each material behaves in a unique manner. For all materials and conditions the pH reached after a 60-min period was significantly (P pH of two of the materials (Baseline VLC and Vitrebond) as compared to the same materials in the uncured state. In the case of XR-Ionomer, however, no significant (P > 0.05) effect of light curing upon the surface pH was apparent. The precise clinical consequences of a low surface pH are unclear but may be an aetiological factor in postoperative pulpal sensitivity. It is therefore recommended that a sublining of a proprietary calcium hydroxide lining material should be placed routinely beneath these materials and every effort made to ensure effective light curing.

  1. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  2. Inkjet printed paper based frequency selective surfaces and skin mounted RFID tags: The interrelation between silver nanoparticle ink, paper substrate and low temperature sintering technique

    NARCIS (Netherlands)

    Sanchez-Romaguera, V.; Wünscher, S.; Turki, B.M.; Abbel, R.; Barbosa, S.; Tate, D.J.; Oyeka, D.; Batchelor, J.C.; Parker, E.A.; Schubert, U.S.; Yeates, S.G.

    2015-01-01

    Inkjet printing of functional frequency selective surfaces (FSS) and radio frequency identification (RFID) tags on commercial paper substrates using silver nanoparticle inks sintered using low temperature thermal, plasma and photonic techniques is reported. Printed and sintered FSS devices

  3. The role of substrate electrons in the wetting of a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Takahashi, O.; Andersson, Klas Jerker

    2010-01-01

    We address how the electronic and geometric structures of metal surfaces determine water-metal bonding by affecting the balance between Pauli repulsion and electrostatic attraction. We show how the rigid d-electrons and the softer s-electrons utilize different mechanisms for the redistribution...... of charge that enables surface wetting. On open d-shell Pt(111), the ligand field of water alters the distribution of metal d-electrons to reduce the repulsion. The closed-shell Cu d(10) configuration of isostructural Cu(111), however, does not afford this mechanism, resulting in a hydrophobic surface...

  4. Investigation of the biofouling properties of several algae on different textured chemical modified silicone surfaces

    International Nuclear Information System (INIS)

    Xu, Jihai; Zhao, Wenjie; Peng, Shusen; Zeng, Zhixiang; Zhang, Xin; Wu, Xuedong; Xue, Qunji

    2014-01-01

    Highlights: • Engineered pillars, pits and grooves spaced 3–12 μm apart were fabricated on siloxane modified acrylic resin films. • The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. • The feature size and geometry displayed a substantial correlation with the antifouling properties. • A comparatively physical fouling deterrent mechanism was analyzed. - Abstract: Engineered pillars, pits and grooves spaced 3, 6, 9 and 12 μm apart were fabricated on siloxane modified acrylic resin films. The effect of feature size, geometry, and wettability on the settlement of different algae was evaluated. These films showed various antifouling performances to Ulothrix, Closterium and Navicula. For Navicula (length: 10–12 μm), the feature size and geometry displayed a substantial correlation with the antifouling properties. The film with pillars spaced 3 μm reduced Navicula settlement by 73% compared to the control surface. For Closterium (length: 45–55 μm), their responses were governed by the same underlying thermodynamic principles as wettability, the largest reduction in Closterium, 81%, was obtained on the surface with grooves spaced 12 μm apart. For Ulothrix (length: 5–8 mm), the surface also showed the best antifouling performance, the reduction ratio of the settlement on the surface with grooves spaced 12 μm apart could even reach 92%. At last, physical fouling deterrent mechanisms for the films with various textures were analyzed in detail. The feature size and geometry display a substantial correlation with the antifouling properties when the size of fouling algae is close to the textures. With the increasing size for algae, antifouling performance was getting better on surface with pillars or grooves because the algae are bridged between two or more features other than stabilizing its entire mass on one single feature or able to settle between features

  5. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Elias [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kuila, Tapas [Surface Engineering and Tribology, CSIR – Central Mechanical Engineering Research Institute, Durgapur 721 302 (India); Nayak, Ganesh Chandra [Department of Applied Chemistry, ISM Dhanbad, Dhanbad 826 004, Jharkhand (India); Kim, Nam Hoon [Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Ku, Bon-Cheol [Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Dunsan-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 864-9 (Korea, Republic of); Lee, Joong Hee, E-mail: jhl@chonbuk.ac.kr [WCU Program, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2013-06-15

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml{sup −1}. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m{sup −1}) was comparatively higher than SDS and Triton X-100 functionalized graphene.

