WorldWideScience

Sample records for surface model isolsm

  1. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  2. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  3. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    Energy Technology Data Exchange (ETDEWEB)

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution

  4. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  5. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  6. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  7. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  8. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  9. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  10. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  11. Finsler Geometry Modeling of an Orientation-Asymmetric Surface Model for Membranes

    Science.gov (United States)

    Proutorov, Evgenii; Koibuchi, Hiroshi

    2017-12-01

    In this paper, a triangulated surface model is studied in the context of Finsler geometry (FG) modeling. This FG model is an extended version of a recently reported model for two-component membranes, and it is asymmetric under surface inversion. We show that the definition of the model is independent of how the Finsler length of a bond is defined. This leads us to understand that the canonical (or Euclidean) surface model is obtained from the FG model such that it is uniquely determined as a trivial model from the viewpoint of well definedness.

  12. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  13. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  14. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  15. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  16. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  17. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  18. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  19. Enhancing the representation of subgrid land surface characteristics in land surface models

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2013-09-01

    Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs. The subgrid structure of the Community Land Model (CLM was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands–N PFTs method; SGC2: N PFTs–M elevation bands method. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0° with three maximum-allowed total number of LRUs (i.e., NLRU of 24, 18 and 12 over North America (NA, the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity (NLRU = 18. It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on

  20. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  1. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  2. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  3. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was

  4. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    Science.gov (United States)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  5. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    Science.gov (United States)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  6. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  7. Numerical Study of Wind Turbine Wake Modeling Based on a Actuator Surface Model

    DEFF Research Database (Denmark)

    Zhou, Huai-yang; Xu, Chang; Han, Xing Xing

    2017-01-01

    In the Actuator Surface Model (ALM), the turbine blades are represented by porous surfaces of velocity and pressure discontinuities to model the action of lifting surfaces on the flow. The numerical simulation is implemented on FLUENT platform combined with N-S equations. This model is improved o...

  8. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  9. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  10. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  11. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    Science.gov (United States)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  12. Land surface Verification Toolkit (LVT) - a generalized framework for land surface model evaluation

    Science.gov (United States)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J.; Harrison, K.; Liu, Y.; Shaw, M.

    2012-06-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it supports hydrological data products from non-LIS environments as well. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  13. INTEGRATION OF HETEROGENOUS DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2012-08-01

    Full Text Available The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI, two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM with 1m resolution covering whole switzerland (approx. 41000 km2. The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM. Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET generates the image based surface model (ADS-DSM and delivers also a map with figures of merit (FOM of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point

  14. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  15. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  16. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  17. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  18. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  19. Three-dimensional modeling of chloroprene rubber surface topography upon composition

    Energy Technology Data Exchange (ETDEWEB)

    Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2014-02-15

    In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.

  20. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  1. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  2. Simplified models for surface hyperchannelling

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Webb, R.; Armour, D.G.; Karpuzov, D.S.

    1979-01-01

    Experimental and detailed, three-dimensional computer simulation studies of the scattering of low energy argon ions incident at grazing angles onto a nickel single crystal have shown that under certain, well defined conditions, surface hyperchannelling dominates the reflection process. The applicability of simple computer simulation models to the study of this type of scattering has been investigated by comparing the results obtained using a 'summation of binary collisions' model and a continuous string model with both the experimental observations and the three dimensional model calculations. It has been shown that all the major features of the phenomenon can be reproduced in a qualitative way using the simple models and that the continuous string represents a good approximation to the 'real' crystal over a wide range of angles. The saving in computer time compared with the more complex model makes it practicable to use the simple models to calculate cross-sections and overall scattering intensities for a wide range of geometries. The results of these calculations suggest that the critical angle for the onset of surface hyperchannelling, which is associated with a reduction in scattering intensity and which is thus not too sensitive to the parameters of experimental apparatus is a useful quantity from the point of view of comparison of theoretical calculations with experimental measurements. (author)

  3. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  4. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  5. Conformally parametrized surfaces associated with CPN-1 sigma models

    International Nuclear Information System (INIS)

    Grundland, A M; Hereman, W A; Yurdusen, I-dot

    2008-01-01

    Two-dimensional parametrized surfaces immersed in the su(N) algebra are investigated. The focus is on surfaces parametrized by solutions of the equations for the CP N-1 sigma model. The Lie-point symmetries of the CP N-1 model are computed for arbitrary N. The Weierstrass formula for immersion is determined and an explicit formula for a moving frame on a surface is constructed. This allows us to determine the structural equations and geometrical properties of surfaces in R N 2 -1 . The fundamental forms, Gaussian and mean curvatures, Willmore functional and topological charge of surfaces are given explicitly in terms of any holomorphic solution of the CP 2 model. The approach is illustrated through several examples, including surfaces immersed in low-dimensional su(N) algebras

  6. A new class of actuator surface models for wind turbines

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2018-05-01

    Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.

  7. Modelling the appearance of heritage metallic surfaces

    Directory of Open Access Journals (Sweden)

    L. MacDonald

    2014-06-01

    Full Text Available Polished metallic surfaces exhibit a high degree of specularity, which makes them difficult to reproduce accurately. We have applied two different techniques for modelling a heritage object known as the Islamic handbag. Photogrammetric multi-view stereo enabled a dense point cloud to be extracted from a set of photographs with calibration targets, and a geometrically accurate 3D model produced. A new method based on photometric stereo from a set of images taken in an illumination dome enabled surface normals to be generated for each face of the object and its appearance to be rendered, to a high degree of visual realism, when illuminated by one or more light sources from any angles. The specularity of the reflection from the metal surface was modelled by a modified Lorentzian function.

  8. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  9. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  10. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  11. Advances in land modeling of KIAPS based on the Noah Land Surface Model

    Science.gov (United States)

    Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi

    2017-08-01

    As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.

  12. Minimal model for spoof acoustoelastic surface states

    Directory of Open Access Journals (Sweden)

    J. Christensen

    2014-12-01

    Full Text Available Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  13. Specification for a surface-search radar-detection-range model

    Science.gov (United States)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  14. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  15. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  16. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  17. Increasing the reliability of the Olkiluoto surface and near-surface hydrological model

    International Nuclear Information System (INIS)

    Karvonen, T.

    2009-05-01

    The aim of the study was to improve the reliability of the Olkiluoto surface hydrological model that calculates the overall water balance components of Olkiluoto Island. ONKALO and Korvensuo reservoir were added as explicit structures to the model. The model links the unsaturated and saturated soil water in the overburden and groundwater in bedrock to a continuous pressure system. With the model it is possible to evaluate the influence of water leaking to ONKALO on groundwater level in overburden soils and pressure head in shallow bedrock drillholes. Anisotropy was added to the surface hydrological model and several model runs were carried out using anisotropy factors 1, 5 and 10. Anisotropy factor of 10 is used in the 2008 version of the deep hydrogeological model and the same anisotropy will be used in future calculations of the surface hydrological model to ensure consistency of the parameter values in the two models. The correspondence between measured and computed groundwater levels has been improved due to new soil type delineation and the calibration of the soil water retention curve parameters. Computed groundwater level variation can be characterized by a measure ΔH COMP , which is difference between maximum and minimum value during the calibration period. Average ΔH COMP in groundwater tubes was 1.98 m and the corresponding measured value ΔH MEAS was 2.08 m, i.e. the difference between measured and computed value was around 0.1 m (0.16 m in the 2007 version). Temporal variation (difference between maximum and minimum pressure head) was simulated well also in most of the shallow bedrock drillholes. ONKALO was added to the 2008 version of the Olkiluoto surface hydrological model. Influence of ONKALO is taken into account by giving the total discharge as input data from existing measurements or from calculations of the deep hydrogeological model of the Olkiluoto Island. The computed results show that ONKALO has a temporal effect on groundwater level in

  18. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  19. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  20. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  1. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  2. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  3. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  4. Alternative approach to the surface-excitation model

    International Nuclear Information System (INIS)

    Krohn, V.E.

    1981-01-01

    Although the development of the surface-excitation model of sputtered-ion emission involved a detailed description of the ionization process, one can arrive at the same result by assuming an equilibrium treatment, e.g. the Saha-Langmuir equation, with the temperature falling as the collision casade develops. This suggests that, even if situations are found where the surface-excitation model is successful, it does not follow that the original detailed description of the ionization process is correct. Nevertheless, the surface-excitation model does contain an interesting new idea which should not be overlooked, i.e. that atoms sputtered during the early stages of a collision cascade will be relatively energetic, and to the extent that the Saha-Langmuir equation has some applicability, will have a probability of positive ionization which will be low for atoms of low ionization potential (I phi), relative to lower-energy atoms emitted during the later stages of the collision cascade. The extended abstract will discuss recent experimental results

  5. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... evolution model can be used for obtaining more insight into the conditions needed for formation of low-relief surfaces at high elevation. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 35...

  6. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  7. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  8. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  9. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  10. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  11. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  12. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  13. Surface science models of CoMoS hydrodesulfurisation catalysts

    NARCIS (Netherlands)

    Jong, de A.M.; Beer, de V.H.J.; Veen, van J.A.R.; Niemantsverdriet, J.W.; Froment, G.F.; Delmon, B.; Grange, P.

    1997-01-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of

  14. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  15. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  16. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori; McCabe, Matthew; Evans, Jason P.

    2015-01-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence

  17. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  18. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  19. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  20. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  1. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain...... general parametrized surface. The model also accounts for sliding of sediment particles when the angle of the local bed slope exceeds the angle of repose....

  2. Coupling of the FLake model to the Surfex externalized surface model

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. (Univ. of Evora, Centro de Geofisica de Evora (Portugal)); Le Moigne, P. (CNRM/GAME, Meteo-France/CNRS, Toulouse (France))

    2010-07-01

    The FLake model parameterizes the local-scale energy exchanges between lake surfaces and the atmosphere. FLake simulates the temperature profile as well as the budgets of heat and turbulent kinetic energy in water. Its implementation into the Surfex system, the externalized surface scheme devoted to research and operational forecasts, is presented here. The paper describes a validation of the coupled system Surfex-FLake based on measurements carried out on the Alqueva reservoir in southern Portugal. This paper shows how the use of FLake in the Surfex system improves surface temperature and turbulent fluxes at the water-atmosphere interface and explains the minor changes made in the computation of the shape function in order to adapt the FLake model to warm lakes, like the one used for this study. (orig.)

  3. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  4. Surface EXAFS - A mathematical model

    International Nuclear Information System (INIS)

    Bateman, J.E.

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study

  5. Surface chemistry of cellulose : from natural fibres to model surfaces

    NARCIS (Netherlands)

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  6. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  7. Comparison on the forecast model of landfill surface

    International Nuclear Information System (INIS)

    Zhou Xiaozhi; Sang Shuxun; Cao Liwen; Ji Xiaoyan

    2010-01-01

    Using four large-scale simulated landfill equipments, indoor parallel simulation landfill experiment was carried out. By monitoring the cumulative settlement of MSW, comparable researches indicate the actual effects of 'empirical model' and 'biodegradation model' on landfill surface settlement forecast, and the optimization measures are proposed on the basis of model defects analysis. Research leaded to following results: To the short-term prediction of MSW settlement, two types of models all have satisfactory predictive validity. When performing medium and long-term prediction, 'empirical model' predicted a significant deviation from the actual, and the forecasting error of 'biodegradation model' is also gradually enlarge with the extending forecast period. For optimizing these two types of model, long-term surface settlement monitoring is fundamental method, and constantly modify the model parameters is the key according to the dynamic monitoring data. (authors)

  8. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  9. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  10. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  11. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori

    2015-04-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin-up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin-up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin-up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics.

  12. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  13. A numerical model of p-n junctions bordering on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Aberle, A.G.; Jianhua Zhao; Aihua Wang; Heiser, G. [University of New South Wales, Sydney (Australia). Centre for Photovolatic Engineering

    2002-10-01

    Many solar cell structures contain regions where the emitter p-n junction borders on the surface. If the surface is not well passivated, a large amount of recombination occurs in such regions. This type of recombination is influenced by the electrostatics of both the p-n junction and the surface, and hence it is different from the commonly described recombination phenomena occurring in the p-n junction within the bulk. We developed a two-dimensional model for the recombination mechanisms occurring in emitter p-n junctions bordering on surfaces. The model is validated by reproducing the experimental I-V curves of specially designed silicon solar cells. It is shown under which circumstances a poor surface passivation, near where the p-n junction borders on the surface, reduces the fill factor and the open-circuit voltage. The model can be applied to many other types of solar cells. (author)

  14. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    Science.gov (United States)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  15. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  16. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  17. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  18. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  19. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    Science.gov (United States)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  20. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  1. Direct Monte Carlo dose calculation using polygon-surface computational human model

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  2. Modeling of surface tension effects in venturi scrubbing

    Science.gov (United States)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  3. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    Science.gov (United States)

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  4. Adhesion of perfume-filled microcapsules to model fabric surfaces.

    Science.gov (United States)

    He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing

    2014-01-01

    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.

  5. A statistical model for the wettability of surfaces with heterogeneous pore geometries

    Science.gov (United States)

    Brockway, Lance; Taylor, Hayden

    2016-10-01

    We describe a new approach to modeling the wetting behavior of micro- and nano-textured surfaces with varying degrees of geometrical heterogeneity. Surfaces are modeled as pore arrays with a Gaussian distribution of sidewall reentrant angles and a characteristic wall roughness. Unlike conventional wettability models, our model considers the fraction of a surface’s pores that are filled at any time, allowing us to capture more subtle dependences of a liquid’s apparent contact angle on its surface tension. The model has four fitting parameters and is calibrated for a particular surface by measuring the apparent contact angles between the surface and at least four probe liquids. We have calibrated the model for three heterogeneous nanoporous surfaces that we have fabricated: a hydrothermally grown zinc oxide, a film of polyvinylidene fluoride (PVDF) microspheres formed by spinodal decomposition, and a polytetrafluoroethylene (PTFE) film with pores defined by sacrificial polystyrene microspheres. These three surfaces show markedly different dependences of a liquid’s apparent contact angle on the liquid’s surface tension, and the results can be explained by considering geometric variability. The highly variable PTFE pores yield the most gradual variation of apparent contact angle with probe liquid surface tension. The PVDF microspheres are more regular in diameter and, although connected in an irregular manner, result in a much sharper transition from non-wetting to wetting behavior as surface tension reduces. We also demonstrate, by terminating porous zinc oxide with three alternative hydrophobic molecules, that a single geometrical model can capture a structure’s wetting behavior for multiple surface chemistries and liquids. Finally, we contrast our results with those from a highly regular, lithographically-produced structure which shows an extremely sharp dependence of wettability on surface tension. This new model could be valuable in designing and

  6. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  7. New method for model coupling using Stampi. Application to the coupling of atmosphere model (MM5) and land-surface model (SOLVEG)

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2003-12-01

    A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named Stampi developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model. (author)

  8. Computer-aided design of curved surfaces with automatic model generation

    Science.gov (United States)

    Staley, S. M.; Jerard, R. B.; White, P. R.

    1980-01-01

    The design and visualization of three-dimensional objects with curved surfaces have always been difficult. The paper given below describes a computer system which facilitates both the design and visualization of such surfaces. The system enhances the design of these surfaces by virtue of various interactive techniques coupled with the application of B-Spline theory. Visualization is facilitated by including a specially built model-making machine which produces three-dimensional foam models. Thus, the system permits the designer to produce an inexpensive model of the object which is suitable for evaluation and presentation.

  9. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  10. Modeling the microstructure of surface by applying BRDF function

    Science.gov (United States)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  11. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  12. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  13. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  14. Dissolution model for a glass having an adherent insoluble surface layer

    International Nuclear Information System (INIS)

    Harvey, K.B.; Larocque, C.A.B.

    1990-01-01

    Waste form glasses that contain substantial quantities of iron, manganese, and aluminum oxides, such as the Savannah River SRL TDS-131 glass, form a thick, hydrated surface layer when placed in contact with water. The dissolution of such a glass has been modeled with the Savannah River Model. The authors showed previously that the equations of the Savannah River Model could be fitted to published experimental data if a time-dependent diffusion coefficient was assumed for species of diffusing through the surface layer. The Savannah River Model assumes that all of the material dissolved from the glass enters solution, whereas it was observed that substantial quantities of material were retained in the surface layer. An alternative model, presented contains a mass balance equation that allows material either to enter solution or to be retained in the surface layer. It is shown that the equations derived using this model can be fitted to the published experimental data assuming a constant diffusion coefficient for species diffusing through the surface layer

  15. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  16. Towards a public, standardized, diagnostic benchmarking system for land surface models

    Directory of Open Access Journals (Sweden)

    G. Abramowitz

    2012-06-01

    Full Text Available This work examines different conceptions of land surface model benchmarking and the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. It additionally demonstrates how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and gives an example of how these expectations might be quantified. Finally, the Protocol for the Analysis of Land Surface models (PALS is introduced – a free, online land surface model benchmarking application that is structured to meet both of these goals.

  17. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    International Nuclear Information System (INIS)

    Stotler, D.P.

    2005-01-01

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model

  18. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  19. Calibration of Chaboche Model with a Memory Surface

    Directory of Open Access Journals (Sweden)

    Radim HALAMA

    2013-06-01

    Full Text Available This paper points out a sufficient description of the stress-strain behaviour of the Chaboche nonlinear kinematic hardening model only for materials with the Masing's behaviour, regardless of the number of backstress parts. Subsequently, there are presented two concepts of most widely used memory surfaces: Jiang-Sehitoglu concept (deviatoric plane and Chaboche concept (strain-space. On the base of experimental data of steel ST52 is then shown the possibility of capturing hysteresis loops and cyclic strain curve simultaneously in the usual range for low cycle fatigue calculations. A new model for cyclic hardening/softening behaviour modeling has been also developed based on the Jiang-Sehitoglu memory surface concept. Finally, there are formulated some recommendations for the use of individual models and the direction of further research in conclusions.

  20. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  1. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  2. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK

  3. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures.

    Science.gov (United States)

    Almatroudi, Ahmad; Hu, Honghua; Deva, Anand; Gosbell, Iain B; Jacombs, Anita; Jensen, Slade O; Whiteley, Greg; Glasbey, Trevor; Vickery, Karen

    2015-10-01

    The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12 days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 10(7) CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued

  4. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    Science.gov (United States)

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  5. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  6. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  7. Generating CT-TH-PM surfaces using EPT-based aggregate modelling

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Herk, van J.; Rooda, J.E.

    2010-01-01

    Cycle Time-Throughput-Product mix (CT-TH-PM) surfaces give the mean cycle time as a function of throughput and product mix for manufacturing workstations. To generate the CT-TH-PM surface, detailed simulation models may be used. However, detailed models require much development time, and it may not

  8. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts

    International Nuclear Information System (INIS)

    Li, R.M.; Joshi, Sunil C.; Ng, H.W.