  6. Effects of various surfactants on the dispersion stability and electrical conductivity of surface modified graphene

    International Nuclear Information System (INIS)

    Uddin, Md. Elias; Kuila, Tapas; Nayak, Ganesh Chandra; Kim, Nam Hoon; Ku, Bon-Cheol; Lee, Joong Hee

    2013-01-01

    Highlights: ► Water dispersible graphene has been prepared using ionic and non-ionic surfactants. ► XPS and FTIR spectra analysis confirm surface modification and reduction of GO. ► The highest water dispersibility is observed in the graphene modified with of SDBS. ► The best properties of modified graphene is achieved with GO/surfactant ratio of two. -- Abstract: Ionic and non-ionic surfactant functionalized, water dispersible graphene were prepared to investigate the effects on the dispersion stability and electrical conductivity of graphene. In this study, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate and 4-(1,1,3,3-tetramethylbutyl) phenyl-polyethylene glycol (Triton X-100) were used as ionic and non-ionic surfactants. The effects of surfactant concentrations on the dispersibility and electrical conductivity of the surface modified graphene were investigated. The dispersion stability of SDBS functionalized graphene (SDBS-G) was found to be best in water at 1.5 mg ml −1 . X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis indicate that the presence of surfactants does not prevent the reduction of graphene oxide (GO). These measurements also demonstrated that the surfactants were present on the surface of graphene, resulting in the formation of functionalized graphene. The thickness of different functionalized graphene was measured by Atomic force microscopy and varied significantly with different surfactants. The thermal properties of the functionalized graphene were also found to be dependent on the nature of the surfactants. The electrical conductivity of SDBS-G (108 S m −1 ) was comparatively higher than SDS and Triton X-100 functionalized graphene

  7. Nanoparticle-Decorated Surfaces for the Study of Cell-Protein-Substrate Interactions

    National Research Council Canada - National Science Library

    Ballard, Jake D; Dell'Acqua-Bellavitis, Ludovico M; Bizios, Rena; Siegel, Richard W

    2005-01-01

    .... For this purpose, the current research has focused on the design, fabrication and characterization of model native oxide-coated silicon surfaces decorated with silica nanoparticles of select sizes...

  8. Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding

    International Nuclear Information System (INIS)

    Kim, Young-Jong; Taniguchi, Yoshinao; Murase, Kuniaki; Taguchi, Yoshihiro; Sugimura, Hiroyuki

    2009-01-01

    The surface of cyclo-olefin polymer (COP) was treated with vacuum ultraviolet (VUV) light at 172 nm wavelength to improve the wettability and adhesion properties. Through VUV treatment in air, the terminal groups of the COP surface were oxidized into oxygen functional groups, containing C-O, C=O, and COO components, making the COP surface hydrophilic. The extent of oxygenation was evaluated by XPS and FTIR-ATR spectra, and it was shown that the surface properties, hydrophilicity, and functionalization were dependent on both VUV irradiation distance and irradiation time, which have an effect on the concentration of oxygen functional groups. VUV-light treatment with a short irradiation distance was more effective in introducing oxygen functional groups.

  9. Sonication-Based Improvement of the Physicochemical Properties of Guar Gum as a Potential Substrate for Modified Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Siddique Akber Ansari

    2013-01-01

    Full Text Available Guar Gum is a natural polysaccharide that, due to its physicochemical properties, is extensively investigated for biomedical applications as a matrix for modified drug delivery, but it is also used in the food industry as well as in cosmetics. A commercial sample of Guar Gum was sonicated for different periods of time, and the reduction in the average molecular weight was monitored by means of viscometric measurements. At the same time, the rheological behaviour was also followed, in terms of viscoelasticity range, flow curves, and mechanical spectra. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording mechanical spectra, flow curves, and visible absorption spectra of complexes with Congo Red. The anisotropic elongation, observed in previous studies with tablets of Guar Gum and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  10. Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate

    International Nuclear Information System (INIS)

    Hong, L.; Rusli; Wang, X.C.; Zheng, H.Y.; Wang, H.; Yu, H.Y.

    2014-01-01

    In this paper, we report the fabrication of a large area uniformly distributed periodic nano-ripple structure on silicon substrate through the proper scanning of a line-shaped femtosecond laser beam. The fabricated nano-ripple structure has a periodicity of ∼600 nm and a ripple depth of ∼300 nm. The modulation depth is much deeper than the one previously reported. The developed structure is demonstrated to be able to substantially reduce light reflection due to the effective optical coupling between the incident sunlight with the nano-ripple structure and exhibit an absorption enhancement of ∼41% compared with planar silicon wafer. The physics underlying the formation of the nano-ripple structure is also discussed

  11. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  12. XPS analysis of the carbon fibers surface modified via HMDSO to carbon nanotube growth

    International Nuclear Information System (INIS)

    Cardoso, L.D.R.; Gomes, M.C.B.; Trava-Airoldi, V.J.; Corat, E.J.; Lugo, D.C.

    2016-01-01

    Full text: Carbon fibers (CF) have been widely used to reinforce structural composites. Due to their strength-to-weight properties, CF composites are finding increased structural uses in areas such as aerospace, aeronautical, automobile and others. The strength of the fiber-resin interface bond has been found to be the limiting factor to the mechanical properties of CF-epoxy materials, due to their non-polar nature that limit the affinity of CF to bind chemically to any matrix. The growth of carbon nanotubes (CNTs) on the surface of CF is a promising approach for improving mechanical, electrical and thermal properties of structural composites. However growing CNTs on CF presents some obstacles, such as diffusion of metal catalyst particles on CF, uneven CNT growth and loss of mechanical properties of CF. To avoid the diffusion of catalyst particles we modified the CF surface with hexamethyldisiloxane (HMDSO) at low temperature (400 °C), also preventing the loss of mechanical properties and allowing uniform CNTs growth. We deposited CNTs via floating catalyst method, with ferrocene providing the catalyst particle and the oxidative dehydrogenation reaction of acetylene providing the carbon. The CF surface modification was analyzed via X-ray photoelectron spectroscopy (XPS) and CNTs growth via scanning electron microscopy with field emission gun. The XPS analysis showed that HMDSO promotes the binding of oxygen to carbon and silicon present on CF surface, the chemical modification of the surface of the CF enables the uniform growth of carbon nanotubes. (author)

  13. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Yu, Shihui; Chen, Jianting; Yang, Xinggang; Yang, Na; Zhang, Jinsong; Liu, Jinlu; Pan, Weisan; Kong, Jun

    2014-01-01

    This study was carried out to evaluate the ocular performance of a cationic Eudragit (EDU) RS 100-coated nanostructured lipid carrier (NLC). The genistein encapsulated NLC (GEN-NLC) was produced using the melt-emulsification technique followed by surface absorption of EDU RS 100. The EDU RS 100 increased the surface zeta potential from −7.46 mV to +13.60 mV, by uniformly forming a spherical coating outside the NLC surface, as shown by transmission electron microscopy images. The EDU RS 100 on the NLC surface effectively improved the NLC stability by inhibiting particle size growth. The obtained EDU RS 100-GEN-NLC showed extended precorneal clearance and a 1.22-fold increase in AUC (area under the curve) compared with the bare NLC in a Gamma scintigraphic evaluation. The EDU RS 100 modification also significantly increased corneal penetration producing a 3.3-fold increase in apparent permeability coefficients (Papp) compared with references. Draize and cytotoxicity testing confirmed that the developed EDU RS 100-GEN-NLC was nonirritant to ocular tissues and nontoxic to corneal cells. These results indicate that the NLC surface modified by EDU RS 100 significantly improves the NLC properties and exhibits many advantages for ocular use. PMID:25246787

  14. Retention of in-situ surface modified silica nanoparticles for carbon dioxide foam stabilization in sandpack

    Science.gov (United States)

    Adil, Muhammad

    2014-10-01

    Nanoparticle-stabilized CO2 foams have been used for mobility control for CO2 flooding; however, raw nanosilica particles which are hydrophilic in nature tend to develop unstable CO2 foam under certain reservoir conditions. The unstable foam leads to particles aggregation resulting in complete retention while propagating in a long distance, deep into the reservoir. This can be avoided by the application of a particular coating of a specific surfactant, polymer or their combination to the surface of the nanoparticles. The in-situ surface activation of unmodified SiO2 nanoparticles by interaction with mixed surfactant (TX100:SDBS) in aqueous media has been studied with extensive experiments using variable volumetric ratios. The retention of in-situ surface-modified nanoparticles was evaluated by the injection of the dispersion of nanoparticles through a sandpack. The loading of nanoparticles in dispersion was ranging from concentrated (5 wt %) to dilute (0.1 wt %). Effluent nanoparticles concentration histories were measured to determine the retained particles in the sandpack. Little retention (injected over two pore volumes) was attained for 0.5% SiO2 and volumetric ratio of 2:1 (TX100:SDBS). These results were concluded in terms of surface charges, adsorption isotherm, surface adsorption, and DLVO theory between particles and rock.