    2006-01-01

    Spacecraft thermal control materials (TCMs) play a vital role in the entire service life of a spacecraft . Most of the conventional TCMs degrade in the harmful space environment . In the previous study, plasma sprayed alumina (PSA) coating was established as a new and better TCM for spacecrafts, in view of its stability and reliability compared to the traditional TCMs . During the investigation, the surface roughness of PSA was found important, because the roughness affects the radiative heat exchange between the surface and its surroundings. Parameters such as root-mean-square roughness cannot properly evaluate surface roughness effects on radiative properties of opaque surfaces . Some models have been developed earlier to predict the effects, such as Davies' model , Tang and Buckius's statistical geometric optics model . However, they are valid only in their own specific situations. In this paper, an energy absorption geometry model was developed and applied to investigate the roughness effects with the help of 2D surface profile of PSA coated substrate scanned at micron level. This model predicts effective normal solar absorptance (α ne ) and effective hemispherical infrared emittance (ε he ) of a rough PSA surface. These values, if used in the heat transfer analysis of an equivalent, smooth and optically flat surface, lead to the prediction of the same rate of heat exchange and temperature as that of for the rough PSA surface. The model was validated through comparison between a smooth and a rough PSA coated surfaces. Even though not tested for other types of materials, the model formulation is generic and can be used to incorporate the rough surface effects for other types of thermal coatings, provided the baseline values of normal solar absorptance (α n ) and hemispherical infrared emittance (ε h ) are available for a generic surface of the same material

  9. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  10. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Empirical model for estimating the surface roughness of machined ... as well as surface finish is one of the most critical quality measure in mechanical products. ... various cutting speed have been developed using regression analysis software.

  11. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  12. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  13. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    Science.gov (United States)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  14. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  15. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  16. Uranium(VI) sorption onto magnetite. Increasing confidence in surface complexation models using chemically evident surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Surface complexation models have made great efforts in describing the sorption of various radionuclides on naturally occurring mineral phases. Unfortunately, many of the published sorption parameter sets are built upon unrealistic or even wrong surface chemistry. This work describes the benefit of combining spectroscopic and batch sorption experimental data to create a reliable and consistent surface complexation parameter set.

  17. An operator calculus for surface and volume modeling

    Science.gov (United States)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  18. Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces

    International Nuclear Information System (INIS)

    Nelson, Alan E.; Schulz, Kirk H.

    2003-01-01

    Cerium-zirconium mixed metal oxides are widely used as promoters in automotive emissions control catalyst systems (three-way catalysts). The addition of zirconium in the cubic lattice of ceria improves the redox properties and the thermal stability, thereby increasing the catalyst efficiency and longevity. The surface composition and availability of surface oxygen of model ceria-zirconia catalyst promoters was considered to develop a reference for future catalytic reactivity studies. The microstructure was characterized with X-ray diffraction (XRD) to determine the effect of zirconium substitution on crystalline structure and grain size. Additionally, the Ce/Zr surface atomic ratio and existence of Ce 3+ defect sites were examined with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) for samples with different zirconium concentrations. The surface composition of the model systems with respect to cerium and zirconium concentration is representative of the bulk, indicating no appreciable surface species segregation during model catalyst preparation or exposure to ultrahigh vacuum conditions and analysis techniques. Additionally, the concentration of Ce 3+ defect sites was constant and independent of composition. The quantity of surface oxygen was unaffected by electron bombardment or prolonged exposure to ultrahigh vacuum conditions. Additionally, XRD analysis did not indicate the presence of additional crystalline phases beyond the cubic structure for compositions from 100 to 25 at.% cerium, although additional phases may be present in undetectable quantities. This analysis is an important initial step for determining surface reactions and pathways for the development of efficient and sulfur-tolerant automotive emissions control catalysts

  19. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  20. The monocular visual imaging technology model applied in the airport surface surveillance

    Science.gov (United States)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  1. Description of surfaces associated with Grassmannian sigma models on Minkowski space

    International Nuclear Information System (INIS)

    Grundland, A.M.; Snobl, L.

    2005-01-01

    We construct and investigate smooth orientable surfaces in su(N) algebras. The structural equations of surfaces associated with Grassmannian sigma models on Minkowski space are studied using moving frames adapted to the surfaces. The first and second fundamental forms of these surfaces as well as the relations between them as expressed in the Gauss-Weingarten and Gauss-Codazzi-Ricci equations are found. The scalar curvature and the mean curvature vector expressed in terms of a solution of Grassmanian sigma model are obtained

  2. Mathematical modeling for surface hardness in investment casting applications

    International Nuclear Information System (INIS)

    Singh, Rupinder

    2012-01-01

    Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model

  3. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  4. Modelling episodic acidification of surface waters: the state of science.

    Science.gov (United States)

    Eshleman, K N; Wigington, P J; Davies, T D; Tranter, M

    1992-01-01

    Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.

  5. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  6. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  7. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  8. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  9. Surface models of the male urogenital organs built from the Visible Korean using popular software

    Science.gov (United States)

    Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok

    2011-01-01

    Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759

  10. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  11. Response Surface Design Model to Predict Surface Roughness when Machining Hastelloy C-2000 using Uncoated Carbide Insert

    International Nuclear Information System (INIS)

    Razak, N H; Rahman, M M; Kadirgama, K

    2012-01-01

    This paper presents to develop of the response surface design model to predict the surface roughness for end-milling operation of Hastelloy C-2000 using uncoated carbide insert. Mathematical model is developed to study the effect of three input cutting parameters includes the feed rate, axial depth of cut and cutting speed. Design of experiments (DOE) was implemented with the aid of the statistical software package. Analysis of variance (ANOVA) has been performed to verify the fit and adequacy of the developed mathematical model. The result shows that the feed rate gave the more effect on the both prediction values of Ra compared to the cutting speed and axial depth of cut. SEM and EDX analyses were performed in different cutting conditions. It can be concluded that the feed rate and cutting force give the higher impact to influence the machining characteristics of surface roughness. Thus, the optimizing the cutting conditions are essential in order to improve the surface roughness in machining of Hastlelloy C-2000.

  12. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  13. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  14. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  15. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains measured and model predicted OPFRs gas-phase and surface-phase...

  16. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  17. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  18. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  19. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  20. Soliton surfaces associated with sigma models: differential and algebraic aspects

    International Nuclear Information System (INIS)

    Goldstein, P P; Grundland, A M; Post, S

    2012-01-01

    In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP N-1 sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler–Lagrange equations for sigma models. On the other hand, we show that the Euler–Lagrange equations for surfaces immersed in the Lie algebra su(N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler–Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. (paper)

  1. Active surface model improvement by energy function optimization for 3D segmentation.

    Science.gov (United States)

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. SO(N) WZNW models on higher-genus Riemann surfaces

    International Nuclear Information System (INIS)

    Alimohammadi, M.; Arfaei, H.; Bonn Univ.

    1993-08-01

    With the help of the string functions and fusion rules of SO(2N) 1 , we show that the results on SU(N) 1 correlators on higher-genus Riemann surfaces (HGRS) can be extended to the SO(2N) 1 and other level-one simply-laced WZNW models. Using modular invariance and factorization properties of Green functions we find multipoint correlators of primary and descendant fields of SO(2N+1) 1 WZNW models on higher genus Riemann surfaces. (orig.)

  3. Role of equipotential and equidensity surfaces for constructing models of galaxies

    International Nuclear Information System (INIS)

    Kutuzov, S.A.; Osipkov, L.P.

    1987-01-01

    The role played by the specification of the equipotential surfaces and equidensity surfaces in the general problem of constructing models of galaxies is examined. If the equipotential surfaces are specified, Poisson's equation makes it possible to find the spatial density from the circular velocity. The problem of determining the potential and the spatial density from the equatorial density is considered. If equidensity surfaces are specified, then the kernel of the integral equation that relates the density to the circular velocity can be determined. The corresponding expressions for known models are obtained

  4. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  5. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  6. Surface science models of CoMoS hydrodesulfurisation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, A.M.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. [Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven (Netherlands)

    1997-07-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of silica and alumina supported CoMoS catalysts have been made by impregnating thin SiO{sub 2} and Al{sub 2}O{sub 3} films with a solution of nitrilotriacetic acid (NTA) complexes of cobalt and molybdenum. X-ray Photoelectron Spectroscopy (XPS) spectra indicate that the order in which cobalt and molybdenum transfer to the sulfided state is reversed with respect to oxidic Co and Mo systems prepared by conventional methods, implying that NTA complexation retards the sulfidation of cobalt to temperatures where MoS{sub 2} is already formed. Catalytic tests show that the CoMoS model catalysts exhibit activities for thiophene desulfurisation and product distributions similar to those of their high surface area counterparts. 25 refs.

  7. Land-surface modelling in hydrological perspective ? a review

    OpenAIRE

    Overgaard , J.; Rosbjerg , D.; Butts , M. B.

    2006-01-01

    International audience; The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opport...

  8. Surface roughness prediction model in end milling of Al/SiCp MMC ...

    African Journals Online (AJOL)

    user

    2 Department of Mechanical Engineering, Pondicherry Engineering College, ... Keywords: Surface roughness (Ra), Response surface method (RSM), End milling, .... To establish the initial model and refined model, a software package MiniTab ..... The After building the regression model, a numerical optimization technique ...

  9. Surface analysis of Li-ion battery model anodes

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Bach, Philipp; Renner, Frank Uwe [Max Planck Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Research on the battery systems aims to achieve higher rate capability, cycle life, or better safety. To achieve necessary further improvements a better understanding of the basic processes is needed. Following a surface science approach we focus on the investigation of simple model systems (like single crystals or thin film electrodes) of relevant anode materials. We report investigations of the electrochemical insertion of lithium in Au, Ag, Al, Mg and Si model surfaces, i.e. alloying and dealloying of lithium alloys. As electrolyte we use the ionic liquid 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesolfonyl)imide (PYR14TFSI) with 0.3M LiTFSI. The electrochemical characterisation is performed by cyclic voltammetry (CV). The surface and film characterisation regarding its geometrical structure is investigated by means of scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical composition is characterised ex-situ by photoelectron spectroscopy (PES) and secondary ion mass spectrometry (SIMS).

  10. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  11. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    International Nuclear Information System (INIS)

    Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)

  12. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  13. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    Science.gov (United States)

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  15. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  16. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  17. Surface spectroscopic characterization of a model methane-activation catalyst

    International Nuclear Information System (INIS)

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  18. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  19. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  20. Model error assessment of burst capacity models for energy pipelines containing surface cracks

    International Nuclear Information System (INIS)

    Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing

    2014-01-01

    This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines

  1. A theoretical model on surface electronic behavior: Strain effect

    International Nuclear Information System (INIS)

    Qin, W.G.; Shaw, D.

    2009-01-01

    Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.

  2. Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing

    Science.gov (United States)

    Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon

    2017-06-01

    The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after

  3. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  4. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  5. Modeling the Soul Surface Seal from a Filtration Perspective

    Directory of Open Access Journals (Sweden)

    N.M. Somaratne

    1998-01-01

    Full Text Available A physically based model of soil surface scaling is proposed. The governing equations are formulated on the principle of conservation of mass assuming Darcy's law applies to suspension flowing through the soil surface. The model incorporates the physics of surface sealing by mechanisms that capture suspended particles moving with infiltrating water. As a result of particle retention in the soil system, the intrinsic porosity is reduced and hulk density is increased, resulting in changes to soil hydraulic properties such as moisture retention and hydraulic conductivity. Empirical functions are developed to describe the changes of these properties as the seal develops. With this approach, the seal can be mathematically described by well defined initial and boundary conditions and transient seal properties can be simulated in a physically realistic manner.

  6. Surface complexation models for uranium adsorption in the sub-surface environment

    International Nuclear Information System (INIS)

    Payne, T.E.

    2007-01-01

    Adsorption experiments with soil component minerals under a range of conditions are being used to develop models of uranium(VI) uptake in the sub-surface environment. The results show that adsorption of U on iron oxides and clay minerals is influenced by chemical factors including the pH, partial pressure of CO 2 , and the presence of ligands such as phosphate. Surface complexation models (SCMs) can be used to simulate U adsorption on these minerals. The SCMs are based on plausible mechanistic assumptions and describe the experimental data more adequately than Kd values or sorption isotherms. It is conceptually possible to simulate U sorption data on complex natural samples by combining SCMs for individual component minerals. This approach was used to develop a SCM for U adsorption to mineral assemblages from Koongarra (Australia), and produced a reasonable description of U uptake. In order to assess the applicability of experimental data to the field situation, in-situ measurements of U distributions between solid and liquid phases were undertaken at the Koongarra U deposit. This field partitioning data showed a satisfactory agreement with laboratory sorption data obtained under comparable conditions. (author)

  7. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  8. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    Science.gov (United States)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  9. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  10. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  11. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  12. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  13. On modeling biomolecular–surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Akdim, B; Pachter, R; Day, P N; Kim, S S; Naik, R R

    2012-01-01

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson–Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange–correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular–macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson–Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface. (paper)

  14. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  15. Geometry of surfaces associated to Grassmannian sigma models

    International Nuclear Information System (INIS)

    Delisle, L; Hussin, V; Zakrzewski, W J

    2015-01-01

    We investigate the geometric characteristics of constant Gaussian curvature surfaces obtained from solutions of the G(m, n) sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the same Gaussian curvature using additional quantities like the topological charge and the mean curvature. The cases of G(1,n) = CP n-1 and G(2,n) are used to illustrate these characteristics. (paper)

  16. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  17. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Levesque, M.

    2010-11-01

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  18. An Effective Surface Modeling Method for Car Styling from a Side-View Image

    Institute of Scientific and Technical Information of China (English)

    LIBao-jun; ZHANGXue-fang; LVZhang-quan; QIYi-chao

    2014-01-01

    We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.

  19. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  20. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  1. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  2. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  3. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  4. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  5. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  6. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  7. Surface chemistry of first wall materials - From fundamental data to modeling

    International Nuclear Information System (INIS)

    Linsmeier, Ch.; Reinelt, M.; Schmid, K.

    2011-01-01

    The application of different materials at the first wall of fusion devices, like beryllium, carbon, and tungsten in the case of ITER, unavoidably leads to the formation of compounds. These compounds are created dynamically during operation and depend on the local parameters like surface temperature, incoming particle energies and species. In dedicated, well-defined laboratory experiments, using mainly X-ray photoelectron spectroscopy and Rutherford backscattering analysis for qualitative and quantitative chemical surface analysis, the parameter space in relevant element combinations are investigated. These studies lead to a deep understanding of the reaction mechanisms under the applied conditions and to a quantitative description of reaction and diffusion processes. These data can be parameterized and integrated into a modeling approach which combines dynamic surface chemistry with the modeling of the transport in the plasma. Two different approaches for surface reaction modeling are compared and benchmarked with experimental data.

  8. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  9. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  10. Applicability of surface complexation modelling in TVO's studies on sorption of radionuclides

    International Nuclear Information System (INIS)

    Carlsson, T.

    1994-03-01

    The report focuses on the possibility of applying surface complexation theories to the conditions at a potential repository site in Finland and of doing proper experimental work in order to determine necessary constants for the models. The report provides background information on: (1) what type experiments should be carried out in order to produce data for surface complexation modelling of sorption phenomena under potential Finnish repository conditions, and (2) how to design and perform properly such experiments, in order to gather data, develop models or both. The report does not describe in detail how proper surface complexation experiments or modelling should be carried out. The work contains several examples of information that may be valuable in both modelling and experimental work. (51 refs., 6 figs., 4 tabs.)

  11. Acid base properties of a goethite surface model: A theoretical view

    Science.gov (United States)

    Aquino, Adelia J. A.; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-08-01

    Density functional theory is used to compute the effect of protonation, deprotonation, and dehydroxylation of different reactive sites of a goethite surface modeled as a cluster containing six iron atoms constructed from a slab model of the (1 1 0) goethite surface. Solvent effects were treated at two different levels: (i) by inclusion of up to six water molecules explicitly into the quantum chemical calculation and (ii) by using additionally a continuum solvation model for the long-range interactions. Systematic studies were made in order to test the limit of the fully hydrated cluster surfaces by a monomolecular water layer. The main finding is that from the three different types of surface hydroxyl groups (hydroxo, μ-hydroxo, and μ 3-hydroxo), the hydroxo group is most active for protonation whereas μ- and μ 3-hydroxo sites undergo deprotonation more easily. Proton affinity constants (p Ka values) were computed from appropriate protonation/deprotonation reactions for all sites investigated and compared to results obtained from the multisite complexation model (MUSIC). The approach used was validated for the consecutive deprotonation reactions of the [Fe(H 2O) 6] 3+ complex in solution and good agreement between calculated and experimental p Ka values was found. The computed p Ka for all sites of the modeled goethite surface were used in the prediction of the pristine point of zero charge, pH PPZN. The obtained value of 9.1 fits well with published experimental values of 7.0-9.5.

  12. Triton: Scattering models and surface/atmosphere constraints

    International Nuclear Information System (INIS)

    Thompson, W.R.

    1989-01-01

    Modeling of Triton's spectrum indicates a bright scattering layer of optical depth τ≅3 overlying an optically deep layer of CH 4 with high absorption and little scattering. UV absorption in the spectrum indicates τ≅0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p=0.62 +0.18 -0.12 , radius r = 1480 ± 180 km, and temperature T = 48 ± 6 K. With scattering optical depths of 0.3-3 and ∼1-10 mb of N 2 , a Mars-like atmospheric density and surface visibility pertain. Imaging with the 0.62μm CH 4 filter of the Voyager 2 wide angle camera could show ∼20% contrast between the average surface and clean exposures of CH 4 ice (which is not limited to the polar caps). Low far-infrared atmospheric opacity will in principle allow the detection of thermal gradients in the surface caused by optically transmitting but infrared opaque CH 4 and N 2 ice

  13. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  14. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  15. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  16. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  17. Experimental use of Land Surface Models in the La Plata Basin

    Science.gov (United States)

    Goncalves, L.; de Mattos, J. Z.; Sapucci, L. F.; Herdies, D. L.; Berbery, E. H.