  15. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  16. Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: rkp203@gmail.com [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Mukhopadhyay, P. [Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology, Kharagpur 721302 (India); Bag, A.; Jana, S. Kr. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Chakraborty, A. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India); Das, S.; Mahata, M. Kr. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Biswas, D. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2015-01-01

    Highlights: • In(Al,Ga)As metamorphic buffers on GaAs have been grown. • Surface morphology, strain relaxation and compositional variation have been studied. • Al containing buffers shows inferior surface roughness. • Surface roughness modulates the indium incorporation rate. - Abstract: In this work, compositionally graded In(Al,Ga)As metamorphic buffers (MBs) on GaAs substrate have been grown by MBE through three different paths. A comparative study has been done to comprehend the effect of underlying MB on the constant composition InAlAs healing layer by analyzing the relaxation behaviour, composition and surface morphology of the grown structures. The compositional variation between the constant composition healing layers on top of graded MB has been observed in all three samples although the growth conditions have been kept same. Indium incorporation rate has been found to be dependent on underlying MB. By combining the result of atomic force microscopy, photo-luminescence and X-ray reciprocal space mapping, varying surface roughness has been proposed as the probable driving force behind different Indium incorporation rate.

  17. Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness

    International Nuclear Information System (INIS)

    Kumar, Rahul; Mukhopadhyay, P.; Bag, A.; Jana, S. Kr.; Chakraborty, A.; Das, S.; Mahata, M. Kr.; Biswas, D.

    2015-01-01

    Highlights: • In(Al,Ga)As metamorphic buffers on GaAs have been grown. • Surface morphology, strain relaxation and compositional variation have been studied. • Al containing buffers shows inferior surface roughness. • Surface roughness modulates the indium incorporation rate. - Abstract: In this work, compositionally graded In(Al,Ga)As metamorphic buffers (MBs) on GaAs substrate have been grown by MBE through three different paths. A comparative study has been done to comprehend the effect of underlying MB on the constant composition InAlAs healing layer by analyzing the relaxation behaviour, composition and surface morphology of the grown structures. The compositional variation between the constant composition healing layers on top of graded MB has been observed in all three samples although the growth conditions have been kept same. Indium incorporation rate has been found to be dependent on underlying MB. By combining the result of atomic force microscopy, photo-luminescence and X-ray reciprocal space mapping, varying surface roughness has been proposed as the probable driving force behind different Indium incorporation rate

  18. Surface and crystal structure of nitridated sapphire substrates and their effect on polar InN layers

    International Nuclear Information System (INIS)

    Skuridina, D.; Dinh, D.V.; Pristovsek, M.; Lacroix, B.; Chauvat, M.-P.; Ruterana, P.; Kneissl, M.; Vogt, P.

    2014-01-01

    Comprehensive analysis of the surface and crystal properties has been performed at clean c-plane sapphire substrates, sapphire layers after nitridation, and subsequently grown InN layers deposited by metal–organic vapor phase epitaxy. The (1 × 1) surface of clean sapphire reconstructs into a (√(31) × √(31))R ± 9° structure after annealing at 1050 °C, which was performed prior to the nitridation process. The formation of crystalline AlN was observed for nitridation above 800 °C. X-ray photoelectron spectroscopy performed on the nitridated layers shows that N-Al chemical bonds dominate this structure, while the number of N-O bonds is negligibly small. Amorphous AlN x O y layers form during nitridation below 800 °C, where N-O bonds dominate. All layers formed by nitridation show defects associated with N bonds. The morphology of the nitridated layers affects the surface and crystal quality of the subsequently grown polar InN layers. N-polar InN layers with a smooth surface and single crystalline structure were grown on the AlN nitridated layers, while In-polar InN layers with a rough surface and a polycrystalline structure were grown on the amorphous nitridated layers.

  19. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  20. Novel transparent high-performance AgNWs/ZnO electrodes prepared on unconventional substrates with 3D structured surfaces

    Science.gov (United States)

    Lan, Wei; Yang, Zhiwei; Zhang, Yue; Wei, Yupeng; Wang, Pengxiang; Abas, Asim; Tang, Guomei; Zhang, Xuetao; Wang, Junya; Xie, Erqing

    2018-03-01

    With the development of optoelectronic devices with three-dimensional (3D) structured surfaces, transparent electrodes that can be deposited on non-plane substrates have become increasingly important. In this paper, novel transparent silver nanowire (AgNWs)/ZnO film electrodes were uniformly prepared on treated 3D glass and PET substrates with a combination of spin-coating and heat-welding. The AgNWs/ZnO films show a transmittance of ∼88% and a sheet resistance of ∼10 Ω/sq. They are comparable with commercial ITO films. Furthermore, only a small in-plane resistance variation of ∼1 Ω/sq was measured using four-point probe mapping in films with a 10 cm × 10 cm area. These results confirm that these novel film electrodes are very uniform. Both electrical resistance and optical transmittance of the films remain mostly intact after 1000 bending cycles and tape peeling-tests with 10 cycles. The films show high thermal stability for more than one month at 80 °C. The strategy provides a new route for the design and fabrication of optoelectronic devices with 3D structured surfaces.

  1. Spectroscopic Ellipsometry Measurements of Wurtzite Gallium Nitride Surfaces as a Function of Buffered Oxide Etch Substrate Submersion

    Science.gov (United States)

    Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration

    2013-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.

  2. Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers

    Science.gov (United States)

    Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping

    2018-03-01

    Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.

  3. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  4. Investigation of Streptococcus mutans biofilm growth on modified Au(111)-surfaces using AFM and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan; Zhang, Jingdong; Ulstrup, Jens

    2011-01-01

    Biofilms of the bacterium Streptococcus mutans constitute perhaps the most important direct cause of human dental caries formation. We have studied S. mutans biofilm formation and properties on Au(111)-surfaces modified by self-assembled molecular monolayers (SAMs) of different thiol...... (hexadecanethiol, MHD) or hydrophilic (mercapto-hexadecanoic acid, MHDA) end groups. The voltammetric reductive desorption (RD) peaks of the thiol-based SAMs in the absence and presence of biofilms and growth medium was in focus as a sensitive probe of the SAM local environment.AFM showed that S. mutans had grown...... with growth medium or of the growth medium alone. The RD peak potential of the hydrophilic MHDA surface remained, further largely unaffected but the RD peak of the hydrophobic MHD SAM is distinctly shifted compared to the MHD SAM alone. The shifts were further in different directions for the S. mutans biofilm...

  5. Evaluation of the susceptibility to pitting corrosion of structural steels, including steels with modified surface

    International Nuclear Information System (INIS)

    Lunarska, E.; Nikiforow, K.

    2001-01-01

    Although the low alloy ferrite-perlite and bainite-martensite steels mostly undergo the general corrosion, pitting corrosion occurring under certain conditions jeopardizes the safety of installations, causing perforation of walls or initiation of crack. On the basis of electrochemical, corrosion and microscopic examinations, the conditions simulating typical industrial corrosion environments, containing Cl - ions have been selected, to which the parts of machines, devices and installation are subjected. The test parameters provide the preferential pitting corrosion without prevailing general corrosion, and provide the similar type of corrosion of different kinds of ferrite-perlite and bainite-martensite steels, including steels with modified surface layer. The proposed express method allows to evaluate the susceptibility to pitting corrosion and to evaluate the effect of surface modification on susceptibility to pitting corrosion in environments containing Cl - ions. The method may be applied for the proper selection of materials exploited under pitting corrosion conditions and for preparation of precorroded samples for mechanical testing. (author)

  6. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning

    Science.gov (United States)

    Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi

    2017-07-01

    Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.