    2009-12-01

    Soil moisture is a key variable that controls the partitioning between sensible and latent heat flux, and under favorable conditions, it can modulate precipitation. The overlying boundary layer can be affected by soil moisture anomalies when persisting for an enough period of time. Several studies have shown the influence of surface processes in the South American atmospheric circulation and precipitation patterns. However the absence of a comprehensive observation network over that region represents a disadvantage for determining and quantifying memory and coupling between the land surface and the atmosphere. The La Plata Basin (LPB) in southeastern South America is recognized as an area of great importance for the economic and social development of several countries. Vast areas of this basin have experienced changes in land cover conditions due to the expansion of the agriculture (replacing natural vegetation), but also due to changes in crop types. This work presents results from an ensemble of four land surface models (Noah, CLM, MOSAIC and SiB2) used for climatic characterization of the past 30 years of soil moisture and temperature over the LPB. The Modern Era Retrospective-Analysis for Research and Applications (MERRA), from NASA’s Global Modeling and Assimilation Office (GMAO) was downscaled to be used to force the land surface models at 10Km, 3-hourly resolutions. Two sets of runs were made for this study: first, the LSMs were forced using reanalysis data to characterize the climatological states at coarse resolution, and second, the models were run using South American LDAS forcing fields from 2000 until present at higher resolution. The resulting spread among the different models was used as a measure of uncertainty in the initial states. In particular, the surface states derived from the Noah model were rescaled and used as initial conditions for atmospheric model simulations using the coupled ETA/Noah models. The control run was performed using

  18. Modelling the static contact between a fingertip and a rigid wavy surface

    NARCIS (Netherlands)

    Rodriguez Urribarri, Adriana; van der Heide, Emile; Zeng, Xiangqiong; de Rooij, Matthias B.

    2016-01-01

    Surface topography is one of the major parameters affecting friction during touch and consequently tactility. In order to understand and control friction, fine controlled surfaces with a sinusoidal topography are studied to derive an analytical contact model. The Westergaard model on a

  19. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  20. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    Science.gov (United States)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  1. Multipoint contact modeling of nanoparticle manipulation on rough surface

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M., E-mail: m.zakeri@tabrizu.ac.ir; Faraji, J.; Kharazmi, M. [University of Tabriz, School of Engineering Emerging Technologies (Iran, Islamic Republic of)

    2016-12-15

    In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.

  2. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  3. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  4. Surface states of a system of Dirac fermions: A minimal model

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  5. An investigation of the sensitivity of a land surface model to climate change using a reduced form model

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, A.H.; McIlwaine, S. [PAOS/CIRES, Univ. of Colorado, Boulder, CO (United States); Beringer, J. [Inst. of Arctic Biology, Univ. of Alaska, Fairbanks (United States); Bonan, G.B. [National Center for Atmospheric Research, Boulder, CO (United States)

    2001-05-01

    In an illustration of a model evaluation methodology, a multivariate reduced form model is developed to evaluate the sensitivity of a land surface model to changes in atmospheric forcing. The reduced form model is constructed in terms of a set of ten integrative response metrics, including the timing of spring snow melt, sensible and latent heat fluxes in summer, and soil temperature. The responses are evaluated as a function of a selected set of six atmospheric forcing perturbations which are varied simultaneously, and hence each may be thought of as a six-dimensional response surface. The sensitivities of the land surface model are interdependent and in some cases illustrate a physically plausible feedback process. The important predictors of land surface response in a changing climate are the atmospheric temperature and downwelling longwave radiation. Scenarios characterized by warming and drying produce a large relative response compared to warm, moist scenarios. The insensitivity of the model to increases in precipitation and atmospheric humidity is expected to change in applications to coupled models, since these parameters are also strongly implicated, through the representation of clouds, in the simulation of both longwave and shortwave radiation. (orig.)

  6. A new MRI land surface model HAL

    Science.gov (United States)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  7. Daily Based Morgan–Morgan–Finney (DMMF Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Directory of Open Access Journals (Sweden)

    Kwanghun Choi

    2017-04-01

    Full Text Available In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 . Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations.

  8. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  9. Computational model of surface ablation from tokamak disruptions

    International Nuclear Information System (INIS)

    Ehst, D.; Hassanein, A.

    1993-10-01

    Energy transfer to material surfaces is dominated by photon radiation through low temperature plasma vapors if tokamak disruptions are due to low kinetic energy particles ( < 100 eV). Simple models of radiation transport are derived and incorporated into a fast-running computer routine to model this process. The results of simulations are in fair agreement with plasma gun erosion tests on several metal targets

  10. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    Energy Technology Data Exchange (ETDEWEB)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  11. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  12. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    Science.gov (United States)

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in

  13. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  14. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of land surfaces...

  15. Aquaplaning : Development of a Risk Pond Model from Road Surface Measurements

    OpenAIRE

    Nygårdhs, Sara

    2003-01-01

    Aquaplaning accidents are relatively rare, but could have fatal effects. The task of this master’s thesis is to use data from the Laser Road Surface Tester to detect road sections with risk of aquaplaning. A three-dimensional model based on data from road surface measurements is created using MATLAB (version 6.1). From this general geometrical model of the road, a pond model is produced from which the theoretical risk ponds are detected. A risk pond indication table is fur-ther created. The...

  16. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  17. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  18. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting environment (dry, wet and cooled) on the surface roughness and material removal ... A second order mathematical model in terms of cutting parameters is also developed using regression modeling.

  19. Axelrod's model with surface tension

    Science.gov (United States)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  20. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  1. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  2. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.

    Science.gov (United States)

    Szundi, I; Stoeckenius, W

    1989-08-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.

  3. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  4. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  5. Model-driven harmonic parameterization of the cortical surface: HIP-HOP.

    Science.gov (United States)

    Auzias, G; Lefèvre, J; Le Troter, A; Fischer, C; Perrot, M; Régis, J; Coulon, O

    2013-05-01

    In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.

  6. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  7. Modeling of the pliant surfaces of the thigh and leg during gait

    Science.gov (United States)

    Ball, Kevin A.; Pierrynowski, Michael R.

    1998-05-01

    Rigid Body Modeling, a 6 degree of freedom (DOF) method, provides state of the art human movement analysis, but with one critical limitation; it assumes segment rigidity. A non- rigid 12 DOF method, Pliant Surface Modeling (PSM) was developed to model the simultaneous pliant characteristics (scaling and shearing) of the human body's soft tissues. For validation, bone pins were surgically inserted into the tibia and femur of three volunteers. Infrared markers (44) were placed upon the thigh, leg, and bone pin surfaces. Two synchronized OPTOTRAK/3020TM cameras (Northern Digital Inc., Waterloo, ON) were used to record 120 seconds of treadmill gait per subject. In comparison to the 'gold standard' bone pin rotational results, PSM located the tibia, femur and tibiofemoral joint with root mean square (RMS) errors of 2.4 degrees, 4.0 degrees and 4.6 degrees, respectively. These performances met or exceeded (P less than .01) the current state of the art for surface data, Rigid Surface Modeling. The thigh's measured surface experienced uniform repeatable changes in scale: 40% mediolateral, 5% anterioposterior, 5% superioinferior, and planar shears of: 25 degrees transverse, 15 degrees sagittal, 5 degrees frontal. With the brief exception of push-off, the lower leg demonstrated much greater rigidity: less than 5% scaling and less than 5 degrees shearing. Thus, PSM offers superior 'rigid' estimates of knee motion with the ability to quantify 'pliant' surface changes.

  8. An interaction analysis of twin surface cracks by the line-spring model

    International Nuclear Information System (INIS)

    Kim, Y.J.; Yang, W.H.; Choy, Y.S.; Lee, J.S.

    1992-01-01

    The fracture mechanics analysis of surface cracks is important for the integrity evaluation of flawed structural components. The objective of this paper is to numerically investigate the interaction effect of twin surface cracks in plate and cylindrical geometrie. First the usefulness of the line-spring model is verified by analyzing a single surface crack in a plate, and then the model is extended to twin surface crack in plate and cylindrical geometries. For the case of a finite plate under uniaxial loading, the effect of crack spacing on the stress intensity factor is negligible. However, for the case of a cylinder under moderate internal pressure, a significant increase in stress intensity factor is observed at the deepest point of the surface crack. (orig.)

  9. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  10. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model...... of approximately 0.01 and 0.2 cm s(-1) over grasslands and 0.1-1 cm s(-1) over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (upsilon(d)) for particle diameters of 0.1-2 mu m as manifest in theoretical predictions. Closer...

  11. Numerical modelling of microdroplet self-propelled jumping on micro-textured surface

    Science.gov (United States)

    Attarzadeh, S. M. Reza; Dolatabadi, Ali; Chun Kim, Kyung

    2015-11-01

    Understanding various stages of single and multiple droplet impact on a super-hydrophobic surface is of interest for many industrial applications such as aerospace industry. In this study, the phenomenon of coalescence induced droplets self-propelled jumping on a micro-textured super-hydrophobic surface is numerically simulated using Volume of Fluid (VOF) method. This model mimics the scenario of coalescing cloud-sized particles over the surface structure of an aircraft. The VOF coupled with a dynamic contact angle model is used to simulate the coalescence of two equal size droplets, that are initially placed very closed to each other with their interface overlapping with each other's which triggers the incipience of their coalescence. The textured surface is modeled as a series of equally spaced squared pillars, with 111° as the intrinsic contact angle all over the solid contact area. It is shown that the radial velocity of coalescing liquid bridge is reverted to upward direction due to the counter action of the surface to the basal area of droplet in contact. The presence of air beneath the droplet inside micro grooves which aimed at repelling water droplet is also captured in this model. The simulated results are found in good agreement with experimental observations. The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Consortium de Recherche et d'innovation en Aerospatiale au Quebec (CRIAQ), Bombardier Aerospace, Pratt Whitney Canada.

  12. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  13. Quantifying watershed surface depression storage: determination and application in a hydrologic model

    Science.gov (United States)

    Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi. Nnaji

    2012-01-01

    Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...

  14. Modeling marine surface microplastic transport to assess optimal removal locations

    OpenAIRE

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the ...

  15. Comparison of observed and modeled surface fluxes of heat for the Volta river basin

    NARCIS (Netherlands)

    Burose, D.; Moene, A.F.; Holtslag, A.A.M.

    2002-01-01

    Land-surface processes and their modeling play an important role in planetary boundary modeling, due to their role of providing the surface boundary conditions to the atmosphere. In particular, processes regarding clouds and precipitation are strongly influenced by land-surface processes. To get a

  16. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  17. An orbital-overlap model for minimal work functions of cesiated metal surfaces

    International Nuclear Information System (INIS)

    Chou, Sharon H; Bargatin, Igor; Howe, Roger T; Voss, Johannes; Vojvodic, Aleksandra; Abild-Pedersen, Frank

    2012-01-01

    We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.

  18. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  19. Analytical models for the rewetting of hot surfaces

    International Nuclear Information System (INIS)

    Olek, S.

    1988-10-01

    Some aspects concerning analytical models for the rewetting of hot surface are discussed. These include the problems with applying various forms of boundary conditions, compatibility of boundary conditions with the physics of the rewetting problems, recent analytical models, the use of the separation of variables method versus the Wiener-Hopf technique, and the use of transformations. The report includes an updated list of rewetting models as well as benchmark solutions in tabular form for several models. It should be emphasized that this report is not meant to cover the topic of rewetting models. It merely discusses some points which are less commonly referred to in the literature. 93 refs., 3 figs., 22 tabs

  20. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  1. Hydrous ferric oxide: evaluation of Cd-HFO surface complexation models combining Cd(K) EXAFS data, potentiometric titration results, and surface site structures identified from mineralogical knowledge.

    Science.gov (United States)

    Spadini, Lorenzo; Schindler, Paul W; Charlet, Laurent; Manceau, Alain; Vala Ragnarsdottir, K

    2003-10-01

    The surface properties of ferrihydrite were studied by combining wet chemical data, Cd(K) EXAFS data, and a surface structure and protonation model of the ferrihydrite surface. Acid-base titration experiments and Cd(II)-ferrihydrite sorption experiments were performed within 3titration data could be adequately modeled by triple bond Fe- OH(2)(+1/2)-H(+)triple bond Fe-OH(-1/2),logk((int))=-8.29, assuming the existence of a unique intrinsic microscopic constant, logk((int)), and consequently the existence of a single significant type of acid-base reactive functional groups. The surface structure model indicates that these groups are terminal water groups. The Cd(II) data were modeled assuming the existence of a single reactive site. The model fits the data set at low Cd(II) concentration and up to 50% surface coverage. At high coverage more Cd(II) ions than predicted are adsorbed, which is indicative of the existence of a second type of site of lower affinity. This agrees with the surface structure and protonation model developed, which indicates comparable concentrations of high- and low-affinity sites. The model further shows that for each class of low- and high-affinity sites there exists a variety of corresponding Cd surface complex structure, depending on the model crystal faces on which the complexes develop. Generally, high-affinity surface structures have surface coordinations of 3 and 4, as compared to 1 and 2 for low-affinity surface structures.

  2. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES: PESTICIDES ON RUTILE AND ORGANO-RUTILE SURFACES

    Science.gov (United States)

    Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...

  3. Some practical notes on the land surface modeling in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    K. Yang

    2009-05-01

    Full Text Available The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere, CoLM (Common Land Model, and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau.

    The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.

  4. Surface characterisation of synthetic coal chars made from model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Pevida, C.; Rubiera, F.; Palacios, J.M.; Navarrete, R.; Denoyel, R.; Rouquerol, J.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2004-07-01

    Knowledge of surface properties is essential for understanding the reaction mechanisms involved in several coal conversion processes. However, due to the complexity and heterogeneity of coal this is rather difficult and the use of known model compounds could be a valuable tool. Single model compounds have been widely used, but they give a quite simplified picture. In this work a mixture of model compounds in a phenol-formaldehyde matrix was cured in order to create cross-linked structures. The obtained synthetic coal was pyrolysed in a fixed bed reactor, under helium atmosphere. The surface composition of the chars was evaluated by XPS, adsorption gravimetry of water vapour, temperature-programmed desorption and potentiometric titration. Texture was characterised by N{sub 2} and CO{sub 2} adsorption isotherms at 77 and 273 K, respectively, and immersion calorimetry in benzene. The results obtained from the different techniques were contrasted in order to give an overview of the surface properties (chemical and physical) of the samples studied. Chars obtained under the same operating conditions from a high volatile bituminous coal were used as a reference.

  5. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  6. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  7. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  8. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  9. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  10. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  11. Surface modeling of workpiece and tool trajectory planning for spray painting robot.

    Directory of Open Access Journals (Sweden)

    Yang Tang

    Full Text Available Automated tool trajectory planning for spray-painting robots is still a challenging problem, especially for a large free-form surface. A grid approximation of a free-form surface is adopted in CAD modeling in this paper. A free-form surface model is approximated by a set of flat patches. We describe here an efficient and flexible tool trajectory optimization scheme using T-Bézier curves calculated in a new way from trigonometrical bases. The distance between the spray gun and the free-form surface along the normal vector is varied. Automotive body parts, which are large free-form surfaces, are used to test the scheme. The experimental results show that the trajectory planning algorithm achieves satisfactory performance. This algorithm can also be extended to other applications.

  12. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  13. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  14. Modeling and simulation for fewer-axis grinding of complex surface

    Science.gov (United States)

    Li, Zhengjian; Peng, Xiaoqiang; Song, Ci

    2017-10-01

    As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.

  15. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  16. Comparison of parametric methods for modeling corneal surfaces

    Science.gov (United States)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  17. ANFIS Modeling of the Surface Roughness in Grinding Process

    OpenAIRE

    H. Baseri; G. Alinejad

    2011-01-01

    The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions...

  18. Modeling large-scale human alteration of land surface hydrology and climate

    Science.gov (United States)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface

  19. Surface-based geometric modelling using teaching trees for advanced robots

    International Nuclear Information System (INIS)

    Nakamura, Akira; Ogasawara, Tsukasa; Tsukune, Hideo; Oshima, Masaki

    2000-01-01

    Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)

  20. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    Science.gov (United States)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  1. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  2. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  3. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  4. Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval

    Directory of Open Access Journals (Sweden)

    Sarmad ISTEPHAN

    2015-06-01

    Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.

  5. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  6. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  7. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  8. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  9. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  10. An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

    Directory of Open Access Journals (Sweden)

    Taekyeong Jin

    2018-04-01

    Full Text Available We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

  11. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  12. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  13. Investigation and modelling of rubber stationary friction on rough surfaces

    International Nuclear Information System (INIS)

    Le Gal, A; Klueppel, M

    2008-01-01

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks

  14. Investigation and modelling of rubber stationary friction on rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Gal, A; Klueppel, M [Deutsches Institut fuer Kautschuktechnologie, Eupener Strasse 33, D-30519 Hannover (Germany)

    2008-01-09

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks.

  15. Modeling of laser damage initiated by surface contamination

    International Nuclear Information System (INIS)

    Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.

    1996-11-01

    The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations

  16. A Modified Approach in Modeling and Calculation of Contact Characteristics of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    J.A. Abdo

    2005-12-01

    Full Text Available A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a it provides a more accurate account of elasticplastic behavior of surfaces in contact and (b it is applicable to model formulations that involve asperity shoulder-to shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.

  17. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2

  18. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  19. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  20. Models of the solvent-accessible surface of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  1. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  2. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  3. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Michael Horsfall

    one of the most critical quality measure in mechanical products. In the ... Keywords: cutting speed, centre lathe, empirical model, surface roughness, Mean absolute percentage deviation ... The factors considered were work piece properties.

  4. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  5. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  6. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  7. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  8. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  9. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  10. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  11. 2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

    Directory of Open Access Journals (Sweden)

    A. Jabbari

    2017-12-01

    Full Text Available A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using sub-domain method and hyperbolic functions. The developed method is applied on the performance computation of two prototypes surface mounted permanent magnet motors and two prototypes surface inset permanent magnet motors. A radial and a parallel magnetization orientation is considered for each type of motor. The results of these models are validated through FEM method.

  12. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    Science.gov (United States)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  13. SEMIC: an efficient surface energy and mass balance model applied to the Greenland ice sheet

    Directory of Open Access Journals (Sweden)

    M. Krapp

    2017-07-01

    Full Text Available We present SEMIC, a Surface Energy and Mass balance model of Intermediate Complexity for snow- and ice-covered surfaces such as the Greenland ice sheet. SEMIC is fast enough for glacial cycle applications, making it a suitable replacement for simpler methods such as the positive degree day (PDD method often used in ice sheet modelling. Our model explicitly calculates the main processes involved in the surface energy and mass balance, while maintaining a simple interface and requiring minimal data input to drive it. In this novel approach, we parameterise diurnal temperature variations in order to more realistically capture the daily thaw–freeze cycles that characterise the ice sheet mass balance. We show how to derive optimal model parameters for SEMIC specifically to reproduce surface characteristics and day-to-day variations similar to the regional climate model MAR (Modèle Atmosphérique Régional, version 2 and its incorporated multilayer snowpack model SISVAT (Soil Ice Snow Vegetation Atmosphere Transfer. A validation test shows that SEMIC simulates future changes in surface temperature and surface mass balance in good agreement with the more sophisticated multilayer snowpack model SISVAT included in MAR. With this paper, we present a physically based surface model to the ice sheet modelling community that is general enough to be used with in situ observations, climate model, or reanalysis data, and that is at the same time computationally fast enough for long-term integrations, such as glacial cycles or future climate change scenarios.

  14. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    Science.gov (United States)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  15. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... by HIRHAM simulated precipitation. The last two simulations include iv) a standard HIRHAM simulation, and v) a fully coupled HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE area, while HIRHAM in standard configuration is used for the remaining model area...

  16. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  17. PENGARUH PEMASANGAN SIRDAM TERHADAP FREE SURFACE MUATAN CAIR PADA MODEL PALKA KAPAL PENGANGKUT IKAN HIDUP

    Directory of Open Access Journals (Sweden)

    Yopi Novita

    2016-05-01

    Full Text Available Muatan cair merupakan salah satu jenis muatan yang ada di atas kapal.  Sebagaimana sifat muatan cair, apabila di bagian permukaannya tidak dibatasi, maka akan munculah permukaan bebas.  Pengaruh permukaan bebas bagi kapal adalah dapat mempengaruhi posisi titik berat yang pada akhirnya akan mengurangi kualitas stabilitas kapal. Tujuan penelitian ini adalah untuk menganalisis pengaruh pemasangan sirip peredam dalam mengurangi efek permukaan bebas di dalam model palka. Penelitian ini dilakukan dengan metode eksperimental. Model palka yang telah dipasangi sirip peredam di sepanjang sisi dalamnya diisi dengan air laut dan kemudian digoyang-goyangkan sebagaimana gerakan rolling kapal terjadi. Selanjutnya, profil permukaan dan waktu redam permukaan bebas pada model kapal yang dilengkapi dan yang tidak dilengkapi dengan sirip peredam diamati dan dianalisis.  Dari hasil penelitian diketahui bahwa penggunaan sirip peredam mampu mengurangi efek free surface di dalam model palka. Liquid cargo in a ship is one kind of cargo that has free surface.  The effect of free surface on board might influence center of gravity position that cause lack of ship’s stability. The objective of the research is to analyze the effect of free surface damper constructed in the fish hold model. The research was carried out by experimental method. A fish hold model with and without free surface damper constructed in it was filled with sea water, then the profile and damping duration of free surface effect on fish hold model were observed and analyzed. The result show that the fish hold model with free surface damper is  able to decrese significantly of free surface effect on the fish hold model.

  18. An analytical model for the description of the full-polarimetric sea surface Doppler signature

    NARCIS (Netherlands)

    Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.

    2015-01-01

    This paper describes an analytical model of the full-polarimetric sea surface scattering and Doppler signature. The model combines the small-slope-approximation theory (at the second order) with a weak nonlinear sea surface representation. Such a model is used to examine the variation of the Doppler

  19. Numerical modeling of laboratory-scale surface-to-crown fire transition

    Science.gov (United States)

    Castle, Drew Clayton

    Understanding the conditions leading to the transition of fire spread from a surface fuel to an elevated (crown) fuel is critical to effective fire risk assessment and management. Surface fires that successfully transition to crown fires can be very difficult to suppress, potentially leading to damages in the natural and built environments. This is relevant to chaparral shrub lands which are common throughout parts of the Southwest U.S. and represent a significant part of the wildland urban interface. The ability of the Wildland-Urban Interface Fire Dynamic Simulator (WFDS) to model surface-to-crown fire transition was evaluated through comparison to laboratory experiments. The WFDS model is being developed by the U.S. Forest Service (USFS) and the National Institute of Standards and Technology. The experiments were conducted at the USFS Forest Fire Laboratory in Riverside, California. The experiments measured the ignition of chamise (Adenostoma fasciculatum) crown fuel held above a surface fire spreading through excelsior fuel. Cases with different crown fuel bulk densities, crown fuel base heights, and imposed wind speeds were considered. Cold-flow simulations yielded wind speed profiles that closely matched the experimental measurements. Next, fire simulations with only the surface fuel were conducted to verify the rate of spread while factors such as substrate properties were varied. Finally, simulations with both a surface fuel and a crown fuel were completed. Examination of specific surface fire characteristics (rate of spread, flame angle, etc.) and the corresponding experimental surface fire behavior provided a basis for comparison of the factors most responsible for transition from a surface fire to the raised fuel ignition. The rate of spread was determined by tracking the flame in the Smokeview animations using a tool developed for tracking an actual flame in a video. WFDS simulations produced results in both surface fire spread and raised fuel bed

  20. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5

    Directory of Open Access Journals (Sweden)

    F. Zabel

    2013-05-01

    Full Text Available Most land surface hydrological models (LSHMs consider land surface processes (e.g. soil–plant–atmosphere interactions, lateral water flows, snow and ice in a spatially detailed manner. The atmosphere is considered as exogenous driver, neglecting feedbacks between the land surface and the atmosphere. On the other hand, regional climate models (RCMs generally simulate land surface processes through coarse descriptions and spatial scales but include land–atmosphere interactions. What is the impact of the differently applied model physics and spatial resolution of LSHMs on the performance of RCMs? What feedback effects are induced by different land surface models? This study analyses the impact of replacing the land surface module (LSM within an RCM with a high resolution LSHM. A 2-way coupling approach was applied using the LSHM PROMET (1 × 1 km2 and the atmospheric part of the RCM MM5 (45 × 45 km2. The scaling interface SCALMET is used for down- and upscaling the linear and non-linear fluxes between the model scales. The change in the atmospheric response by MM5 using the LSHM is analysed, and its quality is compared to observations of temperature and precipitation for a 4 yr period from 1996 to 1999 for the Upper Danube catchment. By substituting the Noah-LSM with PROMET, simulated non-bias-corrected near-surface air temperature improves for annual, monthly and daily courses when compared to measurements from 277 meteorological weather stations within the Upper Danube catchment. The mean annual bias was improved from −0.85 to −0.13 K. In particular, the improved afternoon heating from May to September is caused by increased sensible heat flux and decreased latent heat flux as well as more incoming solar radiation in the fully coupled PROMET/MM5 in comparison to the NOAH/MM5 simulation. Triggered by the LSM replacement, precipitation overall is reduced; however simulated precipitation amounts are still of high uncertainty, both

  1. Surface science studies of ethene containing model interstellar ices

    Science.gov (United States)

    Puletti, F.; Whelan, M.; Brown, W. A.

    2011-05-01

    The formation of saturated hydrocarbons in the interstellar medium (ISM) is difficult to explain only by taking into account gas phase reactions. This is mostly due to the fact that carbonium ions only react with H_2 to make unsaturated hydrocarbons, and hence no viable route to saturated hydrocarbons has been postulated to date. It is therefore likely that saturation processes occur via surface reactions that take place on interstellar dust grains. One of the species of interest in this family of reactions is C_2H_4 (ethene) which is an intermediate in several molecular formation routes (e.g. C_2H_2 → C_2H_6). To help to understand some of the surface processes involving ethene, a study of ethene deposited on a dust grain analogue surface (highly oriented pyrolytic graphite) held under ultra-high vacuum at 20 K has been performed. The adsorption and desorption of ethene has been studied both in water-free and water-dominated model interstellar ices. A combination of temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) have been used to identify the adsorbed and trapped species and to determine the kinetics of the desorption processes. In all cases, ethene is found to physisorb on the carbonaceous surface. As expected water has a very strong influence on the desorption of ethene, as previously observed for other model interstellar ice systems.

  2. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  3. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H [Toyo Construction Co. Ltd., Tokyo (Japan)

    1997-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  4. Studies on surface tension effect for free surface flow around floating models; Futai mokei mawari no jiyu hyomenryu ni oyobosu hyomen choryoku no eikyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Yokohama National Univ., Yokohama (Japan). Faculty of Engineering; Akiba, H. [Toyo Construction Co. Ltd., Tokyo (Japan)

    1996-12-31

    The effect of surface tension on free surface flow around floating models is discussed experimentally and numerically. Three-dimensional free surface flow around vertical circular cylinders floating in a circulating water channel was visually observed, where a surface-active agent was added to water. The results are analyzed using Weber number. The numerical analysis was done for vertical cylinder and CY100 models using the Rankine source method. Weber number of at least around 120 is necessary to eliminate the effect of surface tension from free surface flow around the CY100 model. The numerical analysis for the cylinder model needs simulation with wavelength shorter than that of free surface wave used by the Rankine source method. The model for the resistance test should be at least around 7m long to eliminate the effect of surface tension at Froude number of 0.1 or higher. 15 refs., 12 figs., 2 tabs.

  5. Dynamic modeling of manipulation of micro/nanoparticles on rough surfaces

    International Nuclear Information System (INIS)

    Korayem, M.H.; Zakeri, M.

    2011-01-01

    In this paper, the dynamic behavior of spherical micro/nanoparticles, while being pushed on rough substrates, is studied by means of an Atomic Force Microscope (AFM). For this purpose, first, the contact adhesion force, and the areas and penetration depths of rough surfaces are derived based on the Johnson-Kendall-Roberts (JKR) theory, the Schwarz method, and the Rumpf/Rabinovich models. Then, the dynamic model of particle manipulation on rough substrates is revised using the specified contact theory for rough surfaces. And finally, the pushing of spherical particles with 50, 100, 200, 500, and 10000 nm radii is simulated. The results show that the critical force and the critical time of manipulation decrease when the particles are pushed on the rough surfaces as compared to the smooth ones. It is also observed that the critical force for a rough substrate containing asperities of low height and large radius approaches a comparable critical force magnitude to the smooth substrate, as is expected. Also, when the asperity radius in the substrate is within the range of 0.5 < r < 5 nm, the critical force of pushing decreases; however, as the asperity radius becomes larger than 5 nm, the critical force begins to increase again. Furthermore, the critical values are generally more sensitive to the changes of the asperity radius than the height. It is also found that the difference between the critical values based on the Rumpf and Rabinovich models is negligible. However, the estimation of particles' dynamic behavior using the Rumpf model could be wrong for the rough substrates with small radius asperities, which is considerable in the manipulation and assembly practices. Moreover, the dynamic behavior of particles of small radius (r < 500 nm) change during the pushing process on rough surfaces, and the rolling behavior could be possible on the surfaces that have small radius asperities. The probability of this occurrence is increased in the pushing of larger particles on

  6. Sensitivity analysis of brain morphometry based on MRI-derived surface models

    Science.gov (United States)

    Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.

    1998-07-01

    Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface

  7. A Comparison of Surface Acoustic Wave Modeling Methods

    Science.gov (United States)

    Wilson, W. c.; Atkinson, G. M.

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method a first order model, and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices.

  8. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  9. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    International Nuclear Information System (INIS)

    Moenkkoenen, H.

    2012-04-01

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  10. Modelling the growth of Listeria monocytogenes on the surface of smear- or mould-ripened cheese

    Directory of Open Access Journals (Sweden)

    Sol eSchvartzman

    2014-07-01

    Full Text Available Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model and the Logistic model and three secondary (the Cardinal model, the Ratowski model and the Presser model mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modelled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  11. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese.

    Science.gov (United States)

    Schvartzman, M Sol; Gonzalez-Barron, Ursula; Butler, Francis; Jordan, Kieran

    2014-01-01

    Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.

  12. Evaluation of alternative surface runoff accounting procedures using the SWAT model

    Science.gov (United States)

    For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) procedure is commonly adopted to calculate surface runoff by utilizing antecedent soil moisture condition (SCSI) in field. In the recent version of SWAT (SWAT2005), an alternative approach is ava...

  13. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    International Nuclear Information System (INIS)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan

    2007-01-01

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128-186 mm

  14. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan [Golder Associates AB, Uppsala (Sweden)

    2007-01-15

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128

  15. A Method to Identify Flight Obstacles on Digital Surface Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LIN Xinggang; SUN Shouyu; WANG Youzhi

    2005-01-01

    In modern low-altitude terrain-following guidance, a constructing method of the digital surface model (DSM) is presented in the paper to reduce the threat to flying vehicles of tall surface features for safe flight. The relationship between an isolated obstacle size and the intervals of vertical- and cross-section in the DSM model is established. The definition and classification of isolated obstacles are proposed, and a method for determining such isolated obstacles in the DSM model is given. The simulation of a typical urban district shows that when the vertical- and cross-section DSM intervals are between 3 m and 25 m, the threat to terrain-following flight at low-altitude is reduced greatly, and the amount of data required by the DSM model for monitoring in real time a flying vehicle is also smaller. Experiments show that the optimal results are for an interval of 12.5 m in the vertical- and cross-sections in the DSM model, with a 1:10 000 DSM scale grade.

  16. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  17. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    Science.gov (United States)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  18. Hydroxylated crystalline edingtonite silica faces as models for the amorphous silica surface

    Energy Technology Data Exchange (ETDEWEB)

    Tosoni, S; Civalleri, B; Ugliengo, P [Dipartimento di Chimica IFM and NIS (Centre of Excellence), Universita di Torino, Via P. Giuria 7, 10125 Torino - ITALY (Italy); Pascale, F [Laboratoire de Cristallographie ed Modelisation des Materiaux Mineraux et Biologiques, UMR-CNRS-7036. Universite Henri Poincare - Nancy I, B.P. 239, 54506 Vandoeuvre-les-Nancy Cedex 05 - FRANCE (France)], E-mail: piero.ugliengo@unito.it

    2008-06-01

    Fully hydroxylated surfaces derived from crystalline edingtonite were adopted to model the variety of sites known to exist at the amorphous silica surface, namely isolated, geminal and interacting silanols. Structures, energetics and vibrational features of the surfaces either bare or in contact with water were modelled at DFT level using the B3LYP functional with a GTO basis set of double-zeta polarized quality using the periodic ab-initio CRYSTAL06 code. Simulated infrared spectra of both dry and water wet edingtonite surfaces were in excellent agreement with the experimental ones recorded on amorphous silica. Water interaction energies were compared with microcalorimetric differential heats of adsorption data showing good agreement, albeit computed ones being slightly underestimated due to the lack of dispersive forces in the B3LYP functional.

  19. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  20. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  1. Modeling the Excess Cell Surface Stored in a Complex Morphology of Bleb-Like Protrusions.

    Directory of Open Access Journals (Sweden)

    Maryna Kapustina

    2016-03-01

    Full Text Available Cells transition from spread to rounded morphologies in diverse physiological contexts including mitosis and mesenchymal-to-amoeboid transitions. When these drastic shape changes occur rapidly, cell volume and surface area are approximately conserved. Consequently, the rounded cells are suddenly presented with a several-fold excess of cell surface whose area far exceeds that of a smooth sphere enclosing the cell volume. This excess is stored in a population of bleb-like protrusions (BLiPs, whose size distribution is shown by electron micrographs to be skewed. We introduce three complementary models of rounded cell morphologies with a prescribed excess surface area. A 2D Hamiltonian model provides a mechanistic description of how discrete attachment points between the cell surface and cortex together with surface bending energy can generate a morphology that satisfies a prescribed excess area and BLiP number density. A 3D random seed-and-growth model simulates efficient packing of BLiPs over a primary rounded shape, demonstrating a pathway for skewed BLiP size distributions that recapitulate 3D morphologies. Finally, a phase field model (2D and 3D posits energy-based constitutive laws for the cell membrane, nematic F-actin cortex, interior cytosol, and external aqueous medium. The cell surface is equipped with a spontaneous curvature function, a proxy for the cell surface-cortex couple, that is a priori unknown, which the model "learns" from the thin section transmission electron micrograph image (2D or the "seed and growth" model image (3D. Converged phase field simulations predict self-consistent amplitudes and spatial localization of pressure and stress throughout the cell for any posited stationary morphology target and cell compartment constitutive properties. The models form a general framework for future studies of cell morphological dynamics in a variety of biological contexts.

  2. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  3. A nonlinear model for surface segregation and solute trapping during planar film growth

    International Nuclear Information System (INIS)

    Han, Xiaoying; Spencer, Brian J.

    2007-01-01

    Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth

  4. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  5. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  6. The Role of Hierarchy in Response Surface Modeling of Wind Tunnel Data

    Science.gov (United States)

    DeLoach, Richard

    2010-01-01

    This paper is intended as a tutorial introduction to certain aspects of response surface modeling, for the experimentalist who has started to explore these methods as a means of improving productivity and quality in wind tunnel testing and other aerospace applications. A brief review of the productivity advantages of response surface modeling in aerospace research is followed by a description of the advantages of a common coding scheme that scales and centers independent variables. The benefits of model term reduction are reviewed. A constraint on model term reduction with coded factors is described in some detail, which requires such models to be well-formulated, or hierarchical. Examples illustrate the consequences of ignoring this constraint. The implication for automated regression model reduction procedures is discussed, and some opinions formed from the author s experience are offered on coding, model reduction, and hierarchy.

  7. The ising model on the dynamical triangulated random surface

    International Nuclear Information System (INIS)

    Aleinov, I.D.; Migelal, A.A.; Zmushkow, U.V.

    1990-01-01

    The critical properties of Ising model on the dynamical triangulated random surface embedded in D-dimensional Euclidean space are investigated. The strong coupling expansion method is used. The transition to thermodynamical limit is performed by means of continuous fractions

  8. Inverse modelling of Köhler theory – Part 1: A response surface analysis of CCN spectra with respect to surface-active organic species

    Directory of Open Access Journals (Sweden)

    S. Lowe

    2016-09-01

    Full Text Available In this study a novel framework for inverse modelling of cloud condensation nuclei (CCN spectra is developed using Köhler theory. The framework is established by using model-generated synthetic measurements as calibration data for a parametric sensitivity analysis. Assessment of the relative importance of aerosol physicochemical parameters, while accounting for bulk–surface partitioning of surface-active organic species, is carried out over a range of atmospherically relevant supersaturations. By introducing an objective function that provides a scalar metric for diagnosing the deviation of modelled CCN concentrations from synthetic observations, objective function response surfaces are presented as a function of model input parameters. Crucially, for the chosen calibration data, aerosol–CCN spectrum closure is confirmed as a well-posed inverse modelling exercise for a subset of the parameters explored herein. The response surface analysis indicates that the appointment of appropriate calibration data is particularly important. To perform an inverse aerosol–CCN closure analysis and constrain parametric uncertainties, it is shown that a high-resolution CCN spectrum definition of the calibration data is required where single-valued definitions may be expected to fail. Using Köhler theory to model CCN concentrations requires knowledge of many physicochemical parameters, some of which are difficult to measure in situ on the scale of interest and introduce a considerable amount of parametric uncertainty to model predictions. For all partitioning schemes and environments modelled, model output showed significant sensitivity to perturbations in aerosol log-normal parameters describing the accumulation mode, surface tension, organic : inorganic mass ratio, insoluble fraction, and solution ideality. Many response surfaces pertaining to these parameters contain well-defined minima and are therefore good candidates for calibration using a Monte

  9. An initial research on solute migration model coupled with adsorption of surface complexation in groundwater

    International Nuclear Information System (INIS)

    Qian Tianwei; Chen Fanrong

    2003-01-01

    The influence of solution chemical action in groundwater on solute migration has attracted increasing public attention, especially adsorption action occurring on surface of solid phase and liquid phase, which has play a great role in solute migration. There are various interpretations on adsorption mechanism, in which surface complexion is one of successful hypothesis. This paper first establishes a geochemical model based on surface complexion and then coupled it with traditional advection-dispersion model to constitute a solute migration model, which can deal with surface complexion action. The simulated results fit very well with those obtained by the precursors, as compared with a published famous example, which indicates that the model set up by this paper is successful. (authors)

  10. On a discrete version of the CP 1 sigma model and surfaces immersed in R3

    International Nuclear Information System (INIS)

    Grundland, A M; Levi, D; Martina, L

    2003-01-01

    We present a discretization of the CP 1 sigma model. We show that the discrete CP 1 sigma model is described by a nonlinear partial second-order difference equation with rational nonlinearity. To derive discrete surfaces immersed in three-dimensional Euclidean space a 'complex' lattice is introduced. The so-obtained surfaces are characterized in terms of the quadrilateral cross-ratio of four surface points. In this way we prove that all surfaces associated with the discrete CP 1 sigma model are of constant mean curvature. An explicit example of such discrete surfaces is constructed

  11. Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

    Science.gov (United States)

    Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew

    2017-10-01

    We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.