  7. PERFORMANCE OF CEMENT COMPOSITES REINFORCED WITH SURFACE-MODIFIED POLYPROPYLENE MICRO- AND MACRO-FIBERS

    Directory of Open Access Journals (Sweden)

    Jakub Antoš

    2017-11-01

    Full Text Available This paper focuses on the mechanical properties investigation of cement pastes reinforced with surface treated polymer fibers. The cement matrix was composed of Portland cement (CEM I 42.5 R, w/c ratio equal to 0.4. Two polypropylene fiber types (micro- and macro-fibers were used as randomly distributed and oriented reinforcement in volume amount of 2 %. The fibers were modified in the low-pressure inductively coupled cold oxygen plasma in order to enhance their surface interaction with the cement matrix. The investigated composite mechanical properties (load bearing capacity and response during loading were examined indirectly by means of four-point bending mechanical destructive tests. A response of loaded samples containing treated fibers were compared to samples with reference fibers. Moreover, cracking behavior development was monitored using digital image correlation (DIC. This method enabled to record the micro-cracks system evaluation of both fiber reinforced samples.

  8. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  9. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  10. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  11. Immobilization of Phosphomolybdate Anions on the Surface of Magnetite Nanoparticles Modified with Quaternary Phosphonium Cations

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2013-06-01

    Full Text Available A new hybrid nanomaterial was developed by immobilization of phosphomolybdate anions on the surface of modified magnetite nanoparticles with quaternary phosphonium cations. Silica coated magnetic nanoparticles supported phosphonium cations, Ph3P+-SCMNPs, were prepared by covalent attachment of chloropropylsilyl groups on the surface of silica coated magnetite nanoparticles and next reaction with triphenylphosphine. Then, reaction of the prepared Ph3P+-SCMNPs nanomaterial with H3PMo12O40 resulted in the preparation of PMo-Ph3P+-SCMNPs hybrid nanomaterial. The PMo-Ph3P+-SCMNPs hybrid nanomaterial was characterized with different physicochemical methods such as FT-IR and ICP-AES spectroscopies, XRD, VSM, SEM, and TEM analyses. VSM analysis showed superparamagnetic properties of the prepared nanomaterial. TEM and SEM analyses indicated the aggregated nanoparticles with about 15 nm average size.

  12. Improved Performance of Dye-Sensitized Solar Cells Using a Diethyldithiocarbamate-Modified Surface

    Directory of Open Access Journals (Sweden)

    D. M. B. P. Ariyasinghe

    2013-01-01

    Full Text Available The surface modification of a TiO2 electrode with diethyldithiocarbamate (DEDTC in dye-sensitized solar cells (DSSCs was studied. Results from X-ray photoelectron spectroscopy (XPS indicate that over half of the sulfur atoms become positively charged after the DEDTC treatment of the TiO2 surface. DSSCs were fabricated with TiO2 electrodes modified by adsorbing DEDTC using a simple dip-coating process. The conversion efficiency of the DSSCs has been optimized to 6.6% through the enhancement of the short-circuit current density ( mA/cm2. This is substantially higher compared to the efficiency of 5.9% ( mA/cm2 for the DSSCs made with untreated TiO2 electrodes.

  13. Enhanced Group Delay of the Pulse Reflection with Graphene Surface Plasmon via Modified Otto Configuration

    Directory of Open Access Journals (Sweden)

    Guimei Li

    2017-01-01

    Full Text Available In this paper, the group delay of the transverse magnetic (TM polarized wave reflected from a modified Otto configuration with graphene surface plasmon is investigated theoretically. The findings show that the optical group delay in this structure can be enhanced negatively and can be switched from negative to positive due to the excitation of surface plasmon by graphene. It is clear that the negative group delay can be actively tuned through the Fermi energy of the graphene. Furthermore, the delay properties can also be manipulated by changing either the relaxation time of graphene or the distance between the coupling prism and the graphene. These tunable delay characteristics are promising for fabricating grapheme-based optical delay devices and other applications in the terahertz regime.

  14. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning.

    Science.gov (United States)

    Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi

    2017-12-01

    Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.

  15. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  16. Non-Fouling Character of Poly[2-(methacryloyloxy)ethyl Phosphorylcholine]-Modified Gold Surfaces Fabricated by the 'Grafting to' Method: Comparison of its Protein Resistance with Poly(ethylene glycol)-Modified Gold Surfaces.