  12. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  13. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  14. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  15. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    Science.gov (United States)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  16. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori; McCabe, Matthew; Evans, Jason P.; Stisen, Simon

    2014-01-01

    is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km

  17. Hydrodynamic modelling as a need for protection of the surface flows

    International Nuclear Information System (INIS)

    Popovska, Tsvetanka

    1997-01-01

    The problems of flow in the open flows, rivers and lakes especially today require serious access and its global solving. The choice of basic equations and the method of their solving is from the exceptional importance. Regardless of the fact whether two or three dimensional model is selected, as a global mathematical model it should have three phases: (i) hydrodynamic model with which the current picture is determined, (ii) transport-dispersive model with which the distribution of various physical-chemical parameters is determined and (iii) ecological model which uses the results from the first two phases, determines the situation of degradation and concentration of the various parameters and further provides measures for surpassing the negative situations. The flow in the open flows generally is a turbulent phenomena especially in the zones of emptying-releasing on the surface water currents and contaminants. Characteristic for turbulent flows is their stochastic nature, i.e. they lack and kind of regularity of the physic-hydraulic parameters. So, certain measuring are needed and within todays degree of pollution of our surface waters, we should say urgent. This kind of measuring from hydrodynamic aspect are concerned to the boundary and start conditions, or the conditions which rule on the surface, in the bottom and the coast. From the quality aspect, they need systematic measuring of the biological and chemical parameters. This points out to the need of multidisciplinary and not partial access in developing and application of the mathematical model

  18. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  19. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite

    Science.gov (United States)

    Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia

    2015-12-01

    Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.

  20. Analyzing surface features on icy satellites using a new two-layer analogue model

    Science.gov (United States)

    Morales, K. M.; Leonard, E. J.; Pappalardo, R. T.; Yin, A.

    2017-12-01

    The appearance of similar surface morphologies across many icy satellites suggests potentially unified formation mechanisms. Constraining the processes that shape the surfaces of these icy worlds is fundamental to understanding their rheology and thermal evolution—factors that have implications for potential habitability. Analogue models have proven useful for investigating and quantifying surface structure formation on Earth, but have only been sparsely applied to icy bodies. In this study, we employ an innovative two-layer analogue model that simulates a warm, ductile ice layer overlain by brittle surface ice on satellites such as Europa and Enceladus. The top, brittle layer is composed of fine-grained sand while the ductile, lower viscosity layer is made of putty. These materials were chosen because they scale up reasonably to the conditions on Europa and Enceladus. Using this analogue model, we investigate the role of the ductile layer in forming contractional structures (e.g. folds) that would compensate for the over-abundance of extensional features observed on icy satellites. We do this by simulating different compressional scenarios in the analogue model and analyzing whether the resulting features resemble those on icy bodies. If the resulting structures are similar, then the model can be used to quantify the deformation by calculating strain. These values can then be scaled up to Europa or Enceladus and used to quantity the observed surface morphologies and the amount of extensional strain accommodated by certain features. This presentation will focus on the resulting surface morphologies and the calculated strain values from several analogue experiments. The methods and findings from this work can then be expanded and used to study other icy bodies, such as Triton, Miranda, Ariel, and Pluto.

  1. Calibration of an integrated land surface process and radiobrightness (LSP/R) model during summertime

    Science.gov (United States)

    Judge, Jasmeet; England, Anthony W.; Metcalfe, John R.; McNichol, David; Goodison, Barry E.

    2008-01-01

    In this study, a soil vegetation and atmosphere transfer (SVAT) model was linked with a microwave emission model to simulate microwave signatures for different terrain during summertime, when the energy and moisture fluxes at the land surface are strong. The integrated model, land surface process/radiobrightness (LSP/R), was forced with weather and initial conditions observed during a field experiment. It simulated the fluxes and brightness temperatures for bare soil and brome grass in the Northern Great Plains. The model estimates of soil temperature and moisture profiles and terrain brightness temperatures were compared with the observed values. Overall, the LSP model provides realistic estimates of soil moisture and temperature profiles to be used with a microwave model. The maximum mean differences and standard deviations between the modeled and the observed temperatures (canopy and soil) were 2.6 K and 6.8 K, respectively; those for the volumetric soil moisture were 0.9% and 1.5%, respectively. Brightness temperatures at 19 GHz matched well with the observations for bare soil, when a rough surface model was incorporated indicating reduced dielectric sensitivity to soil moisture by surface roughness. The brightness temperatures of the brome grass matched well with the observations indicating that a simple emission model was sufficient to simulate accurate brightness temperatures for grass typical of that region and surface roughness was not a significant issue for grass-covered soil at 19 GHz. Such integrated SVAT-microwave models allow for direct assimilation of microwave observations and can also be used to understand sensitivity of microwave signatures to changes in weather forcings and soil conditions for different terrain types.

  2. Modeling Alaska boreal forests with a controlled trend surface approach

    Science.gov (United States)

    Mo Zhou; Jingjing Liang

    2012-01-01

    An approach of Controlled Trend Surface was proposed to simultaneously take into consideration large-scale spatial trends and nonspatial effects. A geospatial model of the Alaska boreal forest was developed from 446 permanent sample plots, which addressed large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of...

  3. Model for H-, D- production by hydrogen backscattering from alkali and alkali/transition-metal surfaces

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Schneider, P.J.

    1980-01-01

    A model for H - , D - production by energetic particles reflecting from metal surfaces is discussed. The model employs the energy and angular distribution data derived from the Marlowe code. The model is applied to particles incident normally upon Cs, Ni, and Cs/Ni surfaces

  4. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  5. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-08-01

    Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM) simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i) modify a DGVM for simulating land surface water balances; (ii) evaluate the modified model in simulating actual evapotranspiration (ET), soil moisture, and surface runoff at regional or watershed scales; and (iii) gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH) model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ) DGVM. To evaluate the model we ran LH using historical (1981-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981-2006 (R2 > 0.46, p 0.52). The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences day method for snowmelt computation, the addition of the solar radiation effect on snowmelt enabled LH to better simulate monthly stream flow in winter and early spring for rivers located at mid-to-high latitudes. In addition, LH-modeled

  6. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  7. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  8. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Science.gov (United States)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in

  9. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju

    2018-04-17

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  10. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-01-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  11. Four-parameter model for polarization-resolved rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  12. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    Science.gov (United States)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  13. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  14. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  15. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  16. Application and Analysis of Measurement Model for Calibrating Spatial Shear Surface in Triaxial Test

    Science.gov (United States)

    Zhang, Zhihua; Qiu, Hongsheng; Zhang, Xiedong; Zhang, Hang

    2017-12-01

    Discrete element method has great advantages in simulating the contacts, fractures, large displacement and deformation between particles. In order to analyze the spatial distribution of the shear surface in the three-dimensional triaxial test, a measurement model is inserted in the numerical triaxial model which is generated by weighted average assembling method. Due to the non-visibility of internal shear surface in laboratory, it is largely insufficient to judge the trend of internal shear surface only based on the superficial cracks of sheared sample, therefore, the measurement model is introduced. The trend of the internal shear zone is analyzed according to the variations of porosity, coordination number and volumetric strain in each layer. It shows that as a case study on confining stress of 0.8 MPa, the spatial shear surface is calibrated with the results of the rotated particle distribution and the theoretical value with the specific characteristics of the increase of porosity, the decrease of coordination number, and the increase of volumetric strain, which represents the measurement model used in three-dimensional model is applicable.

  17. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  18. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon-Joon; Choo, Yeon-Jun [FNC Tech., Yongin (Korea, Republic of); Ha, Sang-Jun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect.

  19. Discussion on the Heat and Mass Transfer Model on the Pool Surface

    International Nuclear Information System (INIS)

    Hong, Soon-Joon; Choo, Yeon-Jun; Ha, Sang-Jun

    2016-01-01

    Heat transfer on the pool surface involves the evaporation and condensation of steam in the presence of non-condensable gas. It is a kind of inter-phase heat transfer. This phenomenon has been regarded as less important on the thermal hydraulic behaviors such as pressure, temperature, hydrogen distribution, and so on in the nuclear reactor containment building. As a matter of fact, several RAIs (requests for additional information) during the licensing review of the developed CAP have been presented. And early in 2000s the steam condensation on the water surface of IRWST was a concern of APR1400 design. Such an increased concern is believed because it is a newly adopted system. This study discusses the pool surface heat transfer by reviewing the models of several well-known containment analysis codes, and conducting the sensitivities. This study discussed the pool surface heat transfer. The related models of CAP, GOTHIC, CONTEMPT-LT, and CONTEMPT4 were compared. The sensitivity of heat transfer coefficient for SKN3 and 4 using conventional code CONTEMPT-LT/028-A showed little effect. And the sensitivity of relative humidity and heat transfer area for latent heat transfer shows that CAP locates between GOTHIC and CONTEMPT4/MOD. The sensitivity for sensible heat transfer also shows similar trend. Conclusively, current CAP model of pool surface heat transfer has no fatal defect

  20. Modelling of a free-surface ferrofluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Habera, M., E-mail: habera@karlin.mff.cuni.cz; Hron, J., E-mail: hron@karlin.mff.cuni.cz

    2017-06-01

    The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results. - Highlights: • Incompressible Navier-Stokes equations are formulated for the problem of free-surface ferrofluid flow. • Computed equilibrium ferrofluid droplet shape is compared to known experimental result. • Magnetic field substantially changes the dynamics of ferrofluid dripping process.

  1. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  2. Molecular modeling of alkyl monolayers on the Si (100)-2 x 1 surface

    NARCIS (Netherlands)

    Lee, M.V.; Guo, D.; Linford, M.R.; Zuilhof, H.

    2004-01-01

    Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 × 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal

  3. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  4. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; Thompson, Anne M.; Wennberg, Paul O.; Crounse, John D.; St Clair, Jason M.; Cohen, Ronald C.; Laughner, Joshua L.; Dibb, Jack E.; Hall, Samuel R.; Ullmann, Kirk; Wolfe, Glenn M.; Pollack, Illana B.; Peischl, Jeff; Neuman, Jonathan A.; Zhou, Xianliang

    2018-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°×0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 8±13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease

  5. Why do models overestimate surface ozone in the Southeast United States?

    Directory of Open Access Journals (Sweden)

    K. R. Travis

    2016-11-01

    Full Text Available Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx  ≡  NO + NO2 and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25°  ×  0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI for NOx from the US Environmental Protection Agency (EPA is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes

  6. Why do Models Overestimate Surface Ozone in the Southeastern United States?

    Science.gov (United States)

    Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.; hide

    2016-01-01

    Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone

  7. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  8. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  9. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  10. Calibration of a surface mass balance model for global-scale applications

    NARCIS (Netherlands)

    Giesen, R. H.; Oerlemans, J.

    2012-01-01

    Global applications of surface mass balance models have large uncertainties, as a result of poor climate input data and limited availability of mass balance measurements. This study addresses several possible consequences of these limitations for the modelled mass balance. This is done by applying a

  11. Three Software Tools for Viewing Sectional Planes, Volume Models, and Surface Models of a Cadaver Hand.

    Science.gov (United States)

    Chung, Beom Sun; Chung, Min Suk; Shin, Byeong Seok; Kwon, Koojoo

    2018-02-19

    The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. © 2018 The Korean Academy of Medical Sciences.

  12. Modelling of XCO2 Surfaces Based on Flight Tests of TanSat Instruments

    Directory of Open Access Journals (Sweden)

    Li Li Zhang

    2016-11-01

    Full Text Available The TanSat carbon satellite is to be launched at the end of 2016. In order to verify the performance of its instruments, a flight test of TanSat instruments was conducted in Jilin Province in September, 2015. The flight test area covered a total area of about 11,000 km2 and the underlying surface cover included several lakes, forest land, grassland, wetland, farmland, a thermal power plant and numerous cities and villages. We modeled the column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2 surface based on flight test data which measured the near- and short-wave infrared (NIR reflected solar radiation in the absorption bands at around 760 and 1610 nm. However, it is difficult to directly analyze the spatial distribution of XCO2 in the flight area using the limited flight test data and the approximate surface of XCO2, which was obtained by regression modeling, which is not very accurate either. We therefore used the high accuracy surface modeling (HASM platform to fill the gaps where there is no information on XCO2 in the flight test area, which takes the approximate surface of XCO2 as its driving field and the XCO2 observations retrieved from the flight test as its optimum control constraints. High accuracy surfaces of XCO2 were constructed with HASM based on the flight’s observations. The results showed that the mean XCO2 in the flight test area is about 400 ppm and that XCO2 over urban areas is much higher than in other places. Compared with OCO-2’s XCO2, the mean difference is 0.7 ppm and the standard deviation is 0.95 ppm. Therefore, the modelling of the XCO2 surface based on the flight test of the TanSat instruments fell within an expected and acceptable range.

  13. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.

    Science.gov (United States)

    Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U

    2005-09-01

    This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.

  14. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    Science.gov (United States)

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Theoretical modelling of semiconductor surfaces microscopic studies of electrons and photons

    CERN Document Server

    Srivastava, G P

    1999-01-01

    The state-of-the-art theoretical studies of ground state properties, electronic states and atomic vibrations for bulk semiconductors and their surfaces by the application of the pseudopotential method are discussed. Studies of bulk and surface phonon modes have been extended by the application of the phenomenological bond charge model. The coverage of the material, especially of the rapidly growing and technologically important topics of surface reconstruction and chemisorption, is up-to-date and beyond what is currently available in book form. Although theoretical in nature, the book provides

  16. Model of a liquid droplet impinging on a high-temperature solid surface

    International Nuclear Information System (INIS)

    Gulikov, A.V.; Berlin, I.I.; Karpyshev, A.V.

    2004-01-01

    The model of the collision of the liquid droplet, vertically falling on the heated solid surface, is presented. The wall temperature is predeterminated so that the droplet interaction with the wall proceeds through the gas interlayer (T≥400 Deg C). The droplet liquid is incompressible, nonviscous. The droplet surface is assigned as free one. The pressure is composed of two components. The first component is the surface tension. The record component is the steam pressure between the droplet and the wall. The liquid motion inside the droplet is assumed to be potential, axisymmetric. The calculation of the droplet collision are carried out with application of the above model. The obtained results are compared with the data of other authors [ru

  17. Numerical model simulation of free surface behavior in spallation target of ADS

    International Nuclear Information System (INIS)

    Chai Xiang; Su Guanyu; Cheng Xu

    2012-01-01

    The spallation target in accelerator driven sub-critical system (ADS) couples the subcritical reactor core with accelerator. The design of a windowless target has to ensure the formation of a stable free surface with desirable shape, to avoid local over- heating of the heavy liquid metal (HLM). To investigate the free surface behavior of the spallation target, OpenFOAM, an opened CFD software platform, was used to simulate the formation and features of the free surface in the windowless target. VOF method was utilized as the interface-capturing methodology. The numerical results were compared to experimental data and numerical results obtained with FLUENT code. The effects of turbulence models were studied and recommendations were made related to application of turbulence models. (authors)

  18. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  19. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    International Nuclear Information System (INIS)

    Hodaei, M; Farhang, K; Maani, N

    2014-01-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load–unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient. (paper)

  20. A contact mechanics model for ankle implants with inclusion of surface roughness effects

    Science.gov (United States)

    Hodaei, M.; Farhang, K.; Maani, N.

    2014-02-01

    Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.

  1. Modelling free surface aquifers to analyze the interaction between groundwater and sinuous streams

    DEFF Research Database (Denmark)

    Balbarini, Nicola; Boon, W. M.; Bjerg, Poul Løgstrup

    and errors. In addition, when streams are sinuous, groundwater flow is truly 3-dimensional, with strong vertical flows and sharp changes in horizontal direction. Here 3 different approaches to simulating free surface aquifers are compared for simulating groundwater-stream interaction. The aim of the models......: a saturated-unsaturated flow model, moving mesh, and a new coordinate transformation. The saturated/unsaturated model couples the saturated groundwater flow equation with a solution of Richards equation. The moving mesh solves the saturated groundwater equation with a free surface and deformable numerical...... finite element mesh. Finally, the new coordinate transform method employs a coordinate transform so that the saturated groundwater flow equation is solved on a fixed finite element mesh with a stationary free surface. This paper describes in detail the new coordinate transform method. It employs...

  2. More Realistic Face Model Surface Improves Relevance of Pediatric In-Vitro Aerosol Studies.

    Science.gov (United States)

    Amirav, Israel; Halamish, Asaf; Gorenberg, Miguel; Omar, Hamza; Newhouse, Michael T

    2015-01-01

    Various hard face models are commonly used to evaluate the efficiency of aerosol face masks. Softer more realistic "face" surface materials, like skin, deform upon mask application and should provide more relevant in-vitro tests. Studies that simultaneously take into consideration many of the factors characteristic of the in vivo face are lacking. These include airways, various application forces, comparison of various devices, comparison with a hard-surface model and use of a more representative model face based on large numbers of actual faces. To compare mask to "face" seal and aerosol delivery of two pediatric masks using a soft vs. a hard, appropriately representative, pediatric face model under various applied forces. Two identical face models and upper airways replicas were constructed, the only difference being the suppleness and compressibility of the surface layer of the "face." Integrity of the seal and aerosol delivery of two different masks [AeroChamber (AC) and SootherMask (SM)] were compared using a breath simulator, filter collection and realistic applied forces. The soft "face" significantly increased the delivery efficiency and the sealing characteristics of both masks. Aerosol delivery with the soft "face" was significantly greater for the SM compared to the AC (pmasks was observed with the hard "face." The material and pliability of the model "face" surface has a significant influence on both the seal and delivery efficiency of face masks. This finding should be taken into account during in-vitro aerosol studies.

  3. Kinetic computer modeling of microwave surface-wave plasma production

    International Nuclear Information System (INIS)

    Ganachev, Ivan P.

    2004-01-01

    Kinetic computer plasma modeling occupies an intermediate position between the time consuming rigorous particle dynamic simulation and the fast but rather rough cold- or warm-plasma fluid models. The present paper reviews the kinetic modeling of microwave surface-wave discharges with accent on recent kinetic self-consistent models, where the external input parameters are reduced to the necessary minimum (frequency and intensity of the applied microwave field and pressure and geometry of the discharge vessel). The presentation is limited to low pressures, so that Boltzmann equation is solved in non-local approximation and collisional electron heating is neglected. The numerical results reproduce correctly the bi-Maxwellian electron energy distribution functions observed experimentally. (author)

  4. Fermi surface changes in dilute magnesium alloys: a pseudopotential band structure model

    International Nuclear Information System (INIS)

    Fung, W.K.

    1976-01-01

    The de Haas-van Alphen effect has been used to study the Fermi surface of pure magnesium and its dilute alloys containing lithium and indium. The quantum oscillations in magnetization were detected by means of a torque magnetometer in magnetic field up to 36 kilogauss and temperature range of 4.2 0 to 1.7 0 K. The results provide information on the effects of lithium and indium solutes on the Fermi surface of magnesium in changes of extremal cross sections and effective masses as well as the relaxation times associated with the orbits. The nonlocal pseudopotential model proposed by Kimball, Stark and Mueller has been fitted to the Fermi surface of magnesium and extended to include the dilute alloys, fitting all the observed de Haas-van Alphen frequencies with an accuracy of better than 1 percent. A modified rigid band interpretation including both Fermi energy and local band edge changes computed from the model, gives an overall satisfactory description of the observed frequency shifts. With the pseudo-wavefunctions provided by the nonlocal model, the relaxation times in terms of Dingle temperatures for several orbits have been predicted using Sorbello's multiple-plane-wave phase shift model. The calculation with phase shifts obtained from a model potential yields a greater anisotropy than has been observed experimentally, while a two-parameter phase shift model provides a good fit to the experimental results

  5. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  6. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances

    Directory of Open Access Journals (Sweden)

    G. Tang

    2012-08-01

    Full Text Available Satellite-based data, such as vegetation type and fractional vegetation cover, are widely used in hydrologic models to prescribe the vegetation state in a study region. Dynamic global vegetation models (DGVM simulate land surface hydrology. Incorporation of satellite-based data into a DGVM may enhance a model's ability to simulate land surface hydrology by reducing the task of model parameterization and providing distributed information on land characteristics. The objectives of this study are to (i modify a DGVM for simulating land surface water balances; (ii evaluate the modified model in simulating actual evapotranspiration (ET, soil moisture, and surface runoff at regional or watershed scales; and (iii gain insight into the ability of both the original and modified model to simulate large spatial scale land surface hydrology. To achieve these objectives, we introduce the "LPJ-hydrology" (LH model which incorporates satellite-based data into the Lund-Potsdam-Jena (LPJ DGVM. To evaluate the model we ran LH using historical (1981–2006 climate data and satellite-based land covers at 2.5 arc-min grid cells for the conterminous US and for the entire world using coarser climate and land cover data. We evaluated the simulated ET, soil moisture, and surface runoff using a set of observed or simulated data at different spatial scales. Our results demonstrate that spatial patterns of LH-simulated annual ET and surface runoff are in accordance with previously published data for the US; LH-modeled monthly stream flow for 12 major rivers in the US was consistent with observed values respectively during the years 1981–2006 (R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficient > 0.52. The modeled mean annual discharges for 10 major rivers worldwide also agreed well (differences < 15% with observed values for these rivers. Compared to a degree-day method for snowmelt computation, the addition of the solar radiation effect on snowmelt

  7. A hybrid model to predict the onset of gas entrainment with surface tension effects

    International Nuclear Information System (INIS)

    Saleh, W.; Bowden, R.C.; Hassan, I.G.; Kadem, L.

    2008-01-01

    The onset of gas entrainment, in a single downward oriented discharge from a stratified gas-liquid region with was modeled. The assumptions made in the development of the model reduced the problem to that of a potential flow. The discharge was modeled as a point-sink. Through use of the Kelvin-Laplace equation the model included the effects of surface tension. The resulting model required further knowledge of the flow field, specifically the dip radius of curvature prior to the onset of gas entrainment. The dip shape and size was investigated experimentally and correlations were provided to characterize the dip in terms of the discharge Froude number. The experimental correlation was used in conjunction with the theoretical model to predict the critical height. The results showed that by including surface tension effects the predicted critical height showed excellent agreement with experimental data. Surface tension reduces the critical height through the Bond number

  8. ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation

    Science.gov (United States)

    Guimberteau, Matthieu; Zhu, Dan; Maignan, Fabienne; Huang, Ye; Yue, Chao; Dantec-Nédélec, Sarah; Ottlé, Catherine; Jornet-Puig, Albert; Bastos, Ana; Laurent, Pierre; Goll, Daniel; Bowring, Simon; Chang, Jinfeng; Guenet, Bertrand; Tifafi, Marwa; Peng, Shushi; Krinner, Gerhard; Ducharne, Agnès; Wang, Fuxing; Wang, Tao; Wang, Xuhui; Wang, Yilong; Yin, Zun; Lauerwald, Ronny; Joetzjer, Emilie; Qiu, Chunjing; Kim, Hyungjun; Ciais, Philippe

    2018-01-01

    The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance - those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest - are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  9. Surface structures of equilibrium restricted curvature model on two fractal substrates

    International Nuclear Information System (INIS)

    Song Li-Jian; Tang Gang; Zhang Yong-Wei; Han Kui; Xun Zhi-Peng; Xia Hui; Hao Da-Peng; Li Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension d f , but possess different dynamic exponents of random walk z rw . The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension d f , but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk z rw . The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + d f ≍ z ≍ 2z rw . In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation. (general)

  10. Updating representation of land surface-atmosphere feedbacks in airborne campaign modeling analysis

    Science.gov (United States)

    Huang, M.; Carmichael, G. R.; Crawford, J. H.; Chan, S.; Xu, X.; Fisher, J. A.

    2017-12-01

    An updated modeling system to support airborne field campaigns is being built at NASA Ames Pleiades, with focus on adjusting the representation of land surface-atmosphere feedbacks. The main updates, referring to previous experiences with ARCTAS-CARB and CalNex in the western US to study air pollution inflows, include: 1) migrating the WRF (Weather Research and Forecasting) coupled land surface model from Noah to improved/more complex models especially Noah-MP and Rapid Update Cycle; 2) enabling the WRF land initialization with suitably spun-up land model output; 3) incorporating satellite land cover, vegetation dynamics, and soil moisture data (i.e., assimilating Soil Moisture Active Passive data using the ensemble Kalman filter approach) into WRF. Examples are given of comparing the model fields with available aircraft observations during spring-summer 2016 field campaigns taken place at the eastern side of continents (KORUS-AQ in South Korea and ACT-America in the eastern US), the air pollution export regions. Under fair weather and stormy conditions, air pollution vertical distributions and column amounts, as well as the impact from land surface, are compared. These help identify challenges and opportunities for LEO/GEO satellite remote sensing and modeling of air quality in the northern hemisphere. Finally, we briefly show applications of this system on simulating Australian conditions, which would explore the needs for further development of the observing system in the southern hemisphere and inform the Clean Air and Urban Landscapes (https://www.nespurban.edu.au) modelers.

  11. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    Science.gov (United States)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  12. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  13. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    International Nuclear Information System (INIS)

    Zhang, Pan; Du, LeiXia; Fu, Dong

    2014-01-01

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF 4 ])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF 4 ]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  14. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  15. Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?

    Science.gov (United States)

    Borri, Claudia; Paggi, Marco

    2015-02-01

    The random process theory (RPT) has been widely applied to predict the joint probability distribution functions (PDFs) of asperity heights and curvatures of rough surfaces. A check of the predictions of RPT against the actual statistics of numerically generated random fractal surfaces and of real rough surfaces has been only partially undertaken. The present experimental and numerical study provides a deep critical comparison on this matter, providing some insight into the capabilities and limitations in applying RPT and fractal modeling to antireflective and hydrophobic rough surfaces, two important types of textured surfaces. A multi-resolution experimental campaign using a confocal profilometer with different lenses is carried out and a comprehensive software for the statistical description of rough surfaces is developed. It is found that the topology of the analyzed textured surfaces cannot be fully described according to RPT and fractal modeling. The following complexities emerge: (i) the presence of cut-offs or bi-fractality in the power-law power-spectral density (PSD) functions; (ii) a more pronounced shift of the PSD by changing resolution as compared to what was expected from fractal modeling; (iii) inaccuracy of the RPT in describing the joint PDFs of asperity heights and curvatures of textured surfaces; (iv) lack of resolution-invariance of joint PDFs of textured surfaces in case of special surface treatments, not accounted for by fractal modeling.

  16. Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs

    International Nuclear Information System (INIS)

    MacDonald, James; Mullan, D. J.

    2014-01-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  17. Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2014-05-01

    Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.

  18. Protonation of Different Goethite Surfaces - Unified Models for NaNO3 and NaCl Media

    International Nuclear Information System (INIS)

    Lutzenkirchen, Johannes; Boily, Jean-Francois F.; Gunneriusson, Lars; Lovgren, L.; Sjojberg, S.

    2008-01-01

    Acid-base titration data for two goethites samples in sodium nitrate and sodium chloride media are discussed. The data are modeled based on various surface complexation models in the framework of the MUlti SIte Complexation (MUSIC) model. Various assumptions with respect to the goethite morphology are considered in determining the site density of the surface functional groups. The results from the various model applications are not statistically significant in terms of goodness of fit. More importantly, various published assumptions with respect to the goethite morphology (i.e. the contributions of different crystal planes and their repercussions on the ''overall'' site densities of the various surface functional groups) do not significantly affect the final model parameters. The simultaneous fit of the chloride and nitrate data results in electrolyte binding constants, which are applicable over a wide range of electrolyte concentrations including mixtures of chloride and nitrate. Model parameters for the high surface area goethite sample are in excellent agreement with parameters that were independently obtained by another group on different goethite titration data sets

  19. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    National Research Council Canada - National Science Library

    Kim, Yoojeong; Gidwani, Ashok; Sippola, Mark; Sohn, Chang W

    2008-01-01

    This Phase I effort developed a source term model for particle resuspension from indoor surfaces to be used as a source term boundary condition for CFD simulation of particle transport and dispersion in a building...

  20. The Rothermel surface fire spread model and associated developments: A comprehensive explanation

    Science.gov (United States)

    Patricia L. Andrews

    2018-01-01

    The Rothermel surface fire spread model, with some adjustments by Frank A. Albini in 1976, has been used in fire and fuels management systems since 1972. It is generally used with other models including fireline intensity and flame length. Fuel models are often used to define fuel input parameters. Dynamic fuel models use equations for live fuel curing. Models have...

  1. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  2. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  3. Surface speciation of yttrium and neodymium sorbed on rutile: Interpretations using the charge distribution model

    Science.gov (United States)

    Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.

    2012-10-01

    The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models

  4. The global mean sea surface model WHU2013

    Directory of Open Access Journals (Sweden)

    Taoyong Jin

    2016-05-01

    Full Text Available The mean sea surface (MSS model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80°S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P, Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH, and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD of the differences between the models is about 5 cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  5. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Guoyan [Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern (Switzerland)

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction. The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark

  6. Investigation of surface boundary conditions for continuum modeling of RF plasmas

    Science.gov (United States)

    Wilson, A.; Shotorban, B.

    2018-05-01

    This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.

  7. Polynomial fuzzy model-based approach for underactuated surface vessels

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav

    2018-01-01

    The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...

  8. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Pravinraj, T., E-mail: pravinraj1711@gmail.com; Patrikar, Rajendra

    2017-07-01

    Highlights: • A LBM model on partial wetting surface for droplet dynamics is presented by introducing a simple initial partial wetting boundary condition in SC model. • With our approach one can tune the splitting volume and time by carefully choosing strip width and position. • It is shown that the droplet spreading on chemically heterogeneous surfaces can be controlled not only by Weber number but also by tuning strip width ratio. • The directional transportation of a droplet due to chemical wetting gradient is simulated and analyzed using hybrid thermodynamic-image processing technique. • Microstructure surface and its influence on the directional wetting based transportation of droplet are demonstrated. - Abstract: Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains

  9. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  10. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    Science.gov (United States)

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  11. CSDMS2.0: Computational Infrastructure for Community Surface Dynamics Modeling

    Science.gov (United States)

    Syvitski, J. P.; Hutton, E.; Peckham, S. D.; Overeem, I.; Kettner, A.

    2012-12-01

    The Community Surface Dynamic Modeling System (CSDMS) is an NSF-supported, international and community-driven program that seeks to transform the science and practice of earth-surface dynamics modeling. CSDMS integrates a diverse community of more than 850 geoscientists representing 360 international institutions (academic, government, industry) from 60 countries and is supported by a CSDMS Interagency Committee (22 Federal agencies), and a CSDMS Industrial Consortia (18 companies). CSDMS presently distributes more 200 Open Source models and modeling tools, access to high performance computing clusters in support of developing and running models, and a suite of products for education and knowledge transfer. CSDMS software architecture employs frameworks and services that convert stand-alone models into flexible "plug-and-play" components to be assembled into larger applications. CSDMS2.0 will support model applications within a web browser, on a wider variety of computational platforms, and on other high performance computing clusters to ensure robustness and sustainability of the framework. Conversion of stand-alone models into "plug-and-play" components will employ automated wrapping tools. Methods for quantifying model uncertainty are being adapted as part of the modeling framework. Benchmarking data is being incorporated into the CSDMS modeling framework to support model inter-comparison. Finally, a robust mechanism for ingesting and utilizing semantic mediation databases is being developed within the Modeling Framework. Six new community initiatives are being pursued: 1) an earth - ecosystem modeling initiative to capture ecosystem dynamics and ensuing interactions with landscapes, 2) a geodynamics initiative to investigate the interplay among climate, geomorphology, and tectonic processes, 3) an Anthropocene modeling initiative, to incorporate mechanistic models of human influences, 4) a coastal vulnerability modeling initiative, with emphasis on deltas and

  12. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    Science.gov (United States)

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  13. Surface science and model catalysis with ionic liquid-modified materials.

    Science.gov (United States)

    Steinrück, H-P; Libuda, J; Wasserscheid, P; Cremer, T; Kolbeck, C; Laurin, M; Maier, F; Sobota, M; Schulz, P S; Stark, M

    2011-06-17

    Materials making use of thin ionic liquid (IL) films as support-modifying functional layer open up a variety of new possibilities in heterogeneous catalysis, which range from the tailoring of gas-surface interactions to the immobilization of molecularly defined reactive sites. The present report reviews recent progress towards an understanding of "supported ionic liquid phase (SILP)" and "solid catalysts with ionic liquid layer (SCILL)" materials at the microscopic level, using a surface science and model catalysis type of approach. Thin film IL systems can be prepared not only ex-situ, but also in-situ under ultrahigh vacuum (UHV) conditions using atomically well-defined surfaces as substrates, for example by physical vapor deposition (PVD). Due to their low vapor pressure, these systems can be studied in UHV using the full spectrum of surface science techniques. We discuss general strategies and considerations of this approach and exemplify the information available from complementary methods, specifically photoelectron spectroscopy and surface vibrational spectroscopy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Non-contact adhesion to self-affine surfaces: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A., E-mail: makeev@umich.edu

    2013-11-22

    Strength of adhesion between materials is known to be strongly influenced by interface irregularities. In this work, I devise a perturbative approach to describe the effect of self-affine roughness on non-contact adhesive interactions. The hierarchy of the obtained analytical solutions is the following. First, analytical formulae are deduced to describe roughness corrections to the van der Waals interaction energies between a hemi-space adherend, bounded by a self-affine surface, and a point-like adherent. Second, the problem of two hemi-spaces, one of which has a planar surface, and the other is bounded by a self-affine surface, is solved analytically. In the latter case, a numerical analysis is performed to delineate the behavior of the roughness corrections as a function of the parameters, characterizing self-affine fractal surface roughness. The problem of two hemi-spaces, both bounded by self-affine fractal surfaces, is also addressed in this work. The model's predictions are compared with previously reported theoretical results and available experimental data.

  15. Achieving scale-independent land-surface flux estimates - Application of the Multiscale Parameter Regionalization (MPR) to the Noah-MP land-surface model across the contiguous USA

    Science.gov (United States)

    Thober, S.; Mizukami, N.; Samaniego, L. E.; Attinger, S.; Clark, M. P.; Cuntz, M.

    2016-12-01

    Land-surface models use a variety of process representations to calculate terrestrial energy, water and biogeochemical fluxes. These process descriptions are usually derived from point measurements but are scaled to much larger resolutions in applications that range from about 1 km in catchment hydrology to 100 km in climate modelling. Both, hydrologic and climate models are nowadays run on different spatial resolutions, using the exact same land surface representations. A fundamental criterion for the physical consistency of land-surface simulations across scales is that a flux estimated over a given area is independent of the spatial model resolution (i.e., the flux-matching criterion). The Noah-MP land surface model considers only one soil and land cover type per model grid cell without any representation of subgrid variability, implying a weak flux-matching. A fractional approach simulates subgrid variability but it requires a higher computational demand than using effective parameters and it is used only for land cover in current land surface schemes. A promising approach to derive scale-independent parameters is the Multiscale Parameter Regionalization (MPR) technique, which consists of two steps: first, it applies transfer functions directly to high-resolution data (such as 100 m soil maps) to derive high-resolution model parameter fields, acknowledging the full subgrid variability. Second, it upscales these high-resolution parameter fields to the model resolution by using appropriate upscaling operators. MPR has shown to improve substantially the scalability of hydrologic models. Here, we apply the MPR technique to the Noah-MP land-surface model for a large sample of basins distributed across the contiguous USA. Specifically, we evaluate the flux-matching criterion for several hydrologic fluxes such as evapotranspiration and total runoff at scales ranging from 3 km to 48 km. We also investigate a p-norm scaling operator that goes beyond the current

  16. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross

  17. A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Zhang Hongyun; Li Wen; Fang Guoping

    2012-01-01

    Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.