    Science.gov (United States)

    Yoshimoto, Keitaro; Hirase, Takumi; Madsen, Jeppe; Armes, Steven P; Nagasaki, Yukio

    2009-12-16

    Poly[2-(methacryloyloxy)ethyl phosphorylcholine] -modified gold surfaces, which have been newly prepared by a 'grafting to' method using a series of monosulfanyl-terminated PMPC, are characterized by protein adsorption experiments based on surface plasmon resonance spectroscopy and ellipsometry measurements. The extent of BSA adsorption on PMPC-modified surfaces was systematically reduced for thicker PMPC layers, thus the number of MPC units on the gold surface appears to be an important factor for the excellent protein resistance offered by PMPC-modified gold surfaces fabricated by the 'grafting to' method, which is sharp contrast to that of PEG tethered chains. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  18. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    International Nuclear Information System (INIS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  19. Onion-like surface design of upconverting nanophosphors modified with polyethylenimine: shielding toxicity versus keeping brightness?

    Science.gov (United States)

    Guller, Anna; Nadort, Annemarie; Generalova, Alla; Kornienko, Inna; Petersen, Elena; Qian, Yi; Shekhter, Anatoly; Goldys, Ewa; Zvyagin, Andrei

    2016-12-01

    Background: Upconverting nanoparticles (UCNPs) represent a unique class of nanomaterials, able to convert infrared excitation light into long lifetime visible and infrared photoluminescence, within the "optical transparency window" of biological tissues. This makes UCNPs an attractive contrast agent for background-free bioimaging. However, assynthesized UCNPs are hydrophobic and need additional surface coating for stability in water-based solutions and further functionalization. Polyethylenimine (PEI), a polycationic amphiphilic polymer, is a well-known transfection agent for gene delivery and a popular material for UCNPs surface hydrophilization. Combining the functional properties of UCNPs and PEI is extremely useful for precise visualization of genetic manipulations and intracellular drug delivery. At the same time, PEI is toxic to cells, while the photoluminescent properties of UCNPs are very sensitive to surface chemistry and environment. Then, creation of hydrophilic, biocompatible and simultaneously bright UCNPs, modified by PEI (UCNP-PEI), is a challenging task. Objectives: To analyze the effects of multilayer shielding coatings on cytotoxicity, cellular uptake and photoluminescent properties of UCNP-PEI. Methods and results: UCNP-PEI were modified with additional two or three layers of various polymers and characterized by size, surface charge and photophysical properties. HaCaT keratinocytes were exposed to the particles for 24 or 120 h to study the cytotoxicity and cellular uptake. The results show that onion-like coatings of UCNP-PEI simultaneously decrease cytotoxicity and relative luminescence of the particles, depending on structure and method of formation of multilayer coating. Conclusions: Rational design of UCNP-PEI using extra coatings layers can help to keep acceptable levels of biocompatibility and photoluminescence intensity.

  20. Fabrication and application of responsive polymer surfaces on planar substrates and colloidal particles

    Science.gov (United States)

    Lupitskyy, Robert

    2009-11-01

    In the present dissertation, the problem of controlling interactions of material surfaces with the environment was addressed. Using chemical modification of surfaces with responsive polymers, it is possible to use external stimuli to regulate surface wettability, protein adsorption, stability, and interfacial properties of colloidal particles. The research work presented in this dissertation consists of four independent parts. In the first part (Chapter II), the responsive behavior of a novel heteroarm star-copolymer, poly(2-vinylpyridine)-star-poly(styrene) (PS7-P2VP7), was investigated. For grafted layers of PS7-P2VP7,surface composition, morphology, and wettability can be reversibly changed by treatment with solvents of different thermodynamic quality. Grafted layers of the star-copolymer exhibit a pronounced solvent-dependent phase segregation characteristic and behave similarly to mixed polymer brushes with incompatible components. In the second part (Chapter III), the regulation of fibrinogen adsorption by changing surface composition and microstructure of a mixed polymer brush was explored. The brush is a combination of a protein-repelling component, poly(ethylene glycol), and a protein-attracting component, poly(acrylic acid)-b-polystyrene. Treatment with different organic solvents changes the degree of adsorption of a test protein, fibrinogen, whereas treatment with calcium chloride solution results in virtually no protein adsorption at all. Studies of brush morphology and brush extension in aqueous medium revealed that treatment with different solvents results in different size and distribution of polystyrene domains, which in turn affects the adsorption of fibrinogen. In the third part (Chapter IV), a responsive colloidal system was developed by grafting poly(styrene-b-2-vinylpyridine-b-ethylene oxide) triblock copolymer onto the surface of 200 nm silica particles. This type of grafted polymer layer is both pH- and solvent-sensitive. These properties