  18. Experimental and numerical modelling of surface water-groundwater flow and pollution interactions under tidal forcing

    Science.gov (United States)

    Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger

    2015-04-01

    Surface water and groundwater are integral components of the hydrologic continuum and the interaction between them affects both their quantity and quality. However, surface water and groundwater are often considered as two separate systems and are analysed independently. This separation is partly due to the different time scales, which apply in surface water and groundwater flows and partly due to the difficulties in measuring and modelling their interactions (Winter et al., 1998). Coastal areas in particular are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes. Accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands, for example, requires the use of integrated surface water-groundwater models. In the past few decades a large number of mathematical models and field methods have been developed in order to quantify the interaction between groundwater and hydraulically connected surface water bodies. Field studies may provide the best data (Hughes, 1995) but are usually expensive and involve too many parameters. In addition, the interpretation of field measurements and linking with modelling tools often proves to be difficult. In contrast, experimental studies are less expensive and provide controlled data. However, experimental studies of surface water-groundwater interaction are less frequently encountered in the literature than filed studies (e.g. Ebrahimi et al., 2007; Kuan et al., 2012; Sparks et al., 2013). To this end, an experimental model has been constructed at the Hyder Hydraulics Laboratory at Cardiff University to enable measurements to be made of groundwater transport through a sand embankment between a tidal water body such as an estuary and a non-tidal water body such as a wetland. The transport behaviour of a conservative tracer was studied for a constant water level on the wetland side of the embankment, while running a

  19. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  20. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  1. Multi-mission mean sea surface and geoid models for ocean monitoring within the GOCINA project

    Science.gov (United States)

    Andersen, O. B.; Knudsen, P.; Anne, V. L.

    2004-05-01

    A major goal of the EU project GOCINA (Geoid and Ocean Circulation In the North Atlantic) is to develop tools for ocean monitoring using satellite altimetry combined with satellite gravimetry. Furthermore, the project will determine an accurate geoid in the region between Greenland and the UK and, hereby, create a platform for validation of future GOCE Level 2 data and higher order scientific products. The central quantity bridging the geoid and the ocean circulation is the mean dynamic topography, which is the difference between the mean sea surface and the geoid. The mean dynamic topography provides the absolute reference surface for the ocean circulation. The improved determination of the mean circulation will advance the understanding of the role of the ocean mass and heat transport in climate change. To calculate the best possible synthetic mean dynamic topographies a new mean sea surface (KMS03) has been derived from nine years of altimetric data (1993-2001). The regional geoid has furthermore being updated using GRACE and gravimetric data from a recent airborne survey. New synthetic mean dynamic topography models have been computed from the best available geoid models (EGM96, GRACE, GOCINA) and the present mean sea surface models (i.e. CLS01, GSFC00, KMS03). These models will be compared with state of the art hydrodynamic mean dynamic topography models in the North Atlantic GOCINA area. An extended comparison in the Artic Ocean will also be presented to demonstrate the impact of improved geoid and mean sea surface modeling. Particularly using the GRACE derived geoid models, and the KMS03 mean sea surface.

  2. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong; Qian, Tiezheng

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager

  3. Modeling Solar-Wind Heavy-Ions' Potential Sputtering of Lunar KREEP Surface

    Science.gov (United States)

    Barghouty, A. F.; Meyer, F. W.; Harris, R. P.; Adams, J. H., Jr.

    2012-01-01

    Recent laboratory data suggest that potential sputtering may be an important weathering mechanism that can affect the composition of both the lunar surface and its tenuous exosphere; its role and implications, however, remain unclear. Using a relatively simple kinetic model, we will demonstrate that solar-wind heavy ions induced sputtering of KREEP surfaces is critical in establishing the timescale of the overall solar-wind sputtering process of the lunar surface. We will also also show that potential sputtering leads to a more pronounced and significant differentiation between depleted and enriched surface elements. We briefly discuss the impacts of enhanced sputtering on the composition of the regolith and the exosphere, as well as of solar-wind sputtering as a source of hydrogen and water on the moon.

  4. Elastic-plastic adhesive contact of rough surfaces using n-point asperity model

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Mitra, Anirban; Saha, Kashinath

    2009-01-01

    This study considers an analysis of the elastic-plastic contact of rough surfaces in the presence of adhesion using an n-point asperity model. The multiple-point asperity model, developed by Hariri et al (2006 Trans ASME: J. Tribol. 128 505-14) is integrated into the elastic-plastic adhesive contact model developed by Roy Chowdhury and Ghosh (1994 Wear 174 9-19). This n-point asperity model differs from the conventional Greenwood and Williamson model (1966 Proc. R. Soc. Lond. A 295 300-19) in considering the asperities not as fixed entities but as those that change through the contact process, and hence it represents the asperities in a more realistic manner. The newly defined adhesion index and plasticity index defined for the n-point asperity model are used to consider the different conditions that arise because of varying load, surface and material parameters. A comparison between the load-separation behaviour of the new model and the conventional one shows a significant difference between the two depending on combinations of mean separation, adhesion index and plasticity index.

  5. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  6. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  7. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  8. Interacting boson model with surface delta interaction between nucleons

    International Nuclear Information System (INIS)

    Druce, C.; Moszkowski, S.A.

    1984-01-01

    The surface delta interaction is used as an effective nucleon-nucleon interaction to investigate the structure and interaction of the bosons in the interacting boson model. The authors have obtained analytical expressions for the coefficients of a multipole expansion of the neutron-boson proton-boson interaction for the case of degenerate orbits

  9. High-resolution Continental Scale Land Surface Model incorporating Land-water Management in United States

    Science.gov (United States)

    Shin, S.; Pokhrel, Y. N.

    2016-12-01

    Land surface models have been used to assess water resources sustainability under changing Earth environment and increasing human water needs. Overwhelming observational records indicate that human activities have ubiquitous and pertinent effects on the hydrologic cycle; however, they have been crudely represented in large scale land surface models. In this study, we enhance an integrated continental-scale land hydrology model named Leaf-Hydro-Flood to better represent land-water management. The model is implemented at high resolution (5km grids) over the continental US. Surface water and groundwater are withdrawn based on actual practices. Newly added irrigation, water diversion, and dam operation schemes allow better simulations of stream flows, evapotranspiration, and infiltration. Results of various hydrologic fluxes and stores from two sets of simulation (one with and the other without human activities) are compared over a range of river basin and aquifer scales. The improved simulations of land hydrology have potential to build consistent modeling framework for human-water-climate interactions.

  10. DISCRETIZATION APPROACH USING RAY-TESTING MODEL IN PARTING LINE AND PARTING SURFACE GENERATION

    Institute of Scientific and Technical Information of China (English)

    HAN Jianwen; JIAN Bin; YAN Guangrong; LEI Yi

    2007-01-01

    Surface classification, 3D parting line, parting surface generation and demoldability analysis which is helpful to select optimal parting direction and optimal parting line are involved in automatic cavity design based on the ray-testing model. A new ray-testing approach is presented to classify the part surfaces to core/cavity surfaces and undercut surfaces by automatic identifying the visibility of surfaces. A simple, direct and efficient algorithm to identify surface visibility is developed. The algorithm is robust and adapted to rather complicated geometry, so it is valuable in computer-aided mold design systems. To validate the efficiency of the approach, an experimental program is implemented. Case studies show that the approach is practical and valuable in automatic parting line and parting surface generation.

  11. Role of equipotential and equidensity surfaces for constructing models of galaxies

    International Nuclear Information System (INIS)

    Kutuzov, S.A.; Osipkov, L.P.

    1986-01-01

    Adopting a form of equipotential surfaces one can find a spatial density of a galaxy on the basis of a circular velocity (using the Poisson equation). The problem of finding the spatial model of a system from the equatorial density is analysed. By adopting equidensity surfaces it is possible to determine a kernel of the integral equation connecting a density with a circular velocity. Some examples are given

  12. A Response Surface-Based Cost Model for Wind Farm Design

    International Nuclear Information System (INIS)

    Zhang Jie; Chowdhury, Souma; Messac, Achille; Castillo, Luciano

    2012-01-01

    A Response Surface-Based Wind Farm Cost (RS-WFC) model is developed for the engineering planning of wind farms. The RS-WFC model is developed using Extended Radial Basis Functions (E-RBF) for onshore wind farms in the U.S. This model is then used to explore the influences of different design and economic parameters, including number of turbines, rotor diameter and labor cost, on the cost of a wind farm. The RS-WFC model is composed of three components that estimate the effects of engineering and economic factors on (i) the installation cost, (ii) the annual Operation and Maintenance (O and M) cost, and (iii) the total annual cost of a wind farm. The accuracy of the cost model is favorably established through comparison with pertinent commercial data. The final RS-WFC model provided interesting insights into cost variation with respect to critical engineering and economic parameters. In addition, a newly developed analytical wind farm engineering model is used to determine the power generated by the farm, and the subsequent Cost of Energy (COE). This COE is optimized for a unidirectional uniform “incoming wind speed” scenario using Particle Swarm Optimization (PSO). We found that the COE could be appreciably minimized through layout optimization, thereby yielding significant cost savings. - Highlights: ► We present a Response Surface-Based Wind Farm Cost (RS-WFC) model for wind farm design. ► The model could estimate installation cost, Operation and Maintenance cost, and total annual cost of a wind farm. ► The Cost of Energy is optimized using Particle Swarm Optimization. ► Layout optimization could yield significant cost savings.

  13. PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model

    Directory of Open Access Journals (Sweden)

    J. Resler

    2017-10-01

    Full Text Available Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM, describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs. Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL. The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the

  14. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    Science.gov (United States)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  15. First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.

    Science.gov (United States)

    Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio

    2015-07-15

    The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.

  16. Modeling marine surface microplastic transport to assess optimal removal locations

    Science.gov (United States)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  17. Modeling marine surface microplastic transport to assess optimal removal locations

    International Nuclear Information System (INIS)

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres. (letter)

  18. Modelled long term trends of surface ozone over South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2011-09-01

    Full Text Available focused on SA Highveld, 2006 ? Keeping all CAMx inputs ?standardized?, leaving only meteorology as a variable ? CSIR 2010 Slide 11 CAMx data flow CAMx Met model USGS surface data Emissions Initial & boundary Haze & albedo Photolysis rates...

  19. MIKE-SHE integrated groundwater and surface water model used to ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... for Arid Rivers (DRIFT-ARID) decision support system (DSS). The DRIFT-ARID ... Most methods start with a description of the present day (PD) and ... or coupled groundwater and surface water hydrological model to produce a ...

  20. Allowing for surface preparation in stress corrosion cracking modelling

    International Nuclear Information System (INIS)

    Berge, P.; Buisine, D.; Gelpi, A.

    1997-01-01

    When a 600 alloy component is significantly deformed during installation, by welding, rolling, bending, its stress corrosion cracking in Pressurized Water Nuclear Reactor's primary coolant, is significantly changed by the initial surface treatment. Therefore, the crack initiated time may be reduced by several orders of magnitude for certain surfaces preparations. Allowing for cold working of the surface, for which modelling is proposed, depends less on the degree of cold work then on the depths of the hardened layers. Honing hardens the metal over depths of about one micron for vessel head penetrations, for example, and has little influence on subsequent behaviour after the part deforms. On the other hand, coarser turning treatment produces cold worked layers which can reach several tens of microns and can very significantly reduce the initiation time compared to fine honing. So evaluation after depths of hardening is vital on test pieces for interpreting laboratory results as well as on service components for estimating their service life. Suppression by mechanical or chemical treatment of these layers, after deformation, seems to be the most appropriate solution for reducing over-stressing connected with surface treatment carried out before deformation. (author)

  1. Implementation and applications of a finite-element model for the contact between rough surfaces

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Klit, Peder

    2013-01-01

    Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more ...... in the examples. Among the presented results one can find the distribution of the contact pressure at the interface and diagrams of the real area of contact as a function of the nominal contact pressure. © 2013 Elsevier B.V.......Due to the rough nature of real mechanical surfaces, the contact between elastic bodies occurs at several size-scales. Statistical and fractal contact models can take a wide range of roughness wavelengths into account, without additional computational cost. However, deterministic models are more...... straightforward to understand and easier to extend to more complex cases like contacting bodies that demonstrate elasto-plastic behavior. This paper presents a finite-element model for studying the frictionless contact between nominally flat rough surfaces. Apart from a description of the model implementation...

  2. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  3. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  4. The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?

    Science.gov (United States)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy J.; Or, Dani; Best, Martin J.; Johnson, Helen R.; Balsamo, Gianpaolo; Boone, Aaron; Cuntz, Matthais; Decharme, Bertrand; hide

    2016-01-01

    The PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) illustrated the value of prescribing a priori performance targets in model intercomparisons. It showed that the performance of turbulent energy flux predictions from different land surface models, at a broad range of flux tower sites using common evaluation metrics, was on average worse than relatively simple empirical models. For sensible heat fluxes, all land surface models were outperformed by a linear regression against downward shortwave radiation. For latent heat flux, all land surface models were outperformed by a regression against downward shortwave, surface air temperature and relative humidity. These results are explored here in greater detail and possible causes are investigated. We examine whether particular metrics or sites unduly influence the collated results, whether results change according to time-scale aggregation and whether a lack of energy conservation in fluxtower data gives the empirical models an unfair advantage in the intercomparison. We demonstrate that energy conservation in the observational data is not responsible for these results. We also show that the partitioning between sensible and latent heat fluxes in LSMs, rather than the calculation of available energy, is the cause of the original findings. Finally, we present evidence suggesting that the nature of this partitioning problem is likely shared among all contributing LSMs. While we do not find a single candidate explanation forwhy land surface models perform poorly relative to empirical benchmarks in PLUMBER, we do exclude multiple possible explanations and provide guidance on where future research should focus.

  5. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  6. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian D., E-mail: bdwirth@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Nuclear Science and Engineering Directorate, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Hammond, K.D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA (United States); Maroudas, D. [University of Massachusetts, Amherst, Amherst, MA 01003 (United States)

    2015-08-15

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification.

  7. Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing

    International Nuclear Information System (INIS)

    Wirth, Brian D.; Hammond, K.D.; Krasheninnikov, S.I.; Maroudas, D.

    2015-01-01

    The performance of plasma facing components (PFCs) is critical for ITER and future magnetic fusion reactors. The ITER divertor will be tungsten, which is the primary candidate material for future reactors. Recent experiments involving tungsten exposure to low-energy helium plasmas reveal significant surface modification, including the growth of nanometer-scale tendrils of “fuzz” and formation of nanometer-sized bubbles in the near-surface region. The large span of spatial and temporal scales governing plasma surface interactions are among the challenges to modeling divertor performance. Fortunately, recent innovations in computational modeling, increasingly powerful high-performance computers, and improved experimental characterization tools provide a path toward self-consistent, experimentally validated models of PFC and divertor performance. Recent advances in understanding tungsten–helium interactions are reviewed, including such processes as helium clustering, which serve as nuclei for gas bubbles; and trap mutation, dislocation loop punching and bubble bursting; which together initiate surface morphological modification

  8. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  9. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

    Science.gov (United States)

    Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli

    2016-10-01

    Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.

  10. A model to predict impervious surface for regional and municipal land use planning purposes

    International Nuclear Information System (INIS)

    Reilly, James; Maggio, Patricia; Karp, Steven

    2004-01-01

    The area of impervious surface in a watershed is a forcing variable in many hydrologic models and has been proposed as a policy variable surrogate for water quality. We report a new statistical model which will allow land use planners to estimate impervious surface given minimal, readily available information about future growth. Our model is suitable for master planning purposes. In more urbanized areas, it tends to produce quite accurate forecasts. However, in less developed, more rural places, forecast error will increase

  11. Fusion of intraoperative force sensoring, surface reconstruction and biomechanical modeling

    Science.gov (United States)

    Röhl, S.; Bodenstedt, S.; Küderle, C.; Suwelack, S.; Kenngott, H.; Müller-Stich, B. P.; Dillmann, R.; Speidel, S.

    2012-02-01

    Minimally invasive surgery is medically complex and can heavily benefit from computer assistance. One way to help the surgeon is to integrate preoperative planning data into the surgical workflow. This information can be represented as a customized preoperative model of the surgical site. To use it intraoperatively, it has to be updated during the intervention due to the constantly changing environment. Hence, intraoperative sensor data has to be acquired and registered with the preoperative model. Haptic information which could complement the visual sensor data is still not established. In addition, biomechanical modeling of the surgical site can help in reflecting the changes which cannot be captured by intraoperative sensors. We present a setting where a force sensor is integrated into a laparoscopic instrument. In a test scenario using a silicone liver phantom, we register the measured forces with a reconstructed surface model from stereo endoscopic images and a finite element model. The endoscope, the instrument and the liver phantom are tracked with a Polaris optical tracking system. By fusing this information, we can transfer the deformation onto the finite element model. The purpose of this setting is to demonstrate the principles needed and the methods developed for intraoperative sensor data fusion. One emphasis lies on the calibration of the force sensor with the instrument and first experiments with soft tissue. We also present our solution and first results concerning the integration of the force sensor as well as accuracy to the fusion of force measurements, surface reconstruction and biomechanical modeling.

  12. The mARM spatially distributed soil evolution model: A computationally efficient modeling framework and analysis of hillslope soil surface organization

    Science.gov (United States)

    Cohen, Sagy; Willgoose, Garry; Hancock, Greg

    2009-09-01

    Hillslope surface armouring and weathering processes have received little attention in geomorphologic and hydrologic models due to their complexity and the uncertainty associated with them. Their importance, however, in a wide range of spatial processes is well recognized. A physically based armouring and weathering computer model (ARMOUR) has previously been used to successfully simulate the effect of these processes on erosion and soil grading at a hillslope scale. This model is, however, computationally complex and cannot realistically be applied over large areas or over long periods of time. A simplified process conceptualization approach is presented (named mARM) which uses a novel approach of modeling physical processes using transition matrices, which is orders of magnitude faster. We describe in detail the modeling framework. We calibrate and evaluate the model against ARMOUR simulations and show it matches ARMOUR for a range of conditions. The computational efficiency of mARM allowed us to easily examine time- and space-varying relationships between erosion and physical weathering rates at the hillslope scale. For erosion-dominated slopes the surface coarsens over time, while for weathering domination the surface fines over time. When erosion and weathering are comparable in scale a slope can be weathering-dominated upslope (where runoff and therefore erosion is low) and armouring-dominated downslope. In all cases, for a constant gradient slope the surface armour coarsens downslope as a result of a balance between erosion and weathering. Thus even for weathering-dominated slopes the surface grading catena is dependent on armouring through the balance between weathering and armouring. We also observed that for many slopes the surface initially armours but, after some period of time (space- and rate-dependent), weathering begins to dominate and the surface subsequently fines. Depending on the relative magnitude of armouring and weathering the final

  13. Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2014-01-01

    Full Text Available The goal of 3D surface simplification is to reduce the storage cost of 3D models. A 3D animation model typically consists of several 3D models. Therefore, to ensure that animation models are realistic, numerous triangles are often required. However, animation models that have a high storage cost have a substantial computational cost. Hence, surface simplification methods are adopted to reduce the number of triangles and computational cost of 3D models. Quadric error metrics (QEM has recently been identified as one of the most effective methods for simplifying static models. To simplify animation models by using QEM, Mohr and Gleicher summed the QEM of all frames. However, homogeneous coordinate problems cannot be considered completely by using QEM. To resolve this problem, this paper proposes a robust homogeneous coordinate transformation that improves the animation simplification method proposed by Mohr and Gleicher. In this study, the root mean square errors of the proposed method were compared with those of the method proposed by Mohr and Gleicher, and the experimental results indicated that the proposed approach can preserve more contour features than Mohr’s method can at the same simplification ratio.

  14. Comparison of land surface humidity between observations and CMIP5 models

    Science.gov (United States)

    Dunn, Robert J. H.; Willett, Kate M.; Ciavarella, Andrew; Stott, Peter A.

    2017-08-01

    We compare the latest observational land surface humidity dataset, HadISDH, with the latest generation of climate models extracted from the CMIP5 archive and the ERA-Interim reanalysis over the period 1973 to present. The globally averaged behaviour of HadISDH and ERA-Interim are very similar in both humidity measures and air temperature, on decadal and interannual timescales. The global average relative humidity shows a gradual increase from 1973 to 2000, followed by a steep decline in recent years. The observed specific humidity shows a steady increase in the global average during the early period but in the later period it remains approximately constant. None of the CMIP5 models or experiments capture the observed behaviour of the relative or specific humidity over the entire study period. When using an atmosphere-only model, driven by observed sea surface temperatures and radiative forcing changes, the behaviour of regional average temperature and specific humidity are better captured, but there is little improvement in the relative humidity. Comparing the observed climatologies with those from historical model runs shows that the models are generally cooler everywhere, are drier and less saturated in the tropics and extra-tropics, and have comparable moisture levels but are more saturated in the high latitudes. The spatial pattern of linear trends is relatively similar between the models and HadISDH for temperature and specific humidity, but there are large differences for relative humidity, with less moistening shown in the models over the tropics and very little at high latitudes. The observed drying in mid-latitudes is present at a much lower magnitude in the CMIP5 models. Relationships between temperature and humidity anomalies (T-q and T-rh) show good agreement for specific humidity between models and observations, and between the models themselves, but much poorer for relative humidity. The T-q correlation from the models is more steeply positive than

  15. A model for generating Surface EMG signal of m. Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar P

    2014-01-01

    A model that simulates surface electromyogram (sEMG) signal of m. Tibialis Anterior has been developed and tested. This has a firing rate equation that is based on experimental findings. It also has a recruitment threshold that is based on observed statistical distribution. Importantly, it has considered both, slow and fast type which has been distinguished based on their conduction velocity. This model has assumed that the deeper unipennate half of the muscle does not contribute significantly to the potential induced on the surface of the muscle and has approximated the muscle to have parallel structure. The model was validated by comparing the simulated and the experimental sEMG signal recordings. Experiments were conducted on eight subjects who performed isometric dorsiflexion at 10, 20, 30, 50, 75, and 100% maximal voluntary contraction. Normalized root mean square and median frequency of the experimental and simulated EMG signal were computed and the slopes of the linearity with the force were statistically analyzed. The gradients were found to be similar (p>0.05) for both experimental and simulated sEMG signal, validating the proposed model.

  16. Hyper-Resolution Global Land Surface Model at Regional-to-Local Scales with observed Groundwater data assimilation

    OpenAIRE

    Singh, Raj Shekhar

    2014-01-01

    Modeling groundwater is challenging: it is not readily visible and is difficult to measure, with limited sets of observations available. Even though groundwater models can reproduce water table and head variations, considerable drift in modeled land surface states can nonetheless result from partially known geologic structure, errors in the input forcing fields, and imperfect Land Surface Model (LSM) parameterizations. These models frequently have biased results that are very different from o...

  17. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    Science.gov (United States)

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  18. Eco-hydrological process simulations within an integrated surface water-groundwater model

    DEFF Research Database (Denmark)

    Butts, Michael; Loinaz, Maria Christina; Bauer-Gottwein, Peter

    2014-01-01

    Integrated water resources management requires tools that can quantify changes in groundwater, surface water, water quality and ecosystem health, as a result of changes in catchment management. To address these requirements we have developed an integrated eco-hydrological modelling framework...... that allows hydrologists and ecologists to represent the complex and dynamic interactions occurring between surface water, ground water, water quality and freshwater ecosystems within a catchment. We demonstrate here the practical application of this tool to two case studies where the interaction of surface...... water and ground water are important for the ecosystem. In the first, simulations are performed to understand the importance of surface water-groundwater interactions for a restored riparian wetland on the Odense River in Denmark as part of a larger investigation of water quality and nitrate retention...

  19. Remote sensing estimates of impervious surfaces for pluvial flood modelling

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Drews, Martin

    This paper investigates the accuracy of medium resolution (MR) satellite imagery in estimating impervious surfaces for European cities at the detail required for pluvial flood modelling. Using remote sensing techniques enables precise and systematic quantification of the influence of the past 30...

  20. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    Science.gov (United States)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  1. ORCHIDEE-MICT (v8.4.1, a land surface model for the high latitudes: model description and validation

    Directory of Open Access Journals (Sweden)

    M. Guimberteau

    2018-01-01

    Full Text Available The high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance – those of the permanently frozen soils (permafrost, and of the great expanse of boreal forest – are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i temperature gradients between the atmosphere and deep soils, (ii the hydrological components comprising the water balance of the largest high-latitude basins, and (iii CO2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment.

  2. Theory of synergistic effects: Hill-type response surfaces as 'null-interaction' models for mixtures.

    Science.gov (United States)

    Schindler, Michael

    2017-08-02

    The classification of effects caused by mixtures of agents as synergistic, antagonistic or additive depends critically on the reference model of 'null interaction'. Two main approaches are currently in use, the Additive Dose (ADM) or concentration addition (CA) and the Multiplicative Survival (MSM) or independent action (IA) models. We compare several response surface models to a newly developed Hill response surface, obtained by solving a logistic partial differential equation (PDE). Assuming that a mixture of chemicals with individual Hill-type dose-response curves can be described by an n-dimensional logistic function, Hill's differential equation for pure agents is replaced by a PDE for mixtures whose solution provides Hill surfaces as 'null-interaction' models and relies neither on Bliss independence or Loewe additivity nor uses Chou's unified general theory. An n-dimensional logistic PDE decribing the Hill-type response of n-component mixtures is solved. Appropriate boundary conditions ensure the correct asymptotic behaviour. Mathematica 11 (Wolfram, Mathematica Version 11.0, 2016) is used for the mathematics and graphics presented in this article. The Hill response surface ansatz can be applied to mixtures of compounds with arbitrary Hill parameters. Restrictions which are required when deriving analytical expressions for response surfaces from other principles, are unnecessary. Many approaches based on Loewe additivity turn out be special cases of the Hill approach whose increased flexibility permits a better description of 'null-effect' responses. Missing sham-compliance of Bliss IA, known as Colby's model in agrochemistry, leads to incompatibility with the Hill surface ansatz. Examples of binary and ternary mixtures illustrate the differences between the approaches. For Hill-slopes close to one and doses below the half-maximum effect doses MSM (Colby, Bliss, Finney, Abbott) predicts synergistic effects where the Hill model indicates 'null

  3. Dynamical modeling of surface tension

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Kothe, D.B.

    1996-01-01

    In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed

  4. Statistical analysis and modelling of surface runoff from arable fields in central Europe

    Directory of Open Access Journals (Sweden)

    P. Fiener

    2013-10-01

    Full Text Available Surface runoff generation on arable fields is an important driver of flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow. Despite the developments in our understanding of these processes it remains difficult to predict which processes govern runoff generation during the course of an event or throughout the year, when soil and vegetation on arable land are passing many states. We analysed the results from 317 rainfall simulations on 209 soils from different landscapes with a resolution of 14 286 runoff measurements to determine temporal and spatial differences in variables governing surface runoff, and to derive and test a statistical model of surface runoff generation independent from an a priori selection of modelled process types. Measured runoff was related to 20 time-invariant soil properties, three variable soil properties, four rain properties, three land use properties and many derived variables describing interactions and curvilinear behaviour. In an iterative multiple regression procedure, six of these properties/variables best described initial abstraction and the hydrograph. To estimate initial abstraction, the percentages of stone cover above 10% and of sand content in the bulk soil were needed, while the hydrograph could be predicted best from rain depth exceeding initial abstraction, rainfall intensity, soil organic carbon content, and time since last tillage. Combining the multiple regressions to estimate initial abstraction and surface runoff allowed modelling of event-specific hydrographs without an a priori assumption of the underlying process. The statistical model described the measured data well and performed equally well during validation. In both cases, the model explained 71 and 58% of variability in accumulated runoff volume and instantaneous

  5. Surface Pressure Dependencies in the GEOS-Chem-Adjoint System and the Impact of the GEOS-5 Surface Pressure on CO2 Model Forecast

    Science.gov (United States)

    Lee, Meemong; Weidner, Richard

    2016-01-01

    In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.

  6. Upper-soil moisture inter-comparison from SMOS's products and land surface models over the Iberian Peninsula

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Aires, Filipe; Balsamo, Gianpaolo; Gelati, Emiliano; Rodríguez-Fernández, Nemesio

    2015-04-01

    Soil moisture is a key state variable of the hydrological cycle. It conditions runoff, infiltration and evaporation over continental surfaces, and is key for forecasting droughts and floods. It plays thus an important role in surface-atmosphere interactions. Surface Soil Moisture (SSM) can be measured by in situ measurements, by satellite observations or modelled using land surface models. As a complementary tool, data assimilation can be used to combine both modelling and satellite observations. The work presented here is an inter-comparison of retrieved and modelled SSM data, for the 2010 - 2012 period, over the Iberian Peninsula. The region has been chosen because its vegetation cover is not very dense and includes strong contrasts in the rainfall regimes and thus a diversity of behaviours for SSM. Furthermore this semi-arid region is strongly dependent on a good management of its water resources. Satellite observations correspond to the Soil Moisture and Ocean Salinity (SMOS) retrievals: the L2 product from an optimal interpolation retrieval, and 3 other products using Neural Network retrievals with different input information: SMOS time indexes, purely SMOS data, or addition of the European Advanced Scaterometer (ASCAT) backscattering, and the Moderate-Resolution Imaging Spectrometer (MODIS) surface temperature information. The modelled soil moistures have been taken from the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEms) and the HTESSEL (Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) land surface models. Both models are forced with the same atmospheric conditions (as part of the Earth2Observe FP7 project) over the period but they represent the surface soil moisture with very different degrees of complexity. ORCHIDEE has 5 levels in the top 5 centimetres of soil while in HTESSEL this variable is part of the top soil moisture level. The two types of SMOS retrievals are compared to the model outputs in their spatial and temporal

  7. Surface complexation modelling applied to the sorption of nickel on silica

    International Nuclear Information System (INIS)

    Olin, M.

    1995-10-01

    The modelling based on a mechanistic approach, of a sorption experiment is presented in the report. The system chosen for experiments (nickel + silica) is modelled by using literature values for some parameters, the remainder being fitted by existing experimental results. All calculations are performed by HYDRAQL, a model planned especially for surface complexation modelling. Allmost all the calculations are made by using the Triple-Layer Model (TLM) approach, which appeared to be sufficiently flexible for the silica system. The report includes a short description of mechanistic sorption models, input data, experimental results and modelling results (mostly graphical presentations). (13 refs., 40 figs., 4 tabs.)

  8. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    Science.gov (United States)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  9. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  10. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    Science.gov (United States)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  11. The Goddard Snow Radiance Assimilation Project: An Integrated Snow Radiance and Snow Physics Modeling Framework for Snow/cold Land Surface Modeling

    Science.gov (United States)

    Kim, E.; Tedesco, M.; Reichle, R.; Choudhury, B.; Peters-Lidard C.; Foster, J.; Hall, D.; Riggs, G.

    2006-01-01

    Microwave-based retrievals of snow parameters from satellite observations have a long heritage and have so far been generated primarily by regression-based empirical "inversion" methods based on snapshots in time. Direct assimilation of microwave radiance into physical land surface models can be used to avoid errors associated with such retrieval/inversion methods, instead utilizing more straightforward forward models and temporal information. This approach has been used for years for atmospheric parameters by the operational weather forecasting community with great success. Recent developments in forward radiative transfer modeling, physical land surface modeling, and land data assimilation are converging to allow the assembly of an integrated framework for snow/cold lands modeling and radiance assimilation. The objective of the Goddard snow radiance assimilation project is to develop such a framework and explore its capabilities. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. In fact, multiple models are available for each element enabling optimization to match the needs of a particular study. Together these form a modular and flexible framework for self-consistent, physically-based remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster. Capabilities for assimilation of snow retrieval products are already under development for LIS. We will describe plans to add radiance-based assimilation capabilities. Plans for validation activities using field measurements will also be discussed.

  12. State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales

    NARCIS (Netherlands)

    Wang, T.; Brender, P.; Ciais, P.; Piao, S.; Mahecha, M.D.; Chevallier, F.; Reichstein, M.; Ottle, C.; Maignan, F.; Arain, A.; Bohrer, G.; Cescatti, A.; Kiely, G.; Law, B.E.; Lutz, M.; Montagnani, L.; Moors, E.J.

    2012-01-01

    Characterization of state-dependent model biases in land surface models can highlight model deficiencies, and provide new insights into model development. In this study, artificial neural networks (ANNs) are used to estimate the state-dependent biases of a land surface model (ORCHIDEE: ORganising

  13. A critical assessment of the JULES land surface model hydrology for humid tropical environments

    Science.gov (United States)

    Zulkafli, Z.; Buytaert, W.; Onof, C.; Lavado, W.; Guyot, J. L.

    2013-03-01

    Global land surface models (LSMs) such as the Joint UK Land Environment Simulator (JULES) are originally developed to provide surface boundary conditions for climate models. They are increasingly used for hydrological simulation, for instance to simulate the impacts of land use changes and other perturbations on the water cycle. This study investigates how well such models represent the major hydrological fluxes at the relevant spatial and temporal scales - an important question for reliable model applications in poorly understood, data-scarce environments. The JULES-LSM is implemented in a 360 000 km2 humid tropical mountain basin of the Peruvian Andes-Amazon at 12-km grid resolution, forced with daily satellite and climate reanalysis data. The simulations are evaluated using conventional discharge-based evaluation methods, and by further comparing the magnitude and internal variability of the basin surface fluxes such as evapotranspiration, throughfall, and surface and subsurface runoff of the model with those observed in similar environments elsewhere. We find reasonably positive model efficiencies and high correlations between the simulated and observed streamflows, but high root-mean-square errors affecting the performance in smaller, upper sub-basins. We attribute this to errors in the water balance and JULES-LSM's inability to model baseflow. We also found a tendency to under-represent the high evapotranspiration rates of the region. We conclude that strategies to improve the representation of tropical systems to be (1) addressing errors in the forcing and (2) incorporating local wetland and regional floodplain in the subsurface representation.

  14. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  15. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  16. Geologic waste disposal and a model for the surface movement of radionuclides

    International Nuclear Information System (INIS)

    Helton, J.; Iman, R.; Brown, J.; Schreurs, S.

    1979-01-01

    A model for the surface movement of radionuclides is presented. This model, which is referred to as the Pathways Model, was constructed in a NRC project to develop a methodology to assess the risk associated with the goelogic disposal of high-level radioactive waste. The methodology development involves work in two major areas: (a) models for physical processes, and (b) statistical techniques for the use and assessment of these models. The presentation of the Pathways Model involves topics from both areas

  17. Global water balances reconstructed by multi-model offline simulations of land surface models under GSWP3 (Invited)

    Science.gov (United States)

    Oki, T.; KIM, H.; Ferguson, C. R.; Dirmeyer, P.; Seneviratne, S. I.

    2013-12-01

    As the climate warms, the frequency and severity of flood and drought events is projected to increase. Understanding the role that the land surface will play in reinforcing or diminishing these extremes at regional scales will become critical. In fact, the current development path from atmospheric (GCM) to coupled atmosphere-ocean (AOGCM) to fully-coupled dynamic earth system models (ESMs) has brought new awareness to the climate modeling community of the abundance of uncertainty in land surface parameterizations. One way to test the representativeness of a land surface scheme is to do so in off-line (uncoupled) mode with controlled, high quality meteorological forcing. When multiple land schemes are run in-parallel (with the same forcing data), an inter-comparison of their outputs can provide the basis for model confidence estimates and future model refinements. In 2003, the Global Soil Wetness Project Phase 2 (GSWP2) provided the first global multi-model analysis of land surface state variables and fluxes. It spanned the decade of 1986-1995. While it was state-of-the art at the time, physical schemes have since been enhanced, a number of additional processes and components in the water-energy-eco-systems nexus can now be simulated, , and the availability of global, long-term observationally-based datasets that can be used for forcing and validating models has grown. Today, the data exists to support century-scale off-line experiments. The ongoing follow-on to GSWP2, named GSWP3, capitalizes on these new feasibilities and model functionalities. The project's cornerstone is its century-scale (1901-2010), 3-hourly, 0.5° meteorological forcing dataset that has been dynamically downscaled from the Twentieth Century Reanalysis and bias-corrected using monthly Climate Research Unit (CRU) temperature and Global Precipitation Climatology Centre (GPCC) precipitation data. However, GSWP3 also has an important long-term future climate component that spans the 21st century

  18. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    Science.gov (United States)

    Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.

    2015-12-01

    Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  19. Verifying the functional ability of microstructured surfaces by model-based testing

    Science.gov (United States)

    Hartmann, Wito; Weckenmann, Albert

    2014-09-01

    Micro- and nanotechnology enables the use of new product features such as improved light absorption, self-cleaning or protection, which are based, on the one hand, on the size of functional nanostructures and the other hand, on material-specific properties. With the need to reliably measure progressively smaller geometric features, coordinate and surface-measuring instruments have been refined and now allow high-resolution topography and structure measurements down to the sub-nanometre range. Nevertheless, in many cases it is not possible to make a clear statement about the functional ability of the workpiece or its topography because conventional concepts of dimensioning and tolerancing are solely geometry oriented and standardized surface parameters are not sufficient to consider interaction with non-geometric parameters, which are dominant for functions such as sliding, wetting, sealing and optical reflection. To verify the functional ability of microstructured surfaces, a method was developed based on a parameterized mathematical-physical model of the function. From this model, function-related properties can be identified and geometric parameters can be derived, which may be different for the manufacturing and verification processes. With this method it is possible to optimize the definition of the shape of the workpiece regarding the intended function by applying theoretical and experimental knowledge, as well as modelling and simulation. Advantages of this approach will be discussed and demonstrated by the example of a microstructured inking roll.

  20. Reliable low precision simulations in land surface models

    Science.gov (United States)

    Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.

    2017-12-01

    Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.